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Tracking the structural dynamics of fluorescent protein chromophores holds the key

to unlocking the fluorescence mechanisms in real time and enabling rational design

principles of these powerful and versatile bioimaging probes. By combining recent

chemical biology and ultrafast spectroscopy advances, we prepared the superfolder

green fluorescent protein (sfGFP) and its non-canonical amino acid (ncAA) derivatives

with a single chlorine, bromine, and nitro substituent at the ortho site to the phenolate

oxygen of the embedded chromophore, and characterized them using an integrated

toolset of femtosecond transient absorption and tunable femtosecond stimulated Raman

spectroscopy (FSRS), aided by quantum calculations of the vibrational normal modes. A

dominant vibrational cooling time constant of∼4 and 11 ps is revealed in Cl-GFP and Br-

GFP, respectively, facilitating a∼30 and 12% increase of the fluorescent quantum yield vs.

the parent sfGFP. Similar time constants were also retrieved from the transient absorption

spectra, substantiating the correlated electronic and vibrational motions on the intrinsic

molecular timescales. Key carbon-halogen stretching motions coupled with phenolate

ring motions of the deprotonated chromophores at ca. 908 and 890 cm−1 in Cl-GFP and

Br-GFP exhibit enhanced activities in the electronic excited state and blue-shift during a

distinct vibrational cooling process on the ps timescale. The retrieved structural dynamics

change due to targeted site-specific halogenation of the chromophore thus provides an

effective means to design new GFP derivatives and enrich the bioimaging probe toolset

for life and medical sciences.

Keywords: fluorescent proteins, ultrafast spectroscopy, structural dynamics, vibrational cooling, non-canonical

amino acid, femtosecond stimulated Raman

INTRODUCTION

Since its discovery several decades ago, green fluorescent protein (GFP) has been widely used
for biolabeling and bioimaging due to its characteristic bright green emission, high fluorescence
quantum yield (FQY), and stability (Shimomura et al., 1962; Chalfie et al., 1994; Tsien, 1998;
Patterson and Lippincott-Schwartz, 2002; Zimmer, 2002; Betzig et al., 2006; Fang et al., 2009; Jung,
2012b; Dedecker et al., 2013). GFP is amenable to structural alterations like circular permutation,
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leading to the development of biosensors such as the GFP-
calmodulin chimera, wherein the fluorescence response is
modulated by varying concentrations of free calcium ion
(Ca2+) (Baird et al., 1999; Zhao et al., 2011; Oscar et al.,
2014). Due to the protein utility across broad science and
engineering fields, spectroscopic studies have been performed
on wild-type (wt)GFP and its derivatives to elucidate the
underlying fluorescence mechanisms and predict how further
structural changes may alter the optical response including
unwanted events such as blinking and photobleaching. On the
molecular level, excitation of neutral (A, 395 nm), or anionic
(B, 475 nm) absorption bands of the wtGFP autocyclized Ser65-
Tyr66-Gly67 (SYG) chromophore results in green fluorescence.
After photoexcitation, the neutral chromophore A∗ undergoes a
picosecond (ps) excited-state proton transfer (ESPT) reaction to
reach a deprotonated intermediate state (I∗) within an unrelaxed
protein environment preceding green emission (Chattoraj et al.,
1996; Lossau et al., 1996; Brejc et al., 1997; Fang et al., 2009).

