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Abstract—We study the joint low-rank factorization of the

matrices X=[A B]G and Y=[A C]H, in which the columns of

the shared factor matrix A correspond to vectorized rank-one

matrices, the unshared factors B and C have full column rank,

and the matrices G and H have full row rank. The objective

is to find the shared factor A, given only X and Y. We first

explain that if the matrix [A B C] has full column rank, then a

basis for the column space of the shared factor matrix A can be

obtained from the null space of the matrix [X Y]. This in turn

implies that the problem of finding the shared factor matrix A

boils down to a basic Canonical Polyadic Decomposition (CPD)

problem that in many cases can directly be solved by means of

an eigenvalue decomposition. Next, we explain that by taking the

rank-one constraint of the columns of the shared factor matrix A

into account when computing the null space of the matrix [X Y],

more relaxed identifiability conditions can be obtained that do

not require that [A B C] has full column rank. The benefit of the

unconstrained null approach is that it leads to simple algorithms

while the benefit of the rank-one constrained null space approach

is that it leads to relaxed identifiability conditions. Finally, a joint

unbalanced orthogonal Procrustes and CPD fitting approach for

computing the shared factor matrix A from noisy observation

matrices X and Y will briefly be discussed.

Index Terms—Coupled decompositions, canonical polyadic de-

composition (CPD), joint low-rank tensor factorizations, joint

unbalanced orthogonal Procrustes and CPD fitting, joint dimen-

sionality reduction and CPD fitting.

I. INTRODUCTION

The decomposition of a tensor into a sum of rank-one
components, known as the Canonical Polyadic Decomposition
(CPD), has found many applications in signal processing and
machine learning; see [1] and references therein. We have
now entered into an era where data is everywhere. This fact
combined with advances in sensor and network technologies
have made data fusion and multimodal data analytics important
research areas across science and engineering. Coupled CPD
models for a set of tensors, in which the rank-one components
of the individual tensors are coupled, have been considered for
data fusion and multimodal data analytics in signal processing
and machine learning. We mention applications in multistatic
MIMO radar [2], in joint blind source separation [3], and
more recently in the context of high-dimensional statistical
modeling [4]. A limitation of the coupled CPD approach is
that the coupled rank-one components of the individual tensors
are assumed to be shared across the collection of decomposed

tensors (the meaning of shared and unshared components will
be made clear in Section II). In practice, not all the rank-one
components of the individual tensors may be shared. Joint
tensor factorization models with shared and unshared rank-one
components have received little attention in the literature. To
the best of our knowledge, only an identifiability result for the
basic coupled matrix-tensor factorization model [5] has been
reported in [6]. In contrast to the tensor case, joint factorization
of matrices with shared and unshared components have a long
history. A classical example is Canonical Correlation Analysis
(CCA) and its variants; see [7] and references therein.

In this paper we first provide in Section II a model for
joint low-rank tensor factorizations with shared and unshared
components. Based on this modeling framework, in Section III
we will present identifiability conditions and algorithms for the
recovery of the shared components. The results will explain
that by taking into account (i) that the shared components lie
in a common subspace and (ii) that the shared components are
rank-one structured, more relaxed recovery conditions can be
obtained compared to results that do not consider both of the
mentioned properties. Before diving into the details, a brief
review of the CPD is provided next.

A. Canonical Polyadic Decomposition (CPD)

Consider the CPD of the tensor X 2 CI⇥J⇥K :

X =
RX

r=1

ar � br � cr =
RX

r=1

H
(r) � cr, (1)

where R denotes the rank of X , A = [a1, . . . , aR] 2 CI⇥R,
B = [b1, . . . , bR] 2 CJ⇥R, C = [c1, . . . , cR] 2 CK⇥R are the
CPD factor matrices of X and ’�’ denotes the outer product,
e.g., (ar � br � cr)ijk = airbjrckr. Note that H

(r) = arb
T

r
is

a rank-1 matrix. This fact will be exploited in Section III-B.
We will consider the following matrix representation of (1):

X = (A � B)C
T 2 CIJ⇥K , (2)

where ’�’ denotes the Khatri–Rao (columnwise Kronecker)
product and ’(·)T ’ denotes the transpose. The rows of X

correspond to the mode-3 fibers {xij •} of X , defined as
(xij •)ijk = xijk.

A key feature of the CPD that will be used in Section III
is that it is unique under mild conditions, i.e., A, B and C are



unique (up to intrinsic column scaling and permutation ambi-
guities); see [1], [8]–[12] and references therein. In this paper
we will make use of the relatively easy to check sufficient
uniqueness condition stated in Theorem 1 below. It makes use
of the matrix C2 (A) � C2 (B), in which C2 (A) 2 CC

2
I⇥C

2
R

denotes the second-order compound matrix containing the
determinants of all 2⇥ 2 submatrices of A, arranged with the
submatrix index sets in lexicographic order [10], and where
C2

I
= 1

2I(I � 1) and C2
R

= 1
2R(R � 1) denote binomial

coefficients. (Similarly for C2 (B) 2 CC
2
J⇥C

2
R .)

Theorem 1: Consider the CPD of the tensor X 2 CI⇥J⇥K

in (1). If(
C has full column rank,
C2 (A)� C2 (B) has full column rank,

(3)

then the CPD of X is unique [8]–[11]. Generically, condition
(3) is satisfied if C2

R
 C2

I
C2

J
and R  K [9], [13].

