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In plasma wakefield acceleration, the witness beam’s emittance needs to be preserved when it
propagates through a plasma stage. The plasma includes density ramps at both the entrance and
the exit. Using the WKB solution of a single particle’s motion, analytical expressions for the
evolution of the beam emittance and the Twiss parameters in an arbitrary adiabatic plasma profile
are provided neglecting the acceleration of the beam inside the plasma. It is shown that the beam
emittance can be preserved under the matching condition even when the beam has an initial energy
spread. It is also shown that the emittance growth for an unmatched beam is minimized when
it is focused to the same vacuum plane for a matched beam. The emittance evolution from 3D
QuickPIC simulation results agree well with the theoretical results. In the some of the proposed
experiments on nearly completed FACET II facility, the matching condition may not be perfectly
satisfied and the wake may not be perfectly symmetric. It is shown that for a given set of beam
parameters that are consistent with FACET II capabilities, even when the assumptions of the theory
are not satisfied, the emittance growth can still be minimized by choosing the optimal focal plane.
Last, another issue that may cause emittance growth in realistic plasmas is also examined. When
using a lithium plasma source in FACET II experiments a helium buffer gas is used. The plasma is
formed from field ionization which can lead to a nonlinear focusing force when there are nonuniform
helium ions due to its high ionization potential. For an initial beam emittance of 20µm, the helium
ionization is found to be small and the witness beam’s emittance can be preserved.

I. INTRODUCTION

During the past two decades of research, a number of
impressive advances have been made in the beam-driven
Plasma Wakefield Acceleration (PWFA) concept. For
instance, experiments have shown that these wakes can
sustain accelerating gradients exceeding 50 GeV/m over
∼ meter in length [1], and the acceleration of the witness
beam in PWFA can be highly efficient while maintaining
a high acceleration gradient and small energy spread [2].
In PWFA, an ultra-relativistic electron beam (the drive
beam) is used to form a plasma wake that accelerates a
second electron beam (the witness beam) that is properly
loaded inside the wake. In the so-called blowout regime,
the drive beam density is much higher than the plasma
density. The electric field of the drive beam will expel all
the plasma electrons away and leave an ion channel (i.e.
a bubble) after it. As shown in Fig. 1, when the witness
beam is located at a proper position inside the wake, the
accelerating field can be flattened in order to preserve
the energy spread. At the back of the bubble, where the
witness beam is located, not only is there a longitudinal
electric field that provides a high acceleration gradient,
but there is also a transverse focusing force. In addi-
tion, when there is azimuthal symmetry, in these nonlin-
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FIG. 1. A snapshot of the drive and witness beam of a sample
simulation of a two bunch PWFA. A data is in the x−ξ plane
at y = 0. Both beams (blue) are propagating to the left. The
green area shows the unperturbed plasma electron density, the
white area is the uniform plasma ions (ion channel/bubble).
The red curve is the lineout of the accelerating field Ez on
the axis (in arbitrary units).

ear wakes the longitudinal electric field (the accelerating
field) does not depend on r and the transverse focusing
force is linear (proportional to r), points radially inward,
and does not depend on ξ = ct − z inside the bubble
[3]. The fact that the accelerating field does not depend
on r ensures that the beam particles will not gain addi-
tional slice energy spread when undergoing acceleration
and betatron oscillations inside the bubble. Furthermore,
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the fact that the transverse linear focusing force does not
depend on ξ ensures that the beam particles at different
longitudinal positions will oscillate at the same betatron
frequency, if they have the same energy. If one of these
properties is satisfied then the Panofsky Wenzel theorem
[4, 5] guarantees that the other is as well.

When the beam has no energy spread, its emittance is
conserved under a linear focusing force inside the sym-
metric bubble. When the beam has an energy spread,
and/or there is acceleration with imperfect beam loading
(particles at different longitudinal positions in the beam
feel a different accelerating field, Ez), the beam’s emit-
tance may increase during its propagation in the plasma.
The topic of emittance growth and preservation is very
important and is being actively studied [6–13].

Recently, expressions for emittance evolution in uni-
form plasma, both for cases when the beam does [10] or
does not have [11] longitudinal acceleration have been
published. It has also been shown that several plasma
density profiles provide exact solutions to single parti-
cle motion [10, 12], therefore the evolution of the beam’s
Twiss parameters can be calculated and used to match
the beam into a plasma. In this paper, we investigate
how the emittance grows when a beam is not matched in
an adiabatic plasma ramp. In complimentary work, R.
Ariniello et al. [13] have recently shown that if a beam
is matched to an adiabatic plasma profile, the emittance
will oscillate around its initial value with a small ampli-
tude (10−4 times the initial emittance) for a 2% energy
spread(and the amplitude of oscillations scales as σ2

γ).