The optical properties of GFP can be tuned by modifying
either the surrounding protein pocket in the β-barrel or the three-
residue chromophore (Table S1). For example, point mutation
Thr203Tyr of the enhanced yellow fluorescent protein, EYFP,
leads to red-shifted absorption and emission due to a π-π
interaction between spatially close tyrosine rings (Ormö et al.,
1996; Wachter et al., 1998). Since the Tyr sidechain is not
mechanistically required for chromophore formation, Tyr66
can be replaced: mutation to His or Trp eliminates the ESPT
pathway and shifts the absorption and emission bands to generate
blue and cyan fluorescent proteins, respectively (Wachter et al.,
1997; Kummer et al., 2002; Ai et al., 2007; Tomosugi et al.,
2009). The red fluorescent proteins are typically formed by
an extended conjugation along the chromophore N-acylimine
carbonyl (Gross et al., 2000; Shaner et al., 2004; Piatkevich et al.,
2010; Subach and Verkhusha, 2012). Because these strategies in
tuning GFP spectral properties conventionally involve only 20
standard amino acids, they pose certain limitations in achieving
desired properties. Notably, the site-specific modification of
proteins with non-canonical amino acids (ncAAs) provides an
appealing way to engineer spectral properties and encode new
functionalities (Link et al., 2003; Wang et al., 2003; Peeler
and Mehl, 2012). The GFP chromophore with a p-azido-L-
phenylalanine mutation, for example, exhibits photoactivatable
behavior originating from phenyl azide photolysis in the
unnatural chromophore (Reddington et al., 2013). The ncAAs
can further act as site-specific vibrational probes or spin labels,
making them ideal for structural dynamics techniques such as
electron paramagnetic resonance (EPR) spectroscopy, NMR, and
time-resolved vibrational spectroscopy (Fleissner et al., 2009;
Sripakdeevong et al., 2014; Hall et al., 2019).

In this work, we characterized a series of superfolder GFP
(sfGFP) (Pédelacq et al., 2006) mutants that contain a single
ncAA point mutation at the chromophore tyrosine residue
and compared their attributes to model chromophores using
both ultrafast electronic and vibrational spectroscopic signatures
(Fang et al., 2018). The halogenated derivatives of sfGFP, 3-
chlorotyrosine (Cl-GFP) and 3-bromotyrosine (Br-GFP), contain
an electron-withdrawing substituent at the ortho site to the

phenolic hydroxyl which introduces steric effects in the protein
pocket and increases the polarizability of the aromatic bonds over
the chromophore ring system. Meanwhile, the 3-nitrotyrosine
(nitro-GFP) mutant contains a strong electron-withdrawing
group capable of forming additional hydrogen bonds in addition
to an∼30 Å3 increase in residue volume (De Filippis et al., 2006).
Spectral properties such as absorption, emission, and excited-
state dynamics are characterized by steady-state and time-
resolved electronic spectroscopy; in addition, the chromophore
structure and local environment can be revealed by femtosecond
stimulated Raman spectroscopy (FSRS) (Dietze and Mathies,
2016; Fang et al., 2019). This integrated experimental platform
resolving the coupled electronic and atomic motions in highly
fluorescent systems allows us to better understand the effect
of a ncAA mutation at the active site, which elucidates the
conformational preference of a chromophore inside the protein
matrix and the underlying photophysics/photochemistry of
fluorescent proteins in the electronic excited states.

MATERIALS AND METHODS

Protein Preparation
The incorporation of a nitrotyrosine (Cooley et al., 2014; Rauch
et al., 2016) or halotyrosine (Jang et al., 2020) at a selected
position of sfGFP was performed as previously described. Briefly,
the codon codifying each of the tyrosine residues in the sfGFP
sequence optimized for bacterial expression was replaced by
an amber stop codon (TAG), which was recognized by the
orthogonal nitro or halotyrosine-bearing suppressor tRNA
and engineered tRNA synthetase. The modified proteins were
then expressed, purified, and confirmed by mass spectrometry
(Jang et al., 2020). The protein concentrations for our ultrafast
spectroscopic characterization were 10 mg/mL at pH = 8.1
(10mMTris, 50mMNa2HPO4, 100mMNaCl) and 5.5 (100mM
citric acid, 200mM Na2HPO4, 100mM NaCl). As control
samples, the monohalogenated 4-hydroxybenzylidene-1,2-
dimethylimidazolinone (HBDI) chromophores were synthesized
according to literature by combining an iminoglycine methyl
ester with a Schiff base (Baldridge et al., 2010), as detailed in the
Supplementary Text.

