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Abstract

We investigate reinforcement learning for
mean field control problems in discrete time,
which can be viewed as Markov decision pro-
cesses for a large number of exchangeable
agents interacting in a mean field manner.
Such problems arise, for instance when a large
number of robots communicate through a cen-
tral unit dispatching the optimal policy com-
puted by minimizing the overall social cost.
An approximate solution is obtained by learn-
ing the optimal policy of a generic agent in-
teracting with the statistical distribution of
the states of the other agents. We prove rigor-
ously the convergence of exact and model-free
policy gradient methods in a mean-field linear-
quadratic setting. We also provide graphical
evidence of the convergence based on imple-
mentations of our algorithms.

1 Introduction

Typical reinforcement learning (RL) applications in-
volve the search for a procedure to learn by trial and
error the optimal behavior so as to maximize a reward.
While similar in spirit to optimal control applications, a
key difference is that in the latter, the model is assumed
to be known to the controller. This is in contrast with
RL for which the environment has to be explored, and
the reward cannot be predicted with certainty. Still,
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the RL paradigm has generated numerous theoretical
developments and found plenty practical applications.
As a matter of fact, bidirectional links with the opti-
mal control literature have been unveiled as common
tools lie at the heart of many studies. The family of
linear-quadratic (LQ) models proved to be of great im-
portance in optimal control because of its tractability
and versatility. Not surprisingly, these models have also
been studied from a RL viewpoint. See e.g. [26, 10].
Mean field control (MFC), also called optimal control
of McKean-Vlasov (MKV) dynamics, is an extension
of stochastic control which has recently attracted a
surge of interest (see e.g. [5, 1]). From a theoreti-
cal standpoint, the main peculiarity of this type of
problems is that the transition and reward functions
do not only involve the state and the action of the
controller, but also the distribution of the state and
potentially of the control. Practically speaking, they
appear as the asymptotic limits for the control of a
large number of collaborative agents, but they can also
be introduced as single agent problems whose evolution
and costs depend upon the distribution of her state and
her control. Such problems have found a wide range
of applications in distributed robotics, energy, drone
fleet management, risk management, finance, etc. Al-
though they are bona fide control problems for which
a dynamic programming principle can be formulated,
they generally lead to Bellman equations on the infinite
dimensional space of measures, which are extremely
difficult to solve ([2, 22, 25]). Luckily, for mean field
LQ problems, simpler optimality conditions can often
be framed in terms of (algebraic) Riccati equations,
analogously to the non-mean field case. Figure 1 con-
tains a schematic diagram of the relationships between
optimal control (i.e., planning with a model) and the
paradigms of MFC and RL. On the one hand, RL can
be viewed as a development of optimal control in which
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the model is (partially or fully) unknown. On the other
hand, MFC is a generalization of optimal control for
multiple agents when the number of agents grows to
infinity. Mean-field reinforcement learning (MFRL for
short) lies at the intersection of these two extensions
and aims at describing how a large number of agents
can collectively learn the optimal solution of a control
problem by trial and error.

OC
N→∞/MKV

��

learning
// RL

N→∞/MKV

��

MFC learning
// MFRL

Figure 1: Diagram describing the relationship between
optimal control (OC), mean-field control (MFC), rein-
forcement learning (RL) and mean-field reinforcement
learning (MFRL). Horizontal and vertical arrows repre-
sent generalizations by model-free learning or by letting
the number of agents grow to infinity.

Main contributions. From a theoretical viewpoint,
we investigate reinforcement learning when the distri-
bution of the state influences both the dynamics and
the rewards. We focus on LQ models and make three
main contributions. First, we identify, in a general
setting which had not been studied before, the optimal
control as linear in the state and its mean, which is
crucial to study the link between the MFC problem
and learning by a finite population of agents. We ar-
gue that it provides an approximately optimal control
for the problem with a finite number of learners. We
study a policy gradient (PG) method, in exact and
model-free settings (see Section 3), and we prove global
convergence in all cases. Notably, we show how a finite
number of agents can collaborate to learn a control
which is approximately optimal. The key idea is that
the agents, instead of trying to learn the optimal control
of their problem, try instead to learn the control which
is socially optimal for the limiting MFC problem. Last,
we conduct numerical experiments (see Section 4).

Our proof of convergence generalizes to the mean field
setting the recent groundbreaking work of Fazel et al.
[10] in which the authors have established global conver-
gence of PG for LQ problems. One key feature of our

model is the presence of a so-called common noise. To
the best of our knowledge, it has never been considered
in prior studies on mean field models and reinforce-
ment learning. As we explain in the text, its inclusion
is crucial if the model has to capture random sources
of shocks which are common to all the players, and
cannot average out in the asymptotic regime of large
populations of learners. While its presence dramatically
complicates the mathematical analysis, it can also be
helpful. In the present paper, we take advantage of
its impact to explore the unknown environment. Fur-
thermore, in our model-free investigations, we study
two different types of simulator. We first show how the
techniques of [10] can be adapted to show convergence
of PG for the mean field problem if we are provided
with an (idealized) MKV simulator. We then proceed
to show how to obtain convergence even when one has
only access to a (more realistic) simulator for a system
with a finite number of interacting agents. The proof
requires mean-field type techniques relying on the law
of large numbers and, more generally, the propagation
of chaos. Our numerical experiments show that the
method is very robust since it can be applied even if the
agents are not exchangeable and have noisy dynamics.

2 Linear Quadratic Mean Field
Control (LQMFC)

Notation. ‖ · ‖, ‖ · ‖F and ‖ · ‖tr denote respectively
the operator norm, the Frobenius norm, and the trace
norm. ‖ · ‖2, or simply ‖ · ‖ if there is no ambiguity,
denotes the Euclidean norm of a vector in Rd. λ(·) and
σmin(·) denote respectively the spectrum and the mini-
mal singular value of a matrix. X � 0 means that X is
positive semi-definite (psd). We say that a probability
measure µ on Rd is of order 2 if

∫
‖x‖2µ(dx) < ∞.

‖ · ‖Lp denotes the Lp norm of a random vector. If
ξ ∈ Rd, diag(ξ) denotes the d× d diagonal matrix with
the entries of ξ on the diagonal. If A,B are two matri-
ces, diag(A,B) denotes the block-diagonal matrix with
blocks A and B. The transpose of a row, a vector, or
a matrix is denoted by >. ‖ · ‖ψ2 is the sub-Gaussian
norm: namely for a real-valued sub-Gaussian random
variable η, ‖η‖ψ2 = inf

{
s > 0 : E[exp(η2/s2)] ≤ 2

}
,

and for a d-dimensional sub-Gaussian random vector ξ,
‖ξ‖ψ2 = supv∈Rd:‖v‖=1 ‖ξ>v‖ψ2 . See e.g. [31] for more
details.
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2.1 Mean field control problem

Definition of the problem. We consider the
stochastic evolution of a state xt ∈ Rd: for t = 0, 1, . . . ,

xt+1 = Axt + Āx̄t +But + B̄ūt + ε0t+1 + ε1t+1, (1)

where ut ∈ R` has the interpretation of a control and,
for t ≥ 0, the noise terms ε0t+1 and ε1t+1 are mean-zero
Rd-valued random vectors with a finite second moment.
We shall assume that the entries in the sequences (ε0t )t≥1
and (ε1t )t≥1 are independent and identically distributed
(i.i.d. for short) and they are independent of each
other. They should be thought of as the sequences of
increments of a common and an idiosyncratic noise re-
spectively. We shall understand clearly this distinction
when we discuss the dynamics of N agents (see § 2.2).
In order to allow the initial state x0 to be random, we
assume that x0 = ε00 + ε10, but while we assume that ε00
and ε10 are independent of each other, and independent
of the ε0t and ε1t for t ≥ 1, we shall not assume that
they are mean zero themselves. Let µ̃0

0 and µ̃1
1 be their

respective distributions. Here x̄t and ūt are the condi-
tional mean of xt and ut given (ε0s)s=0,...,t. These terms
encode mean field (MF) interactions and explain the
terminology McKean-Vlasov (MKV). See Section A of
appendix for details. A, Ā, B and B̄ are fixed matrices
with suitable dimensions.

We define the instantaneous MF cost at time t by:

c(xt, x̄t, ut, ūt) = (xt − x̄t)>Q(xt − x̄t) + x̄>t (Q+ Q̄)x̄t
+ (ut − ūt)>R(ut − ūt) + ū>t (R+ R̄)ūt

where Q, Q̄, R and R̄ are real symmetric matrices of
suitable dimensions (independent of time). We make
the following assumption.
Assumption 1. Q,Q+ Q̄, R,R+ R̄ are psd matrices.

This assumption guarantees that the Hamiltonian of the
system is convex. In fact, if any of these four matrices
is positive definite, then the Hamiltonian of the system
is strictly convex, ensuring uniqueness of the optimal
control. The goal of the MFC problem is to minimize
the expected (infinite horizon) discounted MF cost

J(u) = E
∑∞
t=0 γ

tc(xu
t , x

u
t , ut, ūt) (2)

where γ ∈ [0, 1] is a discount factor, and we used the no-
tation (xu

t ) to emphasize the fact that the state process

satisfies (1) where u = (ut)t=0,1,... is an admissible con-
trol sequence, namely a sequence of random variables
ut on (Ω,F ,P), measurable with respect to the σ-field
Ft generated by {ε01, ε11, . . . , ε0t , ε1t} and which satisfy:
E
∑∞
t=0 γ

t‖ut‖2 <∞.

Characterization of the optimal control. To the
best of our knowledge, the above problem has not been
studied in the literature, presumably because it is set
in infinite horizon and with discrete time, it includes
a common noise ε0, and the interaction is not only
through the conditional mean of all the states, but also
through the conditional mean of the controls. Under
some suitable conditions, using techniques similar to [4,
Section 3.5], it can be shown that the optimal control
can be identified as a linear combination of xt and x̄t
at each time t.

2.2 Problem with a finite number of agents

We now consider N agents interacting in a mean
field manner. We denote their states at time t by
(xnt )n=1,...,N . They satisfy the state system of equa-
tions: for all n = 1, . . . , N, t ≥ 0,

xnt+1 = Axnt + Āx̄Nt +Bunt + B̄ūNt + ε0t+1 + ε
1,(n)
t+1 , (3)

with initial conditions xn0 = ε00+ε1,(n)
0 , where A, Ā,B, B̄

are as before and (ε0t )t≥1 and (ε1,(n)
t )n=1,...,N,t≥1 are

families of independent identically distributed mean-
zero real-valued random variables, which are assumed
to be independent of each other. We use the notations:
x̄Nt = 1

N

∑N
n=1 x

n
t and ūNt = 1

N

∑N
n=1 u

n
t to denote the

sample averages of the individual states and controls.
Notice that with these notations, we can write the
evolution of the sample average of the state:

x̄Nt+1 = (A+Ā)x̄Nt +(B+B̄)ūNt +ε0t+1+ 1
N

∑N
n′=1 ε

1,(n′)
t+1 .

Note that ε0 affects all the agents and represents aggre-
gate shocks e.g. in economic models (see [6, 7] for appli-
cations to systemic risk and energy management in the
MFG setting). Unlike its counterpart in the MKV dy-
namics, x̄N involves not only the common noise but also
the idiosyncratic noises. Letting Xt = [x1

t , . . . , x
N
t ]>

and Ut = [u1
t , . . . , u

N
t ]> for each integer t ≥ 0, we have

the vector dynamics

Xt+1 = ANXt +BNUt + E0
t+1 + E1

t+1 (4)
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with E1
t+1 = [ε1,(1)

t+1 , . . . , ε
1,(N)
t+1 ]>, E0

t+1 =
[ε0t+1, . . . , ε

0
t+1]> and AN = IN ⊗ A + 1

N 1N ⊗ Ā

and BN = IN ⊗ B + 1
N 1N ⊗ B̄, where ⊗ denotes the

Kronecker product between matrices. In other words,
the matrix AN is the sum of the block-diagonal matrix
with N blocks A and of the matrix with N ×N blocks
1
N Ā, and similarly for the matrix BN . Throughout the
paper, Id is the d × d identity matrix, 1d and 1d are
respectively the d× d matrix and the d−vector whose
entries are all ones. We drop the subscripts when the
dimension is clear from the context.

We seek to minimize the so-called population social
cost defined as JN (U) = E

∑
t≥0 γ

tc̄N (Xt, Ut) over the
admissible control processes U = (Ut)t where, by admis-
sibility we mean that: 1) the control process is adapted
to the filtration generated by the sources of random-
ness (initial condition, common noise and idiosyncratic
noises), and 2) the expectation appearing in the defini-
tion of JN (U) is finite. Here, the instantaneous social
cost function c̄N is defined by

c̄N (X,U) = 1
N

∑N
n=1 c

(n) (xn, x̄N , un, ūN) (5)

where X = [x1, . . . , xN ]> and U = [u1, . . . , uN ]>, and
for each n ∈ {1, . . . , N} the function c(n) is the cost of
agent n, defined for x, x̄, u, ū ∈ Rd by:

c(n)(x, x̄, u, ū) = (x− x̄)>Qn(x− x̄) + x̄>(Qn + Q̄)x̄
+ (u− ū)>R(u− ū) + ū>(R+ R̄)ū,

where Qn = Q + Q̃n for each n = 1, . . . , N . Here
‖Q̃n‖ ≤ h̃, with h̃ ≤ min{λmin(Q), λmin(Q + Q̄)},
should be seen as a variation of Q and h̃ quantifies
the degree of heterogeneity of the population.1 We
will use the notation Q̃ = [Q̃1, . . . , Q̃N ]> for the vec-
tor of variations. We could perturb the coefficients
Q̄, R and R̄ as well, but we chose to perturb Q only
because this is enough to illustrate departures from the
MKV solution which we want to emphasize. The opti-
mization problem can be recast as an infinite-horizon
discounted-cost linear-quadratic control problem where
the state X = (Xt)t is a stochastic process in dimension
dN . In particular, the optimal control U∗,N is of the
form U∗,Nt = Φ∗,NXt for a deterministic (dN)× (dN)
constant matrix Φ∗,N .

1Actually, it is sufficient to assume that Q̃n is such that
Q+ Q̃n � 0 and Q̄+Q+ Q̃n � 0.

2.3 Link between the two problems

It can be shown that the optimal control for the
MFC problem is given at time t by u∗MKV (t) =
−K∗xt − (L∗ −K∗)x̄t for some constant matrices K∗
and L∗. For the purpose of comparison with the matrix
Φ∗,N defined above, we introduce the matrix Φ∗,NMKV =
−IN⊗K∗− 1

N 1N⊗(L∗−K∗). It turns out that this ma-
trix provides a control which is approximately optimal
for the N−agent problem, i.e., if the agents use the con-
trol U∗,NMKV (t) = Φ∗,NMKVXt = −diag(K∗, . . . ,K∗)Xt −
diag((L∗−K∗), . . . , (L∗−K∗))Xt, then the social cost
is at most ε more than the minimum, where ε depends
on N and the heterogeneity degree h̃, and vanishes as
N → +∞ and h̃→ 0 (see Section F.2 of the appendix
for numerical illustrations). In the extreme case of ho-
mogeneity, namely when h̃ = 0, Φ∗,N = Φ∗,NMKV . So
in this case, the optimal strategy for N agents is the
same as in the MKV case, except that the mean of
the MKV process is replaced by the N−agent sample
average. This intuition naturally leads to the notion of
decentralized control which can be easily implemented
using the solution of the MFC problem (see Remark 49
in Section F.2 of the appendix and [14]). This perfect
identification was the main motivation to develop RL
methods for the optimal control of MKV dynamics.