In typical experiments (e.g. the FACET II experi-
ments at SLAC [14]), the plasma density profile is usually
fixed with density ramps at the entrance and the exit.
Therefore the beam parameters need to be optimized to
match the beam to the plasma. It has been shown that
if the witness beam is initially matched to the plasma,
its emittance can be preserved very well [14]. However,
if the witness beam parameters are fixed, it usually can-
not be perfectly matched to an arbitrary plasma density
ramp. In this paper, we investigate the witness beam’s
emittance evolution in this situation. We first derive an
analytical expression for the beam’s emittance evolution
in an arbitrary adiabatic plasma profile, assuming the
beam has no longitudinal acceleration. This analytical
expression can be used to predict the emittance growth
when the beam has an energy spread and is not initially
matched. This analysis is complimentary to that in [13]
where it was assumed that the beam was nearly matched
and the emittance growth was small. We also discuss
how to choose the relative focal plane by either moving
the plasma or the focal position of the beam to minimize
the emittance growth for an unmatched beam with fixed
parameters. It is found that the beam emittance growth
can be minimized when choosing the focal plane to be
the vacuum focus for a beam that was matched. Another
issue that may cause emittance growth in recently pro-
posed energy doubling of the witness beam experiment
at FACET II experiments [1] is the ionization of helium

buffer gas when using the Lithium plasma source. Ad-
ditional self-ionization [15] by the beam can modify the
focusing fields in the buffer region. In the last section,
we show that under that situation the emittance growth
is due to the nonlinear focusing force felt by the beam,
which is caused by the nonuniform helium ion density in
the plasma. The helium ionization can be minimized by
using a 20 µm initial emittance witness bunch. There-
fore such a bunch can be propagated while gaining energy
without measurable emittance growth.

II. THEORETICAL ANALYSIS OF EMITTANCE
EVOLUTION IN ARBITRARY ADIABATIC

PLASMA DENSITY PROFILE

In the blowout regime of PWFA with the assumption
of azimuthal symmetry (we will henceforth use this as-
sumption), the focusing force felt by an electron in the
witness beam is F⊥ = −meω

2
pr/2 (where me is the elec-

tron mass, ωp =
√

npe2

ε0me
is the plasma frequency, np is

the plasma density, ε0 is the vacuum permittivity, e is
the elementary charge), which is proportional to the ra-
dial distance r and independent of ξ = ct− z. Therefore
the motions of the beam particle in x and y directions
are decoupled, and we will only study the beam particle
motion in the x direction. If we assume a beam parti-
cle’s energy is a constant, the equation of motion for this
particle is

x′′(z) + kβ(z)2x(z) = 0 (1)

where z is the coordinate along the direction of propaga-

tion, kβ(z) =
ωp(z)√

2γc
, ωp(z) is the plasma frequency at po-

sition z, γ is the relativistic factor of the beam particle, c
is the speed of light. In a uniform plasma, ωp(z) is a con-
stant, so the solution to equation (1) is a simple harmonic
oscillation. With a given initial phase space distribution
for the beam, we can obtain an analytical expression for
the emittance evolution[10, 11]. For nonuniform plasma,
there is no general analytical solution to equation (1).
However, as long as the plasma density is changing adi-
abatically, i.e.,

|k′β(z)| 2π
kβ(z)

kβ(z)
� 1 (2)

or

π

kβ(z)np(z)

∣∣∣∣dnp(z)dz

∣∣∣∣� 1

we can use WKB method [16] to get an approximate so-
lution to equation (1), and calculate the emittance evo-
lution with the WKB solution.
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The WKB solution to equation (1) is:

x(z) = x(0)

√
βm(z)√
βm(0)

cos[φ(z)]

+
√
βm(z)βm(0)

[
x′(0) +

αm(0)

βm(0)
x(0)

]
sin[φ(z)]

(3)
where

βm(z) = 1/kβ(z), αm(z) = −1

2

dβm(z)

dz
(4)

are the Twiss parameters for a single particle in an adi-
abatically changing profile, and φ(z) =

∫ z
0
kβ(s)ds is the

phase advance. x(0) and x′(0) are the initial values for
the beam particle. Then the adiabatic condition (2) can
be simplified to [13]

|αm(z)| � 1 (5)

We note that if the plasma density profile is np(z) =
np0

(1+z/l)4 (where l is a constant), then equation (1) has

an exact solution [12], which is the same as its WKB
solution described in equation (3).

For brevity, we henceforth denote x(z) by x, x(0) by
xi, βm(z) by βm, βm(0) by βmi, αm(z) by αm, αm(0)
by αmi, φ(z) by φ. From (3) and its derivative, we can
obtain (

x
x′

)
= M

(
xi
x′i

)
=

(
M11 M12

M21 M22

)(
xi
x′i

)
where M is the transport matrix and

M11 =

√
βm
βmi

(cosφ+ αmi sinφ)

M12 =
√
βmβmi sinφ

M21 =
(αmi − αm) cosφ− (1 + αmiαm) sinφ√

βmβmi

M22 =

√
βmi
βm

(cosφ− αm sinφ)

The geometric emittance is defined as

ε =

√
〈x2〉 〈x′2〉 − 〈xx′〉2 (6)

where 〈〉 is the ensemble average. It then follows that
(see Appendix A for details)

〈x2〉 = 〈(M11xi +M12x
′
i)

2〉
= εiβm(A+B1C +B2S),

(7)

where:

A =
βiγmi + γiβmi − 2αiαmi

2
,

B1 =
βi
βmi
−A =

βi
βmi
− βiγmi + γiβmi − 2αiαmi

2
,

B2 =
βi
βmi

αmi − αi,

C =

∫
dφfφ(φ) cos 2φ,

S =

∫
dφfφ(φ) sin 2φ,

and εi =
√
〈x2
i 〉 〈x′i

2〉 − 〈xix′i〉
2
, βi = 〈xi2〉 /εi, γi =

〈x′i
2〉 /εi, αi = −〈xix′i〉 /εi are the beam’s initial geomet-

ric emittance and Twiss parameters, γm = (1 +α2
m)/βm,

and fφ(φ) is the distribution function for the beam par-
ticles’ phase advance. For a beam with no energy spread,

fφ(φ) = δ(φ− φ0) where φ0 =
∫ z

0
kβ(s)ds =

∫ z
0
ωp(s)√

2γc
ds.

