
Journal of Computational Physics 413 (2020) 109451
Contents lists available at ScienceDirect

Journal of Computational Physics

www.elsevier.com/locate/jcp

On numerical errors to the fields surrounding a relativistically 

moving particle in PIC codes

Xinlu Xu a,b,∗,1, Fei Li a, Frank S. Tsung c, Thamine N. Dalichaouch c, 
Weiming An d, Han Wen a, Viktor K. Decyk c, Ricardo A. Fonseca e,f, 
Mark J. Hogan b, Warren B. Mori a,c

a Department of Electrical Engineering, University of California Los Angeles, Los Angeles, CA 90095, USA
b SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
c Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, CA 90095, USA
d Department of Astronomy, Beijing Normal University, Beijing 100875, China
e GOLP/Instituto de Plasma e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
f ISCTE - Instituto Universitário de Lisboa, 1649–026, Lisbon, Portugal

a r t i c l e i n f o a b s t r a c t

Article history:
Received 18 November 2019
Received in revised form 3 March 2020
Accepted 31 March 2020
Available online 3 April 2020

Keywords:
Relativistic drifting particles
Numerical Cherenkov radiation
Numerical space charge like field
Particle-in-cell method

The particle-in-cell (PIC) method is widely used to model the self-consistent interaction 
between discrete particles and electromagnetic fields. It has been successfully applied to 
problems across plasma physics including plasma based acceleration, inertial confinement 
fusion, magnetically confined fusion, space physics, astrophysics, high energy density 
plasmas. In many cases the physics involves how relativistic particles (those with high 
relativistic γ factors) are generated and interact with plasmas. However, when relativistic 
particles stream across the grid, both in “vacuum” and in plasma, many numerical issues 
may arise which can lead to unphysical results. We present a detailed analysis of how 
discretized Maxwell solvers used in PIC codes can lead to numerical errors to the fields 
that surround particles that move at relativistic speeds across the grid. Expressions for the 
axial electric field as integrals in k space are presented that reveal two types of errors. The 
first arises from errors to the numerator of the integrand and leads to unphysical fields that 
are antisymmetric about the particle. The second arises from errors to the denominator of 
the integrand and lead to Cherenkov like radiation in “vacuum”. These fields are not anti-
symmetric, extend behind the particle, and cause the particle to accelerate or decelerate 
depending on the solver and parameters. The unphysical fields are studied in detail for two 
representative solvers - the Yee solver and the FFT based solver. Although the Cherenkov 
fields are absent, the space charge fields are still present in the fundamental Brillouin 
zone for the FFT based solvers. In addition, the Cherenkov fields are present in higher 
order zones for the FFT based solvers. Comparison between the analytical solutions and 
PIC simulation results are presented. A solution for eliminating these unphysical fields 
by modifying the k operator in the axial direction is also presented. Using a customized 
finite difference solver, this solution was successfully implemented into OSIRIS [1]. Results 
from the customized solver are also presented. This solution will be useful for a beam of 
particles that all move in one direction with a small angular divergence.
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1. Introduction

The particle-in-cell (PIC) method has been well developed and widely used to model the interactions between charged 
particles and electromagnetic fields for over half a century [2–4]. In this method space is broken up into discrete grids 
or finite size cells. The positions and velocities of finite size particles with a shape function S(x − xp(t)) which can have 
continuous values for xp(t) are used to deposit the currents (and/or charges) of the particles onto the corners of the grids. 
These are used as source terms in a discretized version of Maxwell’s equations to advance the fields. The fields are used to 
interpolate forces onto the particles which are then advanced to new positions and momenta using the relativistic version 
of Newton’s equations of motion. The PIC method greatly reduces the computational cost of electrostatic problems, e.g., 
in electrostatic PIC codes the computational cost of N particles is O (N ln N) as compared to O (N2) when using action 
at distance method [3]; and makes studying many body electromagnetic problems feasible. However, the need to deposit 
information from the particles that have continuous positions onto discrete grid locations leads to issues with aliasing, 
and the use of a discretized version of Maxwell’s equations can lead to errors in the dispersion relation of light even in 
“vacuum”. By “vacuum” we mean using a grid without any particles. These difficulties lead to many well known numerical 
issues in the PIC method [4].

The PIC method has been and continues to be used to model a variety of problems in plasma and beam physics [2]. 
In some problems, the entire plasma, e.g., relativistic shocks [5], or a group of plasma/beam particles have speeds where 
relativistic mass corrections become important, e.g., plasma based acceleration [6] and fast ignition [7,8]. It is well known 
that for some Maxwell solvers the phase velocity of light is less (or greater) than the speed of light even in the absence 
of any particles. Therefore, for some solvers relativistically moving particles can radiate unphysical Cherenkov radiation [9]
even when moving in “vacuum”. The use of the grid and finite difference time operators essentially means that the grid 
can be viewed as a medium where the dispersion relation of light is modified. In addition, there has been recent work on 
identifying and mitigating or eliminating what is referred to as the numerical Cherenkov instability (NCI) [10–20] that arises 
from the coupling between the electromagnetic and plasma beam modes. These schemes include using a variety of different 
Maxwell solvers including solvers that customize the representation of spatial derivatives in wave number space [20]. The 
analysis of numerical Cherenkov radiation and instability has been extended from regular meshes to general meshes in 
finite-element-based PIC algorithms [21]. The NCI cannot be eliminated by simply having the phase velocity of light be 
equal to or greater than the speed of light because of aliasing.

In this article, we address another issue for studying relativistic particles using a PIC code. While related to numerical 
Cherenkov instability this issue is distinct and has never been addressed before. While previous work has examined the far 
field that results from numerical Cherenkov radiation, we consider the fields that exist near the particle. These fields exist 
both from what we call space charge fields and numerical Cherenkov radiation due to aliasing. While the fields that arise 
from numerical Cherenkov from aliasing provide no net force on the particle, the space charge fields can and this force can 
either accelerate or decelerate the particle.

The fields surrounding an electron (point of finite size) moving with constant speed are well known. They can be ob-
tained by calculating the fields in vacuum and then Lorentz transforming them into the moving frame. The axial electric 
field is a Lorentz invariant while the fields perpendicular (transverse) to the direction of motion are increased by γ . Thus, 
the axial electric field is relatively small for highly relativistic electrons. We call these space charge like fields and they are 
antisymmetric about the particle, so they do not lead to self-forces. We show that for the PIC algorithm numerical errors 
lead to space charge fields that are orders of magnitude larger than the correct values. In addition, depending on the choice 
of the solver, the particle will radiate thereby creating both axial and transverse fields around the particle. We call these 
Cherenkov like fields and they are not antisymmetric (they can extend behind the particle), so they can create ‘self-forces’ 
on the particle. We will show that depending on the solver these forces can be either accelerating or decelerating.

These numerical errors in the calculated fields that surround a single particle lead to distortions to the evolution of a 
beam of particles. This issue can be problematic when modeling how a relativistic particle beam propagates in vacuum 
and in a plasma. Specifically, we have found that when the current profile rises rapidly these fields can lead to unphysical 
energy spread and energy modulations to a beam. In fact, it was through an investigation into the cause of this unphysical 
distortion of relativistic beams that we have identified the unphysical space charge and Cherenkov fields that surround a 
particle.

This article is organized as follows. In section 2, we begin with a formal derivation of the fields generated by a finite size 
particle moving with constant speed across a grid. The fields are first calculated in Fourier space. A general expression for 
the axial electric field is given as an integral in wave number space. This expression includes effects associated with aliasing 
as a sum over all Brillouin zones. Two sources of numerical errors are identified in a fraction found in the integrand. 
The first is from the numerator and the second is from the denominator. This expression is analyzed for the Yee and FFT 
(spectral) based solvers. For the Yee solver, zeros in the denominator exist in the fundamental Brillouin zone and these can 
lead to Cherenkov radiation (and thus “self-forces”). These self-forces slow the particle down. Errors in the numerator arise 
for high γ leading to significant errors to the space charge fields. For the first Brillouin zone there is no Cherenkov radiation 
but there are still spurious space charge fields.

We next show that for an FFT based solver there is no Cherenkov radiation in the fundamental Brillouin zone but there 
are still spurious space charge fields. However, there are Cherenkov like fields (zeros in the denominator) in the first Brillouin 
zones and thus self-forces, as well as spurious space charge fields. The self-forces accelerate the particles. Comparison 
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between the analytical fields and those obtained from OSIRIS [1] are given and there is good agreement. Our analyses are 
done for a single particle which can be extended to a bunch of particles through convolution with the distribution function 
of the particles.

