
PERSISTENCE FOR A TWO STAGE

REACTION-DIFFUSION SYSTEM

ROBERT STEPHEN CANTRELL1, CHRIS COSNER1 AND SALOMÉ MARTÍNEZ2
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Abstract. In this article we study how the rates of diffusion in a
reaction-diffusion model for a stage structured population in a hetero-
geneous environment affect the model’s predictions of persistence or ex-
tinction for the population. In the case of a population without stage
structure, faster diffusion is typically detrimental. In contrast to that
we find that in a stage structured population it can be either detrimen-
tal or helpful. If the locations regions where adults can reproduce are
the same as those where juveniles can mature, typically slower diffusion
will be favored, but if those regions are separated then faster diffusion
may be favored. Our analysis consists primarily of estimates of principal
eigenvalues of the linearized system around (0, 0) and results on their
asymptotic behavior for large or small diffusion rates. The model we
study is not in general a cooperative system, but if adults only compete
with other adults and juveniles with other juveniles then it is. In that
case, the general theory of cooperative systems implies that when the
model predicts persistence it has a unique positive equilibrium. We de-
rive some results on the asymptotic behavior of the positive equilibrium
for small diffusion and for large adult reproductive rates in that case.

1. Introduction

The question of how dispersal interacts with spatial heterogeneity to in-
fluence population dynamics and species interactions has been studied ex-
tensively in recent years, specifically from the viewpoint of reaction-diffusion
systems and related models; see for example [6, 11, 18] and the references
cited therein. Most work on that topic assumes that each population is
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structured only by space and has only one mode of dispersal. However, pop-
ulations are often structured by age, stage, or other attributes, and there
may be variation among individuals in their dispersal rates or patterns. Here
we will examine how the presence of stage structure influences how diffusion
rates influence population dynamics in a class of reaction-diffusion models
for a population with two stages. In the case of a population with logistic
growth, without age or stage structure, diffusing in a closed bounded spa-
tially heterogeneous environment that is constant in time, it is well known
that reaction-diffusion models predict that slower diffusion rates are advan-
tageous relative to faster diffusion; see [13, 17]. The results in [17] also hold
for patch models. More broadly, a wide class of models arising in popula-
tion genetics, population dynamics, and related areas display some version
of the reduction principle, which says that dispersal which causes faster mix-
ing typically reduces the rate of population growth; see [1]. However, the
situation seems to be quite different in the case of stage structured popu-
lations. In [15], the authors considered a discrete-time patch model for a
structured population and found that in some cases there was no selection
against faster dispersal. The goal of the present paper is to use a spatially
explicit reaction-diffusion model to understand how the spatial distributions
of habitats that are favorable for reproduction by adults and those that are
favorable for survival and growth by juveniles affect whether faster diffusion
is advantageous or harmful for a stage structured population. We will see
that the answer depends on the details of the spatial distribution of favor-
able and unfavorable habitats.

The type of reaction-diffusion model we will study is
(1.1)8
>>>>>>><
>>>>>>>:

@u

@t
= d1∆u+ r(x)v � s(x)u� a(x)u� b(x)u2 � c(x)uv in Ω, t > 0,

@v

@t
= d2∆v + s(x)u� e(x)v � f(x)v2 � g(x)uv in Ω, t > 0,

ru · ⌫ = rv · ⌫ = 0 on @Ω, t > 0.

where Ω is a bounded domain in R
N and ⌫ is the outward unit normal to

@Ω, so that the system has Neumann boundary conditions, which are the
no-flux boundary conditions for simple diffusion. In this system u and v rep-
resent the population densities of juveniles and individuals that have reached
reproductive age, i.e. adults, respectively, of the same species. Thus, the
term s(x) represent the rate at which juveniles mature into adults, which is
determined by the fraction of individuals that reach reproductive age and
the rate at which they mature, while r(x) accounts for the local fecundity
of adults so that r(x)v(x) describes that rate at which new juveniles are
produced by an adult population with density v at location x. The terms
a(x), b(x), c(x), e(x), f(x), and g(x) account for per-capita death rates and
saturation factors due to logistic self-limitation. The diffusion coefficients
d1 and d2 account for the the dispersal rates of juveniles and adults respec-
tively. The coefficients are all assumed to be nonnegative and continuous in
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Ω. This is the type of model for a stage structured population introduced
in [3]. Related models with a different interpretation are discussed in [8, 9]
and in the references in those papers. The model (1.1) is not an explic-
itly age structured model. It assumes that individuals in the juvenile stage
mature at some spatially dependent rate but does not track the age of indi-
viduals within each stage. Explicitly age structured models are considered
in [16, 22, 24]. A different way of modeling an age structured population,
based on delayed reaction diffusion equations equations, is developed in [30].
Our focus here is on how spatial heterogeneity, dispersal, and stage structure
interact, so we have chosen to use the simplest possible formulation of stage
structure. In the case where c = g = 0 the system is cooperative and the
methods and results of [25, 27] would apply to it. The linearization of (1.1)
around (0, 0) is cooperative, so the results of [25] apply to it; in particular,
with a few technical assumptions they imply it has a principal eigenvalue.

The main questions we will address in this work are related to under-
standing the roles of the different functions and coefficients in (1.1) in the
persistence of the species. For the remainder of the paper we will focus
primarily on understanding how the principal eigenvalue of the linearization
of (1.1) around (0, 0) depends on the coefficients and what that dependence
means biologically. We will see that whether faster diffusion is harmful or
helpful for the persistence of the population depends on the details of the
distribution of habitats that are favorable for adult reproduction and those
that are favorable for juvenile survival and maturation. In some cases slower
diffusion is still an advantage, but sometimes faster diffusion turns out to be
helpful, and sufficiently fast diffusion may even be necessary for persistence.
The spatial distribution of habitats favorable to adult reproduction (r(x)
large) relative to those favorable to juvenile development (s(x) large) turns
out to be important in some cases. Our analysis here is similar in spirit to
the sorts of results obtained for diffusive Lotka-Volterra competition models
in [5, 14, 18, 20]. In particular, we will examine the behavior of the system
for small, large, and general diffusion rates. Related results for some epi-
demiological models are derived in [10, 26].