We can also obtain

〈x′2〉 = εi

[
Aγm +

−B1 − 2B2αm +B1α
2
m

βm
C

+
−B2 + 2B1αm +B2α

2
m

βm
S
] (8)

and

〈xx′〉 = −εi[Aαm+(B1αm−B2)C+(B2αm+B1)S] (9)

Using equations (7)-(9), and noting that A, B1 and B2

satisfy B2
1 + B2

2 = A2 − 1, we can obtain an analytical
expression of emittance growth for arbitrary fφ(φ) with
small energy spread

ε =

√
〈x2〉 〈x′2〉 − 〈xx′〉2

= εi
√
A2 − (A2 − 1)(C2 + S2) (10)

Denote the average relativistic factor of the beam as γ̄.
When the relative energy spread of the beam is very small
(i.e. for every particle |∆γ| = |γ− γ̄| � γ̄), the particle’s
phase advance in the plasma φ will become φ(γ) = φ̄ −
φ̄
2γ̄∆γ, where φ̄ = φ(γ̄) (See Appendix C for details).

Assuming a Gaussian energy distribution, for the beam
particles we have:

fγ(γ) =
1√

2πσγ
exp[− (γ − γ̄)2

2σ2
γ

]

As a result, φ will also have a Gaussian distribution

fφ(φ) =
1√

2πσφ
exp[− (φ− φ̄)2

2σ2
φ

]
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where

σφ =
φ̄

2

σγ
γ̄

(11)

σγ
γ̄ is the relative energy spread of the beam. With this

Gaussian distribution of φ, we can obtain:

C = exp(−2σ2
φ) cos(2φ̄), S = exp(−2σ2

φ) sin(2φ̄) (12)

Inserting (12) into (10) and using (11), we get an an-
alytical expression of emittance growth for a beam that
has a Gaussian energy distribution with a small energy
spread:

ε

εi
= A

√
1− A2 − 1

A2
exp[−(

σγ
γ̄
φ̄)2] (13)

where
σγ
γ̄ is the energy spread, and φ̄ = 1√

2γ̄c

∫ z
0
ωp(s)ds

is the phase change of an electron with energy γ̄ after
it propagates for a longitudinal distance of z inside the
plasma. Because we assume the beam’s energy, γ̄, does
not change, then

ε

εi
=

γ̄ε

γ̄εi
≈ εn
εni

where εn = 1
mec

√
〈x2〉 〈p2

x〉 − 〈xpx〉
2

is the normalized

emittance and px is the transverse momentum of the
particle. This means the normalized emittance growth
is approximately the same as the geometric emittance
growth. Note that in order to keep the analysis tractable
we have only kept the effects of the energy spread in the
betatron phase advance and not on the amplitude of the
betatron oscillation in the elements of the transport ma-
trix. The amplitudes are functions of the local values of
the Twiss parameters while the phase is an integral in
z over 1/βm. Therefore, only the phase terms can de-
viate substantially between particles with small energy
differences. Thus, the small amplitude oscillation of the
emittance seen in Ref. [13] when a matched beam has
finite energy spread is absent here.

In Fig. 2, we compare the theoretical results from (13)
with QuickPIC [17, 18] simulation results. We choose
a plasma density profile np(z) =

np0

(1+z/l)2 , for which the

adiabatic condition is independent of z. In the simu-
lation, we turn off the longitudinal acceleration for the
beam particles (i.e. the energy of the beam particle es-
sentially does not change), and choose reasonable param-
eters to make the simulation in the blowout regime. Fig.
2(a) shows that when the beam is initially matched, the
beam’s emittance is a constant during its propagation in-
side the plasma. As shown in Fig. 2(b)(c)(d), if the beam
is not initially matched, the theoretical results based on
the WKB solution agree with the simulation result very
well.

Note that in (13), A > 1 is always true (see the Ap-
pendix B). So ε/εi 6 A. When the beam propagates in
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FIG. 2. Emittance evolution in plasma ramp: np(z) =
np0

(1+z/l)2
(l = 5, l and z are normalized to βmi). For (a)

the beam is initially matched: βi = βmi, αi = αmi = − 1
2l

=
−0.1, and the beam has a 5% energy spread. For (b) the
beam is initially unmatched: βi = 10βmi, αi = 2αmi, and
the beam has 1%, 5%, 10% initial energy spreads respectively.
For (c) the beam is initially unmatched: βi = 10βmi, αi =
2αmi, 100αmi,−100αmi respectively, and the beam has a 5%
energy spread. For (d) the beam is initially unmatched:
αi = 2αmi, βi = 5βmi, 10βmi, 20βmi respectively, and the
beam has a 5% energy spread. In (b)(c)(d), the solid lines
are from QuickPIC simulations, and the dashed lines are from
the analytical expression (13). In these three plots, the solid
black lines correspond to the same simulation result, and the
dashed black lines correspond to the same analytical expres-
sion.