In section 3, we propose a solution that can significantly reduce the errors to the fields that surround the particle. The 
proposed solution is a modification to the k-space operator of derivatives along the axial direction. Essentially the k-space 
operator in x̂1 is replaced with sin(k1�t/2)

�t/2 . Such a solver has perfect dispersion for light moving along x̂1 and this is achieved 
by modifying the differential operator in real space to match the time operator. This is essential for removing numerical 
errors to the space charge fields. Although perfect dispersion in “vacuum” is also achieved in the pseudospectral analytical 
time-domain (PSATD) method [22,4,23] for waves moving in all directions, it is not as effective at eliminating the space 
charge forces as the proposed method. This is because for the PSATD solver perfect dispersion is achieved by effectively 
modifying the time domain operator. For the proposed solution there are small errors to the space charge fields from the 
first Brillouin zones. The proposed solution can be easily implemented into a FFT based solver and we show how it can 
be implemented into a customized finite difference solver using an over specified higher order solver whose coefficients 
are chosen to minimize errors from the desired k-space operators. We then present results obtained from OSIRIS using the 
proposed customized solver. These results are in close agreement with the analytical results. Results from OSIRIS simulations 
of a drifting electron beam show a dramatic difference between using a standard vs. customized finite difference solver. A 
summary is given in section 4. Finally, six appendices are included. In Appendix A details for the form of the charge density 
of a free streaming particle including aliasing is given; in Appendix B and Appendix C the expressions of the axial electric 
field from the first aliasing zone for the FFT and the proposed solvers are derived; in Appendix D it is shown that the fields 
surrounding a particle from the PSATD algorithm will be similar to those for the FFT solver; in Appendix E details of the 
proposed customized solver are given; and finally in Appendix F details about the complex integrations are given.

2. Theoretical analysis

2.1. General expressions of the EM fields induced by free-streaming particles

In this paper we are concerned with the fields that surround a charged particle free streaming along the x1 direction with 
speed βc on a grid, where c is the speed of light in vacuum. The relativistic factor of this particle is γ ≡ 1/

√
1 − β2. The 

grid sizes along the three directions are �x1,2,3 and the time step is �t . We introduce normalized quantities r ≡ �x2/�x1
and κ ≡ �x1/�t when considering the two-dimensional (2D) Cartesian geometry. We assume that the simulation grid is 
infinitely long (which is equivalent to a large box with open boundary conditions). The simulation time is also assumed to 
be infinitely long and that the fields reach “steady state”. We show later that in fact the fields can oscillate over time as 
the particle moves due to aliasing on the grid. The corresponding Fourier transform of these discrete non-periodic physical 
quantities defined on the grids are continuous and periodic in the ω − k space with periods ωg = 2π

�t and kg1,2,3 = 2π
�x1,2,3

, 
e.g., Ẽ(ω′, k′) = Ẽ(ω, k), where ω′ = ω + μωg and k′ = k + νkg . Here ̃ is used to denote the qualities in the ω − k space.

We start from the discretized form of Maxwell’s equations, i.e., Faraday’s and Ampere’s Law, which are used in the PIC 
method to advance the fields (Gauss’s law is satisfied by ensuring charge conservation),

dt B = −dE × E

dt E = dB × B − J (1)

which upon Fourier transforming gives,

[ω]t B̃ = [k]E × Ẽ (2)

[ω]t Ẽ = −[k]B × B̃ − i J̃ (3)

where [k]E and [k]B are the k-space operators for the choice of the discretized form for the spatial derivatives used on the 
E and B fields in Maxwell equations. We allow for different forms of the operators to be used in Faraday’s and Ampere’s 
Laws. Here we use [.] exclusively to indicate the discrete operator as in previous work [10,14], e.g., for the leap frog operator 
in the particle push and a second order finite difference operator, [ω]t ≡ sin(ω�t/2)

�t/2 and [k]1,2,3 ≡ sin(k1,2,3�x1,2,3/2)

�x1,2,3/2 . The details 
can be found in Appendix E. Applying [k]B× to both side of Eq. (2) and using Eq. (3), the coupled wave equation for Ẽ is 
obtained as(

[ω]2
t − [k]E · [k]B + [k]E [k]B ·

)
Ẽ = −i[ω]t J̃ (4)

The current deposition scheme is complicated in the PIC codes and will need to be corrected to ensure charge conversa-
tion in different ways corresponding to the choice of the differential operators in the solvers, thus we choose to write the 
expressions for the fields in terms of the charge density and not the current. We substitute Gauss’ law,

i[k]B · Ẽ = ρ̃ (5)
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into Eq. (4) and use the continuity equation to rewrite the current for a particle moving only in x̂1 in terms of ρ , J̃ =
x̂1

[ω]t[k]B1
ρ̃ . This provides an expression for Ẽ in terms only of ρ whose components are,

Ẽ1 = − i

[k]B1

[ω]2
t − [k]E1[k]B1

[ω]2
t − [k]E [k]B

ρ̃, Ẽ2 = i
[k]E2

[ω]2
t − [k]E [k]B

ρ̃, Ẽ3 = i
[k]E3

[ω]2
t − [k]E [k]B

ρ̃.

(6)

Expressions for the components of B̃ can be obtained by using these expressions for Ẽ in Faraday’s law,

B̃1 = 0, B̃2 = −i
[k]E3

[k]B1

[ω]t

[ω]2
t − [k]E [k]B

ρ̃, B̃3 = i
[k]E2

[k]B1

[ω]t

[ω]2
t − [k]E [k]B

ρ̃ (7)

The charge density of the free streaming particles at time step n can be expressed as ρn(x1, x2, x3) = ρ0(x1 −βn�t, x2, x3)

and an expression for the Fourier transform of the charge density, ρ̃ , on the grid points is derived in Appendix A.
For the remainder of this paper, we concentrate on the axial component of the electric field E1 as this is the component 

that can do work on the particle. If we substitute ρ̃ from Eq. (A.3) into Eq. (7), we obtain,

Ẽ1 = − i

[k]B1

[ω]2
t − [k]E1[k]B1([ω]2
t − [k]E [k]B

) 2π

�t�x1�x2�x3

∑
μ,ν

S(k′)ρ̃0(k′)δ
(
ω + μωg − βk′

1

)
(8)

where ρ̃0(k) is the Fourier transform in space of the initial charge distribution of the particles, S(k) is the shape function 
of the particles in the k space. Inverting the Fourier transform of Ẽ1(ω, k) back to time and space (discrete values of time 
and space) leads to,

En
1,i1,i2,i3

= −1

(2π)3

kg/2∫
−kg/2

dk

ωg/2∫
−ωg/2

dω
i

[k]B1

[ω]2
t − [k]E1[k]B1([ω]2
t − [k]E [k]B

) 2π

�t�x1�x2�x3

∑
μ,ν

S(k′)ρ̃0(k′)

δ
(
ω + μωg − βk′

1

)
exp (ik1i1�x1 + ik2i2�x2 + ik3i3�x3 − iωn�t)

= −1

(2π)3

kg/2∫
−kg/2

dk
i

[k]B1

∑
ν

[βk′
1]2

t − [k]E1[k]B1

[βk′
1]2

t − [k]E [k]B
S(k′)ρ̃0(k′)

exp [ik1(i1�x1 − βn�t) + ik2i2�x2 + ik3i3�x3] exp(−iβν1kg1n�t) (9)

where the summation over μ is removed because for each ν1 there is only one μ which satisfies −ωg/2 < β
(
k1 + ν1kg1

)−
μωg ≤ ωg/2 for k1 in the fundamental Bruillouin region. Note that the phase terms in the exponential functions will have 
additional terms like ± 1

2 ik1�x1, ± 1
2 ik2�x2, or ± 1

2 ik3�x3 [10] when the staggered grids are used.
In the continuous limit, it is straightforward to show that Eq. (9) reduces to the well known result for a moving charge 

q [24],

E1(t, x) = − q

(2π)3

+∞∫
−∞

dk
i(1 − β2)k1

(1 − β2)k2
1 + k2

2 + k2
3

exp [ik1(x1 − βt) + ik2x2 + ik3x3]

= q

4π

γ (x1 − βt)[
γ 2(x1 − βt)2 + x2

2 + x2
3

]3/2
(10)

It can be seen that in the continuous limit the numerator in the integrand has a factor 1 − β2 = 1/γ 2 that is very small 
for relativistic particles. It is important that the expression for the PIC algorithm also scale this way. For comparison to the 
PIC results to be presented later we also give the continuous result for two dimensions,

E1(t, x1, x2) = − λ

(2π)2

+∞∫
−∞

dk
i(1 − β2)k1

(1 − β2)k2
1 + k2

2

exp [ik1(x1 − βt) + ik2x2]

= 2λ
γ (x1 − βt)

γ 2(x1 − βt)2 + x2
2

(11)

where λ is the charge per unit length in the translationally invariant direction. When using a grid, it can be easily shown 
that the difference between [.]2

t and [.]E1[.]B1 in Eq. (9) can typically dominate 1/γ 2 in the numerator of the integrand for 
most of the frequency range.
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As an example, consider the Yee solver for which the numerator factor normalized to k2
1 is

[βk1]2
t − [k]2

1

k2
1

≈ − 1

γ 2
+
[

�x1
2 − �t2

12
+ �t2

6γ 2
+ O

(
1

γ 4

)]
k2

1 + O (k4
1). (12)

It can easily be seen that only for |k1
�x1

2 | �
(
γ

√
1−�t2/�x1

2

3 + 2
3γ 2

�t2

�x1
2

)−1

∼ 1
γ will the difference between β2 and 1 

dominate. Thus the fields surrounding the particle will be purely numerical (unphysical) in most of the k1 frequency region 
for relativistic particles. The wave number components contained in the particles distribution which are not resolved by the 
grids will contribute to the fields through the aliasing.