Spectroscopic Methods
The UV/Visible and emission spectra of all proteins and small
molecules were collected on a ThermoScientific Evolution 201
andHitachi F-2500 fluorescence spectrophotometer, respectively.
Quantum yield was measured relative to fluorescein in 0.1M
NaOH according to the reported method (Patterson et al., 1997).
The tunable picosecond (ps) Raman pump, white light probe,
and femtosecond (fs) actinic pump (see Supplementary Text)
(Zhu et al., 2014; Liu et al., 2016) enable the acquisition of
time-resolved FSRS data in the electronic excited state with
simultaneously high spectral and time resolutions (Dietze and
Mathies, 2016; Fang et al., 2018). Transient absorption (TA)
spectra were collected before each experiment with the Raman
pump blocked so that only the fs pulses interact with the sample.
The UV/Visible spectra were recorded before and after time-
resolved experiments to check sample integrity (<5% change
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FIGURE 1 | Normalized absorption (solid) and emission (dashed lines) spectra of (A) sfGFP, (B) Cl-GFP, (C) Br-GFP, and (D) nitro-GFP in pH = 5.5 aqueous buffer

solution. The excitation wavelengths are marked by gray dotted lines. For sfGFP and nitro-GFP, emission after the bluer excitation is shown as black dashed lines. The

nitro-GFP emission normalization factor is denoted to manifest weak emission. The Raman pump is indicated by the arrow. The chromophore chemical structure is

shown in the inset.

commonly detected). A full description of the methods can be
found in our earlier reports on fluorescent proteins (Tang et al.,
2016, 2018a; Fang et al., 2018).

RESULTS AND DISCUSSION

Steady-State Electronic Spectroscopy
The absorption and emission spectra of sfGFP, Cl-GFP, Br-
GFP, and nitro-GFP in pH = 5.5 buffer solution (Figure 1)
are tabulated in Table S2. The pKa of sfGFP is ∼6 so a
distinct neutral chromophore population (λmax = 395 nm) is
observed (Figure 1A), whereas in more alkaline conditions
the deprotonated chromophore population (λmax = 488 nm)
dominates (Figure S1A). We observed a lowered pKa of
∼4.5 upon tyrosine halogenation inside sfGFP, so the neutral
chromophore absorption around 400 nm is largely absent at
pH = 5.5 while the anionic chromophore absorption bands
red-shift (Figures S1B,C). These results are corroborated by
the pKa of 3Cl-Tyr EGFP at ∼4.7 and red-shifted spectral
peaks vs. EGFP (Ayyadurai et al., 2012; Zhang et al., 2012).
The emission profiles of Cl-GFP and Br-GFP are also red-
shifted vs. sfGFP, and the shift magnitude increases with
the mass of the halogen substituent (Figures 1A–C), the
trend matching 3-iodotyrosine-GFP with a red-shifted emission
beyond 520 nm (Young et al., 2011). Notably, changes in
absorption and emission for chromophores in a protein matrix
are more pronounced than those in small molecules. The

absorption bands of the sfGFP model chromophore, neutral,
and anionic p-HBDI with capped methyl groups, are found
at 370 and 425 nm, respectively (Vengris et al., 2004; Taylor
et al., 2019). The corresponding Cl (Br)-HBDI bands appear at
369 (368) nm and 424 (425) nm in pH = 3 and 7.6 aqueous
solutions, respectively.

In contrast, the nitrated GFP chromophore results in a
non-fluorescent protein, which is not surprising given the
photochemistry of nitrated aromatics (see Supplementary Text

for the mechanism; De Filippis et al., 2006; Tang and Fang,
2019). The absorption spectrum shows two bands at 415
and 478 nm that exhibit a pH-dependent ratio change with
the 415 nm peak becoming stronger under acidic conditions
(Figure S1D). The 415 nm band likely corresponds to neutral
chromophore in nitro-GFP and is red-shifted from the
395 nm absorption band in sfGFP, which could be due to
an intramolecularly H-bonded form in nitro-GFP. Excitation
of either absorption band produces negligible fluorescence
(Φ < 0.0005, see Table S2) and the detectable emission
is significantly red-shifted to ∼550 nm. This behavior is
reminiscent of free 3-nitrotyrosine in solution, which shows
the pH-dependent changes of its visible absorption bands, a
pKa near neutral pH, and an FQY below 0.0001 (Tang and
Fang, 2019), leading to the effective use of 3-nitrotyrosine
as a FRET quencher in peptides and proteins when a
nearby fluorescent residue (e.g., Tyr, Trp) acts as the donor
(Duus et al., 1998; De Filippis et al., 2006).