the plasma for a very long distance, φ̄ will become very
large, and the beam will have a saturated emittance:

εsat
εi

= A =
βiγmi + γiβmi − 2αiαmi

2
(14)

For the special case when the plasma is uniform along
z, we have αm = αmi = 0, so γm = γmi = 1/βmi, then

A =
γiβmi + βi/βmi

2

Therefore, the emittance growth in a longitudinally uni-
form plasma will be

ε

εi
=
γiβmi + βi/βmi

2
×√

1− (γiβmi + βi/βmi)2 − 4

(γiβmi + βi/βmi)2
exp[−(

σγ
γ̄
φ̄)2]

(15)

which is mathematically equivalent to equation (7) in
[11], and similar to equation (1) in [10] (difference is due
to the different assumptions for fφ(φ)).
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We define the beam to be initially matched when

αi = αmi, βi = βmi, γi = γmi (16)

Then we have A = 1, B1 = 0, B2 = 0. Therefore, from
equations (7) - (9) and (13), we have 〈x2〉 /εi = βm,
〈x′2〉 /εi = γm, −〈xx′〉 /εi = αm and ε = εi. So β =
〈x2〉 /ε = βm, γ = 〈x′2〉 /ε = γmi, α = −〈xx′〉 /ε = αm.
Therefore, with an adiabatic plasma density profile, when
neglecting the beam’s energy change, if the beam is ini-
tially matched, the beam’s Twiss parameters along z will
be βm, γm, αm, and the beam’s geometric emittance will
not change. We can therefore interpret βm, αm defined
in (4) and γm as the matched Twiss parameters.

If the beam’s initial Twiss parameters deviate from the
matched ones, i.e.,

αi = αmi + ∆α, βi = βmi + ∆β

where |∆α| � 1 and |∆β|/βmi � 1, then

A ≈ 1 +
1

2
∆α2 +

γmi
2βmi

∆β2 − αmi
βmi

∆α∆β (17)

Inserting this into (13) gives

ε

εi
≈ 1 + (

1

2
∆α2 +

γmi
2βmi

∆β2− αmi
βmi

∆α∆β)[1− e−(
σγ
γ̄ φ̄)2

]

We can also get the expression for β from the above
equations. Inserting (12) into (7) and using (11) leads to

〈x2〉 = εiβm

{
A+

[
B1 cos(2φ̄) +B2 sin(2φ̄)

]
e−

1
2 (
σγ
γ̄ φ̄)2

}
Dividing both sides by ε and using (13) gives

β = βm
A+

[
B1 cos(2φ̄) +B2 sin(2φ̄)

]
exp[− 1

2 (
σγ
γ̄ φ̄)2]

A
√

1− A2−1
A2 exp[−(

σγ
γ̄ φ̄)2]

(18)
If there is no energy spread (σγ = 0), this equation can

be simplified

β = βm [A+B1 cos(2φ) +B2 sin(2φ)] (19)

which is similar in form to equation (11) in [13] but with
different coefficients.

III. ON MINIMIZING THE EMITTANCE
GROWTH FOR A FIXED BEAM

In the previous section, it was shown that the beam
emittance will be preserved as long as the beam satis-
fies the matching condition (equation (16)). In this case
β∗ = 1/γmi (β∗ is β when α = 0) which we define as
the matched β∗, β∗m. It was also shown how the emit-
tance grows if the beam is slightly mismatched as might
be the case if there are shot to shot variations of the
beam and/or plasma conditions. In addition, in a con-
trolled experiment that might for example be conducted

at FACET II [14], the beam emittance and optics are rel-
atively fixed so that β∗ can be assume to be fixed. How-
ever, for a given plasma profile the plasma conditions at
the plasma entrance are such that it will not be possible
to match a beam with a given β∗ (i.e. β∗ 6= β∗m). It is
therefore useful to determine the best location to focus
such a beam. This is defined to be the focal position in
vacuum (z = s) that minimizes the emittance growth for
a given beam and plasma profile, assuming the plasma
entrance is at z = 0.

Therefore,

α(s) = 0, β(s) = β∗

where β∗ is β at the focal plane. According to the evolu-
tion of Twiss parameters in a drift space [19], the beam’s
initial Twiss parameters at the plasma entrance (z = 0)
are

αi = α(0) =
s

β∗
, βi = β(0) = β∗ +

s2

β∗
, γi = γ(0) =

1

β∗

(20)
Using equation (13), we can calculate the emittance

growth using the above initial condition, and find the
optimal s defined to be when dε/ds = 0. For a fixed
plasma density profile, dε/ds = 0 reduces to dA/ds = 0,
which gives us the optimal s,

so =
αmi
γmi

(21)

This optimal s = so is actually the focal position in
vacuum for the matched beam (whose initial Twiss pa-
rameters at the plasma entrance are αmi, βmi and γmi).
In other words, by putting the unmatched beam’s fo-
cal plane at the same position as the matched beam’s
focal plane in vacuum, the unmatched beam will have
minimal emittance growth in the plasma. We can calcu-
late this minimal emittance growth by evaluating A using
the initial Twiss parameters from (20) and (21), giving
A = Ao ≡ 1

2 (β∗γmi + 1
β∗γmi

). We then insert this into

(13) to get the minimal emittance growth.
If the witness beam’s focal plane in vacuum deviates

from the the optimal position (21): s = so + ∆s, from
(20) and (21) we can obtain:

A = Ao +
γmi
2β∗

∆s2

We can see that for s = so + ∆s and s = so −∆s, the
corresponding A are the same, so according to (13), the
emittance growth are the same as well. In other words,
the emittance growth as a function of s is symmetric
about s = so.