The phase factor exp(−iβν1kg1n�t) in Eq. (9) leads to variation of the fields with the time step n as the particle moves 
between grid points. Here, we ignore this term as it is a common factor to the field expression. This common factor can 
vary as the particle moves between grid points. To further simplify the analysis, a point charge which initially resides at the 
origin is considered, i.e., ρ̃0(k′) = q. Note in our description (see Appendix A), ρ represents the charge density of particle 
centers and S(x) represents the shape of each particle if it was centered at x = 0. Therefore, the variables ν2,3 only appear 
in the shape function and the summation over ν2, ν3 depends on the particle shapes. If linear shapes are assumed in 
the transverse directions, i.e., S(k) = sin2(k)/k2, then 

∑
ν2,ν3

S(k1 + ν1kg1, k2 + ν2kg2, k3 + ν2kg3) = S1(k1 + ν1kg1) where ∑+∞
ν=−∞

sin2(k+νπ)

(k+νπ)2 = 1 is used and S1 is the shape function along the x1 direction.

Clearly the fraction in the integrand reduces to unity in the 1D limit. Therefore, the numerical effects addressed in this 
paper only exist in multi-dimensions. For simplicity we only consider the 2D case. In addition, in the continuous limit the 
E1 field vanishes as β approaches unity. We therefore consider the limit of β = 1 because in this limit the resulting fields 
are all due to numerical errors. We carry out the integral in k space in 2D Cartesian geometry for β = 1 to examine in 
detail the numerical errors for the E1 field for a relativistic speed on the grids,

En
1,i1,i2

= − q

(2π)2

kg1
2∫

− kg1
2

kg2
2∫

− kg2
2

dk1dk2
i

[k]B1

∑
ν1

S1(k
′
1)

[k′
1]2

t − [k]E1[k]B1

[k′
1]2

t − [k]E1[k]B1 − [k]E2[k]B2

exp
(
ik1i′1�x1 + ik2i2�x2

)
(13)

where i′1 = i1 − N is the grid number relative to the point charge and N ≡ βn �t
�x1

is an integer. In PIC codes the shape 
function is chosen so that it rapidly approaches zero as |k1| approaches and then exceeds kg1. Therefore, contributions from 
each Brillouin zone are progressively smaller. It what follows, we only consider the contributions from the fundamental 
Brillouin zone ν1 = 0 and the first aliasing zones ν1 = ±1.

When performing the integrals, the poles of the denominator of the integrand, i.e., the zeros of the function [k1 +
ν1kg1]2

t − [k]E1[k]B1 − [k]E2[k]B2, modify the character of the fields. This is analogous to the continuous limit where poles 
of the denominator lead to Cherenkov radiation in a medium where the phase velocity of light is less than c. The value 
of the denominator depends on the grid sizes, the time step, the solver type (the forms of [.]t,1,2,3) and the value of 
ν1 (fundamental or aliasing zones). Generally, there are three different scenarios depending on the values of the two key 
parameters r ≡ �x2/�x1 and κ ≡ �x1/�t . The first scenario is that for all k1 in the fundamental zone (|k1| ≤ kg1/2) the 
denominator can vanish for some k2, i.e., the integration function has singularities when integrating over k2. In this case, 
the fields will have a wake structure analogous to Cherenkov radiation. In the second scenario, for all k1 in the fundamental 
zone, there is no k2 for which the denominator vanishes. In this case the fields around the particle are antisymmetric and 
keep up with the particle. We call these space charge like (they are like the fields in the continuous limit) as compared to 
Cherenkov like. In the third scenario the fields are all mixed between space charge and Cherenkov like. For some ranges 
of k1 the denominator can be zero while for other ranges of k1 the denominator cannot vanish. We note that the physical 
condition which leads to Cherenkov radiation, βph < 1, does not work exactly for numerical grids, where βph ≡ ω/k is the 
phase velocity of the EM waves.

2.2. The fields with the Yee solver

The Yee solver is currently the most common choice in PIC codes owing to it being fast, stable, relatively accurate and 
easy to be parallelized. For the Yee solver, the frequency and wave number operators are

[ω]t = sin(ω�t
2 )(

�t
2

) , [k]E1 = [k]B1 = sin(k1
�x1

2 )(
�x1

2

) , [k]E2 = [k]B2 = sin(k2
�x2

2 )(
�x2

2

) (14)
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The contribution from the fundamental Brillouin zone to the E1 field is

En
1,i1,i2

(ν1 = 0) = − q

(2π)2

kg1
2∫

− kg1
2

kg2
2∫

− kg2
2

dk1dk2
i S(k1)

[k]1

[k1]2
t − [k]2

1

[k1]2
t − [k]2

1 − [k]2
2

exp

[
ik1�x1

(
i′1 + 1

2

)
+ ik2i2�x2

]
(15)

where the staggered grids are used.

For ν1 = 0 of the Yee solver, the explicit form of the denominator is sin2(k1�t/2)

(�t/2)2 − sin2(k1�x1/2)

(�x1/2)2 − sin2(k2�x2/2)

(�x2/2)2 . Depending on 

the values of κ and r this denominator will vanish for some k2 for ranges of k1. It can be shown that when r ≤ 2√
π2−4

≈ 0.83

or r > 2√
π2−4

, and when κ ≤ κr , where κ2
r sin2

(
π

2κr

)
= 1 + r−2, a k2 can be found for which the denominator vanishes. For 

these cases, the field structure will have a Cherenkov like radiation pattern. On the other hand, when r > 2√
π2−4

and 
κ > κr , the fields have a contribution that is Cherenkov like and another contribution that is space charge like. In this 
case, the denominator is positive definite for |k1| > k1,r , while when |k1| ≤ k1,r the denominator can be zero for some k2

where k1,r is defined by κ2sin2
(

k1,r�t
2

)
− sin2

(
k1,r�x1

2

)
= r−2. We take the last condition, i.e., r > 2√

π2−4
and κ > κr , as an 

example to do the integrations over k2 (details are given in Appendix F),

− k1,r ≤ k1 ≤ 0 : 0 ≤ [k1]2
t − [k]2

1 ≤
(

�x2

2

)−2

,

kg2
2∫

− kg2
2

dk2
[k1]2

t − [k]2
1

[k1]2
t − [k]2

1 − [k]2
2

= iπ

√√√√√ [k1]2
t − [k]2

1

1 −
(

�x2
2

)2
([k1]2

t − [k]2
1)

0 < k1 ≤ k1,r : 0 ≤ [k1]2
t − [k]2

1 ≤
(

�x2

2

)−2

,

kg2
2∫

− kg2
2

dk2
[k1]2

t − [k]2
1

[k1]2
t − [k]2

1 − [k]2
2

= −iπ

√√√√√ [k1]2
t − [k]2

1

1 −
(

�x2
2

)2
([k1]2

t − [k]2
1)

,

|k1| > k1,r : [k1]2
t − [k]2

1 >

(
�x2

2

)−2

,

kg2
2∫

− kg2
2

dk2
[k1]2

t − [k]2
1

[k1]2
t − [k]2

1 − [k]2
2

= π

√√√√√− [k1]2
t − [k]2

1

1 −
(

�x2
2

)2
([k1]2

t − [k]2
1)

(16)

where only the results for i2 = 0 are shown. Results for other grids in the transverse direction can be obtained through the 
appropriate integration. These fields have a more complicated form and they can be larger than the fields on axis for regions 
behind the particle. Note we must be careful to ensure the solutions satisfy causality and the Kramers-Kronig relations to 
get the correct sign of the integral when −k1,r ≤ k1 < 0 and 0 < k1 ≤ k1,r . Using the result in Eq. (16), the E1 field from the 
contribution of the fundamental Brillouin zone can be obtained,

En
1,i1,i2=0(ν1 = 0)

= − q

2π

( k1,r∫
0

dk1
S1(k1)

[k]1

√√√√√ [k1]2
t − [k]2

1

1 −
(

�x2
2

)2
([k1]2

t − [k]2
1)

cos

[
k1�x1

(
i′1 + 1

2

)]

−
kg1/2∫
k1,r

dk1
S1(k1)

[k]1

√√√√√− [k1]2
t − [k]2

1

1 −
(

�x2
2

)2
([k1]2

t − [k]2
1)

sin

[
k1�x1

(
i′1 + 1

2

)])
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Fig. 1. The value of [k1]2
t −[k]2

1 −[k]2
2 (upper row), the on-axis E1 field in the k1 space (middle row) and along the x1 axis (bottom row) for the contribution 

from the fundamental and the first aliasing Brillouin zones for the Yee solver. Parameters: �x1 = 1, r ≡ �x2
�x1

= 1, κ ≡ �x1
�t = 4, q = 1.