3 Policy gradient method

3.1 Exact PG for MFC

Admissible controls. We go back to the framework
for the optimal control of MKV dynamics discussed
in § 2.1. Our theoretical analysis suggests that we
restrict our attention to controls which are linear in
x and x̄ since we know that the optimal control is
in this class. Accordingly, we define Θ as the set of
θ = (K,L) ∈ R`×d × R`×d such that γ‖A−BK‖2 < 1
and γ‖A+Ā−(B+B̄)L‖2 < 1. For θ = (K,L) ∈ Θ, we
define ũθ : (x, x̄) 7→ −K(x− x̄)− Lx̄, and to alleviate
the notations, we write xθt instead of xuθ

t for the state
controlled by the control process uθt = ũθ(xt, x̄t). We
will sometimes abuse terminology and call θ a control
or say that the state process is controlled by θ. We
let Kθ = diag(K,L) ∈ R(2`)×(2d). Conversely, it will
also be convenient to write θ(K) = (K,L) when K =
diag(K,L).
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Re-parametrization. The goal is to recast the ini-
tial mean-field LQ problem as a LQ problem in a larger
state space. Given θ = (K,L) ∈ Θ and the associated
controlled state process (xθt )t≥0, we introduce two aux-
iliary processes (yθt )t≥0 and (zθt )t≥0 defined for t ≥ 0
by

yθt = xθt − E[xθt |F0], and zθt = E[xθt |F0]. (6)

Note that yθ0 = y0 = ε10−E[ε10] and zθ0 = z0 = ε00 +E[ε10]
are independent of θ and that{

yθt+1 = (A−BK)yθt + ε1t+1,
zθt+1 = (A+ Ā− (B + B̄)L)zθt + ε0t+1.

In particular, yθt (resp. zθt ) depends on θ only through
K (resp. L). We also introduce the state vector xθt =
[yθt , zθt ]> ∈ R2d, and view it as a new controlled state
process, with xθ0 = x0 =

[
ε10 − E[ε10], ε00 + E[ε10]

]> and
for t ≥ 0,

xθt+1 = (A−BKθ)xθt + εt+1 (7)

where εt =
[
ε1t , ε

0
t

]> ∈ R2d, A = diag(A,A + Ā) and
B = diag(B,B). We introduce the new cost function
C : R`×d × R`×d 3 θ = (K,L) 7→ C(θ) ∈ R defined by

C(θ) = E
∑
t≥0 γ

t(xθt )>Γθxθt ,

where Γθ = Q + K>θ RKθ, with Q = diag(Q,Q + Q̄)
and R = diag(R,R + R̄). Finally, we introduce the
auxiliary cost functions Cy and Cz defined by:

Cy(K) = E
∑
t≥0

γt(yθt )>(Q+KTRK)yθt ,

Cz(L) = E
∑
t≥0

γt(zθt )>(Q+ Q̄+ LT (R+ R̄)L)zθt .

The following result gives the rationale for our re-
parameterization of the optimization problem.
Lemma 1. For any θ = (K,L) ∈ Θ, we have
J(ũθ) = C(θ) = Cy(K) + Cz(L), and infθ∈Θ J(ũθ) =
infθ∈Θ C(θ) = infK Cy(K) + infL Cz(L).

Here we slightly abuse of notation and see J as a func-
tion of ũθ. The proof of this lemma is deferred to
Section B.1 of the appendix. Notice that, by defini-
tion of ũθ and C(θ), we also have arg minθ∈Θ J(ũθ) =
arg minθ∈Θ C(θ). De facto, we split the original control
problem into two separate optimization problems which
can be tackled in parallel.

Exact PG convergence result. Assuming full
knowledge of the model, we compute the optimal pa-
rameters using a standard gradient descent algorithm.
With a fixed learning rate η > 0 and initial parameter
θ0 = (K0, L0), we update the parameter θ from θ(k)

to θ(k+1) = θ(K(k+1)) via K(k+1) = K(k) − η∇C(θ(k)).
Convergence of the algorithm is proved under the follow-
ing assumption. Let Σ1 = E[ε11(ε11)>], Σ0 = E[ε01(ε01)>],
Σy0 = E

[
y1

0(y1
0)>
]
, and Σz0 = E

[
z1

0(z1
0)>
]
.

Assumption 2. max{λmin(Σy0), λmin(Σ1)} > 0, and
max{λmin(Σz0), λmin(Σ0)} > 0. Moreover ε10, ε00 and
ε1t , ε

1
t for all t ≥ 1 are sub-Gaussian random variables

whose ‖ · ‖ψ2 norms are bounded by a constant C0.

Remark 2. The above assumption implies directly
that the variances Σy0 , Σz0 ,Σ1, Σ0 are bounded in ψ2
norm. If the initial distributions are non-degenerate
with bounded supports, and if there is no noise processes
(which imply Assumption 2 automatically), the argu-
ments of [10] can be adapted in a rather straightforward
way. However, in the more general setting considered
here, which covers in particular non-degenerate Gaus-
sian distributions, we need more tools and ideas to prove
the convergence results.

We prove the following convergence result. Here and
thereafter, we denote by θ∗ the optimal parameter, i.e.
such that C(θ∗) = minθ∈Θ C(θ).

Theorem 3. Under our standing assumptions, for ev-
ery ε > 0, if k is large enough and if η > 0 is small
enough, then C(θ(k))−C(θ∗) ≤ ε. The convergence rate
is linear in the sense that it is sufficient to take the
number of steps k of the order of O(log(1/ε)).

Remark 4. The constant in the big O can be expressed
as a polynomial of the data of the problems. See [10,
Theorem 7] or the proof of Theorem 6 below for more
details.

The proof is adapted from [10, Theorem 7] and the
main differences are stressed in Section B of the ap-
pendix. The non-degeneracy of the randomness, which
comes from Assumption 2, plays a crucial role in our
ability to adapt the result of [10]. Note that the re-
parameterization is critical to show that, during the gra-
dient descent, the matrix K(k) keeps a block-diagonal
structure.
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3.2 Model free PG for MFC with MKV
simulator

Let us assume that we have access to the following
(stochastic) simulator, called MKV simulator STMKV :
given a control parameter θ, STMKV (θ) returns a sample
of the mean-field cost (see § 2.1) for the MKV dynam-
ics (1) using the control θ. In other words, it returns
a realization of the social cost

∑T−1
t=0 γtct, where ct is

the instantaneous mean-field cost at time t. Notice
that, although the simulator needs to know the model
in order to sample the dynamics and compute the costs,
Algorithm 1 below uses this simulator as a black-box (or
an oracle), and hence uses only samples from the model
and not the model itself. Without full knowledge of the
model, we use derivative-free techniques (see Section C
of the appendix) to estimate the gradient of the cost.
We let Bτ ⊂ R`×d be the ball of radius τ centered at
the origin, and Sτ = ∂Bτ be its boundary. The uniform
distributions on Bτ and Sτ are denoted by µBτ and
µSτ respectively.

Algorithm 1 provides a (biased) estimator of the true
policy gradient ∇C(θ). This method is very much in
the spirit of [10, Algorithm 1], except that here we have
two components (the state and the conditional mean)
playing different roles. The choice of two independent
sources (v1i) and (v2i) of noise is important to get an
estimation of the gradients w.r.t. K and L solely from
observing a single cost provided by the MKV simulator
STMKV (θi). We prove the following convergence result,
which generalizes [10, Theorem 30].

Algorithm 1: Model-free MKV-Based Gradient Esti-
mation
Data: Parameter θ = (K,L); number of perturbations

M ; length T ; radius τ
Result: A biased estimator for the gradient ∇C(θ)

1 begin
2 for i = 1, 2, . . . ,M do
3 Sample v1i, v2i i.i.d. ∼ µSτ
4 Set θi = (Ki, Li) = (K + v1i, L+ v2i)
5 Sample C̃i using STMKV (θi)

6 Set ∇̃KC(θ) = d
τ2

1
M

∑M
i=1 C̃

iv1i, and
∇̃LC(θ) = d

τ2
1
M

∑M
i=1 C̃

iv2i
7 return ∇̃C(θ) = diag

(
∇̃KC(θ), ∇̃LC(θ)

)
Theorem 5. Under our standing assumptions, if we

use the update rule K̃(k+1) = K̃(k) − η∇̃C(θ(k)) where
∇̃C(θ(k)) is given by Algorithm 1, for every ε > 0, if k,
M , τ−1 and T are large enough, then we have C(θ(k))−
C(θ∗) ≤ ε with probability at least 1− k(d/ε)−d. The
convergence rate is linear in the sense that it is sufficient
to take k of the order of O(log(1/ε)).

The proof is deferred to Section C of the appendix, but
it is worth mentioning here some important steps. It
relies on the reparametrization xθ = [yK , zL]> of the
state process. Due to the idiosyncratic and common
noises, the sampled costs are not bounded but only sub-
exponentially distributed. A careful analysis is required
to obtain polynomial bounds on the parameters M, τ−1

and T used in the algorithm. The main difficulty turns
out to reduce to the study of a sequence of quadratic
forms of sub-Gaussian random vectors with dependent
coordinates (see [35, Proposition 2.5]). The discount
term also plays an important role here. We refer to
Lemma 35 in the appendix for more details on the
cornerstone of the proof.

3.3 Model-free PG for MFC with population
simulator

We now turn our attention to a more realistic setting
where one does not have access to an oracle simulating
the MKV dynamics, but only to an oracle merely capa-
ble of simulating the evolution of N agents. We then
use the state sample average instead of the theoretical
conditional mean, and for the social cost, the empirical
average instead of the mean-field cost provided by the
MKV simulator. We rely on the following population
simulator ST,Npop : given a control parameter θ, ST,Npop (θ)
returns a sample of the social cost obtained by sampling
realizations of the N state trajectories controlled by θ
and computing the associated cost for the population,
see (3) and (5). In other words, it returns a realization
of
∑T
t=0 γ

tc̄Nt , where c̄Nt is the instantaneous N -agent
social cost cost at time t.

Notice that this population simulator ST,Npop is arguably
more realistic and less powerful than the previous MKV
simulator STMKV , in the sense that the former has only
an approximation (or a noisy version) of the true mean
process. We stress that all the agents use the same con-
trol (and in Algorithm 2, they use the same perturbed
version of a control). This point is in line with the idea
that the problem corresponds to the one of a central
planner or the one of a population trying to find the
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best common feedback control rule in order to optimize
a social cost (see § 2.2).

Algorithm 2: Model-free Population-Based Gradient
Estimation
Data: θ = (K,L); number of agents N ; number of

perturbations M ; length T ; radius τ
Result: A biased estimator for ∇C(θ).

1 begin
2 for i = 1, 2, . . . ,M do
3 Sample v1i, v2i i.i.d. ∼ µSτ
4 Set θi = (Ki, Li) = (K + v1i, L+ v2i)
5 Sample C̃i,N using ST,Npop (θi)

6 Set ∇̃KCN (θ) = d
τ2

1
M

∑M
i=1 C̃

i,Nv1i, and
∇̃LCN (θ) = d

τ2
1
M

∑M
i=1 C̃

i,Nv2i
7 return ∇̃CN (θ) = diag

(
∇̃KCN (θ), ∇̃LCN (θ)

)

Theorem 6. Under our standing assumptions, if h̃ =
0, and if we use the update rule K̃(k+1) = K̃(k) −
η∇̃CN (θ(k)), where ∇̃CN (θ(k)) is given by Algorithm 2,
then for every ε > 0, if k, M , τ−1, T and N are large
enough, then CN (θ(k)) − CN (θ∗) ≤ ε with probability
at least 1 − k(d/ε)−d. The convergence rate is linear
in the sense that it is sufficient to take the number of
steps k of the order of O(log(1/ε)).

The high-level structure of the proof follows the lines
of [10, Theorem 28], with several important modifica-
tions that we highlight in the appendix. In particular,
it relies on several crucial estimates controlling the bias
introduced by MF interactions in the computation of
the gradient of the cost. See, in the appendix, Section D
for a sketch of proof and Section E for the details.

Remark 7. Recall that when h̃ = 0, the mean-field and
the finite-population problems have the same θ∗. When
h̃ > 0 (agents are not perfectly identical), a similar
convergence result could be proved, at the expense of an
additional error term vanishing as h̃ → 0. Numerical
tests conducted with heterogeneous agents in the next
section support this idea.

Remark 8. Even if the common noise were degenerate,
in the N−agent dynamics the average x̄N would remain
stochastic due to the term 1

N

∑N
n′=1 ε

1,n′
t+1 . Hence, we

expect that Theorem 6 could be proved without the non-
degeneracy of the noises in Assumption 2.

4 Numerical results

Although the main thrust of our work is theoretical, we
assess our convergence results by numerical tests. To
illustrate the robustness of our methods, we consider
a case where the agents are heterogeneous (i.e., h̃ >
0) and have idiosyncratic and common noise in the
dynamics. For the discount, we used γ = 0.9. We
consider here an example in which the state and the
control are in dimension 1 because it is easier to visualize
and because it allows focusing on the main difficulty
of MFC problems, namely the MF interactions. For
brevity, the precise setting is postponed to Section F of
the appendix. The displayed curves correspond to the
mean over 10 different realizations. The shaded region,
if any, corresponds to the mean ± standard deviation.

For each model-free method, we look at how the control
learned by PG performs both in terms of the MF cost
and the N−agent social cost (see Figures 2). On Fig-
ure (2a) and (2b), one can see that the control learned
by PG is approximately optimal for the MF cost, pro-
vided that the number of agents is strictly larger than 1.
Indeed, as shown in Figure (3a), a single agent is able
to learn the second component of the optimal control
θ∗ = (K∗, L∗) but not the first component. This can be
explained by the fact that, when N = 1, x1−x̄N is iden-
tically 0. So the agent does not have any estimate of the
y component of the state (see (6)) and is thus unable
to learn the associated control parameter. Figure (2b)
displays the relative error, namely, (C(θ(k))− C∗)/C∗
at iteration k, where C∗ = C(θ∗) is the optimal mean
field cost (i.e., the MKV cost evaluated at the optimal
mean field control parameter θ∗).