Frontiers in Molecular Biosciences | www.frontiersin.org 3 July 2020 | Volume 7 | Article 131
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Stimulated Raman Spectroscopy in the
Electronic Ground and Excited States
To verify the chromophore’s ionization state and uncover local
interactions within the protein pocket, we implemented the
wavelength-tunable FSRS technique at different resonance
conditions (Liu et al., 2016; Fang et al., 2018), wherein a
narrowband Raman pump and broadband Raman probe
induce the stimulated Raman scattering signal with desirable
enhancement to achieve high signal-to-noise ratio. The
ncAA chromophores exhibit unique spectral signatures when
compared to sfGFP; for example, the halogenated chromophores
contain highly polarizable groups that affect Raman peak
frequencies, and the nitrated chromophore consists of the
spectrally isolated –NO2 vibrational modes that act as sensitive
probes for the local environment (De Filippis et al., 2006;
Ayyadurai et al., 2012).

In the ground-state FSRS of the protein series in pH =

5.5 buffer (Figure 2), the Raman pump is energetically close
to the absorption band of the anionic chromophore (Figure 1).
In sfGFP, most of the Thr-Tyr-Gly (TYG) chromophore
population is neutral, but the pre-resonance condition favors
the anionic subpopulation (see Figure S1A) and amplifies its
Raman features. The protonation state is confirmed by the 1,547
cm−1 marker band, attributed to the C=N, C=C, and C=O
stretching motions in the anionic chromophore (see Table S3

for vibrational normal mode assignments) based on literature
and our calculations (Bell et al., 2000; Schellenberg et al., 2001;
Tozzini and Nifosì, 2001). For proteins with primarily neutral
chromophores, this marker band shifts to ∼1,566 cm−1, also
observed in wtGFP (Fang et al., 2009), a series of GFP-based
Ca2+ biosensors (Oscar et al., 2014; Tang et al., 2016), and in
sfGFP at an off-resonance condition (Figure S2A). The ncAA-
mutant proteins (Figures 2A–C, also see Figure S2B for the
off-resonance FSRS data of Br-GFP) all exhibit strong peaks
near 1,542 cm−1, corroborating the anionic chromophore as
determined by the electronic absorption spectra (Figure 1). The
∼1,576 cm−1 shoulder peak in mutant proteins is assigned to
additional phenolate ring C=O and C=C stretch contributions
in the anionic chromophore (Tables S4, S5), but this mode may
indicate an H-bonded population of halogenated chromophores
while the H-bond partner could be an adjacent water or protein
residue in forming the O–H···X (X = Cl, Br) bond (Pal et al.,
2005). In the anionic chromophores outside the protein matrix,
strong C=C and C=O stretching modes appear at 1,560 cm−1

(Cl-HBDI) and 1,558 cm−1 (Br-HBDI) in Figure S3, slightly
blue-shifted from the reported 1,556 cm−1 mode of HBDI in
basic solution (Bell et al., 2000; Schellenberg et al., 2001; Taylor
et al., 2019).

The cluster of modes between ∼1,200 and 1,400 cm−1 also
probe the chromophore’s protonation state: the 1,256 cm−1

mode in sfGFP involves the phenolate ring H-rock and CO
stretch, which typically exhibits a frequency blueshift in the
deprotonated state (Bell et al., 2000; Fang et al., 2009; Oscar
et al., 2014). This mode blue-shifts to 1,261 cm−1 in Cl-
GFP and Br-GFP, consistent with the incorporation of an
electron-withdrawing group adjacent to the phenolate oxygen