= − q

π�x1

( k̂1,r∫
0

dk̂1
Ŝ1(k̂1)

sink̂1

√√√√√ κ2sin2 k̂1
κ − sin2k̂1

1 − r2
(
κ2sin2 k̂1

κ − sin2k̂1

)cos
[
k̂1(2i′1 + 1)

]

−
π
2∫

k̂1,r

dk̂1
Ŝ1(k̂1)

sink̂1

√√√√√− κ2sin2 k̂1
κ − sin2k̂1

1 − r2
(
κ2sin2 k̂1

κ − sin2k̂1

) sin
[
k̂1(2i′1 + 1)

])
(17)

where k̂1 = k1�x1
2 . The numerical results are shown in the left column of Fig. 1. The Cherenkov radiation pattern dominates 

the field contributions from the fundamental zone. As a result, the on-axis E1 field is large and it extends behind the 
particle (the fields behind the particle are in fact larger off axis). These Cherenkov fields do not extend much in front of the 
particle. The fields in front of the particle are dominated by the space charge like fields. The use of higher-order particle 
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shapes can reduce the high k1 spectral components from the fundamental Brillouin zone and thus decrease the unphysical 
fields.

We next discuss the contributions to the unphysical fields from aliasing, i.e., from the higher order Brillouin zones. For 
the ν1 = ±1 zones of the Yee solver, the value of the denominator is now sin2[(k1±kg1)�t/2]

(�t/2)2 − sin2(k1�x1/2)

(�x1/2)2 − sin2(k2�x2/2)

(�x2/2)2

which becomes more complicated. Here, we do not list all the possible regions of r and κ space, but take r = 1, κ ≥ 2
as an example. For other values of r and κ , the reader can analyze it similarly. When r = 1, κ ≥ 2, it can be shown that 
[k1 ± kg1]2

t − [k]2
1 − [k]2

2 > 0, i.e., the integration function has no singularities in the entire integration region. Thus the field 
is all space charge like and can be written as

En
1,i1,i2=0(ν1 = −1) + En

1,i1,i2
(ν1 = 1)

= − q

4π

kg1
2∫

− kg1
2

dk1
i

[k]1

[
S1(k1 − kg1)

√√√√√− [k1 − kg1]2
t − [k]2

1

1 −
(

�x2
2

)2
([k1 − kg1]2

t − [k]2
1)

+ S1(k1 + kg1)

√√√√√− [k1 + kg1]2
t − [k]2

1

1 −
(

�x2
2

)2
([k1 + kg1]2

t − [k]2
1)

]
exp

[
ik1�x1

(
i′1 + 1

2

)]

= q

π�x1

π
2∫

0

dk̂1

[
Ŝ1(k̂1 − π)

sink̂1

√√√√√√−
κ2sin2

(
k̂1−π

κ

)
− sin2k̂1

1 − r2
[
κ2sin2

(
k̂1−π

κ

)
− sin2k̂1

]

+ Ŝ1(k̂1 + π)

sink̂1

√√√√√− κ2sin2 k̂1+π
κ − sin2k̂1

1 − r2
(
κ2sin2 k̂1+π

κ − sin2k̂1

)]sin
[
k̂1(2i′1 + 1)

]
(18)

The numerical results are shown in the right column of Fig. 1. For the particular parameters studied here, a pure space 
charge pattern exist thus the E1 field is antisymmetric in i1 about the particle; hence there are no self-forces from these 
zones. The amplitude of the on-axis E1 is reduced by a factor of around 2 by using a quadratic particle shape instead of a 
linear shape.

Simulation results from OSIRIS of a free streaming relativistic particle and their comparison with the formulas are shown 
in Fig. 2. The analytical result, Fig. 1, is confined to the location of the particle. As can be seen, the simulation fields are 
large and extend far behind the particle, thus we can see that the transverse and longitudinal fields are dominated by the 
numerical fields. A 5 pass filter can reduce the high wave number components, however the remaining unphysical fields are 
still unacceptably large, e.g., E1

�x1
q ∼ 10−2. The use of quadratic particle shapes also does not reduce the numerical fields 

to acceptable levels even when combined with the 5 pass filter [25]. The comparisons for the on-axis E1 field between the 
simulation results and the analytical expressions for PIC codes are shown in the bottom left of Fig. 2. Excellent agreement 
is seen. The small deviations close to the particle position may be due to the contribution from higher Brillouin zones 
(|ν1| ≥ 2) which are not included in the formulas. The E1 field for a particle with γ = 5 is shown in the bottom right 
of Fig. 2 which is similar to the field from a particle with γ = 6 × 109. This is because the fields are dominated by the 
numerical issues not by the particle’s energy (γ factor) as we discussed earlier.

The particle loses energy through its numerical Cherenkov radiation in the fundamental Brillouin zone. As a result the 
particle will decelerate (there is still energy conservation between kinetic and field energy). This energy loss appears as a 
“self-force” and can be obtained by integrating the axial field over the particle,

F1 =
kg1

2∫
− kg1

2

dk1qS(k1)Ẽ1(k1)

≈ − q2

π�x1

k̂1,r∫
0

dk̂1
Ŝ2

1(k̂1)

sink̂1

√√√√√ κ2sin2 k̂1
κ − sin2k̂1

1 − r2
[
κ2sin2 k̂1

κ − sin2k̂1

] (19)

where only the contributions from ν1 = 0, ±1 are considered. This self-force and the energy loss through a given distance 
are inversely proportional to �x1 when κ and r are fixed. For the parameters examined in Fig. 2, the expression for the self-
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Fig. 2. The electric fields E1 and E2 of a free-streaming particle from OSIRIS simulations with the Yee solver after 20000 time steps. Parameters: �x1 =
1, r ≡ �x2

�x1
= 1, κ ≡ �x1

�t = 4, q = 1, other simulation parameters are shown in each subplot.

force can be integrated numerically to obtain F1 ≈ −0.15q2/�x1 for a linear particle shape, −0.10q2/�x1 for a quadratic 
shape, and −0.031q2/�x1 for a quadratic shape and a 5 pass filter.

2.3. The fields with the spectral solver

In a spectral solver the fields are advanced in k space and it generally has improved dispersion properties at the expense 
of less parallel scalability. Some refer to such a scheme as pseudo spectral because a grid is used. The phase velocity of 
the EM waves for a spectral solver is faster than the speed of light in “vacuum”, thus such a solver is not as susceptible to 
numerical Cherenkov effects. It recently was shown to suppress the NCI. For a spectral solver, we have

[ω]t = sin(ω�t
2 )(

�t
2

) , [k]E1 = [k]B1 = k1, [k]E2 = [k]B2 = k2 (20)
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Substituting these expressions into Eq. (13) leads to the expression for the E1 field in the fundamental zone,

En
1,i1,i2=0(ν1 = 0) = − q

(2π)2

kg1
2∫

− kg1
2

kg2
2∫

− kg2
2

dk1dk2
i S(k1)

k1

[k1]2
t − k2

1

[k1]2
t − k2

1 − k2
2

exp

[
ik1

(
i′1 + 1

2

)
�x1

]
(21)

In order to compare with the simulation results from OSIRIS, staggered grids are used here. The results are similar with 
non-staggered grids as used in other PIC codes with a spectral solver.

For all possible κ and r, the denominator of the integrand [k1]2
t − k2

1 − k2
2 ≤ 0; thus there are no Cherenkov like fields in 

the fundamental zone, the numerical fields are all space charge like,

En
1,i1,i2=0(ν1 = 0) =

2q

π2�x1

π
2∫

0

dk̂1
Ŝ(k̂1)

k̂1

√
k̂2

1 − κ2sin2 k̂1

κ
tan−1

⎛
⎜⎝ π

2r

1√
k̂2

1 − κ2sin2 k̂1
κ

⎞
⎟⎠ sin

[
(2i′1 + 1)k̂1

]
(22)

Numerical results for the analytical expressions are shown in the left column of Fig. 3. The E1 field is anti-symmetric and 
decreases rapidly as one moves away from the particle because of the space charge like nature of the fields. The field 
structure is insensitive to the particle shape as can be seen by the fact that the quadratic particle shape fields are only 
slightly less than those for linear shapes.