The linearization of (1.1) around (0, 0) has a principal eigenvalue whose
sign determines whether the model predicts persistence or extinction. Since
the sign of the principal eigenvalue of the linearization of (1.1) around (0, 0)
determines the fate (1.1) predicts for the population it describes, we will
study in detail the following problem:

(1.2)

8
<
:

d1∆'+ r(x) � (s(x) + a(x))' = �' in Ω,
d2∆ + s(x)'� e(x) = � in Ω,

r' · ⌫ = r · ⌫ = 0 on @Ω.

2. Basic properties

In this section we discuss some basic properties of (1.1). From now on we
assume that r, s, a, b, c, e, f, g 2 Cα(Ω̄), @Ω is of class C2,α, and the following
hypotheses:

(H1) r(x), s(x) � 0 in Ω, with r(xr) 6= 0, s(xs) 6= 0 for some xr, xs 2 Ω.
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(H2) a(x), c(x), e(x), g(x) � 0 in Ω.
(H3) b(x) > 0, f(x) > 0 in Ω.

This model (1.1) has many mathematical features in common with the
models discussed in [8, 9] for populations where individuals can switch be-
tween two different movement modes. A key feature is that the linear part of
(1.1) is cooperative, so it will have a principal eigenvalue which determines
the stability of the equilibrium (0, 0) and hence the persistence or extinction
of the population. Another key feature of (1.1) is that the nonlinearity is
subhomogeneous. The maximum principle and existence of principal eigen-
values for cooperative linear systems such as the linear part of the right side
of (1.1) are derived in [25]. The general theory for systems such as (1.1) is
developed in [27] for the fully cooperative case (where c = g = 0, so that
adults only compete with other adults and juveniles with other juveniles)
and in the general case in [3, 8, 9, 19]. As expected, the sign of the principal
eigenvalue of the linearization of (1.1) around (0, 0) gives us the relevant
information to study the persistence of the species. If it is positive, the
population will persist. If it is nonpositive the population will go extinct.
In the case where the coefficients of c and g in (1.1) are zero so that the
system is cooperative, the results and methods of [27] imply that if the prin-
cipal eigenvalue of the linear part is positive then the system has a unique
globally attractive equilibrium. If those coefficients are small the methods
of [8, 9] can be applied to show that (1.1) is asymptotically cooperative,
and still has a unique globally attractive positive equilibrium. Combining
results that are given in [3, 8, 9, 25, 27] or that follow directly by the same
arguments used in those papers, we have the following:

Lemma 2.1. The eigenvalue problem (1.2) has a unique principal eigen-
value �1 that is characterized by having a positive eigenvector (', ).

Lemma 2.2. If �1 > 0 then the system (1.1) is persistent and has at least
one positive equilibrium. If �1  0 then (0, 0) is globally asymptotically
stable in (1.1).

Lemma 2.3. If �1 > 0 and c and g are sufficiently small then the system
(1.1) has a unique globally attracting positive equilibrium.

Remark: In the case that c = g = 0 the system (1.1) is cooperative and
hence generates a monotone semi-flow on appropriate spaces.

3. The case of d1, d2 small.

Following the approach in [23] we will establish the asymptotic behavior
of the principal eigenvalue of (1.2) when d1, d2 are small, and in the fully
cooperative case where c ⌘ g ⌘ 0 the profile of the nonnegative solutions of
the corresponding steady state system for (1.1)

(3.3)

8
<
:

d1∆u+ r(x)v � s(x)u� a(x)u� b(x)u2 = 0 in Ω,
d2∆v + s(x)u� e(x)v � f(x)v2 = 0 in Ω,
ru · ⌫ = rv · ⌫ = 0 on @Ω,
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as well. Related results are derived in [27]. We observe that the associated
kinetic system, which corresponds to (1.1), is given by
(3.4)⇢

ut = r(x)V (x)� s(x)U(x)� a(x)U(x)� b(x)U2(x)� c(x)U(x)V (x) = 0,
vt = s(x)U(x)� e(x)V (x)� f(x)V 2(x)� g(x)U(x)V (x) = 0,

for each x 2 Ω.
For each x this system shares the same properties as (1.1) given in Lemmas

2.1, 2.2, and 2.3, which we state for convenience.

Lemma 3.1. Set x 2 Ω. The linearization around (0,0) of (3.4) has a
principal eigenvalue �1(x). Moreover:

i) If �1(x)  0 then all the solutions with nonnegative initial condition
of (3.4) converge to (0,0) when t ! 1.

ii) If �1(x) > 0 then (3.4) is persistent and has at least one positive
equilibrium.

iii) If c ⌘ g ⌘ 0 and �1(x) > 0 then (3.4) is cooperative and admits a
unique positive equilibrium which is the global attractor for all non-
negative, non trivial solutions.

Observe that when d1 = d2 = 0 the eigenvalues of the linearization around
(0,0) of (3.4) are the roots of det(A(x)� �I), with

(3.5) A(x) =


�(s(x) + a(x)) r(x)

s(x) �e(x)

�

By a simple computation, we obtain that the maximum eigenvalue is given
by
(3.6)

Λ(x) =
1

2

h
�(s(x) + a(x) + e(x)) +

p
(s(x) + a(x)� e(x))2 + 4r(x)s(x)

i
,

which is positive provided that (s(x) + a(x))e(x) � r(x)s(x) < 0. Our first
result, which is a direct application of Theorem 1.4 of [23], It states that
this is indeed the necessary and sufficient condition to have a positive prin-
cipal eigenvalue when d1 and d2 are small. (That theorem is stated in the
Appendix to this paper.)