site and the increased acidity as well as photoacidity of the
chromophore (Chen et al., 2019). In contrast, for the phenolate
ring H-rocking and imidazolinone ring C–N stretching mode
at 1,369 cm−1 (Table S3) that was also observed for the TYG
chromophore inside a protein Ca2+-biosensor (Tang et al.,
2016), due to steric hindrance this mode red-shifts to ∼1,360
cm−1 upon chromophore halogenation (Figure 2). Moreover,
the 1,167 cm−1 phenolate ring H-scissoring motion exhibits a
notable blueshift to ∼1,192 cm−1 in Cl-GFP and Br-GFP since
the pertinent normal modes of the halogenated chromophores
involve less imidazolinone ring contributions (Tables S3–S5).
These in-plane vibrational motions thus serve as sensitive probes
to elucidate the effect of ortho-halogenation of the largely planar
chromophore inside a protein pocket.

Notably, the chromophore autocyclization during protein
maturation is primarily a function of the protein backbone.
A majority of GFP chromophores are observed in the Z (cis)
stereoisomer, but the halogen substituent on tyrosine can occupy
two distinct atropisomeric positions with the probability of
each determined by the properties of the substituent itself as
well as the local environment supplied by the protein interior
(Bae et al., 2004; Pal et al., 2005; Jung, 2012a; Chang et al.,
2019). For example, the crystal structure and electron density
mapping of 3-fluorotyrosyl-EGFP revealed two conformations
of the TYG chromophore with a major conformer wherein
fluorine interacts with Thr203, equivalent to Configuration 1
in Figure 3 (Bae et al., 2004). Small-molecule analogs of the
chromophore were reported with this conformation as well
as the Trp-containing chromophores and the 3,4-dihydroxy-
L-phenylalanine GFP chromophore (Hyun Bae et al., 2003;
Hasegawa et al., 2007; Ayyadurai et al., 2011). However, 3-
chlorotyrosine chromophores in the short H-bond (His148Asp)
GFP system exhibit only one crystallographic occupancy
corresponding to Configuration 2 in Figure 3 partly due to
specific electrostatic interactions introduced by the nearby
His148Asp mutation (Oltrogge and Boxer, 2015). Can FSRS
provide evidence for the protein chromophore configuration?

Several low-frequency motions below 1,000 cm−1 are resolved
for sfGFP and the mutated series (Figure 2), and these modes are
sensitive to the chromophore conformation. The C–Cl stretch
(550–800 cm−1), C–Br stretch (500–700 cm−1), and NO2 bend
(∼820 cm−1) are all expected to occur in this region (Kovács
et al., 1998; Chen et al., 2020). Mode assignment of the anionic
TYG chromophore and the halogenated derivatives in both
conformations (Figure 3) was carried out by comparing the
experimental Raman spectra to literature values and density
functional theory (DFT) RB3LYP-level calculations with the 6-
311G+(d, p) basis set performed in vacuo and in water. Strong
vibrational modes at 908 cm−1 in Cl-GFP and 890 cm−1 in Br-
GFP are assigned to phenolate ring breathing with a prominent
C–X stretching component. The ring breathing mode has been
previously assigned at ∼820 cm−1 (Oscar et al., 2014) that is
also listed in Table S3, but the C–X stretching contribution blue-
shifts the calculated normal mode frequency (see Tables S4, S5).
Similarly, the benzene ring breathing mode at 992 cm−1 was
experimentally recorded at 1,001 cm−1 in chlorobenzene and 998
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FIGURE 2 | Ground-state Stokes FSRS data of (A) sfGFP, (B) Cl-GFP, (C) Br-GFP, and (D) nitro-GFP in pH = 5.5 aqueous buffer solution. In (B–D) the Raman pump

was set at 555 nm while in (A) the Raman pump wavelength was 548 nm. The stimulated Raman gain is indicated by the double-headed arrow. The anionic

chromophore chemical structures with various substitutions are depicted in the inset. R represents the remaining conjugated framework of the chromophore that

connects to protein backbone.
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FIGURE 3 | Possible orientations of the halogen atom (X) on the GFP

chromophore. In Configuration 1, the halogen atom is oriented toward Thr203

in a typical GFP protein matrix. In Configuration 2, the halogen atom could

face Ser205 (Pal et al., 2005). The dissociable hydroxyl group is highlighted.

cm−1 in bromobenzene, so this mode is a useful reporter on
halogen substitution (Meneely et al., 1971).