While there are no Cherenkov fields from the fundamental zone for a spectral solver, we show such fields exist in the 
ν1 = ±1 zones. We find that the field from the first aliasing zone always has errors from a combination of the Cherenkov 
and space charge sources. Again we focus on the parameter space where r = 1 and κ > κr where κr ≈ 2.4 can be solved 
from κ2

r sin2
(

3
2

π
κ

)
= π2

2 . The derivations of the field En
1,i1,i2=0 from the first aliasing zone can be found in Appendix B and 

the expression is given by Eq. (B.2). The numerical results are shown in the right column of Fig. 3. The Cherenkov radiation 
pattern at the high wave number region leads to a long tail of the E1 field behind the particle. The use of higher-order 
particle shapes can significantly reduce the field amplitude by reducing the contributions from the aliasing zones.

OSIRIS simulation results are shown in Fig. 4. Compared with the Yee solver, the fields are smaller and are now domi-
nated by the numerical space charge mode, thus the numerical fields have significant values only close to the particle. In 
addition, the numerical Cherenkov mode exist only in the high k1 region and thus a 5 pass filter can reduce it significantly. 
Reasonable agreement between the simulation results and the analytic expressions can be seen in the bottom left of Fig. 4
where the disparity near the particle position is likely due to the neglect of the contributions from higher ν1 (ν1 ≥ 2) zones. 
Combining quadratic particle shapes with a 5 pass filter, the E1 field (black dashed line) is on the order of E1

�x1
q ∼ 5 ×10−3. 

The E1 field distribution from a particle with γ = 5 (relatively low energy) is shown in the bottom right of Fig. 4. We can 
see it is similar to the field from a very relativistic particle as shown in the top left of Fig. 4 which confirms that even with 
a spectral solver the self-fields are also dominated by the numerical effects.

The self-force experienced by a particle with charge q for an spectral solver is

F1 ≈ − q2

π�x1

−k̂1,r2∫
−k̂1,r1

dk̂1
Ŝ(k̂1) Ŝ(k̂1 + π)

k̂1

√
[k̂1 + π ]2

t − k̂2
1 (23)

where only the contributions from ν1 = 0, ±1 are considered. The value of the force can be integrated numerically leading 
to F1 ≈ 0.016q2/�x1 for linear particle shape, F1 ≈ 0.0063q2/�x1 for quadratic shape and F1 ≈ 6.5 × 10−6q2/�x1 for 
quadratic shape and a 5 pass filter when r = 1, κ = 4.

We close this section by noting that it is more difficult to carry out a similar analysis for the PSATD approach. It is 
difficult to cast the solver into a simple form where [ω] and [k]’s can be used. In Appendix D we provide an analysis which 
provides expressions for the Fourier amplitudes of the electric field and magnetic fields in terms of k, k�t and ω�t . An 
expression for axial electric field is then provided which has similar poles in the denominator as in the spectral solver. 
However, it is difficult to carry out the integral in Eq. (D.5).

3. Solution: a solver with [k]1 = [k1]t

As explained above, the unphysical fields are mainly caused by the different forms of [.]t and [.]1 for the solvers. Thus, we 
propose a new solver with [.]1 = [.]t which can significantly reduce the numerical self fields of relativistic particles below 
those from the spectral solver. For simplicity, we assume [k]E1 = [k]B1, other options with [k]E1 �= [k]B1 and [k]E1[k]B1 =
[k1]2

t are possible. From Eq. (7) it is straightforward to see that using [k]E1 = [k]B1 has another advantage in that the 
transverse force between two relativistic particles is also free of additional numerical errors, i.e., E2 −βB3 = E2(1 − β). This 
will be discussed in more detail in a future publication.
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Fig. 3. The value of [k1]2
t −[k]2

1 −[k]2
2 (upper row), the on-axis E1 field in the k1 space (middle row) and along the x1 axis (bottom row) for the contribution 

from the fundamental and the first aliasing Brillouin zones for the spectral solver. Parameters: �x1 = 1, r ≡ �x2
�x1

= 1, κ ≡ �x1
�t = 4, q = 1.

To see the advantage of the new solver, we do the same analysis for the new solver as in Eq. (12),

[βk1]2
t − [k]2

1

k2
1

= − 1

γ 2

[
1 − k2

1�t2

6
+ O ((k1�t)4)

]
+ O

(
1

γ 4

)
(24)

When k2
1

�t2

6 � 1, i.e., |k1
�x1

2 | �
√

6
2

�x1
�t , the physical fields are modeled well on the grids. Compared with Eq. (12), the 

range of k1 where the fields are modeled with high fidelity is much increased. The contributions from aliasing (higher order 
Brillouin zones) to the fields still exist, however they are concentrated at the high k1 region which can be suppressed using 
high-order particle shapes and low pass filters.

The contribution to the E1 field from the first aliasing modes ν1 = ±1 can be calculated as follows. When ν1 = ±1
the fields can have different characteristics depending on the value of κ and r. Here we focus on r = 1 and κ ≥ κr where 
sin2( 3π ) − sin2( π ) ≡ 1/κ2

r with κr ≈ 2.15. As shown in Appendix C the field is
2κr 2κr
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Fig. 4. The electrical fields E1 and E2 of a free-streaming particle from PIC simulations with the spectral solver. Parameters: �x1 = 1, r ≡ �x2
�x1

= 1, κ ≡
�x1
�t = 4, q = 1. Other simulation parameters can be found in each subplots.

En
1,i1,i2=0(ν1 = −1) + En

1,i1,i2=0(ν1 = 1)

= − q

π�x1

[ −k̂1,r∫
− π

2

dk̂1
Ŝ1(k̂1 + π)

sin k̂1
κ

√√√√√√ κ2
(

sin2 k̂1+π
κ − sin2 k̂1

κ

)
1 − r2κ2

(
sin2 k̂1+π

κ − sin2 k̂1
κ

)cos[k̂1(2i′1 + 1)]

+
π
2∫

−k̂1,r

dk̂1
Ŝ1(k̂1 + π)

sin k̂1
κ

√√√√√√−
κ2
(

sin2 k̂1+π
κ − sin2 k̂1

κ

)
1 − r2κ2

(
sin2 k̂1+π

κ − sin2 k̂1
κ

) sin[k̂1(2i′1 + 1)]
]

(25)

where staggered grids are used. We can see the fields are dominated by the space charge pattern. Higher-order particle 
shapes can suppress the numerical errors that arise from the aliasing zones. The self-forces can be calculated numerically as 
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Table 1
Coefficients Ci for the customized solver when κ = 4, r = 1.

Coefficients Values Coefficients Values

C1 1.248130933469396 C2 −0.125139446419605

C3 0.040951412341664 C4 −0.018181000724779

C5 0.009121734802653 C6 −0.004812019139855

C7 0.002570175265005 C8 −0.001356670416082

C9 0.000694723529383 C10 −0.000339356036052

C11 0.000155316438379 C12 −0.000065152281459

C13 0.000024294488165 C14 −0.000007666519708

C15 0.000001867004186 C16 −0.000000273002422

Table 2
Types of numerical errors for different solvers in the fundamental and first aliasing zones when κ = 4, r = 1, where C 
and SC represent Cherenkov like fields and space charge like fields, respectively. F1 is the self-force along the particle 
moving direction where quadratic particle shape and a 5 pass filter are used.

Yee Spectral Solver with [k]1 = [k1]t

ν1 = 0 C + SC SC None
F1 ≈ −0.031q2/�x1 F1 = 0 F1 = 0

|ν1| = 1 SC C + SC C + SC
F1 = 0 F1 ≈ 6.5 × 10−6q2/�x1 F1 ≈ 3.3 × 10−8q2/�x1

F1 ≈ 0.040q2/�x1 for linear particle shape, F1 ≈ 0.016q2/�x1 for quadratic shape and F1 ≈ 3.3 × 10−8q2/�x1 for quadratic 
shape and a 5 pass filter when r = 1, κ = 4.