Proposition 3.2. The principal eigenvalue �1 of (1.2) satisfies

(3.7) �1 ! max
x2Ω

Λ(x) as d1, d2 ! 0.

Thus, there exists a � > 0 such that if

(3.8) min
x2Ω

((s(x) + a(x))e(x)� r(x)s(x)) < 0,

the principal eigenvalue of (1.2) is positive for all 0 < d1, d2 < �, while if

(3.9) min
x2Ω

((s(x) + a(x))e(x)� r(x)s(x)) > 0,

the principal eigenvalue is negative.

As a consequence of this result, if (3.9) holds, the unique nonnegative
equilibrium of the system (3.3) is (0, 0), and that equilibrium is globally
attracting, whenever d1, d2 are small, while if (3.8) holds system (3.3) is
persistent, and has a positive equilibrium for d1, d2 small. If (3.8) holds and
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c ⌘ g ⌘ 0 there is a unique globally attracting positive equilibrium which
we denote by (ud, vd) with d = (d1, d2).

Throughout the remainder of this section we will assume that c ⌘ g ⌘ 0 in
Ω, in which case the system (1.1) is cooperative.

The next result establishes the convergence of (ud, vd) to the unique non-
negative steady state (U(x), V (x)) of the kinetic system, which satisfies:

(3.10)
(U(x), V (x)) is positive where (s(x) + a(x))e(x)� r(x)s(x) < 0,
(U(x), V (x)) = 0 where (s(x) + a(x))e(x)� r(x)s(x) � 0.

Theorem 3.3. Suppose that (3.8) holds. Set

Ω0 = {x 2 Ω / (s(x) + a(x))e(x)� r(x)s(x) < 0}.

Then (ud, vd) ! (U, V ) as d ! 0 locally uniformly in Ω0 [ Ω \ Ω̄0.

To prove this theorem we follow the proof of Theorem 1.5 of [23]., specif-
ically their Proposition 5.2 (Theorem 1.5 of [23] and its hypotheses, which
are listed in [23] as (A1)-(A4), are stated in the Appendix.) We should point
out that assumptions (A2) and (A3) of [23] do not hold in our case, so we
cannot apply that result directly. The difference is that we allow situations
where the kinetic system (3.4) has a positive equilibrium for some values of
x 2 Ω̄ but not for others, whereas condition (A2) requires a positive equilib-
rium for the kinetic system for all x. For that reason we need to construct a
version of the arguments in [23] that is local in x. Condition (A3) in [23] is
used only to prove the existence of a nontrivial subsolution for a system cor-
responding to (3.3) which is independent of d1, d2. We show the existence
of the analogous local subsolutions we need in our case in the next lemma.

Lemma 3.4. Suppose that x̃ 2 Ω0 . Then there exists d0 > 0, ⇢0 > 0 and
a function w0 > 0 in B(x̃, ⇢) ⇢ Ω0 which is a subsolution of (3.3) for all
0 < d1, d2 < d0.

Proof. Let p = (p1, p2) a positive eigenvector of A(x̃) with p1 + p2 = 1,
associated to its principal eigenvalue �̃ > 0. Set " > 0 small. We can choose
⇢ > 0 such that B(x̃, ⇢) ⇢ Ω0 and

(3.11)
|a(x)� ã| < ", |r(x)� r̃| < ",

|s(x)� s̃| < " and |e(x)� ẽ| < " for all x in B(x̃, ⇢),

where ã = a(x̃), r̃ = r(x̃), s̃ = s(x̃) and ẽ = e(x̃). Set ⌘ > 0 as the principal
eigenfunction associated to � > 0, the principal eigenvalue of

(3.12) ∆⌘ + �⌘ = 0 in B(x̃, ⇢), ⌘ = 0 on @B(x̃, ⇢),

with maxB(x̃,ρ) ⌘ = 1. We claim that we can choose �, ", ⇢, d0 > 0 such
that �⌘p is a subsolution of (3.3) for all d1, d2 < d0. For simplicity and
to keep the notation consistent with that in [23], we define F (x, u, v) =
(F1(x, u, v), F2(x, u, v)), with

(3.13) F1(x, u, v) = rv� su�au� bu2 and F2(x, u, v) = su� ev� fv2 = 0,
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where we have omitted the variable x in a, b, e, r, s, f to shorten the
expressions. Observe that

F1(x, �⌘p) = �⌘(�̃p1 + (r � r̃)p2 � (s� s̃)p1 � (a� ã)p1 � b�p21⌘)
F2(x, �⌘p) = �⌘(�̃p2 + (s� s̃)p1 � (e� ẽ)p2 � f�p22⌘),

and using (3.11), we obtain that if we choose " > 0 and � small, we have
that

(3.14)

F1(x, �⌘p) � �⌘(�̃p1 � "p2 � 2"p1 � b�p21⌘) > �⌘
�̃

2
p1

F2(x, �⌘p) � �⌘(�̃p2 � "p1 � "p2 � f�p22) > �⌘
�̃

2
p2,

Therefore, replacing these inequalities in (3.3) we obtain

d1�p1∆⌘ + F1(x, �⌘p) � �⌘

✓
�d1p1�+

�̃

2
p1

◆

d2�p2∆⌘ + F2(x, �⌘p) � �⌘

✓
�d2p2�+

�̃

2
p2

◆
,

hence, if we set d0 =
σ̃
2λ we obtain the desired result. ⇤

Using this lemma we can follow the proof of Proposition 5.2 in [23]. To
facilitate our exposition, we will use the same notation. Set the operators
D = diag (d1, d2), L = diag (∆,∆). Regarding the hypothesis of Proposition
5.2, we can easily check that (1.1) and F satisfy the hypothesis (A1) and
(A4) in [23]. Regarding (A2), the kinetic dynamics are as stated except
that the equilibrium might be 0 as stated in (3.10), but this is enough for
the result to hold. To prove Theorem 3.3 we will state the needed lemmas,
discussing their relationships with the lemmas in [23] leading to the proof
of Proposition 5.2.

