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Phase transitions are driven by collective fluctuations of a system’s 
constituents that emerge at a critical point1. This mechanism 
has been extensively explored for classical and quantum 
systems in equilibrium, whose critical behaviour is described 
by the general theory of phase transitions. Recently, however, 
fundamentally distinct phase transitions have been discovered for 
out-of-equilibrium quantum systems, which can exhibit critical 
behaviour that defies this description and is not well understood1. 
A paradigmatic example is the many-body localization (MBL) 
transition, which marks the breakdown of thermalization in an 
isolated quantum many-body system as its disorder increases 
beyond a critical value2–11. Characterizing quantum critical 
behaviour in an MBL system requires probing its entanglement over 
space and time4,5,7, which has proved experimentally challenging 
owing to stringent requirements on quantum state preparation 
and system isolation. Here we observe quantum critical behaviour 
at the MBL transition in a disordered Bose–Hubbard system 
and characterize its entanglement via its multi-point quantum 
correlations. We observe the emergence of strong correlations, 
accompanied by the onset of anomalous diffusive transport 
throughout the system, and verify their critical nature by measuring 
their dependence on the system size. The correlations extend to 
high orders in the quantum critical regime and appear to form via 
a sparse network of many-body resonances that spans the entire 
system12,13. Our results connect the macroscopic phenomenology 
of the transition to the system’s microscopic structure of 
quantum correlations, and they provide an essential step towards 
understanding criticality and universality in non-equilibrium 
systems1,7,13.

The MBL transition8–11 represents a type of quantum phase tran-
sition that fundamentally differs from both its classical and quantum 
ground-state counterparts2,3,7. Instead of being characterized by an 
instantaneous thermodynamic signature, it is identified by the system’s 
inherent dynamic behaviour (Fig. 1a). In particular, the MBL transi-
tion manifests itself through a change in entanglement dynamics7,11. 
Recent years have seen tremendous progress in our understanding 
of both the thermal and the MBL phases within the frameworks of 
quantum thermalization6,14,15 and emergent integrability4,5,8–11, 
respectively.

The quantum critical behaviour at this transition, however, has 
remained largely unresolved7. In particular, it is unclear whether the 
traditional association of collective fluctuations with static and dynamic 
critical behaviour can be applied to this transition. The high amount 
of entanglement found at the MBL transition limits numerical studies 
owing to the required computational power16,17. Several theoretical 
approaches, despite using disparate microscopic structures, suggest that 
anomalous transport is the macroscopic behaviour at the quantum crit-
ical point12,18–20. Experimental studies do indeed indicate a slowdown 
of the dynamics at intermediate disorder21,22. However, identifying 
anomalous transport as quantum critical dynamics is experimentally 
challenging, since similar behaviour can also originate from stochastic 
effects such as inhomogeneities in the initial state23 or coupling to a 

classical bath24,25. Additionally, in the case of random disorder, the pres-
ence of rare regions, where potential offsets accidentally coincide for 
consecutive lattice sites, permits several microscopic mechanisms that 
may govern this critical behaviour and therefore makes it challenging to 
distinguish between them26–28. Our experimental protocol overcomes 
these challenges by using a quasi-periodic potential, which is free of 
rare regions, as well as by evolving a pure, homogeneous initial state 
under unitary dynamics. Using this protocol, we observe quantum criti-
cal dynamics via anomalous transport, enhanced quantum fluctuations, 
and system-size-dependent thermalization. In addition, we microscop-
ically resolve and characterize the structure of the entanglement in the 
many-body states through their multi-particle quantum correlations.