Resonance Raman spectra with a Raman pump close to the
red edge of electronic absorption bands (Figure 1, Figure S1)
were used to further assign the low-frequency vibrational bands
(Figures 4A,B, Figure S4), supported by the anti-Stokes FSRS
with a 580 nm Raman pump (Figure S5) (Tang et al., 2018b).
With identical protein concentration and Raman pump power,
the signal strength is increased by an order of magnitude
with 507 nm pump. Resonance Raman peaks include excited-
state contributions (Quick et al., 2015), which can be seen by
strong agreement between the resonance Raman spectra and the
excited-state spectra at 50 fs following 480 nm photoexcitation.
Since halogen atoms are expected to increase chromophore
polarizability, the modes strongly influenced by halogenation
are enhanced (see Supplementary Text). The lineshape of high-
frequency modes is largely preserved in all proteins, though
the peaks in S1 are generally broader than those in S0 due
to the shorter lifetime of the excited-state species, while the
frequency shift is due to an interplay between anharmonicity and
the intrinsic frequency change from S0 → S1 due to electron
redistribution (Chen et al., 2018; Fang et al., 2018).

Based on the ground-state FSRS and calculations, we
tentatively assign Br-GFP to Configuration 1 in Figure 3 such
that bromine interacts with the nearby Thr203 residue. Though
DFT calculations of the model chromophore in vacuo cannot
capture the myriad of interactions between the protein pocket
and the chromophore, there is better agreement between the
experimental and calculated vibrational modes of Configuration
1 of Br-GFP, especially in the low-frequency region (Merrick
et al., 2007; Wang et al., 2015). In particular, the observed
890 and 918 cm−1 modes (Figure 2C) both have significant
Br contributions and the calculated frequencies of 852 and
881 cm−1 in Configuration 1 (Table S5) better match the
experimental energy gap of 28 cm−1 between the modes, instead

of the exact mode frequencies that are highly subjective to the
frequency scaling factor (Merrick et al., 2007). A crystallographic
analysis is required to confirm if a minor population exists;
however, we expect the bromine to experience more repulsive
interactions with the sidechains of Ser205 and Glu222 in
Configuration 2 based on the sfGFP crystal structure (PDB
ID: 2B3P) (Pédelacq et al., 2006). Our preliminary molecular
dynamics simulations based on free energy perturbationmethods
(Seeliger and de Groot, 2010) with a calculated chromophore
force field (Malde et al., 2011), however, seem to suggest that
while both configurations are stable in the protein pocket,
Configuration 2 of Cl-GFP is thermodynamically more favorable.
Further investigation is thus needed to better determine which
configuration is dominant surrounded by dynamic protein
residues in the system of interest.

Excited-State Electronic and Structural
Dynamics of the Halogenated sfGFP
While the small molecule analog HBDI undergoes a non-
radiative cis-to-trans isomerization after photoexcitation
(Mandal et al., 2004; Taylor et al., 2019), confinement in the
protein pocket typically inhibits this pathway in favor of other
energy dissipation routes. To rule out photoisomerization in
the excited state and explore the photodynamics affected by
halogenation, we implemented time-resolved electronic and
vibrational spectroscopies (Liu et al., 2016; Fang et al., 2019).
Using an fs photoexcitation pulse at 480 nm and a white light
probe, TA spectra were collected to reveal dynamics in the first
singlet excited state. The sfGFP, Cl-GFP, and Br-GFP all have
a broad stimulated emission (SE) feature below 600 nm (in
correlation with the fluorescence band in Figure 1, Figure S1)
and a weak excited-state absorption band beyond 600 nm
(Tang et al., 2015). We focus on TA dynamics by plotting the
red-edge integrated signal of SE band from 550–570 nm, which
rapidly reaches the maximum magnitude before a biexponential
decay (see Figure 4D, Table S6). For sfGFP in pH = 5.5
buffer, only a small portion of the chromophore population
is excited at 480 nm, and a ∼1.2 ps component accounts for
20% of the SE dynamics while a longer 1.2 nanosecond (ns)
component is dominant. A similar time constant of 1.9 ps
for the initial rise of fluorescence signal was reported in the
deprotonated chromophore of GFP after 478 nm excitation
(Chattoraj et al., 1996), likely arising from an ultrafast process
(e.g., intramolecular vibrational relaxation; Felker and Zewail,
1985) that populates the fluorescent state of the deprotonated
species. The long time component is less accurately determined
due to the 600 ps detection window (see Section 2.2), but
generally approaches the fluorescence lifetime (∼3 ns) of the
photoexcited deprotonated chromophore (Chattoraj et al., 1996;
Striker et al., 1999; Zimmer, 2002; Tang et al., 2018c).