Suppose that (3.8) holds, setting w0 = ⌘�p as in (3.4), and w0 = M
where M > 0 are given in (A4) so that F1(x, u, v)  �cu, F2(x, u, v)  �cv
for all 0  u, v  M and x 2 Ω, with c > 0 fixed. Set K > 0 so that
K + @uF1(x, u, v) > 0 and K + @vF2(x, u, v) > 0 for all 0  u, v  M , and
we define z = wk as the unique solution of

⇢
�DLz +Kz = Ku+ F (x, u) in Ω,
rz · ⌫ = 0 on @Ω,

for u = wk�1.

Lemma 3.5. Suppose that (3.8) holds. For every k we have w0 < wk+1 <
wk, and as k ! 1, wk converges uniformly to the unique positive solution
w of (3.3), which satisfies w0 < w < wk in Ω for all k � 0.

Proof. We will prove that w0 < wk by induction. Suppose this is true for
k. Observe that w0 < w0 by construction. In the set B(x̃, ⇢) ⇢ Ω0 as in
Lemma 3.4 wk+1 satisfies

�DL(wk+1 � w0) +K(wk+1 � w0) = K(wk � w0) + F (x,wk)� F (w0),
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in B(x̃, ⇢). By the induction hypothesis w0 < wk, whence Kwk+F (x,wk) >
0, hence by the strong maximum principle applied to each component, we
have that wk+1 > 0 in Ω̄. Thus we have⇢

�DL(wk+1 � w0) +K(wk+1 � w0) > 0 in B(x̃, ⇢),
wk+1 � w0 > 0 in @B(x̃, ⇢),

so that we have that wk+1 �w0 > 0 in B(x̃, ⇢). The remainder of the proof
is a standard monotone iteration argument, just as in the proof of Lemma
5.3 of [23]. We observe that
⇢

�DL(w1 � w0) +K(w1 � w0) = Kw0 + F (x,w0)�Kw0 < 0 in Ω,
r[w1 � w0] · ⌫ = 0 on @Ω,

so by the strong maximum principle we have w1 < w0.

Similarly, if wk < wk�1 then

8
<
:

�DL(wk+1 � wk) +K(wk+1 � wk) =
Kwk + F (x,wk)�Kwk�1 � F (x,wk�1) < 0 in Ω,
r[wk+1 � wk] · ⌫ = 0 on @Ω,

By induction, the sequence {{wk}} is decreasing , and it is bounded below by
max{0, w0(x)}, so by standard elliptic theory it converges to a nonnegative
nontrivial solution of (3.3). Since by Lemma 2.3 the nontrivial nonnegative
solution of (3.3) is unique, it coincides with the one constructed as the limit
of the sequence {{wk}}.

⇤

Define W
0
= w0 and W

k+1
= W

k
+ F (x,W

k
) in Ω. Following the proof

of Lemmas 5.6 and 5.7 in [23] we can prove the following result.

Lemma 3.6. Suppose that (3.8) holds. For every k we have

w0 < W
k+1

< W
k
,

W
k
converges uniformly to W1, a nonnegative equilibrium of the kinetic

system (3.4), as k ! 1, and w0  W1 < W
k
in Ω for all k � 0.

Observe that by (3.10) we have that

W1(x) = 0 where (s(x) + a(x))e(x)� r(x)s(x) � 0,

and W1(x) = (U(x), V (x)) the kinetic equilibrium which is positive in
B(x̃, ⇢).

Lemma 3.7. For each k, as d1, d2 ! 0 we have that wk converges to W
k

uniformly in Ω̄.

The proof of this result is the same as the one of Lemma 5.5 in [23].

Proof. (Theorem 3.3). Observe that as a consequence of Lemma (3.7) the
unique positive solution w of (3.3) converges to W1 as d1, d2 ! 1 and W1
is positive in B(x̃, ⇢). Since the point x̃ is arbitrary in the region where
(s(x) + a(x))e(x)� r(x)s(x) < 0 we obtain the desired result. ⇤
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4. The case of d1 and d2 large

We will start by giving a proof of a result that is well known as a “folk
theorem.” It is stated in slightly more generality than is needed for the
specific application. For i = 1, . . . , N , let Li denote the operator

(4.15) Liu = r · µi(x)[ru� ur↵i(x)] for x 2 Ω

with no-flux boundary conditions

(4.16) [ru� ur↵i] · ⌫ = 0 for x 2 @Ω.

Assume that µi(x) � µ0 > 0 on Ω̄ for all i. Let A = (aij(x)) be an N ⇥N
irreducible matrix with aij � 0 if i 6= j. Consider the eigenvalue problem

(4.17) diL
i'i +

NX

j=1

aij'j = �'j , i = 1 . . . N

where di > 0 for all i and 'i satisfies the boundary condotion (4.16) for
each i. Note that if we let Φi = exp(�↵i(x))'i then Φi satisfies Neumann
boundary conditions so that the system (4.17) rewritten in terms of the vari-
ables Φi is still cooperative. Because of the classical boundary conditions
the usual results on elliptic regularity and on maximum principles for coop-
erative systems from [25, 23] can be applied to the system for the Φi’s, so
that system and hence (4.17) will have a principal eigenvalue under suitable
conditions on the domain Ω and the coefficients. This idea has been used
in models for single populations without age structure or competing pairs
of such populations; see for for example [7, 11].

