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Topology Identification of Directed Graphs via
Joint Diagonalization of Correlation Matrices
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Abstract—Discovering connectivity patterns of directed net-
works is a crucial step to understand complex systems such as
brain-, social-, and financial networks. Several existing network
topology inference approaches rely on structural equation models
(SEMs). These presume that exogenous inputs are available,
which may be unrealistic in certain applications. Recently,
an alternative line of work reformulated SEM-based topology
identification as a three-way tensor decomposition task. This way,
knowing the exogenous input correlation statistics (rather than
the exogenous inputs themselves) suffices for network topology
identification. The downside is that this approach is computa-
tionally expensive. In addition, it is hard to incorporate prior
information of the network structure (e.g., sparsity and local
smoothness) into this framework, while such prior information
may help enhance performance when handling real-world noisy
data. The present work puts forth a joint diagonalizaition (JD)-
based approach to directed network topology inference. JD can be
viewed as a variant of tensor decomposition, but features more
efficient algorithms, and can readily account for the network
structure. Different from existing alternatives, novel identifiability
guarantees are derived regardless of the exogenous inputs or their
statistics. Three JD algorithms tailored for network topology
inference are developed, and their performance is showcased
using simulated and real data tests.

Index Terms—Structural equation models, tensor-based model,
joint diagonalization, directed network topology inference.

I. INTRODUCTION

Network analytics play an essential role in modeling and un-
derstanding the behavior of complex systems, such as financial
markets, brains, and genomics, to name just a few. One of the
most important tasks in this context is network topology iden-
tification [15, Ch. 7]. Prominent among the popular topology
inference methods are structural equation models (SEMs) that
are capable of capturing causal (directed) dependencies among
complex system components [14]. These directional effects
are seldom revealed by approaches relying on symmetric
associations among endogeneous nodal variables, such as
those represented by covariances or correlations; see e.g., [11],
[12]. SEMs have well-documented merits in several learning
tasks requiring knowledge of the underlying graph topology;
see e.g., [3], [8], [13], [24]. In a nutshell, SEMs capture the
relationship among observed nodal processes and the unknown
causal connectivity. They can also account for exogenous or
confounding inputs in observed nodal processes, which turn
out to be critical in identifying directional dependencies—a
critical task in network analytics [5].
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One challenge facing SEM identification is that available
methods require knowledge of the exogenous inputs that are
“injected” per node to stimulate responses. In certain scenar-
ios, measuring exogenous inputs can be costly or impractical,
rendering SEM identification infeasible. Take financial net-
works as an example, where stocks of different companies
are nodal measurements and their cross-correlations are edge
weights. Publicly traded stock prices (endogenous) are known
to depend on investors’ purchases of stocks (exogenous in-
puts), whose details are often unknown to the public for pri-
vacy reasons. To cope with the unavailable exogenous inputs,
novel tensor-based approaches have been developed in [28],
[29] that only require second-order statistics of the exogenous
inputs. However, there are still several important challenges
for this method: i) Even the statistics of exogenous inputs
may not be available in some real world applications, e.g.,
brain networks; ii) prior information of the network structure
such as sparsity or smoothness is not readily leveraged by
tensor decompositions – but exploiting such prior information
is important for combating noise and modeling errors present
in real-world data; and iii) the method in [28] employs the
canonical polyadic decomposition (CPD), which is not easy
to scale up in the context of network inference.

Topology identification has also been studied in graph
signal processing; see e.g., [10], [21], [26], where the focus
is on identifying undirected network topologies. SEM-based
topologies of directed graphs have been also investigated, and
found identifiable using observations on all nodes [5]. This
result is elegant and plausible, but when nodal measurements
are not available (e.g., when there are missing observations
or when only some derived information such as the statistics
of the measurements is available), it is unclear whether such
methods can still work.

The present paper approaches graph topology identification
using joint matrix diagonalization, which is a classic tool
originally developed for source separation [6], [20], [22],
[30]. It will be seen that a topology can be identified by
jointly diagonalizing the slabs of a three-way tensor. This
tensor is constructed using second-order statistics of the nodal
measurements, which makes the method naturally robust to
missing or noisy nodal measurements. It will be also shown
that the statistics of exogenous inputs are no longer needed to
guarantee identifiability of the topology—if some other con-
ditions are satisfied. For example, if a small number of anchor
nodes whose connectivity patterns (specifically in-links) are
known a priori are available, then identifiability is ensured
by JD solvers. The anchor node assumption can be easily
satisfied in certain applications—e.g., in brain networks, where
each node represents a certain region of interest. Established
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domain knowledge can reveal connectivity patterns among
some particular regions.

Another benefit emanating from the new JD-based method
is that it effectively circumvents some computationally heavy
operations. For example, large matrix-matrix multiplications in
CPD are no longer—unlike the existing tensor-based method
[28]. Hence, the JD-based approach has a better potential to
deal with large-scale networks. Furthermore, JD can naturally
incorporate prior knowledge on networks, e.g., sparsity and
local smoothness. This is important, since real-world net-
work data are often noisy, and using prior information as
regularization terms and/or constraints may help enhance the
performance of network inference.

JD is a well appreciated tool in computational linear alge-
bra, and finds applications in a number of signal processing
applications, prominently in blind speech and audio separation
[6], [22], [32]–[34], [36], [37]. General-purpose off-the-shelf
JD algorithms can be also employed in our present context.
To better serve the goals of network topology inference how-
ever, three new customized JD algorithms will be proposed:
(i) JD-based SEM for general topology identification from
second-order statistics; (ii) sparse-JD based SEM (S-JDSEM)
designed for sparse connectivity networks; and, (iii) robust
(R)-JDSEM to identify the network structure in the presence
of abnormal nodes or outliers. These variants can be flexibly
applied depending on the prior information available about
the network structure or the noise model. Compared with
our conference precursor [27], the present work is capable of
exploring the prior structural information such as sparsity, or
presence of outliers. In addition, identifiability analysis will be
carried out to show that the JD model is capable of identifying
the underlying network structure under mild conditions.