Notably, the first recovery component of the SE band of
halogenated proteins is significantly longer than the parent
protein (see Figure 4D inset and Table S6), but the ns process
is largely unchanged. The 4.1 ps component in Cl-GFP
lengthens to 12.4 ps in Br-GFP, and these time constants
are attributable to the excited state (S1) relaxation dynamics
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FIGURE 4 | Spectroscopic characterization of ncAA-GFPs. Ground and excited-state Stokes FSRS of (A) Cl-GFP and (B) Br-GFP. The spectra with the 555 and

507 nm Raman pump are depicted in black and green (×0.05), respectively. The excited-state Raman spectrum at 50 fs after 480 nm photoexcitation is shown in red

(Cl-GFP) and blue (Br-GFP). The stimulated Raman gain of 0.1% is indicated by the double-headed arrow. (C) Normalized Raman intensity dynamics of the 1,369

cm−1 band of Cl-GFP (red) and Br-GFP (blue) with the least-squares fit in solid lines. Early-time dynamics are highlighted in the inset on a semilogarithmic scale. The

triexponential-fit components are listed below with the amplitude weight percentages of decay in parenthesis. (D) Fs-TA dynamics of the SE band (550−570 nm) of

sfGFP (green), Cl-GFP (red), and Br-GFP (blue) in pH = 5.5 aqueous buffer solution following 480 nm excitation. The data are normalized at the maximal SE peak

magnitude point for comparison. The least-squares fit for each data trace is shown as the color-coded solid curve. The inset shows the early-time dynamics on a

semilogarithmic scale to highlight the multiple timescales involved.

other than fluorescence (vide infra), especially with the excess
energy provided by the 480 nm pump. The excellent match
between these TA time constants and the aforementioned Raman
mode intensity decay time constants (Figure 4C, lower panel)
supports a unified picture for energy relaxation on molecular
timescales of a photoexcited deprotonated chromophore inside
the protein pocket (Tang et al., 2018c; Fang et al., 2019). Previous
photoelectron spectroscopic results of the UV-irradiated anionic
HBDI chromophore (Mooney et al., 2013) and that with chemical
modifications (e.g., difluoro-substituents) (Bochenkova et al.,
2017) corroborate the changes in the excited-state energy surfaces
and variation of the 1.4 ps lifetime (in gas phase and solution)
following an initial ∼330 fs component. Recently with time-
resolved action spectroscopy, theHBDI anion after 480 nm pump
shows ca. 1–11 ps lifetimes at 300K (Svendsen et al., 2017).

To verify that the observed dynamics arise from a vibrational
progression, we performed the time-resolved FSRS experiments
in S1 to directly track atomic motions (Fang et al., 2018). In
previous FSRS reports on GFP derivatives, the modes with
strong intensities are typically the phenol C–H bending motions,
phenolic CO stretch, and the imidazolinone C=N stretch with
frequencies at ∼1,180, 1,265, and 1,565 cm−1 in S1 (Fang
et al., 2009; Oscar et al., 2014; Tang et al., 2015, 2016). These
high-frequency marker bands are also prominent in the pre-
resonance ground-state Raman spectrum of sfGFP (Figure S4).
Interestingly, halogenation changes this pattern by exhibiting
several enhanced low-frequency modes. In the excited state,
modes with major C–X contributions exhibit the strongest
intensities, and the mode frequencies are blue-shifted from those
in S0 (Figures 4A,B). Following 480 nm photoexcitation, the S1
vibrational modes of Cl-GFP and Br-GFP decay in time without
the appearance of new peaks, while only small mode frequency
blueshift occurs (Figure S6). The ∼1,369 cm−1 mode is present
in S0 and S1 spectra of halogenated proteins and could be the