Our experiments start with a pure state of up to twelve unentangled 
lattice sites at unity filling (Fig. 1b). We study its out-of-equilibrium 
evolution after a rapid increase of the tunnelling in the bosonic, inter-
acting Aubry–André Hamiltonian:
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where âi
† â( )i  is the creation (annihilation) operator for a boson on site 

i, and n̂i is the corresponding particle number operator (H.c. is the 
Hermitian conjugate). The tunnelling time τ = ħ/J = 4.3(1) ms (with 
the reduced Planck constant ħ) between neighbouring sites and the 
pairwise interaction energy U = 2.87(3)J remain constant for all exper-
iments. The potential energy offset hi = cos(2πβi + φ) on site i follows 
a quasi-periodic distribution of amplitude W, period 1/β ≈ 1.618 lattice 
sites and phase φ. After a variable evolution time, we obtain full count-
ing statistics of the quantum state through a fluorescence imaging tech-
nique. The applied unitary evolution preserves the initial purity of 
99.1(2)% per site, such that all correlations are expected to stem from 
entanglement in the system11,15.

We first characterize the system’s dynamical behaviour by studying 
its transport properties for different disorder strengths. Since the ini-
tial state has exactly one atom per site, the system starts with zero 
density correlations at all length scales. However, during the Hamil
tonian evolution, tunnelling dynamics build up anti-correlated density 
fluctuations between coupled sites of increasing distance (Fig. 2a). 
Motivated by this picture, we quantify the particle dynamics by  
defining the transport distance, Δ ∝ ∑ × +x d G i i d( , )d ic

(2) , as the 
first moment of the disorder-averaged two-point density correlations, 

+ = −+ +G i i d n n n n( , ) ˆ ˆ ˆ ˆi i d i i dc
(2)  (Supplementary Information sec-

tion 7). At low disorder, we observe these anti-correlations to rapidly 
build up and saturate over a timescale of t/τ ≈ L/2. With increasing 
disorder, we observe a slowdown of particle transport that is consistent 
with a power-law growth Δx ∝ tα (Fig. 2b)29. We extract the anomalous 
diffusion exponent α from a subset of the data points that exclude the 
initial transient dynamics in the system τ/ < / ≤L t( 2 100)  (inset to 
Fig. 2b). The exponent α is reduced by successively higher disorder, 
demonstrating the suppression of transport in the MBL regime.
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To identify the anomalous diffusion as a signature of quantum  
critical dynamics, we measure the system-size dependence of two 
observables in the long-time limit (t = 100τ): the on-site number 
fluctuations ≡ =F G d( 0)c

(2)  as a probe of local thermalization, and 
the transport distance Δx as a localization measure (Fig. 2c). At low 
disorder, the fluctuations agree with those predicted by a thermal 
ensemble and particles are completely delocalized for both system 
sizes. This demonstrates that local quantum thermalization occurs 
independently of system size at low disorder and establishes that this 
regime corresponds to the system being in the thermal phase. At 
strong disorder, the physics is governed by the formation of an 
intrinsic length scale, namely the localization length ξ ≈ Δ�x    

(refs 10,11). We observe system-size-independent, sub-thermal fluc-
tuations and measure an intrinsic length scale Δ�x . This indicates 
that the strong disorder regime corresponds to the system being in 
the localized phase. However, at intermediate disorder, we observe 

that our data are consistent with a theoretically predicted system-size 
dependence for both observables. This suggests the absence of an 
intrinsic length scale and the presence of finite-size-limited fluctu-
ations, which identify the critically thermalizing regime 
(Supplementary Information section 4). These measurements of 
system-size-dependent thermalization can be visualized as two hori-
zontal cuts in a finite-size phase diagram. The observed finite-size 
dependence is consistent with the physics associated with a critically 
thermalizing intermediate phase and a shrinking quantum critical 
cone (inset to Fig. 2c)1.