The rest of this paper is organized as follows. Preliminaries
and a formal statement of the problem are in Section II, while
Section III deals with JD of tensor correlation slabs, and
introduces three variants of the basic JD solver suitable for
different scenarios. Section IV presents identifiability results
for the proposed framework. Finally, corroborating numerical
tests on both synthetic and real data are presented in Section V,
while concluding remarks along with a discussion of ongoing
and future directions are the subject of Section VI.

Notation. Bold uppercase (lowercase) letters will denote
matrices (column vectors), while operators (·)> and λmax(·)
will stand for matrix transposition and maximum eigenvalue,
respectively. The identity matrix will be denoted by I, while
`p and Frobenius norms will be denoted by ‖.‖p and ‖.‖F ,
respectively. The operator vec(.) will vertically stack columns
of its matrix argument, to form a vector. Finally, A ⊗ B
will stand for the Kronecker product of matrices A and B,
while A � B will denote their Khatri-Rao product, namely,
A�B := [a1 ⊗ b1, . . .aN ⊗ bN ], where A := [a1, . . . ,aN ]
and B := [b1, . . . ,bN ].

II. PRELIMINARIES AND PROBLEM STATEMENT

In the present section, we will first introduce SEM-based
topology identification [14]. Following this, we will outline
tensor-based topology inference, before proceeding to our
novel JD-based approach.

A. Background

Consider a graph denoted as G(V, E) with N nodes and its
adjacency matrix A ∈ RN×N having (i, j)th entry aij that is
nonzero if and only if there is an edge linking node j to node
i. We allow G to be directed, meaning A can be asymmetric
(A 6= A>). Suppose this graph is an abstraction of a complex
system with measurable inputs and outputs that propagate over
the network following directed links. Let xit denote the input
to node i during time slot t, and yit the t-th observation of
the propagating process measured at node i. The signals yit
and xit can have different physical meanings depending on the
application. In the context of brain networks for example, yit
represents the t-th time sample of a certain measuring scheme
(e.g., functional magnetic resonance imaging (fMRI)) at region
i, while xit represents a stimulus exciting a specific region of
the brain. In financial networks, yit denotes the closing price
of stock i on the t-th day, while xit represents the money
invested to a specific stock on day t.

1) SEM-based approach: Here, we generally postulate that
yit depends on two classes of variables, namely: i) measure-
ments of the diffusing process {yjt}j 6=i (a.k.a. endogenous
variables); and ii) external inputs xit (exogenous variables).
SEM-based approaches posit that yit depends linearly on both
{yjt}j 6=i and xit; that is,

yit =
∑
j 6=i

aijyjt + biixit + eit (1)

where eit denotes the term that captures unmodeled dy-
namics. The coefficients {aij} and {bii} are unknown, and
aij 6= 0 signifies that a directed edge from j to i is
present. Collecting nodal measurements yt:=[y1t . . . yNt]

>,
and xt:=[x1t . . . xNt]

> per slot t, the noise-free version of (1)
can be written as

yt = Ayt + Bxt (2)

where [A]ii = 0 and B := Diag(b11, . . . , bNN ) denotes
a diagonal matrix with bii 6= 0, for i = 1, . . . , N as its
diagonal entries. Classic SEM-based approaches assume that
{xt,yt}Tt=1 are available. If rank(Y) = N , then using that
aii = 0 and bii 6= 0 ∀i, matrices A and B turn out
to be identifiable as the solution of the linear system of
equations [5], [8]

(I−A)Y = BX

where X := [x1, . . . ,xT ], and Y := [y1, . . . ,yT ].
The conventional SEM-based approach solves the following

problem: Given X and Y, find A by solving the problem
minA,B ‖Y − AY − BX‖2F . Sparsity of the network con-
nectivity was leveraged by [5] and [2] in order to improve
identification performance. Note that the conventional SEM
assumes availability of nodal measurements.

2) Tensor-based approach: Here, the exogenous inputs
across nodes are not measurable, but are assumed to satisfy
the following.
(as0) Exogenous inputs {x(m)

t } are piecewise wide-sense
stationary over time segments t ∈ [τm, τm+1 − 1],m =
1, . . . ,M + 1, each with a fixed correlation matrix Rx

m :=
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Fig. 1: An N -node directed network (blue links), with the t-th samples of endogenous measurements per node. SEMs explicitly

account also for exogenous inputs (red arrows), upon which endogenous variables may depend [12].

E{x(m)
t (x

(m)
t )�};

(as1) Entries of xt are zero mean and spatially uncorrelated;

that is, E{xitxjt} = 0, ∀i �= j; and
(as2) Matrix (I−A) is invertible;

Under (as2), the model in (2) can be re-written as

yt = (I−A)−1Bxt = Axt (3)

where A := (I − A)−1B, and superscript (m) has been

dropped with the understanding that t stays within one seg-

ment, and thus (3) holds ∀m. The per segment correlation

matrix Ry
m := E{yty

�
t } is thus given by [cf. (3) and (as0)]

Ry
m = ARx

mA�, t ∈ [τm, τm+1 − 1]. (4)