Furthermore, we have Li(exp(↵i(x)) = 0 so that the principal eigenvalue
of Li is zero and the eigenfunction is a multiple of exp(↵i). Let A be the
matrix defined by

(4.18) Aij :=

Z

Ω

aijexp(↵i)dx
Z

Ω

exp(↵i)dx

.

Denote the principal eigenvalue of (4.17) as �1(~d) where ~d = (d1, . . . , dN ).
Denote the principal eigenvalue of A as Λ.

Lemma 4.1. Suppose that for some � 2 (0, 1) the coefficients of (4.17)
satisfy ↵ 2 C2,γ(Ω), µ 2 C1,γ(Ω),

and aij 2 Cγ(Ω) for i, j = 1 . . . N , and that @Ω is of class C2,γ. Suppose

further that A is irreducible. If min{di : i = 1, . . . N} ! 1 then �1(~d) ! Λ.

Proof. Choose any sequence ~dn = (d1n, . . . dNn) such that min{din : i =

1, . . . N} ! 1. Choose any subsequence, then renumber it as ~dn. Let �n be

the principal eigenvalue of (4.17) corresponding to ~dn and let 'in(x) > 0 be
the ith component of the eigenvector, where the eigenvector is normalized
by max{'in(x) : x 2 Ω, i = 1, . . . , N} = 1. Integrating the ith equation of
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(4.17) over Ω and summing over i yields

�n

Z

Ω

NX

i=1

'in(x)dx =

Z

Ω

NX

i,j=1

aij(x)'jn(x)dx  A1

Z

Ω

NX

i=1

'in(x)dx

where A1 is a constant depending only on A. It follows that �n is uni-
formly bounded from above. Similarly, �n is uniformly bounded from be-
low. Thus, any subsequence of �n itself has a convergent subsequence. It
then follows from dividing the ith equation of (4.17) by din that Li'in is
uniformly bounded, and Li'in ! 0 as n ! 1. By elliptic regularity the
sequence 'in is uniformly bounded in W 2,p(Ω) for any p < 1, then by
Sobolev embedding it has a subsequence that is convergent in C1(Ω) and
weakly convergent in W 2,p(Ω). This will be true for any i. Taking a fur-
ther subsequence if necessary and renumbering again, we obtain a sequence
where �n ! �⇤ for some �⇤ and 'in ! '⇤

i for all i, with Li'
⇤
i = 0. We

then must have '⇤
i = ciexp(↵i) for some nonnegative constant ci, and with

max{'⇤
i (x) : x 2 Ω, i = 1 . . . N} = 1. Integrating (4.17) over Ω and using

the no-flux boundary conditions gives

(4.19)
NX

j=1

Z

Ω

aij(x)'
⇤
j (x)dx

�
= �⇤

Z

Ω

'⇤
i , i = 1 . . . N,

so that

(4.20)

NX

j=1

2
664

Z

Ω

aij(x)exp(↵j(x))dx
Z

Ω

exp(↵i(x))dx

3
775 cj = �⇤ci, i = 1 . . . N.

It follows that (c1, . . . , cN ) must be a nontrivial nonnegative eigenvector of
A with the normalization prescribed by max{ciexp(↵i(x)) : x 2 Ω, i =
1, . . . N} = 1. These last conditions uniquely determine the limits of the
subsequence of the original subsequence {�(dn), ~'n}. Since every subse-
quence of the original sequence {�(dn), ~'n} has a subsequence converging
to the values determined by (4.20), the same must be true for the original

sequence. Since the original sequence of values { ~dn} could be any increasing
sequence that approaches infinity as n ! 1, the conclusion of the lemma
follows.

⇤

In the specific system (1.1) that we consider, Li = ∆, so that ↵i and
µi are constants. In that case we have Aij = aij , where aij is the average
of aij over Ω. Denote the averages of the coefficients in (1.1) by r̄, s̄, etc.
Calculations analogous to those in (3.5),(3.6) and the related discussion then
yield the following:

Corollary 4.2. Suppose that the hypotheses of Lemma 4.1 are satisfied.
There exists a D > 0 such that if

ē(s̄+ ā)� r̄s̄ < 0,

the principal eigenvalue �1 of(1.2)is positive for all d1, d2 > D , while if

ē(s̄+ ā)� r̄s̄ > 0,
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the principal eigenvalue is nonpositive.

Remark: In the ODE system corresponding to (1.1) with coefficients aver-
aged over Ω, one can compute R0 as r̄s̄/[ē(s̄ + ā)] via the methods of [29].
The first inequality in Corollary 4.2 is equivalent to R0 > 1 while the second
is equivalent to R0 < 1. By writing R0 = [r̄/(s̄ + ā)][s̄/ē] we can interpret
the condition for persistence as a saying that that products of the ratios
of the growth terms over the loss terms for adults and juveniles should be
greater than 1 for persistence.

5. General diffusion rates

Case1: Persistence or extinction for all diffusion rates

Proposition 5.1. If

(5.21)

Z

Ω

p
rs dx� 1

2

Z

Ω

(s+ a+ e)dx > 0

then �1 > 0 for all positive diffusion rates.

If

(5.22) minx2Ω[4(s(x) + a(x))e(x)� (r(x) + s(x))2] > 0

then �1 < 0 for all positive diffusion rates.