As for the evaluation in terms of the population cost,
Figure 2 also displays the N−agent social cost (2c) and
the error with respect to the optimal social cost (2d),
for each population size. Note that in our simulations,
for a finite population, the social cost takes into ac-
count the heterogeneities of the agents’s costs. In Fig-
ure (2c), the dashed line for each N corresponds to
the value of C∗,N = JN (Φ∗,N ), which is the optimal
N−agent social cost (i.e., the social cost evaluated at
the optimal N−agent control Φ∗,N introduced in sec-
tion 2.2). Figure (2d) shows the relative error, defined
as (CN (θ(k)) − C∗,N )/C∗,N at iteration k. Here, we
can see that the N -agents manage to learn a control
which is approximately optimal for their own social cost
(even when N = 1). For the sake of comparison, we also
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(a) (b) (c) (d)

Figure 2: Comparison of costs achieved by the controls learned with MKV and population simulator using
model-free PG. (a) : mean field (MF) costs; (b) : relative error in MF cost wrt MF optimum; (c) : N -agent costs
and their respective optimal value; (d) : relative error in N -agent costs wrt N -agent optimal cost.

display the performance of the model-free method with
MKV simulator (measured in terms of the MKV cost),
which appears in Figure (2) as well. It converges better
since all the proposed methods attempt to learn the
optimal control for the mean field problem. However,
as explained in section 2.3, the difference between the
N−agent optimal control and the mean-field optimal
control vanishes as the heterogeneity degree h̃ goes to
0.

Besides the fact that a single agent is not able to learn
K∗, we note in Figure (3b) that for N = 2 the conver-
gence is almost as good with N ≥ 10 as with with MKV
simulator, but it is slower for N = 2. This certainly
comes from propagation of chaos, and we expect some
dependence on the dimension of the state, in accordance
with our theoretical bounds.

(a) (b)

Figure 3: Convergence of the control parameters. (a) 1-
agent simulator. (b) MKV and population simulators.

5 Conclusion and future research

In this work, we explored the central role played by
MKV dynamics in multi-agent RL and showed that a

relatively small number of agents are able to learn a
mean field optimal control, which can then be re-used
in larger systems with approximate optimality. We
established convergence of policy gradient methods for
linear-quadratic mean-field Markov decision problems
using techniques from optimization and stochastic anal-
ysis. When a MKV simulator is available, we explained
how the problem can be tackled by generalizing known
results for standard LQ models. When one has only
access to a population simulator, we extended existing
results to the case of MF interactions. An important
feature of our model is the presence of common noise,
whose impact had to be controlled. The three con-
vergence results shed light on a hierarchy of settings,
namely: (1) knowledge of the mean field model, (2)
access to a MKV simulator, and (3) access to a popula-
tion simulator. We believe that the strategy employed
here to successively prove these results (using a setting
as a building block for the next one) could be useful for
more general (i.e. non-linear-quadratic) mean-field RL
problems.

Our results can be extended in several directions. Other
RL methods (such as Actor-Critic algorithms [18]) and
variance reduction techniques could be used to improve
the method proposed here and generalize to non-LQ
models. Our analysis and numerical implementations
can be applied to other LQ problems such as mean
field games or mean field control problems with several
populations, with important applications to multi-agent
sweeping and tracking.

Related work. Our work is at the intersection of RL
and MFC. The latter has recently attracted a lot of
attention, particularly since the introduction of mean
field games (MFG) by Lasry and Lions [19, 20, 21]
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and by Caines, Huang and Malhamé [15, 13]. MFGs
correspond to the asymptotic limit of Nash equilibria
for games with mean field interactions in which the
number of players grows to infinity. They are inherently
defined through a fixed point procedure and hence, differ
both conceptually and numerically, from MFC problems
which correspond to social optima. See for example [4]
for details and examples. Most works on learning in
the presence of mean field interactions have focused on
MFGs, see e.g. [34, 3] for “learning” (or rather solving)
MFGs based on the full knowledge of the model, and
[16, 32, 33, 12, 23, 9, 28] for RL based methods. In
contrast, our work focuses on MFC problems. While
completing the present work, we became aware of the
very recent work of [27], which also studies MFC with
policy gradient methods. However, their work deals
with finite state and action spaces whereas we consider
continuous spaces. Furthermore, we provide rates of
convergence and, finally, our results rely on assumptions
that can be easily checked on the MFC model under
consideration, which is not the case with the rather
abstract conditions of [27].
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Outline of the appendix. The structure of the appendix
is the following. We start with the definition of a rigorous
probabilistic framework for the idiosyncratic noise and the
common noise in Section A. We then explain (see Section B)
the key differences with the work of [10] to prove convergence
of the exact PG method. In Section C, we provide the main
ingredients for the proof of convergence of approximate
PG with the MKV simulator. The most technical result
of the present work is the convergence of population-based
approximate PG in Theorem 6, for which we provide a
sketch of proof in Section D before completing the details
in Section E. Last, Section F collects the parameters used
in the numerical tests. The interested reader who is not
familiar with the techniques introduced in [10] could start
with the sketch of proof provided in Section D to have a
global view of the main ideas.

A Probabilistic setup

In this section we rigorously define the model of MKV dy-
namics introduced in § 2.1. A convenient way to think about
this model is to view the state xt of the system at time t as
a random variable defined on the probability space (Ω,F ,P)
where Ω = Ω0 ×Ω1, F = F0 ×F1 and P = P0 × P1. In this
set-up, if ω = (ω0, ω1), ε0t (ω) = ε̃0t (ω0) and ε1t (ω) = ε̃1t (ω1)
where (ε̃0t )t=1,2,... and (ε̃1t )t=1,2,... are i.i.d. sequences of
mean-zero random variables on (Ω0,F0,P0) and (Ω1,F1,P1)
respectively, while the initial sources of randomness ε̃0t0 and
ε̃10 are random variables on (Ω0,F0,P0) and (Ω1,F1,P1)
with distributions µ̃0

0 and µ̃1
0 respectively, which are inde-

pendent of each other and independent of (ε̃0t )t=1,2,... and
(ε̃1t )t=1,2,.... We denote by Ft the filtration generated by the
noise up until time t, that is Ft = σ(ε00, ε10, ε01, ε11, . . . , ε0t , ε1t ).

At each time t ≥ 0, xt and ut are random elements defined
on (Ω,F ,P) representing the state of the system and the
control exerted by a generic agent. The quantities x̄t and
ūt appearing in (1) are the random variables on (Ω,F ,P)
defined by: for ω = (ω0, ω1),

x̄t(ω) =
∫

Ω1
xt(ω)P(dω1), ūt(ω) =

∫
Ω1
ut(ω)P(dω1).

Notice that both x̄t and ūt depend only upon ω0. In fact,
the best way to think of x̄t and ūt is to keep in mind the
following fact: x̄t = E[xt|F0] and ūt = E[ut|F0]. These are
the mean field terms appearing in the (stochastic) dynamics
of the state (1).

B Proof of Theorem 3

The structure of the proof is analogous to the one presented
in Section D (see also [10, Theorem 7]). For the sake of
brevity, we do not repeat all the details here and we focus
on the differences in the key ingredients.

B.1 Proof of Lemma 1

Starting from this section, if there is no ambiguity, we will
only state results related to the process (yt)t≥0 or to the
parameter K. They can be extended to process (zt)t≥0
or to parameter L by simply replacing the corresponding
parameters or operators (for example, we replace A by A+Ā,
and Cy(K) by Cz(L), etc).

Proof of Lemma 1. Consider a given θ = (K,L) ∈ Θ. The
control process is u = (ut)t≥0 with ut = ũθ(xθt , x̄θt ) for all
t ≥ 0. We notice that for every t ≥ 0, ut = −K(xθt − x̄θt )−
Lx̄θt = −Kyθt − Lzθt , and

(ut)>Rut = (xθt )>
[
K>RK K>RL
L>RK L>RL

]
xθt .

We can proceed similarly for the term with R̄ in the cost.
Moreover, E[yθt |F0] = 0 and zθt is F0-measurable, which
implies E[(yθt )>KTRLzθt |F0] = 0, so that we deduce ∀ t ≥ 0,

E
[
(ut)>Rut

]
= E

[
E[(ut)>Rut|F0]

]
= E

[
(xθt )>K>θ RKθ xθt

]
.

Then the result holds.

B.2 Gradient expression and domination

Lemma 9. Under Assumption 2, the variance matrices
Σy0 ,Σz0 ,Σ1,Σ0 have finite operator norms, namely there
exists a finite constant C0,var such that

max{‖Σy0‖, ‖Σz0‖, ‖Σ
1‖, ‖Σ0‖} ≤ C0,var. (8)

The proof of Lemma 9 is not difficult. It uses the inequality
between the Lp norm and the sub-Gaussian norm. One can
take C0,var = dCsubC

2
0 where Csub is a universal constant.

For θ = (K,L), let us define the value function when the
process (xθt )t≥0 starts at x ∈ R2d and follows (7) using
control θ:

Vθ(x) =
∑
t≥0

γt(xθt )>Γθxθt .

Then C(θ) = E[Vθ(x0)]. We also define the quantity Σθ =
E
∑

t≥0 γ
txθt (xθt )>. The noises in the dynamics of yθt = yKt

and zθt = zLt are independent, so E[yθt zθt ] = 0 for all t ≥ 0.
Hence we have Σθ = diag(ΣyK ,Σ

z
L), where we introduced

ΣyK = E
∑
t≥0

γtyKt (yKt )>, ΣzL = E
∑
t≥0

γtzLt (zLt )>.

We also introduces the initial variance terms

Σy0 = E[y0(y0)>], Σz0 = E[z0(z0)>], (9)
Σ1 = E[ε10(ε10)>], Σ0 = E[ε00(ε00)>]. (10)
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Let us also consider two matrices PK , PL ∈ Rd×d which are
solutions to the following two algebraic Riccati equations{

P yK = Q+K>RK + γ(A−BK)>P yK(A−BK)
P zL = Q+Q+ L>(R+ R̄)L

+γ(A+A− (B + B̄)L)>P zL(A+A− (B + B̄)L).
(11)

We can combine these two equations into one by introducing

Pθ =
[
P yK 0
0 P zL

]
that satisfies

Pθ = Q + K>RK + γ(A−BK)>Pθ(A−BK).

Let us also introduce αθ = αyK + αzL, with

αyK = γ

1− γE[(ε11)>P yKε
1
1] αzL = γ

1− γE[(ε01)>P zLε01]

For all x0 = (y0, z0) ∈ R2d, the value function can be
expressed as:

Vθ(x0) = x>0 Pθx0 + αθ = y>0 P
y
Ky0 + αyK + z>0 P

µ
Lz0 + αzL.

(12)

The following result provides a crucial expression for the
gradient of the cost.
Lemma 10 (Policy gradient expression). For any θ =
(K,L) ∈ Θ, we have

∇KC(θ) = ∇KCy(K) = 2EyKΣyK ,

where EyK = (R+ γB>P yKB)K − γB>P yKA.

For the sake of completeness, we provide the proof, which is
analogous to the one of [10, Lemma 1], except for the fact
that we have noise in the dynamics and a discount factor.

Proof. Let us consider

Cy(K, ỹ) = E
∑
t≥0

γt(yKt )>(Q+K>RK)yKt = ỹ>P yK ỹ + αyK ,

when (yKt )t starts from y0 = ỹ and is controlled by K. We
have

Cy(K) = Ey0 [Cy(K, y0)]. (13)
Here, we use a subscript to denote the fact that the expec-
tation is taken w.r.t. y0. We also notice that

Cy(K, ỹ)

= E
∑
t≥0

γt(yKt )>(Q+K>RK)yKt

= ỹ>(Q+K>RK)ỹ + E
∑
t≥1

γt(yKt )>(Q+K>RK)yKt

= ỹ>(Q+K>RK)ỹ + γE
[
Cy(K, (A−BK)y0 + ε11)|y0 = ỹ

]
.

(14)

Here, the conditional expectation notation means that ỹ is
fixed while taking the expectation (on ε11). To compute the
gradient with respect to K, we note that, ∇ỹCy(K, ỹ) =
2P yK ỹ (since αyK does not depend upon the starting point
ỹ), and hence, using (14),

∇KCy(K, ỹ) = 2RKỹỹ> − 2γB>P yK(A−BK)ỹỹ>

+ γE
[
∇KCy(K, ỹ′)∣∣ỹ′=(A−BK)ỹ+ε1

1

]
.

Expanding again the gradient in the above right hand side
and using recursion leads to

∇KCy(K, ỹ) = 2
[
(RK + γB>P yKBK)− γB>P yKA

]
·

(
ỹỹ> + E

[∑
t≥1

γtyKt (yKt )>
])

Then we can have

∇KC(θ) = ∇K (Cy(K) + Cz(L)) = ∇KEy0 [Cy(K, y0)]
= 2EyKΣyK .

The gradient of θ = (K,L) 7→ C(θ) w.r.t. L can be com-
puted in a similar way.

We can then follow the line of reasoning used in the proof
of [10, Theorem 7] to each component (namely, y controlled
by K and z controlled by L), and conclude the proof of
Theorem 3. For the sake of brevity, we omit the details here
are refer the interested reader to [10]. We simply mention
how to obtain a few key estimates. Let us introduce

λ1
y = λmin

(
Σy0 + γ

1− γΣ1
)
, (15)

λ0
z = λmin

(
Σz0 + γ

1− γΣ0
)
, (16)

where we recall that Σ1 and Σ0 are defined by (10) and
Σy0 ,Σz0 by (9).

Then, we have the following result, which generalizes [10,
Lemma 13].
Lemma 11. We have the bounds

‖P yK‖ ≤
Cy(K)
λ1
y
≤ C(θ)

λ1
y
, ‖ΣyK‖ ≤

Cy(K)
λmin(Q) ≤

C(θ)
λmin(Q) .

(17)
We have similar upper bounds for P zL and Σz

L by changing
λ1
y to λ0

z, Cy(K) to Cz(L), and Q to Q+ Q̄.

Another important observation is that the following opera-
tors FyK ,FzL,T yK ,T zL defined on the set of matrices X ∈ Rd×d
are bounded:

FyK(X) = γ(A−BK)X(A−BK)>, (18)

T yK(X) =
∑
t≥0

γt(A−BK)tX((A−BK)>)t =
∑
t≥0

(FyK)t(X).
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and FzL and T zL can be defined similarly. In fact, it is
straightforward to check that

‖T yK‖ ≤
1

1− γ1,K
<∞, (19)

with γ1,K = γ‖A−BK‖2 < 1.