If we assume ∆s is a small quantity, then for a fixed z
we get,

ε

εi
≈ εo
εi

+

{
1− exp[−(

σγ
γ̄
φ̄)2]

}
Ao
εo/εi

γmi
2β∗

∆s2

where εo ≡ ε(Ao) is the emittance when ∆s = 0 (or
s = so).
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This analysis also permits examining how the shot to
shot variance of the plasma density at the entrance of
the profile affects the emittance growth (essentially A),
assuming the beam profile and the position of the plasma
entrance (β∗ and s) are fixed. From equation (14) and
the relation γmi = (1 + α2

mi)/βmi, we have

A =
βi(1 + α2

mi)/βmi + γiβmi − 2αiαmi
2

Since we assume the beam profile and the position of the
plasma entrance are fixed, from equation (20) we know
αi, βi, γi are fixed. The shot to shot changes to the
plasma profile lead to the variances of αmi and βmi, which
leads to the first order variance of A:

δA1 =
∂A

∂αmi
δαmi +

∂A

∂βmi
δβmi

= (
βi
βmi

αmi − αi)δαmi +
1

2
(γi − γmi

βi
βmi

)δβmi

(22)
Especially, we can see that at the matching point, the
variance of αmi and βmi will not cause the variance of A
to the first order. The second order variation of A is

δA2 =
1

2
δα2

mi +
γmi
2βmi

δβ2
mi −

αmi
βmi

δαmiδβmi

which is consistent with equation (17). Essentially, vari-
ations can arise from either the plasma profile or beam
profile at the plasma entrance.

Next we carry out some QuickPIC simulations using
plasma and beam parameters that are close to the ones
in the proposed FACET II experiment, while satisfying
all the theoretical assumptions (adiabatic plasma pro-
file, azimuthal symmetry in plasma wake, etc). We turn
off the longitudinal push in the simulation so that the
beam has no longitudinal acceleration. The plasma den-
sity profile we use is shown in Fig. 3(b). This profile
is the region between 5 cm and 75 cm of the full profile
(Fig. 3(a)). The adiabatic condition (|αm| < 1) is now
satisfied throughout the entire profile. At the entrance
and exit |αm|= 0.24 and 0.56 respectively. In addition,
αmi = 0.24, βmi = 0.0194 m for the simulation. The
theory could be easily modified to include a matching
section [10] or a perturbative section as in [13]. We use
a non-evolving symmetric drive beam to create a well
formed ion bubble, and the witness beam is the same
as the one in FACET II (See Table I and II). Fig. 4
shows the simulation results and the good agreement be-
tween the simulations and the theory. It also shows that
the expression for emittance growth in a uniform plasma
(equation (15)) cannot describe the emittance growth in
an adiabatic plasma precisely.
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FIG. 3. Plasma density profile. The green dashed line is
the entrance of the plasma, and the red dashed line is the
position of the witness beam’s focal plane in vacuum. The
beams propagate to the right in the plot. (a) The FACET II
plasma density profile. (b) The profile used for the simulation
results in Fig. 4. Only the region between 5 cm and 75 cm of
the profile in (a) is used. In this region the adiabatic condition
is always satisfied.

-15 -10 -5 0 5 10 15

s− so (cm)

1

1.5

2

2.5

3

3.5

4

ǫ n
f
/ǫ

n
i

Analytical expression

QuickPIC simulation

(a)

0 20 40 60 80

z (cm)

1

2

3

4

ǫ n
(z
)/
ǫ n

i
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FIG. 4. Witness beam’s emittance growth for different focal
planes, s, in the adiabatic plasma in Fig. 3(b). (a) The ratio
of final emittance (at the plasma exit) to the initial emittance
(at the plasma entrance) for different cases. (b) The evolution
of εn inside the plasma for 4 different cases, corresponding to
the 4 orange spots for s−so ≤ 0 in (a). The solid lines are from
QuickPIC simulations, the dashed lines are from expression
(13), and the dotted lines are from expression (15).
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IV. EMITTANCE EVOLUTION IN
PREFORMED PLASMA USING FACET II

PARAMETERS

Table I shows a possible set of beams parameters for
the two-bunch FACET II experiments.

Energy(GeV) Q(nC) σz(µm) εnx(µm) εny (µm)

Drive 10 1.6 6.4 3.4 3.0

Witness 10 0.5 5.0 3.15 3.15

TABLE I. Possible beam parameters for two-bunch PWFA
experiment at FACET II

αx αy βx(m) βy(m)

Drive Beam 59 12 127 27

Witness Beam 40 40 80 80

TABLE II. The Twiss parameters of both beams at the exit
of the final focusing magnet.

Both beams are tri-Gaussian with nb =

N

(2π)
3
2
e
− x2

2σ2
x e
− y2

2σ2
y e
− z2

2σ2
z . The σz is the rms pulse

length for the beam, and εnx and εny are the normalized
emittance in x, y directions respectively. The distance
between the drive and witness beam is 150 µm. The
initial relative rms energy spread for both beams is
0.25%. Table II shows the Twiss parameters for both
beams at the exit of the final focusing magnet. Note
that in this setup the drive beam is asymmetric and
the witness beam is symmetric, so the wake felt by the
witness beam is not azimuthally symmetric.