The proposed solver with [.]1 = [.]t can be easily implemented if the fields are advanced in k space. For finite difference 
solvers, one can use the customized finite difference solver [20] technique to approximate [.]1 = [.]t . By extending the 
stencil of the finite difference operator from 2 grids as in the Yee solver to 2M grids, i.e., from dx1 f i1 = f i1+1− f i1

�x1
to dx1 f i1 =∑M

l=1 Cl
fi1+l− f i1−l+1

�x1
, the customized solver has a k1 space operator [k]1 =∑M

l=1 Cl
sin[(2l−1)k1�x1/2]

�x1/2 . The coefficients Cl are 
chosen so that [k1] has accuracy to a chosen order and to minimize errors from the desired functional form for [k1]. Here 
we take κ = 4, r = 1 as an example and M = 16, the optimized coefficients are listed in Table 1 and the corresponding [k]1
is shown in the upper left of Fig. 5. We can see [k]1 is very close to [k1]t except at the very high k1 region. The numerical 
EM fields from this high k1 region can be suppressed with a low pass filter. The scheme to find the customized coefficients 
that minimize errors to the desired operator can be found in Appendix E. The current is corrected corresponding to the 
customized coefficients Cl to ensure the Gauss’s law d · E = ρ as described in Ref. [20]. We note that others have optimized 
the dispersion relation of light along specific angles on the grid [26–28]. These ideas may also provide improvements to the 
numerical issues described in this paper. However, these methods generally have worse dispersion errors at off angles, and 
it is not clear how these methods, which utilize complicated stencils, can be used to ensure Gauss’s law is satisfied

The simulation results from OSIRIS are shown in Fig. 5. The fields are modeled well for particles with energy γ = 5, 10
and 6 × 109. The numerical E1 field from the first aliasing zones can be seen when γ = 6 × 109 and its amplitude is 
∼ 6 × 10−4 while the physical field is close to zero. A comparison of the on-axis E1 field for different particle energies and 
particle shapes is shown in the bottom left of Fig. 5. Quadratic particle shapes reduce the numerical field by an order of 
amplitude as compared with the linear shape. We also compare the on-axis E1 field for a particle with γ = 6 × 109, the 
quadratic particle shape and a 5 pass filter using different solvers in the inset. The E2 field for an ultra-relativistic particle 
is shown in the bottom right which is also modeled well.

A summary of the types of the numerical errors surrounding a relativistically moving particle for different solvers in the 
fundamental and first aliasing zones is given in Table 2. The value of the self-forces is also shown.

3.1. A sample simulation: a relativistic beam drifts in free space

Here we give a comparison of the evolution of an electron beam when it drifts in free space using the Yee solver and 
our proposed solver in 3D geomerty. The density plots in x2 = 0 slice at ωpt = 450 are shown in Fig. 6 where the beam 
with the Yee solver breaks into several beamlets and the beam with our solver remains the same as t = 0.

4. Summary

Modeling relativistic charged particles with high fidelity in PIC codes is important for both beam and plasma physics. In 
this article, we analyzed the numerical errors to the fields that surround a relativistically charged particle that free streams 
across the grid. Two types of errors are identified, one is from Cherenkov like radiation that arises in the fundamental 
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Fig. 5. Upper left: The [k]1 from the customized solver with the coefficients given in Table. 1 and its comparison with sin(k1�t/2)/(�t/2); E1 field when 
γ = 5 (upper right), γ = 10 (middle left) and γ = 6 × 109 (middle right); Bottom left: the on-axis lineout of E1 for different γ and particle shapes and 
the inset compares the results from different solvers for the same γ , particle shape and filter; Bottom right: E2 field when γ = 6 × 109. Parameters: 
�x1 = 1, r ≡ �x2

�x1
= 1, κ ≡ �x1

�t = 4, q = 1. Other parameters are shown in each subplot.

Brillouin zone when the phase velocity of light for the Maxwell solver is less than the speed of light and that arises in 
the higher order zones regardless of the solver. The other type is a space charge like field that arises when the errors 
in the finite difference operators in time and position are larger than 1/γ 2. The details of these errors are analyzed for 
finite difference and FFT based solvers analytically and in PIC simulations. A novel solver with [k]1 = [k1]t is proposed and 
implemented in OSIRIS to eliminate these numerical fields. The simulation results with the proposed solver show the beam 
fields are modeled well and the amplitude of the numerical errors is reduced by one order of magnitude compared with 
the Yee solver and the spectral solver.

Areas for future work include developing methods for mitigating these errors when particles are streaming simultane-
ously at arbitrary angles and to better understand how these errors self-consistently cause coherent interactions within a 
beam.
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Fig. 6. Comparison of the beam evolution in free space using Yee solver (left) and our new solver (right). A tri-gaussian beam with Eb = 1 GeV, nb = 100np , 
kpσz = 1, kpσr = 0.5 and zero emittance and energy spreads propagates in free space. The charge density distribution of beam at ωpt = 450 are shown. 
Parameters: �x1 = 0.05, r ≡ �x2

�x1
= 1, κ ≡ �x1

�t = 4, and there are 8 particles per cell for representing the beam.
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Appendix A. Free streaming charge density

When the particles are free streaming along the x1 direction, the charge density on the grids at the n time step can be 
written as

ρn
i1,i2,i3

=
+∞∫

−∞
d3xρn(x1, x2, x3)S(i1�x1 − x1, i2�x2 − x2, i3�x3 − x3)

=
+∞∫

−∞
d3xρ0(x1 − nβ�t, x2, x3)S(i1�x1 − x1, i2�x2 − x2, i3�x3 − x3) (A.1)

where ρ0(x) is the charge density of the particles at t = 0 and S(x) is the particle shape function. Then apply the Fourier 
transform in the time domain and the x1 space domain to the above expression,

ρ̃(ω,k1) =
∑
n,i1

ρn
i1,i2,i3

exp(−ik1i1�x1)exp (iωn�t)

=
∑
n,i1

+∞∫
−∞

dx1ρ
0(x1 − nβ�t)S(i1�x1 − x1)exp(−ik1i1�x1)exp (iωn�t)

=
∑
n,i1

+∞∫
−∞

dx1 S(i1�x1 − x1)

+∞∫
−∞

dk′
1

2π
ρ̃0(k′

1)exp[ik′
1(x1 − nβ�t)]exp (−ik1i1�x1 + iωn�t)

=
+∞∫

dk′
1

2π
ρ̃0(k′

1)
∑
n,i1

+∞∫
dx1 S(i1�x1 − x1)exp

[
ik′

1(x1 − nβ�t) − ik1i1�x1 + iωn�t
]

−∞ −∞
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=
+∞∫

−∞

dk′
1

2π
ρ̃0(k′

1)S(k′
1)
∑

i1

exp(ik′
1i1�x1 − ik1i1�x1)

∑
n

exp
(−ik′

1nβ�t + iωn�t
)

=
+∞∫

−∞

dk′
1

2π
ρ̃0(k′

1)S(k′
1)

2π

�x1

∑
ν1

δ
[
k′

1 − (k1 + ν1kg1)
] 2π

�t

∑
μ

δ
(
ω + μωg − βk′

1

)

= 2π

�t�x1

∑
μ,ν1

ρ̃0(k1 + ν1kg1)S(k1 + ν1kg1)δ
[
ω + μωg − β(k1 + ν1kg1)

]
(A.2)

where kg1 = 2π
�x1

and ωg = 2π
�t . After applying the Fourier transform along the x2 and x3 directions, the expression of ρ̃ is

ρ̃(ω,k) = 2π

�t�x1�x2�x3

∑
μ,ν

ρ̃0(k′)S(k′)δ
[
ω + μωg − β(k1 + ν1kg1)

]
(A.3)

where k′
1,2,3 = k1,2,3 + ν1,2,3kg1,2,3 and kg2,3 = 2π

�x2,3
.

Appendix B. En
1,i1,i2=0 from the first aliasing zone for the spectral solver

In this appendix, we show how to calculate the longitudinal numerical field from the fist aliasing zone when using a 
spectral solver. We focus on the parameter space where r = 1 and κ > κr where κr ≈ 2.4 can be solved from κ2

r sin2
(

3
2

π
κ

)
=

π2

2 . Under this condition, the integration for ν1 = 1 can be divided into three regions:

− kg1/2 < k1 ≤ −k1,r1 : [k1 + kg1]2
t − k2

1 ≤ 0,

kg2
2∫

− kg2
2

dk2
[k1 + kg1]2

t − k2
1

[k1 + kg1]2
t − k2

1 − k2
2

= 2
√

k2
1 − [k1 + kg1]2

t tan−1

⎛
⎜⎝ kg2

2
√

k2
1 − [k1 + kg1]2

t

⎞
⎟⎠

− k1,r1 < k1 ≤ −k1,r2 : 0 < [k1 + kg1]2
t − k2

1 ≤ k2
g2

4
,

kg2
2∫

− kg2
2

dk2
[k1 + kg1]2

t − k2
1

[k1 + kg1]2
t − k2

1 − k2
2

= 2
√

[k1 + kg1]2
t − k2

1

⎡
⎢⎣−i

π

2
+ tanh−1

⎛
⎜⎝2
√

[k1 + kg1]2
t − k2

1

kg2

⎞
⎟⎠
⎤
⎥⎦

k1 > −k1,r2 : [k1 + kg1]2
t − k2

1 >
k2

g2

4
,

kg2
2∫

− kg2
2

dk2
[k1 + kg1]2

t − k2
1

[k1 + kg1]2
t − k2

1 − k2
2

= 2
√

[k1 + kg1]2
t − k2

1tanh−1

⎛
⎜⎝ kg2

2
√

[k1 + kg1]2
t − k2

1

⎞
⎟⎠ (B.1)

where k1,r1 and k1,r2 satisfy [−k1,r1 + kg1]2
t − k2

1,r1 = 0, [−k1,r2 + kg1]2
t − k2

1,r2 = k2
g2
4 .