The following lemma helps us to express the variance matri-
ces ΣyK and ΣzL in terms of the operators T yK and T zL .
Lemma 12. If θ ∈ Θ, then

ΣyK = T yK

(
Σy0 + γ

1− γΣ1
)
, (20)

ΣzL = T zL
(

Σz0 + γ

1− γΣ0
)
. (21)

Proof. We start by observing that for any t ≥ 1,

E
[
γtyKt (yKt )>

]
=γ(A−BK)E

[
γt−1yKt−1(yKt−1)>

]
(A−BK)>

+ γtE[ε1t (ε1t )>]

=(FyK)t (Σy0 ) +
t−1∑
s=0

(FyK)s
(
γt−sΣ1)

where the second equality is justified by E[ε1t (ε1t )>] =
E[ε11(ε11)>]. So, we have

E

[
T−1∑
t=0

γtyKt (yKt )>
]

=
T−1∑
t=0

(FyK)t(Σy0 ) +
T−1∑
t=1

(
t−1∑
s=0

(FyK)s(γt−sΣ1)

)

=T yK

(
Σy0 + γ − γT

1− γ Σ1
)

+
T−1∑
s=1

(
γs

T−1−s∑
t=0

(FyK)t(Σ1)

)

where the second equality is justified by exchanging the
summations. From the linearity of operators FyK and T yK ,
and observing the fact that for any symmetric matrix X,
FyK(T yK(X)) = T yK(FyK(X)), we have

T yK

(
Σy0 + γ

1− γΣ1
)
− E

[
T−1∑
t=0

γtyKt (yKt )>
]

= γT

1− γ T
y
K

(
Σ1)+ (FyK)T (T yK(Σy0 ))

+
T−1∑
s=1

γs (FyK)T−s
(
T yK(Σ1)

)
, (22)

which is a positive semi-definite matrix, because FyK(Σ)
and T yK(Σ) are positive semi-definite for any positive semi-
definite Σ ∈ Rd×d.

Because the operator norms of T yK and FyK are bounded
by 1/(1− γ1,K) and γ1,K respectively, where γ1,K = γ‖A−
BK‖2 < 1, we have∥∥∥∥∥

T−1∑
s=1

γs (FyK)T−s
(
T yK(Σ1)

)∥∥∥∥∥
≤ ‖Σ1‖ (γ1,K)T

1− γ1,K

T−1∑
s=1

(γ/γ1,K)s −−−−→
T→∞

0,

and
∥∥(FyK)T (T yK(Σy0 ))

∥∥ ≤ (γ1,K)T

1−γ1,K
‖Σy0‖ → 0. Thus, for

any vector ζ ∈ Rd,

ζ>

(
T yK

(
Σy0 + γ

1− γΣ1
)
− E

[
T−1∑
t=0

γtyKt (yKt )>
])

ζ

≤ Tr(ζζ>)

∥∥∥∥∥T yK
(

Σy0 + γ

1− γΣ1
)
− E

[
T−1∑
t=0

γtyKt (yKt )>
]∥∥∥∥∥

T→∞−−−−→ 0.

Meanwhile, the matrices E[γtyKt (yKt )>] for all t ≥ 0 are also
positive semi-definite , so that we have

ζ>

(
ΣyK − E

[
T−1∑
t=0

γtyKt (yKt )>
])

ζ

=Tr

(
(ζζ>)E

[
∞∑
t=T

γtyKt (yKt )>
])

≤Tr(ζζ>)
∥∥T yK (E [γT yKT (yKT )>

])∥∥
≤Tr(ζζ>) 1

1− γ1,K

(
γT1,K‖Σy0‖+ ‖Σ1‖γT

T−1∑
s=0

(γ1/γ)s
)

T→∞−−−−→ 0.

Hence, the result follows.

In particular, if the control parameters is admissible, then
the cost is finite.
Corollary 13. If θ = (K,L) ∈ Θ, namely γ‖A−BK‖2 < 1
and γ‖A+ Ā− (B + B̄)L‖2 < 1, then C(θ) <∞.

The following lemma estimates the difference between the
cost C(θ) and the optimal value of C by means of gradients.
It has been referred to as the “gradient domination” lemma
in [10], which serves as one of the cornerstones in proving
the convergence of the algorithms. This result is in line with
the Polyak- Lojasiewicz condition for gradient descent in
convex optimization ([17]).
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Lemma 14 (Gradient domination). Let θ = (K,L) ∈ Θ
and θ∗ = (K∗, L∗) ∈ Θ be the optimal parameters. Then

Cy(K)− Cy(K∗)

≤
‖ΣyK∗‖

4λmin(R)λmin(ΣyK)2 Tr(∇KCy(K)>∇KCy(K)), (23)

and

Cy(K)−Cy(K∗) ≥
λmin(ΣyK)

‖R+ γB>P yKB‖
Tr((EyK)>EyK). (24)

B.3 Some results from perturbation analysis

We study the effect of perturbing the parameter θ =
(K,L) on the value function C(θ), on the gradients
(∇KC(θ),∇LC(θ)), and on the variance matrices Σy

K and
ΣzL. In this section, we provide several lemmas in this direc-
tion which generalize results of [10] to our setting. Among
other things, we need to deal with the sources of noise in
the dynamics and the discount factor. The following lemma
generalizes [10, Lemmas 18, 19 and 20]. For the sake of
completeness, we present the adapted version to our model
here.
Lemma 15. For any θ = (K,L), θ′ = (K′, L′) ∈ Θ, we
have T yK = (I−FyK)−1, and

‖FyK −F
y
K′‖ ≤ γ

(
2‖A−BK‖+ ‖B‖‖K′ −K‖

)
· ‖B‖‖K′ −K‖, (25)

Moreover, for any η < 1 such that ‖T yK‖‖F
y
K − F

y
K′‖ ≤ η.

For any positive semi-definite matrix X ∈ Rd×d, we have

‖(T yK − T
y
K′)(X)‖ ≤ 1

1− η ‖T
y
K‖‖F

y
K −F

y
K′‖‖T

y
K(X)‖

≤ η

1− η ‖T
y
K(X)‖, (26)

The following lemma is analogous to a key step in the proof
of [10, Lemma 17].
Lemma 16. For every matrix X ∈ Rd×d satisfying ‖X‖ =
1, we have for any positive semi-definite matrix Σ:

‖T yK(X)‖ ≤ ‖Σ−1/2XΣ−1/2‖‖T yK(Σ)‖ (27)

If we choose Σ = Σy0 + γ
1−γΣ1 or Σ = Σz0 + γ

1−γΣ0 in
Lemma 16, then together with Lemma 12, we obtain the
following bounds on the operators T yK and T zL , which re-
fines [10, Lemma 17].
Corollary 17. We have

‖T yK‖ ≤
Cy(K)

λ1
yλmin(Q) ≤

C(θ)
λ1
yλmin(Q) (28)

where we recall that λ1
y is defined by (15).

The following lemma provides a bound on the perturbation
of the variance matrix.
Lemma 18. Let θ, θ′ ∈ Θ and set ∆K = K′ − K Let
ζ1 < 1/2. If

‖∆K‖ ≤ ζ1
‖B‖max{1, ‖T yK‖}

1
‖A−BK‖+ 1 , (29)

then

‖ΣyK − ΣyK′‖

≤
(

2γ
1− 2γζ1

‖T yK‖ · ‖B‖(‖A−BK‖+ 1)‖ΣyK‖
)
‖∆K‖ .

(30)

Proof. From (29) we know that ‖B‖‖∆K‖ ≤ ζ1 ≤ 1/2, thus

‖T yK‖‖F
y
K −F

y
K′‖

≤γ‖T yK‖ (2‖A−BK‖+ ζ1) ζ1
max{1, ‖T yK‖}

1
‖A−BK‖+ 1

≤2γζ1.

Now, from Lemma 12, and inequality (26) with η = 2γζ1,
we obtain

‖ΣyK − ΣyK′‖

=
∥∥∥∥(T yK − T

y
K′)
(

Σy0 + γ

1− γΣ1
)∥∥∥∥

≤ 1
1− 2γζ1

‖T yK‖ · ‖F
y
K −F

y
K′‖ ·

∥∥∥∥T yK (Σy0 + γ

1− γΣ1
)∥∥∥∥

≤ 2γ
1− 2γζ1

‖T yK‖ · (‖A−BK‖+ 1) ‖B‖‖∆K‖ · ‖ΣyK‖ ,

which yields the conclusion.

Combining Lemma 18 with Corollary 17, we deduce the
following useful consequence, which generalizes [10, Lemma
16]. Let us introduce the functions

hycond(θ) := 4
(

C(θ)
λ1
yλmin(Q)

)
‖B‖(‖A−BK‖+ 1) (31)

hzcond(θ) := 4
(

C(θ)
λ0
zλmin(Q+ Q̄)

)
‖B + B̄‖

· (‖A+ Ā− (B + B̄)L‖+ 1). (32)

Note that these functions have a most polynomial growth
in ‖θ‖.
Corollary 19. Let θ, θ′ ∈ Θ and set ∆K = K′ −K. If we
choose ζ1 = 1/4 in Lemma 18, and assume that

‖∆K‖ ≤ 1/hycond(θ), ‖∆L‖ ≤ 1/hzcond(θ). (33)
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Then, together with Lemma 11 and Corollary 17, we have

‖ΣyK − ΣyK′‖ ≤
(

C(θ)
λmin(Q)

)
hycond(θ)‖∆K‖, (34)

and a similar bound for ‖ΣzL − ΣzL′‖.

We now show that if θ ∈ Θ, then θ′ produced by one step
of policy gradient is still in Θ. Let us introduce

ρ(FyK) = ‖γ(A−BK)2‖, ρ(FzL) = ‖γ(A−(B+B̄)L)2‖.

With this notation, saying that θ ∈ Θ amounts to say that
ρ(FyK) < 1 and ρ(FzL) < 1. We start with the following
result.
Lemma 20. If ρ(FyK) < 1, then

Tr(ΣyK) ≥
λ1
y

1− γ‖(A−BK)‖2 .

We then show that any small enough perturbation of the
control parameter preserves the property of lying in Θ.
Recall that hycond, h

z
cond are defined by (31).

Lemma 21. If ρ(FyK) < 1 and ‖K′ − K‖ ≤ 1/hycond(θ),
then ρ(FyK′) < 1.

The proof to Lemma 21 is by contradiction. Then the main
idea is to use the continuity of spectral radius. Suppose that
there exits a K′ satisfying condition ‖K′−K‖ ≤ 1/hycond(θ)
but ρ(FyK′) ≥ 1. So we have ‖A − BK′‖ ≥

√
1/γ and

‖A − BK‖ ≤
√

1/γ (1− ε̃) for some well chosen ε̃ > 0.
The choice of new parameter K′′ such that ‖A−BK′′‖ =√

1/γ (1− ε̃/2) will raise contradiction.

The following Lemma 22 is adapted from the proof of [10,
Lemma 24].
Lemma 22. Let θ, θ′ ∈ Θ and set ∆K = K′ −K. Assume
that the conditions (29) for ‖∆K‖ in Lemma 18 hold, then

‖P yK′ − P
y
K‖ ≤ ‖∆K‖

[
‖T yK‖

1− 2γζ1

(
γ‖P yK‖‖B‖(2‖A−BK‖

+ ζ1) + (2‖K‖+ ζ1/‖B‖) ‖R‖
)]
. (35)

From here, we can bound the variations in P yK and P zL
respectively by the variations of the first and second com-
ponents of the control, and thus obtain a bound on the
variation of the cost function.

Let us define

hyriccati(θ) := 2C(θ)
λmin(Q)λ1

y

(
2C(θ)
λ1
y
‖B‖(‖A−BK‖+ 1)

+ 2‖K‖‖R‖+ ‖R‖
4‖B‖

)
(36)

and hzriccati(θ) similarly, and

hfunc,0(θ) := Tr

(
Σy0 + γ

1− γΣ1
)
hyriccati(θ)

+ Tr

(
Σz0 + γ

1− γΣ0
)
hzriccati(θ). (37)

Under Assumption 2 and Lemma 9, we have

hfunc,0(θ) ≤ dC0,var

1− γ

(
hyriccati(θ) + hzriccati(θ)

)
.

Corollary 23. Let θ, θ′ ∈ Θ and set ∆K = K′ − K We
assume that ‖∆K‖ satisfies condition (33). Then

‖P yK′ − P
y
K‖ ≤ h

y
riccati(θ)‖∆K‖. (38)

The proof is simple, we can choose ζ1 = 1/4 in Lemma 22
and notice that γ/(1− 2γζ1) ≤ 2.

Corollary 23 implies the following 2 results.
Lemma 24 (Perturbation of mean field cost function). Let
θ, θ′ ∈ Θ and set ∆K = K′ − K and ∆L = L′ − L. We
assume that ‖∆K‖ and ‖∆L‖ satisfy condition (33). Then

|C(θ′)− C(θ)| ≤ hfunc,0(θ) max{‖∆K‖, ‖∆L‖}. (39)

Let us define

hC,cond(θ) := hfunc,0(θ)
C(θ) (40)

which still has at most polynomial growth in
‖K‖, ‖L‖, 1/λ1

y, 1/λ0
z and C(θ).

Corollary 25. We assume conditions in Lemma (24).
Moreover, if max {‖∆K‖, ‖∆L‖} ≤ 1/hC,cond(θ), then
|C(θ′)− C(θ)| ≤ C(θ).

The following lemma is related to the perturbation of gradi-
ent. It is adapted from [10, Lemma 28] with small modifi-
cations. Let us define

hygrad(θ)

:= 2C(θ)
λmin(Q)

[
‖R‖+ γhyriccati(θ)‖B‖(1 + ‖A−BK‖)

+ (γ‖B‖2 +√γ‖B‖hycond(K)C(θ)/λmin(Q))
(
C(θ)
λ1
y

)
+
hycond(K)

2√γ
C(θ)

λmin(Q)
‖R‖
‖B‖

]
(41)

and similarly for hzgrad(θ). Note that hygrad(θ)
and hzgrad(θ) have at most polynomial growth in
C(θ), ‖K‖, ‖L‖, 1/λ1

y, 1/λ0
z.
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Lemma 26. Let θ, θ′ ∈ Θ and set ∆K = K′−K. Suppose
that ‖∆K‖ satisfies condition (33). Then

‖∇KC(θ′)−∇KC(θ)‖ ≤ hygrad(θ)‖∆K‖. (42)

To conclude this subsection, we analyse the variation in
terms of the cost function when the learning rate is small
enough.

Let us define

hylrate(θ, ‖∇‖) := max
{ 6C(θ)
λmin(Q)

(
‖R‖+ γ‖B‖2C(θ)

λ1
y

)
,

2‖∇‖hycond(θ)
(

C(θ)
λmin(Q)λ1

y

)}
and similarly for hzlrate(θ). We also define

hlrate(θ) := max
{
hylrate (θ, ‖∇KC(θ)‖) ,

hzlrate (θ, ‖∇LC(θ)‖)
}
. (43)

B.4 Key step in the proof of Theorem 3

The following lemma is the main key step in proving Theo-
rem 3. It generalizes [10, Lemma 21].
Lemma 27 (One step descent in exact Policy Gradient
algorithm). Suppose that K′ = K − η∇C(θ) where the
learning rate η > 0 satisfies η ≤ 1/hlrate(θ). Then

C(θ′)− C(θ∗) ≤ (1− ηhupdate) (C(θ)− C(θ∗)), (44)

where hupdate is defined by

hupdate := min
{
λmin(R)

(λ1
y)2

‖ΣyK∗‖
, λmin(R+ R̄) (λ0

z)2

‖ΣzL∗‖

}
Proof. The proof relies on the gradient domination inequal-
ities (23). Similarly to [10, Lemma 21], it can be shown
that

Cy(K′)− Cy(K) ≤ −4ηhupdate(Cy(K)− Cy(K∗))

·
(

1−
‖ΣyK′ − ΣyK‖

λ1
y

− η‖ΣK′‖‖R+ γB>P yKB‖
)

From Corollary 19, with a small enough learning rate η > 0,
we have

‖ΣyK′ − ΣyK‖ ≤ ξ
y
2‖Σ

y
K‖

where ξy2 = ηhycond(θ)‖∇KC(θ)‖. So, if we assume that

η ≤ 1/hylrate(θ, ‖∇KC(θ)‖),

then ‖ΣyK′ − ΣyK‖/λ
1
y ≤ ξy2‖Σ

y
K‖/λ

1
y ≤ 1

2 and

η‖ΣK′‖‖R+γB>P yKB‖ ≤ η(ξy2 +1)‖ΣyK‖‖R+γB>P yKB‖ ≤
1
4

where the last inequality comes from ξy2 ≤ 1
2λ

1
y/‖ΣyK‖ ≤

1
2 .