Under (as1), one can express (4) as the weighted sum of rank-

one matrices as

Ry
m = ADiag(ρx

m)A� =
N∑
i=1

ρxmiαiα
�
i (5)

where αi denotes the ith column of A, and ρx
m :=

[ρxm1 . . . ρ
x
mN ]�, with ρxmi := E(x2

it), for t ∈ [τm, τm+1 − 1].
Consider the three-way tensor Ry ∈ R

N×N×M , constructed

by setting the m-th slice [Ry]:,:,m = Ry
m. Letting αjiβkiγli

denote the (j, k, l) entry of the tensor outer product αi◦βi◦γi,

where αji := [αi]j (resp. βik and γil), it turns out that Ry

can be written as

Ry =
N∑
i=1

αi ◦αi ◦ rxi (6)

with entry (j, k, l) given by

[Ry]jkl =
N∑
i=1

αjiαkir
x
li (7)

where rxi := [ρx1i . . . ρ
x
Mi]

�. Interestingly, (6) amounts to the

partially symmetric CPD of Ry into factor matrices A, A,

and Rx := [rx1 . . . r
x
N ] ∈ R

M×N ; see e.g., [16], [28]. Although

Ry
m is generally unknown, it can be readily estimated using

sample averaging of endogenous measurements, as

R̂y
m =

1

τm+1 − τm

τm+1−1∑
t=τm

yty
�
t , m = 1, . . . ,M . (8)

Supposing that second-order statistics of the network processes

are only available, the goal of the tensor based approach is to

find A and B given tensor ˆ̄Ry with {R̂y
m} as its m th slab.

Specifically, relying on this three-way tensor constructed

from second-order statistics of the nodal measurements, [27]

leverages CPD to identify the latent topology A; e.g., via

alternating least-squares (ALS) iterations. Under (as2), it is

possible to recover A, once A has been found as

A = I− (
Diag(A−1)

)−1 A−1. (9)

Despite the fact the CPD based SEM (CPSEM) is capable

of identifying the network structure without exact information

about the exogenous input of each node, it still faces several

important challenges:

c1. The approach in [27] relies on the ALS algorithm to

perform the CPD for estimating A, which leads to serious

scalability issues. The latent factor A in CPSEM has size

N × N , and the tensor rank is N . Hence, the key ALS

operation involving the matricized tensor times Khatri-
Rao product (MTTKRP) costs O(N4M) flops; see [30].

Note that N can be millions in a complex network, and

MTTKRP is carried out three times in each iteration of

ALS for this particular problem.

c2. Matrix A does not capture the structure of A, e.g.,

sparsity, since it is obtained by first inverting A; and,

c3. Even though exact information of xt is no longer required

for the tensor-based algorithm to recover the network

topology, it is still necessary to know the second-order

statistics Rx [27], which may not be available in certain

applications. To circumvent these challenges, we will

show how to leverage JD of the tensor slices.

B. Problem Setup

Different from conventional SEM settings, where exogenous

inputs {xt}Tt=1 are assumed known, we consider here that

such information is not available. Instead, we assume that the

connectivity patterns of a small subset of nodes, referred to as

anchor nodes, are known. The problem statement can now be

formally stated as follows.

Problem statement: Given second-order statistics of

{yt}Tt=1, and the connectivity pattern of a few anchor

nodes, the goal is to recover the underlying directed network

topology A while exploiting the possibly available network

structure, e.g. edge sparsity.
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A couple of examples to motivate this specific problem
setup are due next.
Example 1. In brain networks, although the stimuli {xt}
are not easy to measure, the interaction among some regions
of the brain are well understood, e.g., based on biological
connectivity using diffusion tensor imaging [18], or prior
domain research results. Such regions can be viewed as the
anchor nodes.
Example 2. In a financial stock market, where each stock
denotes a node, yit represents the stock price of stock i at
time t, and the exogenous input xit is the money invested into
stock i at time t. While stock prices can be observable, the
investment over time may not be accessible due to privacy
concerns. However, the influence of some stocks can be
forecast based on historical data; see e.g., [14].

III. JD-BASED TOPOLOGY IDENTIFICATION

The topology inference problem will be formulated here
as a JD task using the notion of anchor nodes. The resultant
solver will be broadened to account for sparsity, and also gain
resilience to outliers.

A. Topology inference with anchor nodes

To begin, consider rewriting (2) as

(I−A)yt = Bxt (10)

and with H := I−A, write the per-segment correlation matrix
Ry
m := E{yty>t }, as

HRy
mH> = BRx

mB> (11)

where B and Rx
m are unknown diagonal matrices as per (as1).

Clearly, (11) implies that Ry
m, m = 1, . . . ,M are jointly

diagonalizable by H. In this noise-free setup, the latter yields

HRy
mH> = Diag(HRy

mH>), m = 1, . . . ,M. (12)

With hij denoting the (i, j)th entry of H, it is easy to see that
hij satisfies

hii = 1, ∀i (13a)
hij = −aij ∀i 6= j (13b)

which suggests identifying H by solving

min
H

M∑
m=1

‖HRy
mH> − Diag(HRy

mH>)‖2F

s.t. hii = 1, ∀i. (14)

Altough intuitively pleasing, further reflection on (14) reveals
that if H∗ is an optimal solution to (14), then any

H̄ = H∗ΠΛ

is also an optimal solution, where Π denotes a permutation
matrix, and Λ is a nonsingular diagonal scaling matrix. This
is because column permutation and scaling ambiguities are
intrinsic to JD [6] (as in tensor and matrix decomposition),
and cannot be removed without extra information.

Nonetheless, permutation and scaling ambiguities are not
tolerable in network topology identification, since they make

isomorphic graphs indistinguishable. In order to resolve the
permutation ambiguity, [28] relies on additional information
about the second-order statistics of the exogenous variables,
that is Rx. This idea can also be used in the JD-based
approach. However, the present paper introduces an alternative
for ambiguity removal. To be specific, this work will utilize
the notion of anchor nodes to pin down the final estimate of
the network topology. Here, anchor refers to a node whose
connectivity patterns are known a priori (cf. Examples 1-2).

Specifically, we introduce the following.

(as3) A subset of [A]ij entries with (i, j) ∈ Ω is known.