Proof. If we divide the first equation in (1.2) by ' and integrate over Ω,
using Green’s formula to integrate the term ∆'/', we obtain the inequality

(5.23) |Ω|�1 �
Z

Ω

r

✓
 

'

◆
dx�

Z

Ω

(s+ a)dx.

Similarly, if we divide the second equation by  and integrate we obtain

(5.24) |Ω|�1 �
Z

Ω

s

✓
'

 

◆
dx�

Z

Ω

e dx.

If we add (5.23) and (5.24) and divide by 2 we obtain

(5.25) �1 �
1

2|Ω|

✓Z

Ω


r

✓
 

'

◆
+ s

✓
'

 

◆�
dx�

Z

Ω

(s+ a+ e)dx

◆
.

By Cauchy’s inequality, rz + sz�1 � 2
p
rs for all z > 0, so from (5.25) we

obtain

(5.26) �1 �
1

|Ω|

Z

Ω

p
rs dx� 1

2

Z

Ω

(s+ a+ e)dx

�

so �1 > 0 if (5.21) holds, so the first part of Proposition 5.1 holds. Going in
the other direction, if we multiply the first equation of (1.2) by ' and inte-
grate, using integration by parts on the '∆' term, and similarly multiply
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the second equation by  and integrate, then add the results, we get

(5.27) �1

Z

Ω

('2 +  2)dx 
Z

Ω

[�(s+ a)'2 + (r + s)' � e 2)dx].

The integrand on the right side of (5.27) is a quadratic form in ' and  ,
which will be negative definite if

(5.28) 4(s+ a)e > (r + s)2,

so �1 < 0 if (5.22) holds, which proves the second part of Proposition 5.1. ⇤

Remarks: Note that the first integral in (5.21) is what appears in the
formula for the Bhattacharyya coefficient [2, 12], which is used to compare
how well probability distributions match each other. Specifically, if two
probability distributions P and Q have probability density functions p(x)
and q(x) for x 2 U ⇢ R

n, the Bhattacharyya coefficient is

BC(P,Q) =

Z

U

p
p(x)q(x)dx.

For any P and Q, 0  BC(P,Q)  1. If BC(P,Q) = 1 then P and Q are
the same, that is, p = q a.e. If BC(P,Q) = 0 then the supports of p and q
are disjoint. If we write r(x) = r0⇢(x) and s(x) = s0�(x) so that

R
Ω
⇢(x) =R

Ω
�(x) = 1, then we can compute r0 = r̄|Ω| and s0 = s̄|Ω|. We can treat ⇢

and � as if they were probability density functions for distributions R and
S. We then have

(5.29)

Z

Ω

p
rsdx = |Ω|

p
r̄s̄BC(R,S).

The maximum of BC(R,S) is 1, corresponding to the case where r and s
are multiples of each other, and the minimum is 0, corresponding to the case
where the supports of r and s are disjoint. Thus, the degree to which ⇢ and
� match each other has a strong impact on the estimate for � in (5.26).

Using (5.29) and the fact that BC(R,S)  1 in (5.21) shows that (5.21)
implies 2

p
r̄s̄ > [(s̄ + ā) + ē]. Squaring both sides and using Cauchy’s in-

equality implies ē(s̄ + ā) � r̄s̄ < 0 as in the first case of Corollary 4.2.

Similarly, if (5.21) holds then 2
p

r(x)s(x) > (s(x) + a(x)) + e(x) for some
x 2 Ω, and it then follows in the same way that the inequality in the first
case of Proposition 3.2 holds. If (5.22) hplds then (5.28) holds, and then
by Cauchy’s inequality the second case of Proposition 3.2 holds. Thus, the
conditions (5.21), (5.22) in Proposition 5.1, which imply �1 > 0 or �1 < 0
for all diffusion rates, also imply some of the corresponding conditions we
have obtained for either large or small diffusion rates.

In the situation where the spatial distributions of habitat quality r for
reproduction by adults and s for survival and maturation of juveniles into
adults are perfectly correlated, so that r(x) = r1s(x) for some constant
r1, the eigenvalue problem (1.2) can be rewritten as a weighted symmetric
eigenvalue problem by multiplying the second equation of (1.2) by r1, which
yields

(5.30)
d1∆'(x)� (s(x) + a(x))'+ r(x) = �'

d2r1∆ + r(x)'� r1e(x) = �r1 .
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The principal eigenvalue for (5.30) has a variational characterization of �1
as
(5.31)

�1 = max
ϕ,ψ2W 1,2(Ω)

Z

Ω

(�d1|r'|2 � d2r1|r |2 � (s+ a)'2 + 2r' � r1e 
2)dx

Z

Ω

('2 + r1 
2)dx

.

It follows in that case that �1 is decreasing in both d1 and d2, so that
slower diffusion is advantageous.

Case 2: Asymptotic behavior for large reproductive rates

Suppose that r(x) = nr0(x) and that s(x)r0(x) > 0 for x 2 Ω0 with
Ω0 6= ;, so there is a region where both the adult reproduction rate and the
juvenile maturation rate are positive. The factor n scales the reproductive
rate of adults in regions where r0(x) > 0. For any fixed diffusion rates it
turns out that for sufficiently large values of the scaling coefficient n the
principal eigenvalue of (1.2) is positive so the system (1.1) is persistent. We
will characterize the asymptotic behavior of the principal eigenvalue as
n ! 1. If we make the further assumption that g ⌘ c ⌘ 0 then the system
(1.1) is cooperative, so for n large enough that the principal eigenvalue
of (1.2) is positive, (1.1) has a unique positive equilibrium, and we will
characterize the behavior of that equilibrium as n ! 1 as well in that case.