The plasma density profile in the simulation is shown
in the Fig. 3(a), which is close to the plasma density
profile of the lithium source used in the FACET II ex-
periment. The peak plasma density is 3.5× 1016cm−3,
which is chosen to ensure that the witness beam is lo-
cated inside the bubble wake at a position that flattens
the accelerating field (as shown in Fig. 1).

With such a plasma density profile, the initial matched
Twiss parameters for the witness beam at the plasma
entrance are:

αmi = 0.916, βmi = 0.068m (23)

These parameters are not calculated directly from (4) at
z = 0 because the plasma near the entrance does not
satisfy the adiabatic condition (5). Instead, they are ob-
tained by neglecting any energy spread, and integrating
the following equation (See appendix D for derivation)
for β,

1

2
β(z)β′′(z)−1

4
β′(z)2+β(z)2kβ(z)2 = 1 , α(z) = −1

2
β′(z)

(24)

from the flat-topped region of the plasma back to the
entrance of the plasma with initial Twiss parameters β =√

2γ̄ c
ωp

, α = 0 (where ωp is the plasma frequency for

the flat-topped plasma) [14]. According to the matched
parameters given in (23), the optimal s for the plasma
density profile can be calculated from (21), s = so =
3.39 cm. Fig. 5 shows the evolution of β for the real
witness beam when its focal plane in vacuum is located at
a different s = so+∆s. The solid red line is the case if the

z (cm)
0 5 10 15 20 25 30

β
(m

)

0

0.02

0.04

0.06

0.08

0.1

0.12

plasma density profile
matched
matched in vacuum
s = so = 3.39 cm
s = 0
s = 5 cm

FIG. 5. The evolution of β for the witness beam for different
s from numerical calculation. The plasma density profile is in
arbitrary units.

witness beam was initially matched to the plasma profile.
We can see that for a matched beam β evolves smoothly
and stays constant in the uniform plasma region while
for an unmatched beam the beam’s β will oscillate.

Next, we run QuickPIC simulations in which we vary
s but with the same beams as described in Table I and
II. This time we turn on the longitudinal push in the
simulation so the witness beam is gaining energy. Fig.
6(a) shows the normalized emittance growth at the exit
of the plasma when the witness beam’s focal plane in
vacuum is located at s = -10, -5, 0, 3.39, 5, 10, 15, 20
cm (note that negative s means the focal plane of the
witness beam is outside the plasma). We can clearly see
that the optimal s for minimizing the emittance growth is
at s = 3.39 cm. This illustrates that experiments can be
performed at FACET II that provide easily measurable
differences in the emittance growth as the focal point is
changed.

We note that the different emittance growth in x and y
directions is caused by the asymmetry of the drive beam,
which excites asymmetric wakefields that have different
linear focusing forces in x and y directions [20]. We note
that even though the plasma and the beam parameters
used in these simulations don’t satisfy the assumptions
we made in the previous sections (the drive beam is asym-
metric and the plasma near the entrance and the exit is
not adiabatic), (21) still appears to predict the optimal
focal position of the witness beam very well, although
the initial matched Twiss parameters αmi, βmi are cal-
culated in a different way. Fig. 6(b) shows the evolution
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(b)

FIG. 6. The normalized emittance growth of the witness beam
for different s. (a) The ratio of final emittance (at the plasma
exit) to the initial emittance (at the plasma entrance) for
different cases. (b) The evolution of εnx inside the plasma for
different cases, corresponding to the blue line in (a).

of witness beam’s εnx along z. We can see that when s
= 3.39 cm, εnx is almost preserved although the beam is
not initially matched.

V. EMITTANCE EVOLUTION IN LITHIUM
PLASMA WITH HELIUM BUFFER GAS

In FACET II experiments, lithium will be one of the
choices for the plasma source. The hot lithium vapor will
be confined and cooled at each end by the helium buffer
gas [1, 2]. The plasma is generated by the intense electric
field of the drive/witness beams when they pass through
and ionize the lithium vapor. In the previous section, we
simulated the beams evolving in a preformed and radi-
ally uniform plasma. In this section, we use QuickPIC
to simulate the emittance evolution when the plasma is
self-formed by field ionization of a neutral gas from the
intense electric field of the drive and witness beams. Fig.
7 shows the profile for the lithium gas and the helium

buffer gas in our simulation.
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n
(c
m

−
3
)

×10
16
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2.5

3

3.5

Li
He

FIG. 7. Helium and lithium gas density profile. The red
dashed line is the position of the witness beam’s focal plane:
z = 3.39 cm

The blue line in Fig. 7 is the lithium gas density, which
is the same as the profile shown in Fig. 3(a) in the previ-
ous section. There are two linear helium ramps (orange
line in Fig. 7) at the entrance and exit of the lithium
gas. The beam parameters are the same as described in
the previous section, and we choose the optimal value
s = 3.39 cm for the witness beam’s focal position in
vacuum. Fig. 8(a) shows the witness beam’s emittance
evolution inside the plasma. We can see that in the be-
ginning and the end of the simulation, emittance growth
occurs. In the middle of the lithium region where there
is no helium, the emittance essentially stays the same.
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FIG. 8. The evolution of normalized emittance of the witness
beam: (a) We use the same parameters as we used in the
preformed plasma simulation in the previous section: Drive
beam: εnx = 3.4 µm, εny = 3.0 µm, witness beam: εnx =
εny = 3.15 µm. (b) We increase the initial emittance for both
beams to 20 µm (in both x and y directions).