Incorporating the known entries as constraints into (14)
yields the constrained least-squares problem

min
H

M∑
m=1

‖HRy
mH> − Diag(HRy

mH>)‖2F

s.t. hii = 1 ∀i, hij = −aij ∀(i, j) ∈ Ω. (15)

Through this formulation, it is possible under (as0), (as1) and
(as3) to estimate H, and then the adjacency matrix A. Detailed
identifiability analysis will be provided in Section IV.

Note that (15) is not a standard JD formulation because
it includes special constraints. Nevertheless, it can be tackled
following ideas from classic JD algorithms, e.g., via block co-
ordinate descent (BCD). Note that BCD converges to a critical
point of the optimization problem under certain conditions—
e.g., when the block subproblems are strictly convex; see [23],
[35]. A simple and intuitive algorithm can be derived, starting
with H := [h1,h2, . . . ,hN ]>, where h>n denotes the nth row
of H. Supposing h1, . . . ,hn−1,hn+1, . . . ,hN are fixed, the
subproblem w.r.t. hn can be written as

min
hn

‖Wnhn‖22

s.t. hnn = 1, hnj = −anj ∀(n, j) ∈ Ω (16)

where

Wn := [Q>n1 . . .Q
>
nM ]>

Qnm := H−nRy
m

H−n := [h1 . . .hn−1hn+1 . . .hN ]>. (17)

Problem (16) is an equality-constrained quadratic program,
which can be solved in closed form. To see this, let Ωn :=
{j : (n, j) ∈ Ω} denote the set that consists of column indices
of the known entries in the nth row of A. In addition, define
W̄n as the submatrix of W constructed by the columns of
Wn with indices not in Ωn. Use h̄n to represent the sub-
vector of hn collecting entries indexed by Ωn. One can now
re-write (16) as

min
hn

‖W̄nh̄n + εn‖22 (18)

where

εn :=
∑
j∈Ωn

wjhnj + wn (19)

with wn denoting the nth column of W that is known per
subproblem n. It is clear that for each sub-problem, the closed-
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Algorithm 1 Topology inference via joint diagonalization

Input: Rx
Ω, {yt}, M , η

S1. Tensor construction:
Set m-th frontal slice of Ry ∈ RN×N×M to
R̂y
m = 1

τm+1−τm
∑τm+1−1
t=τm

yty
>
t , m = 1, . . . ,M

S2. Tensor decomposition via joint diagonalization:
Estimate Ĥ by solving (15), (21) or (27).

S3. SEM estimates for topology inference:
Â = I− Ĥ

S4. Edge identification:

[Â]ij 6= 0 if [Â]ij > η, otherwise [Â]ij = 0, ∀(i, j)

form solution is readily obtained as

hn = −W̄†
nεn (20)

where W̄†
n := (W̄>

n W̄n)−1W̄n is the pseudo-inverse of W̄n.
Remark 1: The per-iteration core complexity of this algo-
rithm mainly comes from (20), which is of the order O(N3).
This is already at least two orders of magnitude lighter
compared to O(N4M) that was needed in CPSEM. Note that
the per-iteration complexity can be further reduced, leveraging
first-order optimization and inexact BCD—which will be
introduced in the ensuing subsections together with topology
structure-aware variants of the JD formulation.

B. Topology inference via sparse JD

To further capitalize on the JD formulation, the present
section studies the case where the network of interest exhibits
edge sparsity. Such property is pervasive in real-world net-
works where each node only has a small number of neighbors
compared with the total number of nodes in the network. It
will be shown that the novel JD-based approach can flexibly
incorporate such structural information without incurring high
computational complexity.

Unlike the previous tensor-based approach which requires
matrix inversion to recover the network topology [c.f. (9)],
factor H in the JDSEM algorithm naturally inherits the
sparsity pattern of A [cf (13)]. Therefore, if the network is
sparse, only a small subset of {hij}s will be nonzero, and
the nonzero positions correspond to the presence of an edge,
meaning aij 6= 0. Such an observation leads to the following
sparsity regularized criterion

min
H

1

2

M∑
m=1

‖HRy
mH> − Diag(HRy

mH>)‖2F + λ‖H‖1

s.t. hii = 1 ∀i, hij = −aij ∀(i, j) ∈ Ω (21)

where ‖H‖1 :=
∑
ij |hij |. Similar to (15), a BCD iteration

is applied to solve (21). Clearly, it boils down to the per-row
subproblem [cf. (17)]

min
hn

1

2
‖Wnhn‖22 + λ‖hn‖1

s.t. hnn = 1, hnj = −anj ∀j ∈ Ωn (22)

where λ > 0 is the regularization parameter, and Wn is
as in (17). The problem in (22) is convex but nonsmooth,
and several off-the-shelf convex optimization solvers can be
employed; e.g., proximal splitting such as proximal gradient
descent iterations [9], or, the alternating direction method of
multipliers (ADMM) [7], [25].

Although ADMM is a viable solution, it may involve large
matrix inversion in its updates that incurs O(N3) complexity.
Instead, the proximal gradient (PG) method is adopted here.
Specifically, by eliminating the constraints as before, (22) can
be written as the following unconstrained problem

min
h̄n

1

2
‖W̄nh̄n + εn‖22 + λ‖h̄n‖1. (23)

The PG algorithm results in the closed-form update

h̄kn =Pλ/Lf
(h̄k−1
n −∇f(h̄k−1

n )/Lf ) (24)

with Pz(.) denoting entry-wise soft thresholding given by

Pρ(z) :=
z

|z|
max(|z| − ρ, 0). (25)

With ∇f(h̄k−1
n ) denoting the gradient of the continuously

differentiable f(h̄n) := 1
2‖W̄nh̄n + εn‖22, one arrives at

∇f(h̄n) = W̄>
n (W̄nh̄n + εn) (26)

which is Lipschitz continuous with constant Lf :=
λmin(W̄>

n W̄n).
Remark 2: The PG algorithm complexity largely depends on
that for computing the gradient in (26), which no longer
requires computing a matrix inversion and incurs complexity
of O(N2M).