Thus, we have

Cy(K′)− Cy(K∗) ≤ (1− ηhupdate)(Cy(K)− Cy(K∗)).

A similar inequality holds for Cz(L′)− Cz(L∗). This yields
the conclusion.

Remark 28. We can bound the operator norm of
gradients ‖∇KC(θ)‖ and ‖∇LC(θ)‖ by polynomials in
C(θ), 1/λ1

y, 1/λ0
z with the help of inequalities (24) (See [10,

Lemma 22] for more details). By this means, the function
hlrate(θ) can be bounded from above by a polynomial in
C(θ), ‖K‖, ‖L‖, 1/λ1

y, 1/λ0
z.

C Proof of Theorem 5

C.1 Intuition for zeroth order optimization

Derivative-free optimization (see e.g. [8, 24]) tries to op-
timize a function f : x 7→ f(x) using only pointwise val-
ues of f , without having access to its gradient. The ba-
sic idea is to express the gradient of f at a point x by
using values of f(·) at a Gaussian perturbation region
around point x. This can be achieved by introducing an
approximation of f using a Gaussian smoothing. Formally,
if we define the perturbed function for some σ > 0 as
fσ2(x) = E[f(x + ε)],ε ∼ N (0, σ2I), then its gradient can
be written as d

dx
fσ2 (x) = 1

σ2 E[f(x+ ε)ε].

For technical reasons, if the function f is not defined for
every x (in our case C(θ) =∞ for some θ = (K,L)), we can
replace the Gaussian smoothing term ε with variance σ2I
by a uniform random variable U in the ball Bτ with radius
τ small enough.

C.2 Estimation of ∇C(θ) in policy gradient

For any θ = (K,L) and τ > 0, we introduce the following
smoothed version Cτ of C defined by

Cτ (θ) = EU [C(θ+U)] = E(U1,U2)[Cy(K+U1)+Cz(L+U2)]
(45)

where U = (U1, U2) with U1, U2 independent random vari-
ables uniformly distributed in Bτ . The notation EU means
that the expectation is taken with respect to the random
variable U .

One can prove the following result, where intuitively Vi
plays the role of τ Ui

‖Ui‖
, for i = 1, 2.

Lemma 29. We have

∇KCτ (θ) = d

τ2 EV1 [Cy(K + V1)V1] = d

τ2 EV [C(θ + V )V1],
(46)

and

∇LCτ (θ) = d

τ2 EV2 [Cz(L+ V2)V2] = d

τ2 EV [C(θ + V )V2],
(47)
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where V = (V1, V2) ∈ R`×d×R`×d with V1, V2 i.i.d. random
variables uniformly distributed on Sτ .

The proof is omitted for brevity. It is similar to the one
of [11, Lemma 2.1] (see also [10, Lemma 26]), except that
we have two components. The last equality in (46) and (47)
uses the fact that V1, V2 are independent and have zero-
mean.
Remark 30. Although we have rephrased the initial MFC
problem as a control problem in a higher dimension, see 1,
the naive idea of approximating the gradient of the cost
by perturbing K = diag(K,L) ∈ R(2`)×(2d) using a single
smoothing random variable U ∈ R(2`)×(2d) would not work
because we want to preserve the block-diagonal structure of
the matrix during the the PG algorithm. We hence exploit
the fact that the exact PG convergence result relies on the
decomposition of the value function θ 7→ C(θ) into two auxil-
iary value functions K 7→ Cy(K) and L 7→ Cz(L) associated
respectively to processes (yKt )t≥0 and (zLt )t≥0 and we then in-
troduce two independent smoothing random variables U1 and
U2 in R`×d corresponding to K and L respectively, instead
of using a single smoothing random variable U ∈ R(2`)×(2d)

for K. This is also consistent with the fact that, in the
model free setting, we can only access to the total value C(θ)
and we have no information about the values of Cy(K) and
Cz(L) separately.

Now we can define the following notation

∇Cτ (θ) =
[
∇KCτ (θ) 0

0 ∇LCτ (θ)

]
∈ R2`×2d. (48)

The following lemma stems from the first part of [10, Lemma
27] and provides upper bounds for this perturbed estimate.
Let us define

hpert,radius(θ, ε) := max
{
hycond(θ), h

z
cond(θ),

hC,cond(θ),
4
ε
hygrad(θ),

4
ε
hzgrad(θ)

}
(49)

where the terms hycond(θ), h
z
cond(θ), hC,cond(θ), h

y
grad(θ),

hzgrad(θ) have at most polynomial growth in C(θ), ‖K‖,
‖L‖, 1/λ1

y, 1/λ0
z given by (31), (40), and (41). We also

define

hpert,size(θ, d, ε) := 2
(ε/4)2

(
(d+ 1) log

(
d

ε

)
+ log(4ε)

)
·
(

4d2

τ2 C(θ)2 + 2dC(θ)
3τ

ε

4

)
.

(50)

Lemma 31. For every given θ = (K,L) ∈ Θ, assume that
the number of perturbation directions M is large enough,
and all perturbed parameters θi = (Ki, Li) satisfy

max{‖Ki −K‖, ‖Li − L‖} ≤ τ

for some τ > 0 small enough, and Vi1 = Ki − K,Vi2 =
Li−L for i = 1, . . . ,M are all independent random matrices
uniformly distributed on the sphere Sτ . Then, with high
probability, the perturbed policy gradient ∇̂C(θ) defined by

∇̂C(θ) = d

τ2
1
M

M∑
i=1

(
∞∑
t=0

E
[
cit+1

])[ Ki −K 0
0 Li − L

]
is close to the true gradient ∇C(θ) in operator norm. Here∑∞

t=0 E[cit+1] = C(θ + Vi).

More precisely, for some given ε > 0, if

τ ≤ 1
hpert,radius(θ, ε)

(51)

where hpert,radius(θ, ε) defined by (49) has at most polyno-
mial growth in 1/ε, C(θ), ‖K‖, ‖L‖, 1/λ1

y, 1/λ0
z, and if

M ≥ hpert,size(θ, d, ε), (52)

then with probability at least 1− (d/ε)−d, we have

‖∇̂ − ∇‖ ≤ ε. (53)

where ∇̂ and ∇ are short for ∇̂C(θ) and ∇C(θ).

Notice that it is enough to take the number of perturbation
directions M of size O

(
d log

(
d
ε

) (
dC(θ)
τε

)2)
, which is the

same as the bound obtained in [10, Lemma 27].

We should point out here that the randomness of ∇̂ comes
from the bounded random variables (Vi1)i and (Vi2)i for
i = 1, . . . ,M . The proof uses the same techniques as shown
in [10, Lemma 27], and it is based on a version of Bernstein’s
concentration inequality applying on bounded random ma-
trices (see [30] for more details). The main idea is to split
the difference ‖∇̂C −∇C‖ with the help of Lemma 29

‖∇̂−∇‖ ≤
∥∥∥∇̂C(θ)− 1

M

M∑
i=1

∇Cτ (θi)
∥∥∥+‖∇Cτ (θ)−∇C(θ)‖

and observe that the operator norm of random matrices
C(θi)Vi1 and their second order moment E[C(θi)2Vi1V

>
i1 ]

are bounded by 2τC(θ) and 4τ2C(θ)2 respectively.

C.3 Approximation with finite horizon

In this section, we explain how we approximate the cost
functions and the variance matrices with a finite time hori-
zon. Because of the presence of noise processes within the
underlying dynamics, the variance Σy

K cannot be simply
expressed as the sum of a power series of operator FyK ap-
plied on the initial variance matrix Σy0 (see also Lemma 12),
the arguments used in [10, Lemma 23] for finite horizon
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approximation fail to work. We prove here a new lemma for
choosing the truncation horizon parameter T .

We first fix some notation. For T ≥ 0, let us define the
truncated variances and the truncated costs:

Σy,TK := E

[
T−1∑
t=0

γt(yKt (yKt )>
]
, (54)

Σz,TL := E

[
T−1∑
t=0

γt(zLt )(zLt )>
]
. (55)

and

CTy (K) := E

[
T−1∑
t=0

γt(yKt )>(Q+K>RK)yKt

]
= Tr((Q+K>RK)Σy,TK ), (56)

CTz (L) := E

[
T−1∑
t=0

γt(zLt )>(Q+ Q̄+ L>(R+ R̄)L)zLt

]
= Tr((Q+ Q̄+ L>(R+ R̄)L)Σz,TL ). (57)

For every θ ∈ Θ, we define CT (θ) = CTy (K) + CTz (L).

Assumption 2 plays a crucial role in the following result.
Let us define a lower bound for the truncation horizon T :

htrunc,T (ε, γθ) :=
(

1
log(1/γθ)

(
log
(

1
ε

C0,var

(1− γθ)2

)
+ 1
))2

(58)
where the parameter γθ is given by

γθ = max{γ, γ‖A−BK‖2, γ‖A+ Ā− (B + B̄)L‖2}. (59)

and the constant C0,var can be chosen according to
Lemma 9.
Lemma 32. For any given ε > 0, if the truncation horizon
T ≥ 2 satisfies T ≥ htrunc,T (θ, ε, γθ), then ‖ΣyK−Σy,TK ‖ ≤ ε
and ‖ΣzL − Σz,TL ‖ ≤ ε.

Proof. Note that if θ ∈ Θ, then γθ < 1. Let us recall that
γ1,K = γ‖(A−BK)2‖. From Lemma 12 (or directly (22)),
we know that∥∥∥∥∥ΣyK − E

[
T−1∑
t=0

γtyKt (yKt )>
]∥∥∥∥∥

=
∥∥∥ γT

1− γ T
y
K

(
Σ1)+ (FyK)T (T yK(Σy0 ))

+
T−1∑
s=1

γs (FyK)T−s
(
T yK(Σ1)

) ∥∥∥
≤
(

γTθ
1− γθ

+ γTθ + (T − 1)γTθ
)
C0,var

1− γθ

≤ γTθ (T + 1)
1− γθ

C0,var

1− γθ
. (60)

where the second inequality used ‖T yK‖ ≤
1

1−γ1,K
≤ 1

1−γθ
.

We now show that T ≥ htrunc,T (ε, γθ) implies

(T + 1)γTθ
C0,var

(1− γθ)2 ≤ ε. (61)

Indeed, by taking the log on both sides of the above inequal-
ity and by noticing the fact that

√
x

log(x+1) > 1 for all x ≥ 2,
we can then conclude the result.

Corollary 33. If the conditions in Lemma 32 hold, then

C(θ)−CT (θ) ≤ εd(‖Q‖+‖Q̄‖+(‖R‖+‖R̄‖)(‖K‖2+‖L‖2)).

Remark 34. In general, the truncation horizon T in
Lemma 32 depends on the choice of parameter θ = (K,L)
through the factor γθ. However, if we have ‖A−BK‖ < 1
and ‖A + Ā − (B + B̄)L‖ < 1, then γθ = γ and the lower
bounds for truncation horizon T only depends on model
parameters.

C.4 Convergence analysis

From here, we conclude the Theorem 5. The basic idea is to
follow the lines of [10, Lemma 21] for each cost functionK 7→
Cy(K) and L 7→ Cz(L). However, we emphasize here that
the presence of sub-Gaussian noise processes makes the proof
more complicated. In particular, we will use an appropriate
version of Bernstein’s inequality for sub-exponential random
matrices (instead of just bounded matrices as in the case
without Gaussian noises, see [10]), and we will need to prove
that the assumptions required to apply this theorem are
satisfied (see Lemma 37 below).

For any θ ∈ Θ, we choose M perturbed parameters θi =
(Ki, Li) with directions vi = (v1,i, v2,i) where vi,1 = Ki−K
and vi,2 = Li − L for i = 1, . . . ,M are all independent
random matrices uniformly distributed on the sphere Sτ .
We denote by

∇̃TC (θ, v) = 1
M

d

τ2

M∑
i=1

C̃T (θi)
[
Ki −K 0

0 Li − L

]
where v = (v1, . . . , vM ). The term C̃T (θi) = C̃Ty (Ki) +
C̃Tz (Li) stands for the sampled truncated perturbed cost at
θi = θ + vi with

C̃Ty (Ki) =
∑T−1

t=0 γt(yKit )>(Q+K>i RKi)(yKit ),

C̃Tz (Li) =
∑T−1

t=0 γt(zLit )>(Q+ Q̄+ L>i (R+ R̄)Li)(zLit ).
(62)

We notice that by taking expectations with respect to the
idiosyncratic noises and the common noises, we recover
the expressions (56) and (57) from (62), namely CTy (Ki) =
E[C̃Ty (Ki)|vi] and CTz (Li) = E[C̃Tz (Li)|vi].
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The following result, which builds on Lemma 31, allows us
to approximate the true gradient by the sampled truncated
perturbed gradient with the help of a long truncation horizon
and a large number of perturbation directions. We notice
that for any matrix X ∈ Rd×d, ‖X‖ ≤ ‖X‖F ≤

√
d‖X‖

and ‖X‖F ≤ ‖X‖tr ≤
√
d‖X‖F .

Let us define the following functions (of at most polynomial
growth) related to the perturbation radius τ :

hsubexp,y(K, τ) :=2C2ed
3τ
[
‖Q‖+ (‖K‖+ τ)2‖R‖

]
·

sup
{
‖y0‖2ψ2 , ‖ε

1
1‖2ψ2

}
(1−√γ)2 , (63)

hsubexp,z(L, τ) :=2C2ed
3τ
[
‖Q+ Q̄‖+ (‖L‖+ τ)2‖R+ R̄‖

]
sup
{
‖z0‖2ψ2 , ‖ε

0
1‖2ψ2

}
(1−√γ)2 , (64)

where C2 is a universal constant (see [31, Definition 2.7.5,
Proposition 2.7.1]).