The contribution from the ν1 = −1 term can be calculated similarly. The total field E1 from the first aliasing modes 
ν1 = ±1 can be shown to be

En
1,i1,i2=0(ν1 = −1) + En

1,i1,i2=0(ν1 = 1)

= q

π2

( −k1,r1∫
− kg1

2

dk1
S(k1 + kg1)

k1

√
k2

1 − [k1 + kg1]2
t tan−1

⎛
⎜⎝ kg2

2
√

k2
1 − [k1 + kg1]2

t

⎞
⎟⎠

sin

[
k1

(
i′1 + 1

2

)
�x1

]
+

−k1,r2∫
−k

dk1
S(k1 + kg1)

k1

√
[k1 + kg1]2

t − k2
1

(
tanh−1

⎛
⎜⎝2
√

[k1 + kg1]2
t − k2

1

kg2

⎞
⎟⎠
1,r1
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sin

[
k1

(
i′1 + 1

2

)
�x1

]
− π

2
cos

[
k1

(
i′1 + 1

2

)
�x1

])
+

kg1
2∫

−k1,r2

dk1
S(k1 + kg1)

k1

√
[k1 + kg1]2

t − k2
1

tanh−1

⎛
⎜⎝ kg2

2
√

[k1 + kg1]2
t − k2

1

⎞
⎟⎠ sin

[
k1

(
i′1 + 1

2

)
�x1

])

= 2q

π2�x1

[ −k̂1,r1∫
− π

2

dk̂1
Ŝ(k̂1 + π)

k̂1

√
k̂2

1 − [k̂1 + π ]2
t tan−1

⎛
⎜⎝ π

2r
√

k̂2
1 − [k̂1 + π ]2

t

⎞
⎟⎠ sin[(2i′1 + 1)k̂1]

+
−k̂1,r2∫

−k̂1,r1

dk̂1
Ŝ(k̂1 + π)

k̂1

√
[k̂1 + π ]2

t − k̂2
1

(
−π

2
cos[(2i′1 + 1)k̂1] + tanh−1

⎛
⎜⎝2r

√
[k̂1 + π ]2

t − k̂2
1

π

⎞
⎟⎠

sin[(2i′1 + 1)k̂1]
)

+
π
2∫

−k̂1,r2

dk̂1
Ŝ(k̂1 + π)

k̂1

√
[k̂1 + π ]2

t − k̂2
1tanh−1

⎛
⎜⎝ π

2r
√

[k̂1 + π ]2
t − k̂2

1

⎞
⎟⎠ sin(2i′1k̂1)

]

(B.2)

Appendix C. En
1,i1,i2=0 from the first aliasing zone for the proposed solver

Here we focus on r = 1 and κ ≥ κr where sin2( 3π
2κr

) − sin2( π
2κr

) ≡ 1/κ2
r with κr ≈ 2.15. Taking ν = 1 as an example, the 

integration can be done as follows:

− kg1/2 < k1 ≤ −k1,r : 0 < [k1 + kg1]2
t − [k1]2

t ≤
(

�x2

2

)−2

,

kg2/2∫
−kg2/2

dk2
[k1 + kg1]2

t − [k1]2
t

[k1 + kg1]2
t − [k1]2

t − [k]2
2

= −iπ

√√√√√ [k1 + kg1]2
t − [k1]2

t

1 −
(

�x2
2

)2
([k1 + kg1]2

t − [k1]2
t )

− k1,r < k1 ≤ kg1/2 : [k1 + kg1]2
t − [k1]2

t >

(
�x2

2

)−2

,

kg2/2∫
−kg2/2

dk2
[k1 + kg1]2

t − [k1]2
t

[k1 + kg1]2
t − [k1]2

t − [k]2
2

= π

√√√√√− [k1 + kg1]2
t − [k]2

1

1 −
(

�x2
2

)2
([k1 + kg1]2

t − [k1]2
t )

(C.1)

where [−k1,r + kg1]2
t − [k1,r]2

t =
(

�x2
2

)−2
. Then the field is

En
1,i1,i2=0(ν1 = −1) + En

1,i1,i2=0(ν1 = 1)

= − q

2π

[ −k1,r∫
− kg1

2

dk1
S1(k1 + kg1)

[k1]t

√√√√√ [k1 + kg1]2
t − [k]2

t

1 −
(

�x2
2

)2
([k1 + kg1]2

t − [k1]2
t )

cos

[
k1�x1

(
i′1 + 1

2

)]

+
kg1

2∫
−k1,r

dk1
S1(k1 + kg1)

[k1]t

√√√√√− [k1 + kg1]2
t − [k1]2

t

1 −
(

�x2
2

)2
([k1 + kg1]2

t − [k1]2
t )

sin

[
k1�x1

(
i′1 + 1

2

)]]

= − q

π�x1

[ −k̂1,r∫
− π

dk̂1
Ŝ1(k̂1 + π)

sin k̂1
κ

√√√√√√ κ2
(

sin2 k̂1+π
κ − sin2 k̂1

κ

)
1 − r2κ2

(
sin2 k̂1+π

κ − sin2 k̂1
κ

)cos[k̂1(2i′1 + 1)]

2
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+
π
2∫

−k̂1,r

dk̂1
Ŝ1(k̂1 + π)

sin k̂1
κ

√√√√√√−
κ2
(

sin2 k̂1+π
κ − sin2 k̂1

κ

)
1 − r2κ2

(
sin2 k̂1+π

κ − sin2 k̂1
κ

) sin[k̂1(2i′1 + 1)]
]

(C.2)

where staggered grids are used.

Appendix D. The performance of the pseudo spectral analytical time domain (PSATD) solver

In this appendix, we check the associated EM fields of a free-streaming charged particle with the PSATD solver [22,4,23]. 
The PSATD solver updates the Maxwell equations in the k-space as [23]

Ẽ
n+1 = c Ẽ

n + isk̂ × B̃
n − s

k
J̃

n+1/2 + (1 − c)k̂(k̂ · Ẽ
n
) +

( s

k
− �t

)
k̂(k̂ · J̃

n+1/2
)

B̃
n+1 = c B̃

n − isk̂ × Ẽ
n + i

1 − c

k
k̂ × J̃

n+1/2
(D.1)

where c = cos(k�t), s = sin(k�t). Apply the Fourier transform in the time domain, the magnetic fields are

B̃ = 1

w − c

(
−isk̂ × Ẽ + i

1 − c

k
k̂ × J̃

)
(D.2)

where w = exp(−iω�t). Substitute it to the equation of the Ẽ fields, we can get

w2 − 2wc + 1

w − c
Ẽ − (1 + w)(1 − c)

w − c
k̂(k̂ · Ẽ) =

(
s

k

w − 1

w − c
− �t

)
k̂(k̂ · J̃ ) − s

k

w − 1

w − c
J̃ (D.3)

Combined with the Gauss’s law, the fields can be solved as

Ẽ1 =
[
− ik1

k2
+ i(k2

2 + k2
3)

k1k2

sin(k�t)

k�t

1 − cos(ω�t)

cos(ω�t) − cos(k�t)

]
ρ̃

Ẽ2 = −i

[
1 + sin(k�t)

k�t

1 − cos(ω�t)

cos(ω�t) − cos(k�t)

]
k2

k2
ρ̃

Ẽ3 = −i

[
1 + sin(k�t)

k�t

1 − cos(ω�t)

cos(ω�t) − cos(k�t)

]
k3

k2
ρ̃

B̃1 = 0

B̃2 = i
k3

k1k2

sin(ω�t)

�t

1 − cos(k�t)

cos(ω�t) − cos(k�t)
ρ̃

B̃3 = −i
k2

k1k2

sin(ω�t)

�t

1 − cos(k�t)

cos(ω�t) − cos(k�t)
ρ̃ (D.4)

where the particles are assumed to drift along the x1 direction. It can be shown the above expressions reduce to the physical 
ones when �t → 0.