The reason for the large emittance growth is that the
beams can ionize the helium buffer gas which results in
a nonlinear focusing force inside the bubble. Fig. 9(a)
shows the helium ion density snapshot when the beams
propagate for 1 cm in the plasma. The drive beam’s
center is located at ξ = −5.27, and the witness beam’s
center is located at ξ = 0. Both beams are propagating
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from right to left. The drive beam enters the plasma with
a larger spot size than the witness beam, so it can only
ionize a part of the neutral helium while the witness beam
can ionize most of the neutral helium around it. Fig.
9(b) shows the focusing fields felt by the witness beam
at different ξ at the same propagation distance as Fig.
9(a). The focusing fields felt by the witness beam is no
longer linear when helium is ionized by itself. Therefore,
the witness beam has a large emittance growth in the
region where the helium gas is ionized. In the region
where there is only lithium, the witness beam will still
feel a linear focusing force and its emittance only grows
because the witness beam is no longer matched in the
uniform region of lithium plasma, which causes a much
smaller growth than that from the region where helium
gas exists.

x
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 ω

p
)

2
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ξ = ct - z (c / ω p)
0-1-2-3-4-5-6
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F x
(m

cω
p/e

)

ξ= −0.35 (−2σz)
ξ= −0.18 (−σz)
ξ=0
ξ=0.18 (σz)
ξ=0.35 (2σz)
Initial witness beam density
Initial drive beam density

(b)

FIG. 9. (a) Helium ion charge density. The grey area is the
helium ions produced by the drive beam, and the red area is
the helium ions produced by the witness beam. (b) The Fx

transverse lineouts at different longitudinal positions, ξ, and
the initial beam density profiles (in arbitrary units).

In order to avoid the emittance growth in the lithium
plasma source, we can increase the initial emittances for
both the drive beam and witness beam. In Fig. 8(b),
we show the QuickPIC simulation results when using
an initial beam emittance of 20 µm while keeping the
other parameters the same as the simulation shown in
Fig. 8(a). When the initial beam emittance becomes
larger, the initial spot sizes of both beams will increase,
and the Coulomb field around the beam will become
smaller. Therefore, when the beams pass through the
helium buffer gas, the neutral helium is weakly ionized.
However, the lithium can still be ionized and form the
plasma wake because lithium has a lower ionization en-
ergy than helium. When there is no helium ionization,
the focusing force felt by the witness beam is linear, and
its emittance barely grows, as shown in Fig. 8(b). The
small emittance growth at the exit of the plasma in Fig.
8(b) is still caused by the helium ionization because the
witness beam enters into the exit ramp of helium with a
smaller spot size compared to its initial spot size at the
entrance of the plasma.

VI. CONCLUSION

We have used theory and QuickPIC simulations to ex-
amine the evolution of the emittance and the Twiss pa-
rameters of particle beams in plasmas whose density is
changing adiabatically. We use the WKB solution for
each particle and assume the energy of each particle in
the beam does not change to obtain an analytical ex-
pression for the beam’s emittance evolution in an ar-
bitrary adiabatic plasma density profile in a nonlinear
PWFA. When the beam has no initial energy spread, its
emittance will remain a constant in the azimuthally sym-
metric blowout regime. When there is an initial energy
spread, the beam’s emittance can be preserved as long as
its initial Twiss parameters are matched to the density
profile of the plasma ramp. We also use this expres-
sion to analyze the emittance growth when the position
of the witness beam’s focal plane in vacuum is changed
while keeping the beam parameters and the plasma den-
sity profile fixed. When the beam cannot be matched, the
emittance growth can be minimized by focusing the un-
matched beam to the same vacuum focal plane position
as the matched beam. We used QuickPIC simulations
for possible FACET II beam parameters to show that
the emittance can indeed be preserved very well when
we choose the focal plane position to be the same as for
a matched beam, even when the assumptions of symmet-
ric blowout and adiabatic density evolution for the entire
plasma region are not satisfied. For other focal plane po-
sitions, the witness beam’s emittance is larger at the exit
of the plasma.

In addition, we also examined through simulations the
effect of additional self-ionization of the buffer gas by the
drive beam. At FACET II a lithium gas is confined by a
helium buffer gas. When the drive and/or witness beam
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emittance is small (around 3 µm), they can be focused
to small enough spot sizes so that they can ionize the
helium buffer gas. This will lead to the focusing fields
felt by the witness beam to be strongly nonlinear. We
find that this can potentially lead to the witness beam’s
emittance growing by a factor of 3 and 5 in the x and
y planes respectively for sample FACET II parameters.
The different growth in x and y directions is caused by
the asymmetry of the drive beam forming an asymmetric
plasma wake. By using an initial emittance of 20 µm,
the helium buffer gas is weakly ionized and the witness
beam’s emittance can be preserved very well.

Appendix A: Calculation of beam moment 〈x2〉

In this appendix we provide details on calculating the
second moment of the beam, i.e., the square of the spot-
size.