We also define a function for the number of perturbation
directions M :
htrunc,pert,size(θ, d, T, τ, ε)

:= 2
δ2

(
(d+ 1) log

(
d

ε

)
+ log T + log(16ε)

)
·max{hδ(hsubexp,y(K, τ)), hδ(hsubexp,z(L, τ))}, (65)

where δ = ετ2

16Td and hδ(x) = x2 + xδ.

let us first introduce some notations used in the following
lemma. We define

∇̃TK := 1
M

d

τ2

M∑
i=1

C̃T (θ + vi)vi,1,

∇̃TL = 1
M

d

τ2

M∑
i=1

C̃T (θ + vi)vi,2,

where we recall that vi,1 = Ki−K and vi,2 = Li−L are fixed
matrices sampled from the uniform distribution on sphere
Sτ . The expectations of ∇̃TK and ∇̃TL over the randomness
coming from (ε0t , ε1t )t=0,1,...,T−1 are denoted by ∇̂TK and
∇̂TK . Namely, ∇̂TK := E[∇̃TK |v] = 1

M
d
τ2

∑M

i=1 C
T (θi)v1,i,

and similar expression for ∇̂TL .

We use the abbreviations ∇̃T , ∇̂T , ∇̂ and ∇ to denote
respectively ∇̃TC(θ, v) = diag(∇̃TK , ∇̃TL), ∇̂TC(θ, v) =
diag(∇̂TK , ∇̂TL), ∇̂C(θ), and ∇C(θ).

For any perturbation radius τ > 0, let us define
γθ,τ := max{γ, γ‖A−BK‖2 + γ‖B‖2τ2,

γ‖A+ Ā− (B + B̄)L‖2 + γ‖B + B̄‖2τ2}.

ετ := (τε)/(8d)
d
(
‖Q‖+ ‖Q̄‖+ (‖R‖+ ‖R̄‖)(4τ2 + 2‖K‖2 + 2‖L‖2)

)

Let us denote by ‖η‖ψ1 the sub-exponential norm of a sub-
exponential random variable η ∈ R (see [31, Definition
2.7.5]), namely

‖η‖ψ1 = inf{s > 0 : E[exp(|η|/s)] ≤ 2}.

The following result shows that ifM and T are large enough
and if τ and the perturbation on the control parameters are
small enough, then the sampled truncated perturbed policy
gradient ∇̃CT (θ, v) is close enough to the true gradient
∇C(θ) in operator norm.
Lemma 35. For every given ε > 0, we assume that the
perturbation radius τ satisfies τ ≤ 1/hpert,radius(θ, ε/2), and
also small enough so that γθ,τ < 1. In addition, suppose
that the truncation horizon satisfies

T ≥ htrunc,T (ετ , γθ,τ ).

Moreover, suppose that the number of perturbation directions
satisfies

M ≥ max{hpert,size(θ, d, ε/2), htrunc,pert,size(θ, d, T, τ, ε)},

Then, with probability at least 1− (d/ε)−d, we have

‖∇̃TC(θ, v)−∇C(θ)‖ ≤ ε.

Proof. We decompose the difference between ∇̃T and ∇ as

∇̃T−∇ = (∇̃T−∇̂T )+(∇̂T−∇̂)+(∇̂−∇) =: (i)+(ii)+(iii).

We highlight here our proof strategy. We choose in the first
place a small enough perturbation radius τ and some large
number M for the third term (iii). This step relies on our
analysis of the exact PG convergence. Then we determine a
long enough truncation horizon T , depending only on τ , to
bound the second term (ii). Once T and τ are given, taking
a possibly even larger number of perturbation directions M
(if necessary), we establish a concentration inequality for
the first term (i).

Step 1: For the third term (iii), by Lemma 31 and inequal-
ities (51) and (52), if

τ ≤ hpert,radius(θ, ε/2), and M ≥ hpert,size(θ, d, ε/2),

then, with probability at least 1− ( d
ε/2 )−d ≥ 1− 1

2 (d/ε)−d,
we have

‖∇̂ − ∇‖ ≤ ε

2 . (66)

Step 2: For the second term (ii), by assumption on τ ,
we have for all i = 1, . . . ,M , γ‖A − BKi‖2 ≤ γθ,τ < 1
and γ‖A + Ā − (B + B̄)Li‖2 < 1. so that θi = (Ki, Li)
is admissible and γθi ≤ γθ,τ < 1 for all i = 1, . . . ,M .
since the function γθ 7→ htrunc,T (ε, γθ) is increasing and
we have ‖Ki‖2 + ‖Li‖2 ≤ 4τ2 + 2‖K‖2 + 2‖L‖2, so that if
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T ≥ htrunc,T (ετ , γθ,tau), Lemma 32 and Corollary 33 imply
|C(θi)− CT (θi)| ≤ τε

8d . Thus, we have

‖∇̂T − ∇̂‖ =

∥∥∥∥∥ 1
M

d

τ2

M∑
i=1

(
CT (θi)− C(θi)

) [ vi,1 0
0 vi,2

]∥∥∥∥∥
≤ 1
M

d

τ2

M∑
i=1

|C(T )(θi)− C(θi)|(‖vi,1‖+ ‖vi,2‖)

≤ ε4 . (67)

Step 3: For the first term (i), by definition we have

E[∇̃T |v] = ∇̂T .

In order to show that the sampled truncated perturbed
gradient ∇̃T is concentrated around its expectation (over the
randomness of the noise processes), our strategy is to apply
at each time step t = 0, . . . , T − 1 an appropriate version
of Bernstein’s inequality on a corresponding sequence of
M independent random matrices, and then we use a union
bound on T concentration inequalities.

We notice that

‖∇̃T−∇̂T ‖ ≤ ‖∇̃TK−∇̂TK‖+‖∇̃TL−∇̂TL‖ =: (iv)+(v), (68)

and

(iv) =‖∇̃TK − ∇̂TK‖

≤

∥∥∥∥∥ 1
M

d

τ2

M∑
i=1

(
C̃Ty (Ki)− E[C̃y(Ki)|vi1]

)
vi,1

∥∥∥∥∥
+

∥∥∥∥∥ 1
M

d

τ2

M∑
i=1

(
C̃Tz (Li)− E[C̃Tz (Li)|vi1]

)
vi,1

∥∥∥∥∥
=(ivy) + (ivz),

where C̃Ty (Ki) and C̃Tz (Li) are defined by equation (62).
Recall that in this part of the proof, vi = (vi,1, vi,2) is fixed
so the expectation symbol E is only for the randomness
stemming from the sources of noise in the initial condition
and the dynamics.

For the sake of clarity, we present in detail how to bound
the term (ivy). Similar arguments can be applied to bound
the term (ivz) as well as (v).

Let us denote the scalar ηit for t = 0, . . . , T − 1 and for
i = 1, . . . ,M by

ηit :=(yKit )>(Q+K>i RKi)yKit
− E[(yKit )>(Q+K>i RKi)yKit |vi1]. (69)

We notice that

(ivy) =
∥∥∥∥ 1
M

d

τ2

M∑
i=1

(
T−1∑
t=0

γt(yKit )>(Q+K>i RKi)(yKit )

− E

[
T−1∑
t=0

γt(yKit )>(Q+K>i RKi)(yKit )

])
vi,1

∥∥∥∥
= d

τ2

∥∥∥∥∥
T−1∑
t=0

(
γt

M

M∑
i=1

ηitvi1

)∥∥∥∥∥
Now, we fix t ∈ {0, . . . , T − 1} and look at the terms yKit
for i = 1, . . . ,M . They are independent because they are
constructed with independent noise processes (ε1,is )s=0,...,t.
Moreover, from the dynamics of (yKis )s=0,...,t, we have

yKit = (A−BKi)tyi0 +
t−1∑
s=0

(A−BKi)t−1−sε1,is+1. (70)

where yi0 = ε1,i0 −E[ε1,i0 ]. So, the term yKit is the sum of t+1
independent sub-Gaussian random vectors, which implies
that it is also a sub-Gaussian vector ([31, Definition 3.4.1]).
Thus, the scalar ηit is a sub-exponential random variable
[35].

We present in detail how to apply a suitable version of Matrix
Bernstein’s inequality for the random matrix

∑M

i=1 η
i
tvi,1.

We recall that (see [31, Proposition 2.7.1])

‖η‖Lp = E[‖η‖p]1/p ≤ C2‖η‖ψ1p, ∀ p ≥ 1.

where C2 is a universal constant. We define for each t the
following quantity, which independent of the number M of
perturbation directions:

ζt := eC2τ sup
K′∈B(K,τ)

‖ηK
′

t ‖ψ1 , (71)

where the set B(K, τ) stands for the ball centered at K with
radius τ , and the term ηK

′
t is obtained by replacing yKit in

equation (69) by yK
′

t defined as follows:

yK
′

t = (A−BK′)ty0 +
t−1∑
s=0

(A−BK′)t−1−sε̃1s+1.

The noise process (ε̃1s+1)t−1
s=0 is an independent copy of the

idiosyncratic noise processes (ε1,is+1)t−1
s=0. We claim that

P

(∥∥∥∥∥ 1
M

M∑
i=1

ηitvi,1

∥∥∥∥∥ ≥ δ
)
≤ 2d exp

(
−Mδ2/2
ζ2
t + ζtδ

)
. (72)

The proof of this claim is deferred to Lemma 37 below.
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From here, by a union bound on the above concentration
inequalities (72) for t = 0, . . . , T − 1, with δ = τ2

Td
ε
16 , we

obtain

P
(

(ivy) ≥ ε

16

)
≤ P

(
Td

τ2 sup
t=0,...,T−1

∥∥∥∥∥ γtM
M∑
i=1

ηitvi,1

∥∥∥∥∥ ≥ ε

16

)

≤ 2d
T−1∑
t=0

exp
(
−Mδ2/2

γ2
t ζ

2
t + γtζtδ

)
≤ 2dT exp

(
−Mδ2

2[(ζivy )2 + ζivyδ]

)
,

where
ζivy := sup

t=0,...,T−1
γtζt. (73)

Let us bound from above ζivy . We denote by

ξ(t,K′) = (yK
′

t )>(Q+ (K′)>RK′)yK
′

t .

Since

‖ξ(t,K′)− E[ξ(t,K′)]‖ψ1 ≤ 2‖ξ(t,K′)‖ψ1 ,

so that we have

ζivy ≤ sup
t=0,...,T−1

sup
K′∈B(K,τ)

(
eC2τ.γ

t.2
∥∥ξ(t,K′)∥∥

ψ1

)
.

By applying [35, Proposition 2.5], we have

‖ξ(t,K′)‖ψ1 ≤
∥∥Q+ (K′)>RK′

∥∥
tr

∥∥∥yK′t ∥∥∥2

ψ2

Moreover, since K′ ∈ B(K, τ), we have∥∥Q+ (K′)>RK′
∥∥
tr
≤ d

∥∥Q+ (K′)>RK′
∥∥

≤ d
[
‖Q‖+ ‖R‖(‖K‖+ τ)2

]
and by Lemma 36 (see below),

γt‖yK
′

t ‖2ψ2 ≤
d2

(1−√γ)2 sup
{
‖y0‖2ψ2 , ‖ε

1
1‖2ψ2

}
.

So by definition of ηK
′

t , we obtain

ζivy ≤ 2eC2τβ(K, τ)
d2 sup

{
‖y0‖2ψ2 , ‖ε

1
1‖2ψ2

}
(1−√γ)2 .

where β(K, τ) =≤ d
[
‖Q‖+ ‖R‖(‖K‖+ τ)2

]
.

Thus, if our choice of M is large enough (see Lemma 37
below) such that

M ≥ 1
δ2

(
(d+ 1) log

(
d

ε

)
+ log T + log(16ε)

)
·
(
2[(ζivy )2 + ζivyδ]

)
,

we obtain

P
(

(ivy) ≥ ε

16

)
≤ 1

8

(
d

ε

)−d
.

We can also derive a similar bound for the term (ivz) as
well as the term (v) defined in (68). Thus,

P
(
‖∇̃T − ∇̂T ‖ ≥ ε

4

)
≤ 1

2

(
d

ε

)−d
. (74)

Conclusion: Combining inequalities (66), (67), and (74),
we conclude that

P
(
‖∇̃TC(θ, v)−∇C(θ)‖ ≤ ε

)
≥ 1−

(
d

ε

)−d
.

The following lemma provides an upper bound on the sub-
Gaussian norm of yK

′
t for any perturbed parameter K′ close

enough to K.
Lemma 36. Under Assumption 2, for any K′ satisfying
‖K′ −K‖ ≤ τ with τ ≤ 1/hycond(θ), we have

γt‖yK
′

t ‖2ψ2 ≤
d2

(1−√γ)2 sup
{
‖y0‖2ψ2 , ‖ε

1
1‖2ψ2

}
.

Proof. To alleviate the notation, let us introduce A0 =
(A−BK′)t,As+1 = (A−BK′)t−s−1 ∈ Rd×d, and h0 = y0,
hs+1 = ε̃1s+1 ∈ Rd, s = 0, . . . , t − 1. Let As,j ∈ Rd denote
the j−th column of As and let hs,j ∈ R denote the j−th
coordinate of hs, j = 1, . . . , d. Then,

‖yK
′

t ‖ψ2 =

∥∥∥∥∥
t∑

s=0

Ashs

∥∥∥∥∥
ψ2

≤
t∑

s=0

d∑
j=1

‖As,jhs,j‖ψ2 .

Moreover,

‖As,jhs,j‖ψ2

= sup
v∈Sd−1

inf
{
k ∈ R : E

[
e(hs,j〈As,j ,v〉)2/k2

]
≤ 2
}

≤ inf
{
k : R : sup

v∈Sd−1
E
[
e(hs,j〈As,j ,v〉)2/k2

]
≤ 2
}

≤ inf
{
k ∈ R : E

[
sup

v∈Sd−1
e(hs,j〈As,j ,v〉)2/k2

]
≤ 2
}

= inf
{
k ∈ R : E

[
e(hs,j‖As,j‖2)2/k2

]
≤ 2
}

=‖As,j‖2‖hs,j‖ψ2 ,
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where the first equality comes from the definition of sub-
Gaussian random vector As,jhs,j for j = 1 . . . , d. So,

γt‖yK
′

t ‖2ψ2

≤ γt
(

t∑
s=0

d∑
j=1

‖As,j‖2‖hs,j‖ψ2

)2

≤ γt

 t∑
s=0

√
d

√√√√ d∑
j=1

‖As‖22

2

sup
s=0,...,t

sup
j=1,...,d

‖hs,j‖2ψ2

≤ d

(
t∑

s=0

γs/2(γt−s‖As‖2F )1/2

)2

sup
s=0,...,t

‖hs‖2ψ2 ,

where the second inequality comes from the Cauchy-
Schwartz inequality and the third inequality is justified by
‖hs,j‖ψ2 ≤ ‖hs‖ψ2 . By noticing that K′ is also admissible
and

γt−s‖As‖2F ≤ d
(
γ‖A−BK′‖2

)t−s ≤ d,
then the result follows.