Apply the inverse Fourier transformations and follow the same procedures as before, the E1 field on the grids is

En
1,i1,i2,i3

= − 1

(2π)3

kg/2∫
−kg/2

dk
∑
ν

[
− ik1

k2
+ i(k2

2 + k2
3)

k1k2

sin(k�t)

k�t

1 − cos(βk′
1�t)

cos(βk′
1�t) − cos(k�t)

]

S(k′)ρ̃0(k′)exp [ik1(i1�x1 − βn�t) + ik2i2�x2 + ik3i3�x3] exp(−iβν1kg1n�t) (D.5)

The value of the denominator of the integration function cos[(k1 + ν1kg1)�t] − cos(k�t) when ν1 = 0 and ν1 = 1 are 
shown in Fig. 7. Its pattern is similar to the spectral solver. Thus we expect the numerical fields are also present in the 
PSATD solver.

Appendix E. Customizing stencil coefficients of arbitrary discrete operator [k]1

In this appendix, we will show how the method proposed in reference [20] is generalized to achieving constructing 
arbitrary discrete operator [k1]target. Arbitrary high order (pth order) finite difference operator with respect to x1 has the 
form
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Fig. 7. The value of cos[(k1 + ν1kg1)�t] − cos(k�t) for the PSATD solver. The E1 field from ZIPC simulations. Parameters: �x1 = 1, r ≡ �x2
�x1

= 1, κ ≡ �x1
�t =

4, q = 1.

∂+
x1

f i1,i2 = 1

�x1

M∑
l=1

C p
l ( f i1+l,i2 − f i1−l+1,i2), (E.1)

∂−
x1

f i1,i2 = 1

�x1

M∑
l=1

C p
l ( f i1+l−1,i2 − f i1−l,i2). (E.2)

The corresponding operator in k-space becomes

[k1]p =
M∑

l=1

C p
l

sin[(2l − 1)k1�x1/2]
�x1/2

. (E.3)

For standard high order operator, the number of coefficients M = p/2. Here, in order to fit [k1]p to an arbitrarily given 
[k1]target, we must have M > p/2 to give more freedom. For the simplicity of notations, we normalize [k1]p , [k1]target and 
k1 to kg1 = 2π/�x1 herefrom. In the spirit of the least square approximation, such function should be minimized to obtain 
the stencil coefficients

F =
1/2∫
0

dk1 w(k1)([k1]p − [k1]target)
2, (E.4)

where w(k1) is the weight function. In addition, the discrete operator is subjected to the constraint ∂±
x1

→ ∂x1 + O (�x1
p), 

which can be guaranteed by the matrix equation M�C p = �e1, where �C p ≡ (C p
1 , · · · , C p

M)T , �e1 ≡ (1, 0, · · · , 0) and the matrix 
element Mi j = (2 j − 1)2i−1/(2i − 1)! with i = 1, · · · , p/2 and j = 1, · · · , M . We use Lagrange multipliers to solve the 
constrained least-square minimization problem. The stencil coefficients are determined by minimizing the Lagrangian L ≡
F + �λT (M�C p − �e1), where �λ is the multiplier. It can be shown straightforwardly the following minimization conditions

∂L
∂C p

j

= 0, j = 1, · · · , M and
∂L
∂λi

= 0, i = 1, · · · , p/2 (E.5)

can be reformatted into a matrix equation(
A MT

M 0

)( �C p

�λ
)

=
( �b

�e1

)
(E.6)

where A is an M × M matrix and �b is an M-dimensional vector with the elements

Ai j = 2

π2

1/2∫
dk1 w(k1) sin[(2i − 1)πk1] sin[(2 j − 1)πk1] (E.7)
0
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bi = 2

π

1/2∫
0

dk1 w(k1) sin[(2i − 1)πk1][k1]target (E.8)

With the matrix equation above, the stencil coefficients can be easily obtained. However, because of only finite number 
of coefficients, it is usually impossible to fit the target operator [k1]target uniformly in the whole primary Brillouin zone 
k1 ∈ [0, 1/2]. In this case, we need to set proper weight function w(k1) to relax the requirement. When the grid size is 
properly chosen to resolve the physics of interest then the important physical modes are in the low to moderate regions of 
k space. In such cases we can choose a super-Gaussian weight function that prioritizes fitting the k1-space operator in the 
low to moderate values of k1 over those at high k1

w(k1) = exp

[
− ln 2

(
2k1

wk1

)n]
(E.9)

where wk1 is the full width at half maximum of the weight function.

Appendix F. Integrations in the complex plane

In this appendix, we show how to do the integrations in the complex k2 plane that are required to obtain the axial 
electric field for the different solvers. We first begin with Eq. (16). The integrand can be simplified as A

A−sin2k2
, where A > 0. 

To evaluate the integral we use the closed path shown in Fig. 8 together with the residue theorem.

∮
C

dk2
A

A − sin2k2
=
⎛
⎜⎝ ∫

bottom

+
∫

Cright

+
∫

Ctop

+
∫

Clef t

⎞
⎟⎠dk2

A

A − sin2k2

=
⎛
⎜⎝ ∫

bottom

+
∫

Ctop

⎞
⎟⎠dk2

A

A − sin2k2
(F.1)

where it is straightforward to show the integrations along path Clef t and Cright cancel each other, i.e., the integrand is equal 
for k2,R = kg/2, k2,I and k2,R = −kg/2, k2,I . The integration along the line on the top is

|
∫

Ctop

dk2
A

A − sin2k2
| = |

π/2∫
−π/2

dk2,R
A

A + exp(2k2,I )exp(−2ik2,R )−2+exp(−2k2,I )exp(2ik2,R )

4

|

≤
π/2∫

−π/2

dk2,R
A

|A + exp(2k2,I )exp(−2ik2,R )−2+exp(−2k2,I )exp(2ik2,R )

4 |

≤
π/2∫

−π/2

dk2,R
A

| exp(2k2,I )exp(−2ik2,R )+exp(−2k2,I )exp(2ik2,R )

4 | − |A − 1
2 |

(F.2)

We can see this contribution is zero because along this path the integrand vanishes for all k2,R because k2,I → +∞.
From causality, when ω > 0 which is equivalent to k1 > 0 here, there are two poles close to the Re(k2) axis: one is at 

k2 = sin−1
√

A + iε and the other is at k2 = −sin−1
√

A − iε; when ω < 0 (k1 < 0), there are two poles close to the Re(k2)

axis: one is at k2 = sin−1
√

A − iε and the other is at k2 = −sin−1
√

A + iε , where ε → 0 from the positive side.
We calculate the integration when k1 > 0 first. Using the residue theorem, we get∮

C

dk2
A

A − sin2k2
= 2π iRes

(
A

A − sin2k2
, sin−1

√
A

)

= 2π i
A

−2
√

A
√

1 − A

= −iπ

√
A

1 − A2
(F.3)

thus we know
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Fig. 8. The integration path and the locations of the poles when k1 > 0 and k1 < 0.

π/2∫
−π/2

dk2
A

A − sin2k2
= −iπ

√
A

1 − A2
(F.4)

Similarly, the integration when k1 < 0 can be obtained as

π/2∫
−π/2

dk2
A

A − sin2k2
= iπ

√
A

1 − A2
(F.5)

The integration of Eq. (C.1) can be obtained similarly.
Next we show how to do the integrations in Eq. (B.1).

∮
C

dk2
A

A − k2
2

=
⎛
⎜⎝ ∫

bottom

+
∫

Cright

+
∫

Ctop

+
∫

Clef t

⎞
⎟⎠dk2

A

A − k2
2

(F.6)

Again it can be shown the integration along the top line is zero where k2I → ∞,

limk2,I →+∞|
∫

Ctop

dk2
A

A − k2
2

| ≤ limk2,I →+∞
∫

Ctop

dk2
A

|A − k2
2|

≤ limk2,I →+∞
∫

Ctop

dk2
A

|k2
2| − A

= 0 (F.7)

The integrations along the two side lines do not cancel. Along the left side, the integration is

∫
Clef t

dk2
A

A − k2
2

= −
+∞∫
0

dk2,I i
A

A − (−π/2 + ik2,I )2

= −i
√

Atan−1
(

2k2,I + π i

2
√

A

)∣∣∣∣
+∞

0

= −i
√

A

(
π

2
− itanh−1 π

2
√

A

)
(F.8)

The integration along the right line is

∫
C

dk2
A

A − k2
2

=
+∞∫
0

dk2,I i
A

A − (π/2 + ik2,I )2
right
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= i
√

Atan−1
(

2k2,I − π i

2
√

A

)∣∣∣∣
+∞

0

= i
√

A

(
π

2
+ itanh−1 π

2
√

A

)
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thus ⎛
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Using the residue theorem,∮
C

dk2
A

A − k2
2

= 2π iRes

(
A

A − k2
2

,
√

A

)

= 2π i
A

−2
√

A
= −π i

√
A (F.11)

Therefore,

π/2∫
−π/2

dk2
A

A − k2
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√
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√

Atanh−1 π

2
√

A
(F.12)
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