Let �n1 denote the principal eigenvalue for (1.2) with r(x) = nr0(x). Ob-
serve that since s(x)r0(x) > 0 for x 2 Ω0 and Ω0 6= ;, Proposition 5.1
implies that �n1 > 0 for n sufficiently large, and in fact by (5.26), �n1 ! 1
as n ! 1. The following proposition states the asymptotic behavior of �n1
as n ! 1.

Proposition 5.2. If r(x) = nr0(x) and s(x)r0(x) > 0 for x 2 Ω0 with
Ω0 6= ;, then

lim
n!1

�n1p
n
! max

x2Ω
(
p

r0(x)s(x)).

Proof. We start by noting that if �n1 , ('n, n) are the principal eigenvalue
and corresponding eigenfunction of (1.2) for r(x) = nr0(x), then �n1/

p
n,

b'n = 'n, b n =
p
n n are the principal eigenvalue and eigenfunction of the

problem

(5.32)

8
>>>><
>>>>:

d1p
n
∆b'� (s(x) + a(x))p

n
b'+ r0(x) b = b�b' in Ω,

d2p
n
∆ b � e(x)p

n
b + s(x)b' = b� b in Ω,

rb' · ⌫ = r b · ⌫ = 0 on @Ω.

Considering the elliptic operators L1u = d1∆u� (s(x)� a(x))u and L2v =

d2∆v � e(x)v, D = diag
⇣

1p
n
, 1p

n

⌘
and L = diag(L1, L2) the system (5.32)
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satisfies the hypothesis of Theorem 1.4 of [23]. Thus as n ! 1
�n1p
n
! max

x2Ω
�(A(x)),

where

A(x) =

✓
0 r0(x)

s(x) 0

◆
,

which has eigenvalues ±
p

r0(x)s(x), from whence the result follows. ⇤

In the case where g ⌘ c ⌘ 0 so that (1.1) is cooperative, Lemma 2.3
implies that (1.1) has a unique positive equilibrium if the principal eigenvalue
of (1.2) is positive. The next result states the asymptotic behavior of the
unique positive equilibrium of (1.1) for n large in that case.

Proposition 5.3. Suppose the hypotheses of Proposition 5.2 are satisfied
and that g ⌘ c ⌘ 0. Let (un, vn) be the unique positive solution of (3.3).

Then n� 2

3 (un, vn) ! (U1, V 1) uniformly in Ω̄ where
(5.33)

U1(x) =
r0(x)

2

3

b(x)
2

3

s(x)
1

3

f(x)
1

3

, V 1(x) =
s(x)

2

3

f(x)
2

3

r0(x)
1

3

b(x)
1

3

when s(x)r0(x) > 0

U1(x) = 0, V 1(x) = 0 when s(x)r0(x) = 0.

Proof. To prove this result we use a different scaling. After some simple
computations we obtain that

(wn, zn) =
⇣
unn

� 2

3 , vnn
� 1

3

⌘
,

is the unique positive solution of the scaled system

(5.34)

8
>><
>>:

n� 2

3 [d1∆w � (s(x) + a(x))w] + r0(x)z � b(x)w2 = 0 in Ω,

n� 1

3 [d2∆z � e(x)z] + s(x)w � f(x)z2 = 0 in Ω,
rw · ⌫ = rz · ⌫ = 0 on @Ω.

We set the operators

L1w = d1∆w � (s(x) + a(x))w and L2z = d2∆z � e(x)z,

D = diag
⇣
n� 2

3 , n� 1

3

⌘
and L = (L1, L2), and

F (x,w, z) = (r0(x)z � b(x)w2, s(x)w � f(x)z2).

To prove the proposition we can follow the same steps as in the proof of
Theorem (3.3). Indeed, the principal eigenvalue of the linearization around

(0, 0) of the associated kinetic system of (5.34) is
p
s(x)r0(x), and when it

is positive, the kinetic equilibrium is given by the right hand side of (5.33).
This concludes the proof.

⇤
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6. Conclusions

The most fundamental conclusion from our analysis is that reaction-
diffusion models for populations with stage structure in spatially heteroge-
neous environments do not necessarily predict that slower diffusion is advan-
tageous for persistence. This is in contrast to the case where populations are
structured only by spatial location, where a version of the reduction princi-
ple [1] applies, and in a competition between otherwise identical populations
with different diffusion rates the prediction is that “the slower diffuser wins”
[13, 17]. The mechanism underlying this observation is that in our struc-
tured model, the regions where it is possible for adults to produce offspring
may be separated from those where juveniles can survive and mature into
adults. The conditions we find that imply persistence generally require that
the product r(x)s(x) of the reproductive rate of adults and the maturation
rate of juveniles be sufficiently large relative to their death rates. For slow
diffusion, the condition for persistence is that r(x)s(x) > e(x)(s(x) + (a(x))
at some point x 2 Ω. For fast diffusion it is r̄s̄ > ē(s̄+ ā) where r̄, s̄, ē and
ā are the spatial averages of those quantities. If the spatial distributions
of r and s are closely correlated and are large in a few places but small in
most, so that the maximum of rs is large but the averages r̄ and s̄ are small,
the condition for persistence with slow diffusion may be satisfied while the
condition with fast diffusion may fail. In that type of environment slow
diffusion is clearly favored. Furthermore, if r and s are perfectly correlated
in the sense that they are multiples of each other, the principal eigenvalue
determining the growth rate of the population at low density is decreasing
with respect to the diffusion rates, as in the case of unstructured populations
in heterogeneous environments. On the other hand, if both r and s are large
on some regions but very small outside of them, and the regions where they
are large are disjoint (that is, separated from each other) then the product
rs could be small everywhere but the averages r̄ and s̄ could be large. In
that case, the condition for persistence with small diffusion may fail but the
condition with fast diffusion may be satisfied, so that fast diffusion is favored.