Lemma 37. Reusing freely the notations in the proof of
Lemma 35, we have

P

(∥∥∥∥∥ 1
M

M∑
i=1

ηitvi,1

∥∥∥∥∥ ≥ δ
)
≤ 2d exp

(
−Mδ2/2
ζ2
t + ζtδ

)
.

The idea of the proof is to estimate the p−order moment
of (ηitvi,1) for every i = 1, . . . ,M . By Stirling’s formula, we
have

E[(ηitvi,1)p] = τp‖ηit‖pLP (vi,1/τ)p � p!√
2πp

(τeC2)p‖ηit‖pψ1
I.

Then, we use a dilation technique to construct a symmetric

matrix Ṽi,1 :=
[

0 vi,1
v>i,1 0

]
(see e.g. [29, Section 2.6]) and

we apply Theorem 6.2 in [29] on (ηitṼi,1)i=1,...,M to conclude
the result.

D Sketch of proof of Theorem 6

Before providing the details of the proof of Theorem 6 in
the next section, we give here an outline of the proof. We
introduce first some notations:

• ∇̃N,TM,τ = ∇̃N,TM,τ (θ, v, ε10, ε
0
0) is the output of Algorithm 2,

with control parameter θ, perturbation directions v,
initial points for the N agents given by ε10 and ε00, and
truncation horizon T ;

• ∇̂N,TM,τ = ∇̂N,TM,τ (θ, v) = Eε1
0,ε

0
0
[∇̃N,TM,τ (θ, v, ε10, ε

0
0)|v] is the

output of Algorithm 2 in expectation over the random-
ness of the state trajectories;

• ∇̂NM,τ = ∇̂NM,τ (θ, v) is the approximation of the gradi-
ent of the N−agents social cost at θ computed using
derivative-free techniques with M perturbation direc-
tions given by v, which is defined as

∇̂NM,τ (θ, v) = 1
M

d

τ2

M∑
i=1

CN (θi)
[
vi1 0
0 vi2

]
,

where CN (θi) is the N−agent social cost for the control
θi = θ + (vi,1, vi,2) = (K + vi,1, L+ vi,2);

• ∇̂M,τ = ∇̂M,τ (θ) is the approximation of the gradient
of the mean field cost at θ computed using derivative-
free techniques with M perturbation directions given
by v = (v1, . . . , vM ),

∇̂M,τ (θ) = 1
M

d

τ2

M∑
i=1

C(θi)
[
vi1 0
0 vi2

]
,

where C(θi) is the mean field cost for the control θi;

• ∇ = ∇(θ) = ∇C(θ) is the gradient of the mean field
cost at θ that we want to estimate.

Sketch of proof of Theorem 6. Let ε > 0 be the target pre-
cision.

At step k, we denote the control parameter by θ = θ(k) ∈ Θ.
The new control parameter after the Policy Gradient update
procedure is denoted by θ̃′ = θ(k+1). The main idea is to
show that the following inequality holds until reaching the
target precision ε:

CN (θ̃′)− CN (θ∗) ≤
(

1− 1
4ηhupdate

)
(CN (θ)− CN (θ∗)),

(75)
for some appropriate learning rate η > 0 and a con-
stant hupdate defined in Lemma 27 . We introduce
εb = βε, εa = ε − 2εb = (1 − 2β)ε for some β < 1

12 chosen
later.

We first look at the convergence in terms of the mean-field
cost C.

Step 1: Take one step of the exact policy gradient update:
K′ = K− η∇, where ∇ = ∇C(θ) to alleviate the notations.
From Lemma 27, for a learning rate 0 < η ≤ hlrate(θ) (see
equation (43)),

C(θ′)− C(θ∗) ≤ (1− ηhupdate) (C(θ)− C(θ∗)). (76)

Step 2: Take one step of the N−agent model-free pol-
icy gradient update: K̃′ = K − η∇̃N,TM,τ , where ∇̃

N,T
M,τ =

∇̃N,TM,τ (θ, v, ε10, ε
0
0) is the output of Algorithm 2 (where

it was denoted by ∇̃CN (θ). This estimate is stochas-
tic due to the randomness of (v = (v1, . . . , vM ), ε10 =
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(ε1,(1)
0 , . . . , ε

1,(N)
0 ), ε00). Let θ̃′ = θ(K̃′) be the new control

parameter. Suppose that with high probability (at least of
order 1− (d/εa)−d) we have that

|C(θ̃′)− C(θ′)| ≤ 1
2η hupdate εa. (77)

then, in the case when C(θ)−C(θ∗) ≥ εa, with high proba-
bility we have,

C(θ̃′)− C(θ∗) ≤
(

1− 1
2ηhupdate

)(
C(θ)− C(θ∗)

)
. (78)

Step 3: To conclude the convergence in terms of the mean-
field cost C, we need to show equation (77) holds for large
enough value of T,M, τ−1. Lemma 24 in Section B indicates
that we only need to ensure the new control parameter θ̃′ is
close enough to θ in the sense that

max
{
‖K̃′ −K′‖, ‖L̃′ − L′‖

}
≤ 1

2η
hupdate
hfunc,0(θ) εa, (79)

where hfunc,0(θ) is of polynomial growth in ‖θ‖ (see (37)).
Since

max
{
‖K̃′ −K′‖, ‖L̃′ − L′‖

}
≤ ‖K̃′−K‖ = η‖∇̃N,TM,τ −∇‖,

and thus, equation (79) can be achieved by applying
Lemma 38 (see below) on 1

2
hupdate
hfunc,0(θ) εa.

Step 4: We now show the convergence in terms of the
population cost CN .

Recall that θ(0) denotes the initial parameters. From
Lemma 47, if N ≥ d

βε
C(θ(0))

(
1
λ1
y

+ 1
λ0
z

)
C0,var

1−γ , we have

for every θ̂ ∈ {θ(k), θ(k+1), θ∗}, |CN (θ̂) − C(θ̂)| ≤ βε = εb.
Moreover, if CN (θ)− CN (θ∗) ≥ ε, then

C(θ)−C(θ∗) ≥
(
CN (θ)− CN (θ∗)

)
− 2εb ≥ (1− 2β)ε = εa,

so that with high probability we have inequality (78). As a
consequence, we obtain

CN (θ̃′)− CN (θ∗)
≤
∣∣CN (θ̃′)− C(θ̃′)

∣∣+ (C(θ̃′)− C(θ∗)) +
∣∣C(θ∗)− CN (θ∗)

∣∣
≤
(

1− 1
2ηhupdate

)
(C(θ)− C(θ∗)) + 2εb

≤
(

1 + 4β − 1
2(1 + 2β)ηhupdate

)(
CN (θ)− CN (θ∗)

)
,

If we choose

β ≤ ηhupdate
16− 4ηhupdate

≤ 1
12 , (80)

then 1 + 4β − 1
2 (1 + 2β)ηhupdate ≤ 1− 1

4ηhupdate. Thus, we
conclude that for N large enough, if CN (θ)− CN (θ∗) ≥ ε,
then with high probability, inequality (75) holds.

As emphasized by the above sketch of proof, the crux of
the argument is the following bound for the difference be-
tween the gradient of the cost and its estimate computed
by Algorithm 2.
Lemma 38. For a fixed θ = (K,L), for any ε > 0, if
T , M , N and τ−1 are large enough, then with high prob-
ability, over the randomness of (v = (v1, . . . , vM ), ε10 =
(ε1,10 , . . . , ε1,N0 ), ε00),

‖∇̃N,TM,τ (θ, v, ε10, ε
0
0)−∇(θ)‖ ≤ ε.

Proof. The proof relies on the expansion

∇̃N,TM,τ −∇ =(∇̃N,TM,τ − ∇̂
N,T
M,τ ) + (∇̂N,TM,τ − ∇̂

N
M,τ )

+ (∇̂NM,τ − ∇̂M,τ ) + (∇̂M,τ −∇), (81)

where we have omitted the arguments of the functions (i.e.,
θ, v, ε10, ε

0
0) for brevity. We then bound each term in the right

hand side of (81) respectively by Lemma 44, Lemma 46,
Lemma 48, and Lemma 31 (see Sections C and E).

E Proof of Theorem 6

In this part of the proof, all the agents are supposed to be
symmetric (i.e., exchangeable).

We recall that the structure of the proof of Theorem 6 is
described in Section D. We now prove the technical lemmas
required for this argument.

E.1 Preliminaries: initial point perturbations
and positivity of minimal eigenvalues

E.1.1 Notations for population simulation

Let us recall that the dynamics for the N -agent problem
are given by (3). When the control with parameter θ =
(K,L) ∈ Θ is taken into account, namely we look for ut =
−K(Xt − x̄Nt ) − Lx̄Nt as suggested from the mean-field
analysis, we denote by µθ,Nt = 1

N

∑N

n=1 x
θ,(n)
t = x̄Nt the

empirical mean of the agents’ states at time t. For every
n = 1, . . . , N , we define the process yθ,(n)

t = x
θ,(n)
t − µθ,Nt

for every t ≥ 0. Then the dynamics for (yθ,(n)
t )t≥0 and

(µθ,Nt )t≥0 can be described as: for every t ≥ 0,

y
θ,(n)
t+1 = (A−BK)yθ,(n)

t + ε
1,(n)
t+1 − ε

1,N
t+1, (82)

µθ,Nt+1 = (A+A− (B + B̄)L)µθ,Nt + ε0t+1 + ε1,Nt+1, (83)

where for every t ≥ 0, ε1,Nt = 1
N

∑N

n′=1 ε
1,(n′)
t , and the initial

points are given by µN0 = ε00 + ε1,N0 and y(n)
0 = ε

1,(n)
0 − ε1,N0 .

We will sometimes drop the superscript θ in µθ,N0 and yθ,n0
at time 0.
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Let
ΣN (θ) =

[
ΣNy (θ) 0

0 ΣNµ (θ)

]
.

ΣN (θ) = diag(ΣNy (θ),ΣNµ (θ)) where

ΣNy (θ) = 1
N

N∑
n=1

E
∑
t≥0

γtyθ,nt (yθ,nt )>,

ΣNµ (θ) = E
∑
t≥0

γtµθ,Nt (µθ,Nt )>

We also define the two auxiliary cost functions

CNy (θ) = 1
N

N∑
n=1

E

[∑
t≥0

γt
(
(yθ,nt )>(Q+K>RK)yθ,nt

)]

CNµ (θ) = E

[∑
t≥0

γtµθ,Nt
>

(Q+Q+ LT (R+R)L)µθ,Nt

]
.

The total cost is then CN (θ) = CNy (θ) + CNµ (θ).

We define the following matrix, which represents the gradient
of the N−agent social cost:

∇CN (θ) =
[
∇KCN (θ) 0

0 ∇LCN (θ)

]
.

Moreover, notice that the dynamics for (yθ,1t )t≥0 and
(µθ,Nt )t≥0 in the population setting are similar to the dy-
namics of (yθt )t≥0 and (zθt )t≥0 respectively in the mean-field
setting, except for the associated noise processes and the
initial distributions. Based on these observations, we have
the following result.
Lemma 39. The N processes (yθ,(n)

t )t≥0 with n = 1, . . . , N
are identical in the sense of distribution, i.e., the laws of
y
θ,(n)
t and y

θ,(1)
t are the same for all n and all t. As a

consequence, for every θ = (K,L) ∈ Θ,

CNy (θ) = E

[∑
t≥0

γt
((

y
θ,(1)
t

)>
(Q+K>RK)yθ,(1)

t

)]
,

ΣNy (θ) = E

[∑
t≥0

γty
θ,(1)
t (yθ,(1)

t )>
]
.

Moreover we have

CNy (θ) = E
[
(yθ,(1)

0 )>P yK(yθ,(1)
0 )

]
+ γ

1− γ α
y,N
θ , (84)

CNz (θ) = E
[
(µθ,N0 )>P zLµθ,N0

]
+ γ

1− γ α
µ,N
θ , (85)

where αy,Nθ = E
[(
ε
1,(1)
1 − ε1,N1

)>
P yK

(
(ε1,(1)

1 − ε1,N1

)]
and

αµ,Nθ = E
[(
ε01 + ε1,N1

)>
P zL

(
ε01 + ε1,N1

)]
.

E.1.2 Initial point perturbations

We introduce the matrices related to the variances of initial
points:

ΣNy0 = 1
N

N∑
n=1

E
[
y

(n)
0

(
y

(n)
0

)>]
= E

[
y

(1)
0 (y(1)

0 )>
]

ΣNµ0 = E
[
µN0 (µN0 )>

]
,

and we recall that the matrices Σy0 and Σz0 , defined by (9),
are the variance matrices for y0 and z0 in the mean-field
problem.

The following lemma builds connections for the variance at
time t = 0 between the population setting and the mean-field
setting.
Lemma 40 (Initial point perturbations). Recall we have
assumed that ε1,(1)

0 , . . . , ε
1,(N)
0 are i.i.d with distribution µ̃1

0
and they are also independent of ε00. We have

ΣNy0 =
(

1− 1
N

)
Σy0 , ΣNµ0 = Σz0 + 1

N
Σy0 . (86)

The proof are simple calculations using the fact that

∆µ0 := µN0 − µ0 = 1
N

N∑
n=1

(ε1,(n)
0 − E[ε1,(n)

0 ]).

We also denote the variances for one time-step noise pro-
cesses by

Σ1,N = E
[(
ε
1,(1)
1 − ε1,N1

)(
ε
1,(1)
1 − ε1,N1

)>]
,

Σ0,N = E
[(
ε01 + ε1,N1

)(
ε01 + ε1,N1

)>]
.

Lemma 41. We have

Σ1,N =
(

1− 1
N

)
Σ1, Σ0,N = Σ0 + 1

N
Σ1.

Lemma 42. Under Assumption 2, Lemma 40 and
Lemma 41 imply that for every n = 1, . . . , N ,

‖y(n)
0 ‖ψ2 ≤ 2‖y0‖ψ2 ≤ 4C0,

‖µN0 ‖ψ2 ≤ ‖y0‖ψ2 + ‖z0‖ψ2 ≤ 4C0,

and also for every t ≥ 1,∥∥∥ε1,(n)
t − ε1,Nt

∥∥∥
ψ2
≤ 2

(
1− 1

N

)
‖ε11‖ψ2 ≤ 2C0,∥∥∥ε0t + ε1,Nt

∥∥∥
ψ2
≤ ‖ε01‖ψ2 + ‖ε11‖ψ2 ≤ 2C0.
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E.1.3 Positivity of minimal eigenvalues

Let us denote by λNy,min and λNµ,min the smallest eigenval-
ues of respectively E[y1

0(y1
0)>] and E[µN0 (µN0 )>]. We also

introduce

λ1,N
y = λmin

(
ΣNy0 + γ

1− γΣ1,N
)
,

λ0,N
µ = λmin

(
ΣNµ0 + γ

1− γΣ0,N
)
,

and we recall that the corresponding eigenvalues λ1
y, λ

0
z for

the mean field problem are defined by (15).
Lemma 43 (Positivity of minimal eigenvalues). If

N >
1
λ0
z

(
‖Σy0‖+ γ

1− γ ‖Σ
1‖
)
, (87)

then we have

λ1,N
y =

(
1− 1

N

)
λ1
y > 0,

λ0,N
µ ≥ λ0

z −
1
N

∥∥∥∥Σy0 + γ

1− γΣ1
∥∥∥∥ > 0.