vibronically coupled mode based on the energy gap observed in
the electronic spectra (see Supplementary Text and Figure 1).
This marker band dynamics are fit with a triexponential function
(Figure 4C), largely matching the fs-TA dynamics (Figure 4D).
Notably, Cl-GFP exhibits a ∼4 ps decay time constant that
is much shorter than the ∼11 ps counterpart of Br-GFP, in
correlation with the noticeable mode frequency blueshift in
Figure S6 that indicates vibrational cooling in S1 (Fang et al.,
2019).

Interestingly, the amplitude weights of the initial ps
components (i.e., 20, 37, and 27% in Table S6) correlate with
the FQYs (i.e., 0.68, 0.88, and 0.76 in Table S2) of sfGFP, Cl-
GFP, and Br-GFP, respectively. We surmise that the 4–12 ps
components in Cl-GFP and Br-GFP (longer than 1.2 ps in
sfGFP) involve certain nuclear motions associated with the
phenolate ring as its size/weight increases, which allow effective
vibrational cooling that promotes radiative emission from the
lower portion of the potential energy surface of the deprotonated
protein chromophore (Fang et al., 2018; Tang et al., 2018c).
This mechanism is corroborated by a recent report on the
introduction of asymmetric electronic structures and vibronic
features to fluorophores, which can facilitate strong internal
conversion with redder emission (Ren et al., 2018). Notably,
photoisomerization typically leads to characteristic Raman mode
frequency redshift due to the chromophore conformational
change (Fang et al., 2019), which was not observed here
(Figure S6). Moreover, the ring-twisting-induced non-radiative
transition contradicts the high FQYs of halogenated sfGFP
(Table S2), whereas the essentially non-fluorescent nitro-GFP
likely involves an ultrafast nitroaromatic twisting motion leading
to an S1/S0 conical intersection (Tang and Fang, 2019). One
challenge that needs to be tackled before future FSRS experiments
on nitro-GFP is the low signal-to-noise ratio without a prominent
SE band (see Supplementary Text for details) like that in the
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halogenated sfGFP achieving resonance Raman enhancement in
S1 (Figure S6).

CONCLUSIONS

In summary, we prepared and characterized a series of
superfolder GFP mutants with ncAA chromophores using
a combination of fs-TA spectroscopy, wavelength-tunable
ground and excited-state FSRS (with ncAA chromophores in
solution as control samples), and DFT calculations of normal
mode frequencies. In particular, the single-site halogenated
proteins display improved properties that include the red-
shifted absorption and emission, increased concentration of
deprotonated emissive species, and an increased fluorescence
quantum yield. Such desirable application properties of the
halogenated GFP mutants stem from a solid biophysical
chemistry foundation in that they are a direct consequence
of the engineerable molecular structure and dynamics of
the photosensitive unit inside a protein matrix. The nitro-
GFP provides a useful contrasting sample that will be
further investigated.

We focused on the structural aspects of single-site
halogenation at the protein active site to examine key
conformational preference and elucidate the excited-state energy
dissipation pathways in Cl-GFP and Br-GFP. Such a targeted
analysis using a well-known series of electron-withdrawing
groups with sufficient temporal and spectral resolution paints a
more complete picture of chemically modified chromophores
reacting to the incoming photons, thus enabling future rational
design of functional molecular machines (Fang et al., 2019). The
strong vibronic coupling that influences the SE dynamics may
provide a useful direction to engineer probes for SE-depletion
spectroscopy and imaging (Hell, 2009; Silva et al., 2016).
Furthermore, these brighter protein mutants show that ncAA
incorporation within the chromophore is a versatile and effective
way to engineer photochemistry and protein functionality.
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