We found that a sufficient condition for persistence for all diffusion rates
is Z

Ω

p
rs dx� 1

2

Z

Ω

(s+ a+ e)dx > 0.

The first term can be written as
p
r̄s̄|Ω|BC(r(x)/r̄, s(x)/s̄) where BC de-

notes the Bhattacharrya coefficient (see [2, 12]), which measures how closely
probability densities match each other. For distributions that are equal to
each other BC = 1 but for distributions that are mutually exclusive in the
sense that the regions where they are positive do not intersect, BC = 0. This
observation again shows that the degree to which the spatial distributions
of r and s match each other is significant in determining the predictions of
the model (1.1).

Finally, we found that if we scale the adult reproductive rate as r(x) =
nr0(x) and there is some overlap between the distributions of r and s so that
s(x)r0(x) > 0 on some subset of Ω with positive measure, then for any fixed
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diffusion rates the system (1.1) will be persistent if n is sufficiently large.
That means a population with any diffusion rates can persist if there is
even a modest overlap between the regions where adults can reproduce and
where juveniles can mature, provided that the reproductive rate of adults is
sufficiently large. We characterized the asymptotic behavior as n ! 1 of
the principal eigenvalue of (1.2). In the cooperative case where g ⌘ c ⌘ 0
the system (1.1) will have a unique positive equilibrium if it is persistent,
and in that case we also characterized the asymptotic behavior as n ! 1
of the equilibrium.

There are several directions for further research on the general topic of
this paper. It would be of interest to take the approach of [13] and consider
competition between two stage structured populations described by systems
such as (1.1) that differ only in their diffusion rates. That would be some-
what challenging because it would involve systems of four equations, but at
least in the cooperative case where c = g = 0 the general theory of monotone
dynamical systems and some of the ideas and methods of [9] would apply. It
would also be interesting to consider models with explicit age structure, as
introduced in [16] and studied in [22, 24]. Finally, it would be interesting but
challenging to consider the case of time-periodic environments with spatial
heterogeneity. Temporal variation alone is sufficient to cause faster diffusion
to be favored in such environments in some cases (see [21]) but even without
stage structure the time dependent case is challenging and there are many
open questions.
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7. Appendix

In [23] the authors considered the equilibria and dynamics of the system

(7.35)

8
><
>:

@u

@t
= DLu+ F (x, u) in Ω⇥ (0,1),

Bu = 0 on @Ω⇥ (0,1)

where u = (u1, . . . , un)
T is a vector of smooth functions, Ω is a bounded

domain in R
N with smooth boundary, u = (u1(x), . . . un)

T is a vector of
smooth functions, D = diag(d1, . . . dn) is a diagonal matrix of positive con-
stants, L = diag(L1, . . . Ln) is a diagonal matrix of second order uniformly
strongly elliptic operators of the form

Li =
NX

j,k=1

↵i
jk

@2

@xj@xk
+

NX

j=1

�ij
@

@xj
+ �i

with smooth coefficients, , and B = (B1, . . . Bn) where for each i, Bi defines a
Dirichlet, Neumann, or Robin boundary condition. (They include Neumann
as a case of Robin.) They also considered the associated linearized problem,
which they wrote as

(7.36)

8
<
:

DL�+Au� = ��� in Ω,

B� = 0 on @Ω,

where A = ((aij)) iis an n ⇥ n matrix of smooth functions with aij � 0 for
i 6= j and � = (�1(x), . . .�n(x))

T is a vector of smooth functions.

NOTE: In our notation we use the opposite sign convention to the one
used in [23], so that what they denote as ��, we denote as �.
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For details on the specific smoothness assumptions requires see [23]. Un-
der those assumptions, by the Perron-Frobenius theorem, for each x 2 Ω

the matrix A has a principal eigenvalue which in our notation we denote
as Λ(x). The first major result of [23] is their Theorem 1.4, which can be
stated as

Theorem 7.1. (Theorem 1.4 of [23]) The principal eigenvalue �1 of the
system (7.36) with Dirichlet, Neumann,or Robin boundary conditions satis-
fies

lim
max{d1,...,dn}!0

�1 = �max
x2Ω̄

Λ(x).

Except for the adjustments needed for our different notation, that theorem
applies directly to our system in all cases.

The second major result of [23] gives conditions under which the system
(7.35) with small diffusion rates has the same dynamics as the kinetic system

(7.37)
dUi

dt
= Fi(x, U1, . . . , Un) for i = 1, . . . , n.

The conditions can be stated as
(A1) @Fi/@Uj � 0 (i.e. systems (7.35) and (7.37) are cooperative),
(A2) For each x0 2 Ω̄ the system (7.37) has a unique positive equilibrium
↵(x0) which is globally asymptotically stable among positive solutions and
is locally linearly stable, and ↵(x) depends continuously on x,
(A3) There exists �0 > 0 such that for j = 1, . . . , n, Fj(x, U)/Uj > �0 for all
x 2 Ω̄ provided 0 < Ui  �0 for i = 1, . . . , n,
(A4) There exist �00,M > 0 such that for j = 1, . . . , n, Fj(x, U)/Uj < ��00
for all x 2 Ω̄ provided Ui � M for i = 1, . . . , n.

The second main theorem of [23] is their Theorem 1.5, which can be stated
as

Theorem 7.2. (Theorem 1.5 of [23]) Under conditions (A1)-(A4), if
max1in{di} is sufficiently small, (7.35) has a unique positive steady state
w̃ which is globally asymptotically stable among nontrivial nonnegative so-
lutions. Furthermore, w̃(x) ! ↵(x) uniformly on Ω̄ as max1in{di} ! 0,
where ↵(x) is the positive equilibrium of (7.37).