C. Robust sparse JDSEM

In several challenging scenarios, the local covariance ma-
trices {Rm

y } may not be jointly diagonalizable due to the
presence of outliers. This is a common challenge for real
world networks, due to adversarial nodes that generate ab-
normal signals. In social networks for instance, spammers
may be present sending out malicious emails that can be
viewed as outliers. Another example could be malfunctioning
nodes in power networks or abnormal regions of interest in
brain networks. To cope with such potential outliers, a robust
version of JDSEM (R-JDSEM) is developed in the present
subsection. The outliers present can be modeled as sparse
noise components in the matrix of second-order statistics that
cannot be jointly diagonalizable.

In order to account for the potential outliers, the `1-norm
fitting term can replace the LS one in (21), which leads to the
`1-regularized minimum absolute value minimization

min
H

M∑
m=1

‖HRy
mH> − Diag(HRy

mH>)‖1 + λ‖H‖1

s.t. hii = 1 ∀i, hij = −aij ∀(i, j) ∈ Ω (27)

and the subproblem per block hn in each BCD iteration can
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be written as

min
hn

‖Wnhn‖1 + γ‖hn‖1

s.t. hnn = 1, hnj = −anj ∀(n, j) ∈ Ω . (28)

Again, (28) is a convex and non-smooth problem that can
be solved via proximal splitting methods such as ADMM, or
BCD iterations; see Appendix A for detailed derivation. The
per-iteration computational complexity of the R-JDSEM solver
here is O(N3).

IV. IDENTIFIABILITY ANALYSIS

So far, we have seen that the directed network topology
identification task can be cast into a joint diagonalization
problem. The present section aims at providing identifiability
conditions for the proposed model, which will be analyzed
along the lines of exact JD of tensors. As usual, identifiability
of the network topology will be analyzed in the noiseless case,
where the local covariance matrix can be exactly diagonalized.
In this case, the optimal solution H = I−A satisfies that

HRy
mH> = Diag(HRy

mH>) (29)
s.t. hii = 1 ∀i, hij = −aij ∀(i, j) ∈ Ω.

To proceed, we will need a couple of definitions.
Definition 1. The Kruskal rank of a matrix Z ∈ RN×M
(denoted hereafter as kr(Z)) is the maximum number k of any
collection of k columns of Z forming a full-rank submatrix.
Definition 2. Essential uniqueness of a tensor factorization
refers to uniqueness up to scale and permutation ambiguities.
Let (U,V,W) denote the PARAFAC factors obtained by
decomposing a three-way tensor Z into K rank-one tensors.
If an alternative triplet (Ū, V̄,W̄) satisfies the PARAFAC
decomposition of Z, there must exist a permutation matrix
Π, and diagonal matrices Λ1, Λ2, Λ3, so that Λ1Λ2Λ3 = I,
Ū = UΠΛ1 , V̄ = VΠΛ2, and W̄ = WΠΛ3.

Without extra prior information, it is well known that only
essential uniqueness can be guaranteed when Rx is fully
available and kr(Rx) ≥ 2; see [31] and [17] for further details.
In the present paper, the goal is to analyze the uniqueness
in the presence of anchor nodes with known connectivity
patterns. The following result asserts how many anchor nodes
suffice to guarantee JD-based reconstruction of the topology.

Theorem 1: If xt and yt adhere to the SEM in (2), along
with (as0) and (as1), for t = 1, . . ., and if kr(Rx) ≥ 2, then
A can be uniquely identified if the nonzero entries of A are
randomly drawn from a continuous distribution, and at least
two off-diagonal nonzero entries are known a priori in each
column of A.

Proof: It has been shown in [1] that uniqueness via exact
JD can be viewed as a special case of tensor factorization, and
the Kruskal’s condition is sufficient for essential uniqueness
of the estimated factors. Hence, recalling Kruskal’s condi-
tion [17], it can be readily deduced that if the Kruskal ranks
of H and Rx satisfy

kr(Rx) + 2kr(A) ≥ 2N + 2 (30)

essential uniqueness is guaranteed, meaning Ĥ satisfies

Ĥ = HΛΠ (31)

where Π is a permutation matrix and Λ a diagonal scaling
matrix. Based on (as1) and (as2), A := (I − A)−1B is
invertible, meaning that kr(A) = N . Hence, condition (30)
is satisfied if kr(Rx) ≥ 2.

Let Nj denote the number of known entries in the jth
column of A, and let hjΩ ∈ RNj+1 represent the sub-vector
of hj formed by the a priori known entries, while ĥjΩ is the
corresponding sub-vector of ĥj . The constraints in (29) related
to the jth column can be written as

ĥjΩ = hjΩ. (32)

Upon combining (31) with (32), we arrive at

hjΩ −Hj
Ωpj = 0(Nj+1)×1 (33)

where Hj
Ω denotes the sub-matrix of H formed by the rows

corresponding to the available entries in hΩ
j , and pj ∈ RN

represents the jth column of P := ΛΠ. Since Π is a
permutation matrix, each constituent column in Π comprises
zeros with the exception of a single entry set to one. Letting
πij denote the (i, j)-th entry of Π, assume without loss of
generality that πij = 1 and πkj = 0, ∀k 6= i. Consequently,
with pj ∈ RN representing column j of P := ΠΛ, one can
equivalently write

pj = [0, . . . , 0, λiπij︸ ︷︷ ︸
entry i

, 0, . . . , 0]> (34)

where λj denotes the j-th diagonal entry of Λ3. Combining
(34) with (33), one obtains

hjΩ = λiπijh
i
Ω. (35)

For i 6= j, (35) implies that hiΩ and hjΩ are linearly dependent.
On the other hand, if Nj ≥ 1, we have that the size of hjΩ is
at least Nj + 1 ≥ 2. However, since nonzero entries of A are
drawn from a continuous distribution, any two columns of Hj

Ω

are linearly independent with probability 1, which contradicts
(35). It further holds that hjΩ 6= 0 with probability 1 for all j,
meaning λi 6= 0. Therefore, the trivial solution of Λ = 0 can
be avoided. To this end, for (35) to hold, it is necessary that
i = j, which is equivalent to requiring πjj = 1 and λj = 1.
Since this holds for any j, one deduces that

Π = I, Λ = I. (36)

Combining with (31), yields Ĥ = H, and also completes the
proof of Theorem 1.