The proof is based on the Weyl’s theorem.

E.2 Bounding ‖∇̃N,TM,τ − ∇̂
N,T
M,τ‖ (Sampling error)

The following lemma estimates the difference between the
sampled and expected versions of the truncated perturbed
gradient, provided M is large enough. It relies on an appli-
cation of Matrix Bernstein’s inequality.

By Lemma 42 and Lemma 36, we introduce a function which
has at most polynomial growth in ‖θ‖ and τ :

hNsubexp(θ, τ) := 2C2ed
3τ

16C2
0

(1−√γ)2

·
[
‖Q‖+ ‖Q̄‖+ (‖L‖+ ‖K‖+ τ)2(‖R‖+ ‖R̄‖)

]
, (88)

and also a function for the number of perturbation direction
M :

hNtrunc,pert,size(θ, d, T, τ, ε) (89)

:= 2
δ2

(
log
(
d

ε

)d+1
+ log T + log(16ε)

)
hδ(hNsubexp(θ, τ))

where δ = ετ2

16Td and hδ(x) = x2 + xδ.

Let us define the estimated gradient term by

∇̃N,TM,τ = 1
M

d

τ2

M∑
i=1

C̃N,T (θi)
[
vi1 0
0 vi2

]
,

where θi = θ + vi with vi = (vi1, vi2), and the sampled
truncated cost for N agent is denoted by

C̃N,T (θi) = C̃N,Ty (Ki) + C̃N,Tµ (Li)

such that

C̃N,Ty (Ki) = 1
N

N∑
n=1

T−1∑
t=0

γt(yθi,(n)
t )>(Q+K>i RKi)yθi,(n)

t ,

C̃N,Tµ (Li) =
T−1∑
t=0

γt(µθi,Nt )>(Q+ Q̄+ L>i (R+ R̄)Li)µθi,Nt .

Note that we use C̃N,Ty (Ki) instead of C̃N,Ty (θi) because
the dynamics of associating processes (yθi,(n)

t )t≥0 for every
n = 1, . . . , N depends only on Ki.
Lemma 44 (Monte Carlo error on gradient estimates). Let
τ and T be given and assume that the number of perturba-
tion directions M satisfies M ≥ hNtrunc,pert,size(θ, d, T, τ, ε).
Then, with probability at least 1− (d/ε)−d, we have

‖∇̃N,TM,τ − ∇̂
N,T
M,τ‖ ≤ ε.

Proof. The proof is very much alike the step 3 in Lemma 35.
The difficulty is that, for a fixed perturbation direction
vi, the N random processes yθi,(n)

t for n = 1, . . . , N are
correlated since their noise processes are coupled. So, the
trick here is not only fixing the time t ∈ {0, . . . , T − 1} but
also fixing the agent index n ∈ {1, . . . , N} and look that
the concentration phenomenon of M independent random
variables (yθi,(n)

t ) for i = 1, . . . ,M . We can have a similar
inequality for:∥∥∥∥∥ 1

M

d

τ2

M∑
i=1

(
C̃N,Ty (Ki)− E[C̃N,Ty (Ki)|vi1]

)
vi,1

∥∥∥∥∥
≤ Td

τ2 sup
t=0,...,T−1

∥∥∥∥∥ γtM
M∑
i=1

(
1
N

N∑
n=1

η
i,(n)
t

)
vi,1

∥∥∥∥∥
≤ Td

τ2 sup
n=1,...,N

sup
t=0,...,T−1

∥∥∥∥∥ γtM
M∑
i=1

η
i,(n)
t vi,1

∥∥∥∥∥
where ηi,(n)

t for n = 1, . . . , N are defined similarly as in
equation 69. Since we can also establish an universal upper
bound for the sub-Gaussian norm of yθi,(n)

t :

γt‖yθi,(n)
t ‖2ψ2

≤ d2

(1−√γ)2 sup
{
‖y(n)

0 ‖
2
ψ2 ,

∥∥∥ε1,(n),i
1 − ε1,N,i1

∥∥∥2

ψ2

}
≤ 16d2C2

0
(1−√γ)2 .

we can conclude the result following the idea presented
in 35.
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E.3 Bounding ‖∇̂N,TM,τ − ∇̂NM,τ‖ (truncation
error)

Let us start with a result which estimates the difference
between the truncated gradient and the true gradient in
N−agent control problem. It is analogous to Lemma 32
in the mean field problem. It is a generalization of [10,
Lemma 23] to the case with noise processes. We introduce
the variance matrices for the truncated processes

ΣN,Ty (θ) = E

[
T−1∑
t=0

γty
θ,(1)
t (yθ,(1)

t )>
]
,

ΣN,Tµ (θ) = E

[
T−1∑
t=0

γtµθ,Nt (µθ,Nt )>
]
.

Similarly to equation (58), we also introduce in the N agent
problem a lower bound for the truncated horizon T :

hNtrunc,T (ε, γθ)

:=
(

1
log(1/γθ)

(
log
(

1
ε

(1 + 1
N

)C0,var

(1− γθ)2

)
+ 1
))2

,

where γθ is defined by (59).
Lemma 45 (Truncation error on cost estimates). For every
θ = (K,L) ∈ Θ and for every ε > 0, if the truncation horizon
T ≥ 2 satisfies T ≥ hNtrunc,T (ε, γθ), then

‖ΣNy (θ)− ΣN,Ty (θ)‖ ≤ ε, ‖ΣNµ (θ)− ΣN,Tµ (θ)‖ ≤ ε. (90)

The proof is very similar to the arguments used in Lemma
32 and Lemma 12. The only difference comes from the
inequality∥∥ΣNy (θ)− ΣN,Ty (θ)

∥∥
≤
(

(γθ)T

1− γθ
+ (γθ)T + (T − 1)(γθ)T

)
×

1
1− γθ

max
{∥∥∥(1− 1

N
)Σ1
∥∥∥ ,∥∥∥(1− 1

N
)Σy0

∥∥∥} .
The following result quantifies the error due to the time
horizon truncation in the estimation of the gradient. Its
proof is similar to the arguments used in Step 2 of Lemma 35.
Lemma 46 (Truncation error on gradient estimates). For
every ε > 0, if T ≥ hNtrunc,T (ετ , γθ,τ ). where γθ,τ and ετ are
defined as in Lemma 35. Then, we have ‖∇̂N,TM,τ−∇̂

N
M,τ‖ ≤ ε.

E.4 Bounding ‖∇̂NM,τ − ∇̂M,τ‖ (finite
population error)

We start with a bound on the difference between the popu-
lation cost and the mean-field cost.

Lemma 47. For any θ ∈ Θ,

|CN (θ)−C(θ)| ≤ d

N
(‖P yK‖+‖P

z
L‖)
(
‖Σy0‖+ γ

1− γ ‖Σ
1‖
)
.

Proof. The difference between the cost functions for the
N−agent control problem and the mean-field type control
problem can be split into two terms:

CN (θ)− C(θ) =
(
CNy (θ)− Cy(K)

)
+
(
CNµ (θ)− Cz(L)

)
.

For the first term, we have

CNy (θ)− Cy(K)

=E
[
(y(1)

0 )>P yKy
(1)
0

]
− E

[
(y0)>P yKy0

]
+
(
αy,Nθ − αyK

)
=Tr

([
ΣNy0 − Σy0

]
P yK
)

+ γ

1− γ Tr
(
P yK(Σ1,N − Σ1)

)
=− 1

N
Tr

(
P yK

(
Σy0 + γ

1− γΣ1
))

,

also, CNµ (θ) − Cz(L) = 1
N
Tr
(
P zL
(
Σy0 + γ

1−γΣ1)) , hence,
we can draw the conclusion with the trace inequality.

We then establish the following lemma, which bounds the
difference between N−agent perturbed gradient ∇̂NM,τ and
perturbed gradient for mean-field control problem ∇̂.

Lemma 48 (Finite population error on gradient estimates).
For every given ε > 0, if the perturbation radius τ is small
enough such that whenever ‖K′−K‖ ≤ τ and ‖L′−L‖ ≤ τ ,
|C(θ′)− C(θ)| ≤ C(θ), and if

N ≥ 1
ε

4d2C(θ)C0,var

τ

(
1
λ1
y

+ 1
λ0
z

)
, (91)

then for all v = (v1, . . . , vM ), we have ‖∇̂NM,τ − ∇̂M,τ‖ ≤ ε.

Notice that by Corollary 25, the condition on τ in the above
statement is satisfied for example if τ ≤ 1/hC,cond(θ).

Proof. Since for every vi = (vi1, vi2), we have∥∥∥∥[ vi1 0
0 vi2

]∥∥∥∥ ≤ ‖vi1‖+ ‖vi2‖ ≤ 2τ,

and by our condition on τ , we have

C(θi) = C(θ + vi) ≤ 2C(θ).



R. Carmona, M. Laurière, Z. Tan 27

By Lemma 47, we deduce that

‖∇̂NM,τ − ∇̂M,τ‖

= 1
M

M∑
i=1

d

τ2 (CN (θi)− C(θi))
[
vi1 0
0 vi2

]

≤ 1
N

d

τ2
1
M

M∑
i=1

(
d(‖P yKi‖+ ‖P zLi‖)

·
(
‖Σy0‖+ γ

1− γ ‖Σ
1‖
)∥∥∥∥[ vi1 0

0 vi2

]∥∥∥∥
)

≤ 1
N

4d2C(θ)C0,var

τM

(
1
λ1
y

+ 1
λ0
z

)
.

Hence, by (91), we obtain ‖∇̂NM,τ − ∇̂M,τ‖ ≤ ε.

F Details on the numerical results

F.1 Details about the numerical results of
Section 4

The numerical results presented in Section 4 were obtained
with the parameters given in Table 1. Recall that the
N−agent dynamics and the cost are given respectively by (3)
and (5), with parameters denoted, in the one dimensional
case, by a, ā, b, b̄ for the dynamics, q, q̄, r, r̄ for the cost. The
discount factor is γ, and h̃ is the degree of heterogeneity.

The randomness in the state process is given in the second
part of Table 1, where U([a, b]) stands for the uniform distri-
bution on interval [a, b] and N (µ, σ2) is the one dimensional
Gaussian distribution with mean µ and standard deviation
σ.

The parameters of the model free method are T for the trun-
cation length, M for the number of perturbation directions,
τ for the perturbation radius. We used Adam optimizer
(which provided slightly smoother results than a constant
learning rate η as in our theoretical analysis) initialized with
initial learning rate η and exponential decay rates given by
β1 and β2. The number of perturbation directions is M and
their radius is τ . These value have been chosen based on
the theoretical bounds we found and further tuning after a
few tests with the exact PG method.

The computations have been run on a 2.4 GHz Skylake
processor. For the parameters described here, the model
free PG with MKV simulator took roughly 10 hour for 5000
iterations. For the same number of iterations, the model
free PG with N−agent population simulator took roughly
48 hours for N = 10.

Table 1: Simulation parameters for numerical example
as described in the text.

Model parameters

a a b b q q r r γ h̃

0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.9 0.1

Initial distribution and noise processes

ε00 ε10 ε0t ε1t

U([−1, 1]) U([−1, 1]) N (0, 0.01) N (0, 0.01)

Learning parameters

T M τ η β1 β2 K0 L0

50 10000 0.1 0.01 0.9 0.999 0.0 0.0

F.2 Approximate optimality of the mean field
optimal control for the N−agent problem

Let us consider the general case for which the variation q̃n is
not assumed to be 0. We provide numerical evidence showing
that even though the optimal control U∗,Nt = Φ∗,NXt of the
N agents problem differs from the optimal control Φ∗,NMKVXt
that can be obtained using the optimal MKV feedback, the
latter provides an approximately optimal control for the N
agents social cost, where the quality of the approximation
depends on N and on the heterogeneity degree h̃ (recall
that the variations q̃n are of size at most h̃).

When the coefficients of the model are known, the matrices
Φ∗,N (for the N−agent problem) and (K∗, L∗) (for the MFC
problem) can be computed by solving Riccati equations. In
the d = 1 case, we can easily compare these controls by
looking, for instance, at the diagonal coefficients of Φ∗,N
and the value of K∗. Figure 4a shows (in blue) the graph
of the function N 7→ maxi=1,...,N |(Φ∗,N )i,i − K∗|. While
this quantity decreases with N , it does not converge to
0. This transcribes the fact that the optimal control with
heterogenous agents does not converge to the optimal MKV
control. This figure is for one realization of the variations
q̃n, drawn uniformly at random in (−h̃, h̃) = (−1, 1) with
q = 5. For the sake of comparison we also show (see the red
curve in Figure 4a) that the diagonal coefficients of Φ∗,NMKV
converge to K∗.

On the other hand, instead of comparing the controls, we
can compare the associated costs. Indeed, once the matrices
Φ∗,N and Φ∗,NMKV are computed, if we use them as feedback
functions, the corresponding N−player social cost can be
readily computed using an analytical formula based on a
Riccati equation, as is usual for LQ problems (see e.g. (12)
below for the mean field case). Figure 4b shows the difference
between the two costs as N increases. One can see that
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(a) (b)

Figure 4: Comparison of the N agent optimal control
and the MKV optimal control. (a): Maximum difference
between diagonal terms; (b) Social cost for each control.

Figure 5: Influence of the heterogeneity degree on the
social cost.

whether the agents use the real optimal control (blue line)
or the one coming from the optimal MKV control (red line),
the values of the social cost are almost the same as they seem
to converge to the value of the theoretical optimal MKV
social cost (green dashed line). However, a small discrepancy
remains due to the heterogeneity of the population.

Figure 5 illustrates the influence of the heterogeneity of the
agents. For fixed N = 100, as the radius h̃ of the variation
term vanishes (i.e., 1/h̃ increases) and the system becomes
more homogeneous, the difference between the N−agent
social cost computed with Φ∗,N and Φ∗,NMKV decreases. In
this figure, the curve is the averaged over 5 random realiza-
tions and the shaded region corresponds to the mean ± the
standard deviation.
Remark 49. Notice that the average of the states of all the
players enters the computation of the control of player i, i.e.
the i-th entry of U∗,Nt . We expect that when the number of
players grows without bound, i.e. when N →∞, this average
should converge to the theoretical mean x̄t of the optimal
state in the control of the McKean-Vlasov equation (1). So
if we were able to compute x̄t off-line and replace in (92)

the vector Xt of sample averages by the vector of N copies
of the McKean-Vlasov true mean x̄t, we would get a control
profile

Ũ∗,Nt = αp∗Xt + [α(p̄∗ − p∗) + βp̄∗]xt1, (92)

which is decentralized in the sense that the control of the
i-th player only depends upon the state of player i, and
which is an approximation of the optimal control since their
difference converges to 0.
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