We then investigate the multi-particle correlations in the system to 
probe the presence of enhanced quantum fluctuations in the quan-
tum critical regime. For this study, we employ the n-point connected  
density-correlation functions (Fig. 2d)30–32:

= −G x G x G x( ) ( ) ( )n n n
c
( )

tot
( )
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( )

which act on lattice sites with positions x = (x1,..., xn). The discon-
nected part of this function, G n

dis
( ), is fully determined by all lower- 

order correlation functions, and therefore does not contain new 
information at order n. By removing it from the total measured cor-
relation function, ⟨ ⟩= ∏ =G x n x( ) ˆ( )n

k
n

ktot
( )

1 , we isolate all n-order cor-
relations that are independent of lower-order processes 
(Supplementary Information sections 2, 3). This approach gives a 
direct handle on the level of complexity of the underlying many-body 
wavefunction and characterizes its entanglement via its non-separabil-
ity into subsystems of size smaller than n. We quantify the relevance 
of order n processes by computing the mean absolute value of all 
correlations arising from both contiguous and non-contiguous n sites 
in the system (Fig. 2e). We find that in the thermal and the 
many-body-localized regimes, the system becomes successively less 
correlated at higher order. The behaviour in the quantum critical 
regime is strikingly different: we observe that the system is strongly 
correlated at all measured orders.

To reveal the microscopic origin for the anomalous transport, we 
now investigate the site-resolved structure of the many-body state 
(Fig. 3a). We first study how much each lattice site contributes to the 
transport by considering the site-resolved two-point correlations in 
the long-time limit (t = 100τ). In the thermal regime, we find similar 
correlations between all lattice sites, which correspond to uniformly 
delocalized atoms. In contrast, density correlations are restricted to 
nearby sites in the MBL regime owing to localization. At intermediate 
disorder, we observe strongly inhomogeneous correlations, revealing 
a sparse structure that involves only specific distances between lattice 
sites, yet spans the entire system size.

The sparse structure is expected to be linked to the applied quasi- 
periodic potential. The average energy offsets of sites d apart in the 
system are correlated by this potential. This correlation is then 
inherited by the system’s fluctuations when the interaction energy 
U compensates for these correlated offsets. To investigate this 
structure, we compare the two-point density correlations with the 
autocorrelation function, A(d) = 〈hihi+d〉i, of the quasi-periodic 
potential. Indeed, we find that the site-averaged connected density 
correlations = +G d G i i d( ) ( , ) ic

(2) (2)  inherit their spatial structure 
from A(d) (Fig. 3b). We find that this contribution is maximal in 
the critical regime but is strongly reduced in the thermal and MBL 
regimes (Fig. 3c). These observations contrast with the behaviour 
of a non-interacting system, where the sign of the structure is oppo-
site because resonant tunnelling is favoured for zero potential 
energy difference. These results illustrate microscopically how the 
interplay of strong interactions and disorder can lead to anomalous 
diffusion. However, this picture of effective single-particle hopping 
that couples distant sites neglects the many-body nature of these 
systems.

To investigate the system’s many-body structure, we examine the 
site-resolved contributions of the three-point correlations. Since all 
non-zero contributions to the three-point correlations involve  
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Fig. 1 | Microscopy of the many-body localization transition.  
a, Illustration of the quantum correlations among the lattice sites after 
a long evolution time in the presence of weak (thermal), intermediate 
(critical) and strong disorder (MBL). In the critical regime, a complex 
pattern of multi-particle correlations spans all length scales. This 
pattern is visualized by shaded links between different lattice sites. In 
contrast, the thermal and MBL regimes exhibit uniformly distributed and 
predominantly local correlations, respectively. These correlations occur in 
conjunction with a change in transport properties, which transition from 
diffusive (thermal) to anomalous (critical) to vanishing (MBL), as depicted 
by the evolution of an initially localized test charge (coloured) within a 
homogeneous system (grey). b, We initialize the system as a pure product 
state of up to twelve lattice sites at unity filling. The system becomes 
entangled under the unitary, non-equilibrium dynamics of the bosonic, 
interacting Aubry–André model with on-site interaction energy U, particle 
tunnelling at rate J/ħ, and quasi-periodic potential with amplitude W. 
After a variable evolution time, we measure the atom number on each 
lattice site through a fluorescence imaging technique (Supplementary 
Information section 1).
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correlated hopping of at least two particles, they are a signature for 
multi-particle entanglement31. In the quantum critical regime, we 
find that these correlations span the entire system and are highly 
structured, taking on both positive and negative values (Fig. 4a). In 
contrast to the pattern in the second-order correlation function, this 
third-order structure is not directly recognizable as the quasi- 
periodic-potential correlations. To gain further insight into the struc-
ture, we analyse the contributions of all possible particle configura-
tions in Fig. 4b. In particular, for = =G d d( 3, 1)c