Note that the assumption requiring that at least two entries
are known a priori per column of A can be satisfied if there
exist two anchor nodes whose in-links have been obtained,
e.g., via prior domain study. Having two anchor nodes whose
in-links are known is a mild assumption in many applications.
For example, in brain network analysis, there might be already
established connectivity patterns of some specific areas, and
thus such information can provide the needed anchor nodes.
Remark 3 (Comparison with [28]): Different from the
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identifiability results in [28], Theorem 1 here asserts that
exact identification of network structure is possible, even
when no information on the xt statistics is available, as
long as the in-links of certain nodes are known a priori.
Thus, the novel methods here offer a useful alternative to
existing approaches, in cases when one has no access to
statistics of external inputs. Also, unlike [28], it turns out
that our joint-diagonalization based method does not require
the matrix (I − A) to be invertible [c.f. (as2)], because we
directly find H = I − A. Moreover, without the need of
matrix inversion after the network identification stage, it will
be shown in Section V that the novel JD-based methods are
empirically more robust to different noise settings as well as
different data models.

V. NUMERICAL TESTS

In this section, the performance of the proposed algorithms
is tested on both synthetic and real datasets.

A. Synthetic data tests with Gaussian noise

Data generation. A Kronecker random graph comprising
N = 64 nodes was generated from a prescribed “seed matrix”

S0 :=


0 0 1 1
0 0 1 1
0 1 0 1
1 0 1 0


in order to obtain a binary-valued 64 × 64 matrix using
Kronecker product operations to find S = S0 ⊗ S0 ⊗ S0;
see also [19]. With the binary matrix S setting the positions
of zero and nonzero entries of the topology, a Kronecker
graph with adjacency matrix A was then constructed by
randomly sampling each entry from a uniform distribution
with aij ∼ Unif(0.2sij , 0.5sij). To generate endogenous
measurements, the observation horizon was set to T = ML
time slots, which were partitioned into M windows of fixed
length L, using pre-selected boundaries {τm}M+1

m=1 with τ1 = 1
and L := τm+1 − τm, for several values of L and M . Per
t ∈ [τm, τm+1 − 1], exogenous inputs were sampled as xt ∼
N (0, σ2

mI), with {σm}Mm=1 set to M distinct values. With et
sampled i.i.d. from N (0, σ2

eI), vector yt was generated using
the SEM, that is, yt = (I −A)−1(Bxt + et), where B is a
diagonal matrix with diagonal entries [B]jj drawn uniformly
from the interval [2, 3].
Test results. The performance of JDSEM is first tested ver-
sus different window lengths, and different numbers of time
segments or measurements. Figure 2 illustrates the observed
error performance in terms of NMSE := ‖A− Â‖2F /‖A‖2F
over several window lengths (L) when Na = 5 anchor
nodes are present. In addition, we test the performance when
the identifiability condition in Theorem 1 is not satisfied.
Specifically, given the generated random graphs, we randomly
select one node, and remove all edges connecting the selected
node to other nodes, except one. The NMSE performance in
this case is illustrated in Figure 3. It can be observed that,
compared with Figure 2, the NMSE obtained is slightly higher,
but not significantly so. This shows that the algorithm can
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Fig. 2: NMSE of JDSEM for different window lengths, with
Na = 5 anchor nodes.
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Fig. 3: NMSE of JDSEM for different window lengths, with
Na = 5 anchor nodes, when the graph has a single-edge node.

still provide reliable performance even if the identifiability
conditions are not satisfied—this is understandable since our
identifiability condition is sufficient but not necessary. Figure 4
depicts the NMSE performance when different numbers of
anchor nodes are available. In all three figures, there is a slowly
decreasing trend in edge estimation MSE with L increasing,
since wider window lengths yield improved estimates of the
correlation matrices per window. Meanwhile, it can be seen
that collecting a moderate number of time windows could
already lead to reliable estimation, and the performance does
not change much as the number keeps increasing (see M = 15
vs M = 20). Figure 4 also reveals a much better result when
more anchor nodes are present, which better helps resolve the
permutation and scaling ambiguities. It can also be readily
observed that reliable performance can be obtained with only
5 anchor nodes.

We further compare the proposed joint diagonalization
method with the CPSEM in [27] in terms of NMSE. Recall
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Fig. 4: NMSE plot of JDSEM for different window lengths
and numbers of anchor nodes, with M = 5 windows.
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Fig. 5: Comparison of NMSE for JDSEM with Na = 10, and
CPSEM with fully observed exogenous inputs versus different
window lengths.

that instead of introducing anchor nodes, CPSEM assumes
availability of Rx, and for this reason we will assume full
knowledge of Rx for CPSEM. One can observe from Figure
5 that CPSEM does not provide as good NMSE performance
as the JDSEM.