〈x2〉 =

∫
x2f(x, x′)dxdx′

=

∫
x2fi(xi, x

′
i)dxidx

′
i

=

∫
(M11xi +M12x

′
i)

2fi(xi, x
′
i)dxidx

′
i

where f(x, x′) is the distribution function at z and fi is
the initial distribution function. From the Vlasov equa-
tion we have f(x, x′) = fi(xi, x

′
i), and dxdx′ = dxidx

′
i

because det(M) = 1.
The last step above is correct only if all the particles

have the same energy. However, since different parti-
cles have different energy γ, their corresponding trans-
port matrices M are different. In order to calculate the
above integral with an energy spread in the beam, we
assume the main difference in M is the phase advance φ.
Even though the βm, αm in M are different (because of
different γ), we assume them to be the same for all the
particles and use γ = γ̄ (γ̄ is the mean energy among all
the particles), while claiming the main difference is in φ
due to different energy γ. After the beam propagates for
a distance z, we denote the distribution of the phase ad-
vance φ as fφ(φ) (with the normalization

∫
fφ(φ)dφ = 1).

So:

〈x2〉 =

∫∫∫
(M11xi +M12x

′
i)

2f(xi, x
′
i)fφ(φ)dxidx

′
idφ

= 〈x2
i 〉
∫
dφfφ(φ)M2

11 + 〈x′2i 〉
∫
dφfφ(φ)M2

12

+ 〈xix′i〉
∫
dφfφ(φ)2M11M12

= εi

[
βi

∫
dφfφ(φ)M2

11 + γi

∫
dφfφ(φ)M2

12

− αi
∫
dφfφ(φ)2M11M12

]
(A1)

where

∫
dφfφ(φ)M2

11

=
βm
βmi

∫
dφfφ(φ)(cosφ+ αmi sinφ)2

=
1

2

βm
βmi

[(1 + C) + α2
mi(1− C) + 2αmiS]

=
1

2

βm
βmi

[βmiγmi + (1− α2
mi)C + 2αmiS]

∫
dφfφ(φ)M2

12

= βmβmi

∫
dφfφ(φ) sin2 φ

=
1

2
βmβmi(1− C)

∫
dφfφ(φ)2M11M12

= βm

∫
dφfφ(φ)(2 cosφ sinφ+ 2αmi sin2 φ)

= βm[S + αmi(1− C)]

(A2)

and where

C =

∫
dφfφ(φ) cos 2φ, S =

∫
dφfφ(φ) sin 2φ (A3)

Finally, we obtain:

〈x2〉 = εiβm

[βiγmi + γiβmi − 2αiαmi
2

+ (
βi
βmi
− βiγmi + γiβmi + 2αiαmi

2
)C

+ (
βi
βmi

αmi − αi)S
] (A4)

We can define:

A =
βiγmi + γiβmi − 2αiαmi

2

B1 =
βi
βmi
−A =

βi
βmi
− βiγmi + γiβmi − 2αiαmi

2

B2 =
βi
βmi

αmi − αi
(A5)

Leading to:

〈x2〉 = εiβm(A+B1C +B2S) (A6)
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Appendix B: Proof of A > 1

A =
βiγmi + γiβmi − 2αiαmi

2

>
2
√
βiγmiγiβmi − 2αiαmi

2

=
√

(1 + α2
i )(1 + α2

mi)− αiαmi

=
√

1 + α2
i + α2

mi + α2
iα

2
mi − αiαmi

>
√

1 + 2αiαmi + α2
iα

2
mi − αiαmi

= |1 + αiαmi| − αiαmi
> 1

(B1)

Appendix C

In this appendix we derive the first order correction to
the phase advance due to variation of the energy of the
particle. We begin with the definition for the phase

φ =

∫ z

0

ωp(s)√
2γc

ds

Due to the variation of γ, the variation of φ is

∆φ = ∆

∫ z

0

ωp(s)√
2γc

ds

=

∫ z

0

∆(
ωp(s)√

2γc
)ds

=

∫ z

0

−1

2
(
ωp(s)√
2γ

3
2 c

)∆γds

= −∆γ

2γ

∫ z

0

ωp(s)√
2γc

ds

= − φ

2γ
∆γ

(C1)

So the difference between the phase advance of a particle
with energy γ and the phase advance of a particle with

the average energy γ̄ is

φ(γ)− φ(γ̄) = −φ(γ̄)

2γ̄
∆γ (C2)

and

φ(γ) = φ̄− φ̄

2γ̄
∆γ (C3)

Appendix D: Differential equation for β

In this appendix, we offer a derivation of equation (24)
in the text. We start from the definition of the beam’s
spot size:

σx =
√
〈x2〉

Taking derivatives with respect to z provide:

σ′x =
〈xx′〉
σx

σ′′x =
〈x2〉 〈x′2〉 − 〈xx′〉2

σ3
x

+
〈xx′′〉
σx

Using the definition of geometric emittance (6) and the
equation of motion (1), leads to:

σ′′x =
ε2

σ3
x

− k2
βσx

If we assume the beam has no energy spread, then under
a linear focusing force, the beam’s normalized emittance
εn is a constant, so ε = εn/γ is also a constant. Finally,

if we use the definition of β: β =
σ2
x

ε , we obtain

1

2
ββ′′ − 1

4
β′2 + β2k2

β = 1
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