(3)
1 2 , which is positive, 

we see that the dominant contribution comes from a particular pro-
cess that favours multiple atoms hopping to the same site. In contrast, 

= =G d d( 3, 2)c
(3)

1 2 , which is negative, has a dominant process that 
favours all atoms leaving the three sites considered. Although this 
provides some intuition for the emergent many-body resonances, the 
three-point correlations are, in fact, the result of a superposition of 
many correlated processes. These observations further demonstrate 
how the interactions between multiple atoms can compensate for the 
disorder via correlated tunneling of several atoms. In this way, we can 

see the additional part that interactions play in the disordered system: 
they supply higher-order many-body resonances that preserve trans-
port where lower-order processes are energetically suppressed.

Our results demonstrate how a many-body, sparse resonant struc-
ture drives the quantum critical behaviour at the MBL transition. This 
observed microscopic description is consistent with the theoretically 
suggested mechanisms of a sparse backbone of resonances that can act 
as a functional bath for the system12,13,33. However, our results pro-
vide a new perspective on this description by mapping out the preva-
lence of high-order processes in the system that facilitate this critical 
thermalization.

In future experiments, the tunability of our system will allow us to 
address further open questions on the MBL transition, such as possible 
discontinuities of the entanglement entropy13, the potential emergence 
of new dynamic phases near the critical point, and the influence of 
rare regions in the disorder potential26,27. Furthermore, the demon-
strated techniques pave the way to exploring the role of universality 
in non-equilibrium systems. From a computational perspective, our 
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Fig. 2 | Quantum critical dynamics at the MBL transition. a, The 
initially uncorrelated system develops two-point density correlations 
under its transport dynamics. Short-range correlations emerge within one 
tunnelling time τ = ħ/J, whereas the diffusion exponent α determines the 
timescale over which correlations form across the system size L. b, Particle 
transport, characterized by the transport distance (measured in lattice 
sites), slows down at intermediate disorder, consistent with a power-law 
evolution with exponent α < 0.5, demonstrating subdiffusive dynamics 
(inset). These data were taken on an eight-site system. c, The critical 
nature of the dynamics is determined from the behaviour of on-site 
density fluctuations F  and the transport distance Δ�x (lower left inset) at 
long times (t = 100τ) for both system sizes considered. The thermal 
regime is determined by the agreement of the measured F  with the 
prediction from a thermal ensemble (dashed grey line). The system-size 

dependence at intermediate disorder is consistent with the reduced size of 
a quantum critical cone (upper right inset). These data were measured for 
both an eight-site system and a twelve-site system. d, We obtain the 
genuine many-body processes of order n from connected correlations G n

c
( ) 

by subtracting all lower-order contributions G n
dis
( ) from the total correlation 

function G n
tot
( ). e, In the quantum critical regime, we find enhanced 

collective fluctuations at all measured orders by computing the mean 
absolute value of G n

c
( ) for different disorder strengths. These data were 

measured on a twelve-site system. The solid lines (b, c) and bars (e) denote 
the prediction of exact numeric time calculations without any free 
parameters (Supplementary Information sections 5, 6). All error bars are 
the standard error of the mean (s.e.m.) and are smaller than the marker 
size for some points in b, c and e (Supplementary Information section 9).
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system’s Hilbert space dimension is comparable to the dimension of 
22 spins with zero total magnetization. A moderate increase of the 
system’s spatial dimension beyond this experiment results in numeri-
cally intractable sizes.

Data availability
The data that support the findings of this study are available in the Dataverse 
repository at https://doi.org/10.7910/DVN/E2ROXU.
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