B. Topology identification with S-JDSEM

This subsection aims at testing the performance of sparse
JDSEM when the network structure is sparse structure, that
is, the number of neighbors is much smaller than the total
number of nodes.
Data generation. A random unweighted directed network
of size 64 was generated with 6 outgoing links per node.
The weighted adjacency matrix A was then constructed with
weights drawn i.i.d. from the normal distribution N (0, 1), and
the exogenous inputs xt and yt were generated as in the
previous experiment.
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Fig. 6: Comparison of recovery NMSE for JDSEM, S-JDSEM,
CPSEM and SEM versus window lengths, with Na = 3.
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Fig. 7: NMSE of R-JDSEM and CPSEM [28] for different
window lengths, with Na = 10 anchor nodes, σ2

e = 1.

Test results. Figure 6 illustrates the performance of S-JDSEM,
JDSEM and CPSEM in terms of recovery NMSE. It can be
readily observed that the novel JDSEM algorithms can recover
the network topology with better accuracy than CPSEM, and
the sparsity-aware S-JDSEM achieves the best performance
because it exploits sparsity in the network structure, and also
avoids matrix inversion. In addition, we compared our joint-
diagonalization based method with the conventional SEM,
where exact measurements of the nodal process are available,
and an `1-norm regularizer is introduced to promote the sparse
network connectivity, see e.g., [2], [4]. It can been seen that
using only statistical information, the S-JDSEM can afford
comparable recovery performance as SEM which has access
to the exact nodal measurements. This is possible due to the
existence of anchor nodes, and the fact that the model exploits
the information present in the second-order statistics.
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Fig. 8: NMSE of R-JDSEM and CPSEM [28] for different
window lengths, with Na = 10 anchor nodes, and σ2

e = 5.
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Fig. 9: Runtime performance with synthetic data.

C. Topology identification with R-JDSEM

In the present experiment, the performance of R-JDSEM is
tested in the presence of outlying nodes.
Data generation. A random network with N = 64 nodes was
generated from a prescribed “seed matrix,” and endogenous
variables {yt} were generated using the SEM; that is, yt =
(I−A)−1(Bxt+et), where B is an identity matrix. Vector et
is sparse with 5% of nonzero entries signifying outlier nodes,
and with values of the nonzero entries drawn from a Gaussian
distribution N (0, σ2

e) having σ2
e = 1 for Figure 7, and σ2

e = 5
for Figure 8; hence, they are comparable with the signal, and
can thus be considered to be sparse outliers.
Test results. Figures 7 and 8 compare the performance of
CPSEM, R-JDSEM, and JDSEM. Evidently, R-JDSEM is the
most reliable one, while the JD-based algorithms outperform
the CPSEM. This confirms that R-JDSEM is capable of taking
into account the presence of outliers. All in all, we have
demonstrated that the proposed JDSEM approaches can indeed
recover the true network topologies with reliable performance

even when exogenous variables are completely unknown.
In addition, Figure 9 illustrates the runtime comparison

competing alternatives. It can be observed that besides being
most efficient, the novel JD-based algorithms are more scalable
than the CPSEM in [27].

D. Tests on real stock dataset

In this section, the performance of the proposed and algo-
rithms is tested on real financial networks.
Dataset description. To conduct tests on real-world networks,
we followed the procedure in [28], where historical stock
price data were downloaded through a free Yahoo applica-
tion program interface (API). Historical closing prices were
obtained as time series for dates ranging from December 23,
2011 to September 30, 2016 (1, 200 days in total). The stock
time series from two groups of stocks were used: a) large
technology companies (Exxon-Mobil, Intel, Microsoft, Yahoo,
and General Electric), and b) online and brick-and-mortar
retailers (Bon-Ton, E-bay, Macy’s, and Nordstrom).
Test results. For this set of experiments, the combined mul-
tivariate time series was adopted as endogenous variables(
{yt}1,200

t=1

)
, after a pre-processing step in which samples

were centered to have zero mean. Furthermore, money invested
in the stocks constitutes exogenous inputs

(
{xt}1,200

t=1

)
, which

are not known in this case, since such information is generally
not public, hence Ω = ∅. Furthermore, it was observed that
most stock prices tend to exhibit steady quarterly trends (rising
or falling), and the window length was consequently set to
L ∈ {80, 100, 120, 150, 200}. The CPSEM method proposed
in [28] was run with Ω = ∅ to infer causal dependencies
between the selected stock prices. For the proposed JDSEM
algorithms, the anchor nodes were selected uniformly at ran-
dom in each experiment, of which the in-links were assumed
known (obtained from the CPSEM output).

We conducted 100 independent runs of CPSEM with ran-
dom initializations, while we randomly selected Na anchor
nodes for S-JDSEM, and R-JDSEM. It turned out that most
estimates yielded identical support for Â, with very slight
variations in actual values of the entries. The most frequent
network topologies from 100 independent experiments were
deemed as the inferred network topologies. All algorithms
reached the same estimated topologies as reported in [28];
see Figure 10. The figure shows strong dependencies in the
group of technology companies, while the second plot shows
stronger inter-dependencies between Macy’s and Nordstrom
than the others. Note that both Macy’s and Nordstrom are
well-known “brick-and-mortar” retailers and competitors. The
stronger dependence between them seems to agree with the
expectation that changes in the price of one would be expected
to indirectly impact the other, which is also consistent with the
result in [28].

The corresponding runtime of the proposed and algorithms
is depicted in Figure 11 and 12. Evidently, JDSEM and S-
JDSEM are much more scalable than CPSEM, while JDSEM
and S-JDSEM need less than 1% of that of CPSEM, which
again corroborates the effectiveness of the proposed method.
Note that the runtime comparison in Figures 11 and 12 is
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(a) (b)

Fig. 10: Visualization of network topologies inferred from the stock price time series, depicting: a) technology companies; and
b) online and “brick-and-mortar” retailers. Notice the stronger dependencies between the two competing “brick-and-mortar”
retailers, Macy’s (MCY) and Nordstrom (NDM) [28].
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Fig. 11: Runtime for technology companies involving different
window lengths (time segments), and Na = 2 anchor nodes.

clearly different from Figure 9, especially for R-JDSEM. The
main reason for the difference in the run time is that the
algorithms involve iterative procedures, and the convergence
may largely depend on the property of data. The longer
runtime of R-JDSEM in Fig 9 and 10 is likely due to the fact
that the real data does not include significant outliers, which
leads to a slower convergence rate of the R-JDSEM.

We further tested the performance of R-JDSEM in the
presence of outliers, where we randomly selected an outlier
for the retailer network, and treated the result of the CPSEM
using true data as ground truth. Figure 13 shows the NMSE
of JDSEM and R-JDSEM, corroborating that the R-JDSEM is
indeed more robust than JDSEM in presence of outliers.
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Fig. 12: Runtime for retailer companies involving different
window lengths, and Na = 2 anchor nodes.

VI. CONCLUSIONS

This paper put forth a novel framework for inferring net-
work topologies from statistics of nodal processes. The task
was formulated as a joint diagonalization problem. Novel algo-
rithms were developed and shown capable of leveraging prior
knowledge to account for edge sparsity and gain resilience
to outliers. Numerical tests on both synthetic and real data
corroborated the effectiveness of the proposed approaches.

To broaden the scope of this study, there are several in-
triguing directions to pursue: a) more scalable algorithms for
large-scale networks; b) online real-time algorithms for time-
varying networks; c) distributed implementations that are well-
motivated for large-scale networks, and d) nonlinear tensor-
based network topology inference.
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Fig. 13: NMSE for retailer companies involving different
window lengths in presence of outlier.

APPENDIX

A. ADMM solver for (28)

By applying ADMM, the non-smooth part of the objective
function, which is induced by the `1 norm can be decoupled
from the smooth part. For each subproblem in (23), introduc-
ing the auxiliary variable cn leads to

min
h̄n

‖dn‖1 + λ‖cn‖1

s.t. W̄nh̄n + εn = dn, h̄n = cn . (37)

Hence, the augmented Lagrangian of (37) can be written as

Ln(h̄n, cn,un,dn,vn) = ‖dn‖1 + λ‖cn‖1
+v>n (W̄nh̄n + εn − dn) + u>n (h̄n − cn)

+
ρ

2
‖W̄nh̄n + εn − dn‖22 +

ρ

2
‖h̄n − cn‖22 (38)

where un denotes the Lagrange multiplier, while ρ is a positive
scalar. ADMM essentially adopts alternating minimization
iterations over the variables h̄n and cn, followed by a gradient
ascent step over the multiplier un [7], [25]. During the (k+1)st
iteration, updates of the variables are given by

h̄k+1
n = arg min

h̄n

Ln(h̄n, c
k
n,u

k
n,d

k
n,v

k
n) (39a)

ck+1
n = arg min

cn

Ln(h̄k+1
n , cn,u

k
n,d

k
n,v

k
n) (39b)

dk+1
n = arg min

cn

Ln(h̄k+1
n , ck+1

n ,ukn,dn,v
k
n) (39c)

vk+1
n = vkn + ρ(W̄nh̄k+1

n + εn − dk+1
n ) (39d)

uk+1
n = ukn + ρ(h̄k+1

n − ck+1
n ). (39e)

Per step, the augmented Lagrangian is minimized w.r.t. a
specific variable, with all the rest staying fixed to their most
recent updates, until convergence is attained.

Algorithm 2 ADMM solver for (28)

Input: anj , j ∈ Ωn, {Ry
m}, current estimates of {hi}Ni=1

Initialization: h̄1
n = 0, c1

n = 0, u1
n = 0

Construct Wn and εn via (17) and (19).
for k = 1, . . . do

h̄k+1
n =

(
W̄>

n W̄n+ρI
)−1

(ρckn−uinunk−W̄>
n εn)

ck+1
n = Pλ/ρ(h̄k+1

n + ukn/ρ)
dk+1
n = P1/ρ(h̄

k+1
n + W̄nh̄n + εn + vkn/ρ)

uk+1
n = ukn + ρ(h̄k+1

n − ck+1
n )

vk+1
n = vkn + ρ(W̄nh̄k+1

n + εn − dk+1
n )

end for
[hn]j /∈Ωn

= h̄kn, hnj = −anj , j ∈ Ωn , hnn = 1.
Output: hn

Focusing on (39a) and differentiating w.r.t. h̄k+1
n yields(

W̄>
n W̄n + ρI

)
h̄n = ρckn − ukn − W̄>

n εn + W̄>
n dn

⇒ h̄k+1
n =

(
W̄>

n W̄n + ρI
)−1

(ρckn − ukn − W̄>
n εn + W̄>

n dn).
(40)

Next, the update of ck+1
n in (39b) can be cast as

ck+1
n = arg min

cn

λ‖cn‖1 +
ρ

2
‖cn − h̄k+1

n − ukn/ρ‖22 (41)

which admits the following closed-form solution

ck+1
n =Pλ/ρ(h̄k+1

n + ukn/ρ) (42)

where Pz(.) denotes the entrywise soft thresholding operator
defined as

Pλ(z) :=
z

|z|
max(|z| − λ, 0). (43)

Similarly, dn can be updated via

dk+1
n = arg min

dn

‖dn‖1 +
ρ

2
‖dn − W̄nh̄k+1

n − εn − vkn/ρ‖22
(44)

which can again be solved in closed form as

dk+1
n =P1/ρ(W̄nh̄k+1

n + εn + vkn/ρ) . (45)

Together with the gradient ascent step over the dual variables
in (39e) and (39d), Algorithm 2 summarizes the iterations
resulting from the developed ADMM solver for (28).
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