II. JOINT LOW-RANK FACTORIZATIONS WITH SHARED AND
UNSHARED COMPONENTS

In this paper we are interested in joint low-rank factor-
izations involving R1 shared components and R2,1 + R2,2

unshared components:(
X

(1) = M
(1,1)

C
(1,1)T + M

(2,1)
C

(2,1)T 2 CIJ⇥K1 ,

X
(2) = M

(1,1)
C

(1,2)T + M
(2,2)

C
(2,2)T 2 CIJ⇥K2 ,

(4)

where the columns of the shared factor matrix M
(1,1) 2

CIJ⇥R1 are vectorized rank-1 matrices:
M

(1,1) = A � B 2 CIJ⇥R1 , A 2 CI⇥R1 , B 2 CJ⇥R1 , (5)

and where the unshared factor matrices M
(2,1) 2 CIJ⇥R2,1

and M
(2,2) 2 CIJ⇥R2,2 are not necessarily structured. We

also assume that the matrices
C

(1) = [C(1,1),C
(2,1)] 2 CK1⇥(R1+R2,1),

C
(2) = [C(1,2),C

(2,2)] 2 CK2⇥(R1+R2,2),

have full column rank, where C
(1,1) 2 CK1⇥R1 , C

(2,1) 2
CK1⇥R2,1 , C

(1,2) 2 CK1⇥R1 and C
(2,2) 2 CK2⇥R2,2 . W.l.o.g.

we can now assume that C
(1) and C

(2) are nonsingular (K1 =
R1+R2,1 and K2 = R1+R2,2). We say that the components
associated with M

(1,1) are shared between X
(1) and X

(2)

while the components associated with M
(2,1) and M

(2,2) are
unshared. Note that when there are no unshared components
(R2,1 = R2,2 = 0), then the joint low-rank factorization (4)
reduces to a CPD of [X(1), X

(2)] = (A�B)[C(1,1)T ,C
(1,2)T ]

(cf. Eq. (2)). The goal is now to find the shared factor
M

(1,1) = A � B, given only X
(1) and X

(2). Solutions to this
problem will be discussed in Section III.

III. IDENTIFIABILITY CONDITIONS AND COMPUTATION OF
SHARED COMPONENTS M

(1,1)

In this section we will demonstrate that by exploiting both
the common subspace structure range(M(1,1)) between X

(1)

and X
(2) and the rank-one structures in M

(1,1), relaxed identi-
fiability conditions for the shared components M

(1,1) = A�B

can be obtained. We also briefly discuss algorithms for the
computation of the shared factors A and B.

A. Exploiting common subspace structure

Two-channel factor analysis for detection of unknown cell-
edge users in communication systems via CCA have been
proposed in [14]. A related approach for finding range(M(1,1))
will now be presented. More precisely, we first obtain an
identifiability condition for the shared components M

(1,1)

that exploits the shared subspace range(M(1,1)
C

(1,1)T ) =
range(M(1,1)

C
(1,2)T ) between X

(1) and X
(2), where 0range(·)0

denotes the range of a matrix. More precisely, we will con-
sider the subspace ker([X(1),X

(2)]), where 0ker(·)0 denotes
the kernel of a matrix. Note that the minimal dimension of
ker([X(1),X

(2)]) is R1. Indeed, let e
(I)
i

2 CI denote a unit vec-
tor with unit entry at the ith position and zeros elsewhere. Then
for any column m

(1,1)
r of M

(1,1) 2 CIJ⇥R1 we can obviously
find a vector nr = [(C(1)T )�1

e
(K1)
r ,�(C(2)T )�1

e
(K2)
r ]T 2

C(2R1+R2,1+R2,2), 1  r  R1, such that [X(1),X
(2)]nr =

m
(1,1)
r � m

(1,1)
r = 0. The assumption that the dimension of

ker([X(1),X
(2)]) is minimal (i.e., R1) implies that

ker([X(1),X
(2)]) = range

⇣h
Q

(1)

Q
(2)

i⌘
, (6)

where Q
(1) 2 C(R1+R2,1)⇥R1 and Q

(2) 2 C(R1+R2,2)⇥R1 are
matrices with property range(X(1)

Q
(1)) = range(X(2)

Q
(2)) =

range(M(1,1)). In words, the column space of M
(1,1)

can be obtained via the null space of [X(1),X
(2)]. Note

that in general, we only have that range
�h

Q
(1)

Q
(2)

i�
✓

ker([X(1),X
(2)]). However, it is not hard to see that if the

matrix [M(1,1),M
(2,1),M

(2,2)] 2 CIJ⇥(R1+R2,1+R2,2) has
full column rank, then R1 is also the maximal dimension
of ker([X(1),X

(2)]), i.e., if [M(1,1),M
(2,1),M

(2,2)] has full
column rank, then relation (6) holds. In detail, consider a
vector n 2 ker([X(1),X

(2)]) with partitioning n = [n1, n2]T 2
C(2R1+R2,1+R2,2) in which n1 2 C(R1+R2,1) and n2 2
C(R1+R1,2). Using this partitioning, relation [X(1),X

(2)]n = 0

can be written as

[M(1,1),M
(2,1),M

(2,2)]

2

4
C

(1,1)T
n1 � C

(1,2)T
n2

C
(2,1)T

n1

C
(2,2)T

n2

3

5 = 0.

(7)

The full column rank assumption on [M(1,1),M
(2,1),M

(2,2)]
implies that (7) reduces to

2

4
C

(1,1)T
n1 � C

(1,2)T
n2

C
(2,1)T

n1

C
(2,2)T

n2

3

5 = 0. (8)

Note that range(M(1)) = range(M(1)
C

(1)T ) and
range(M(2)) = range(M(2)

C
(2)T ). In other words, we

are only interested in the involved subspaces. Consequently,
we can w.l.o.g. make use of change-of-basis transforms
such that M

(1)
C

(1)T = (M(1)
C

(1)T ) · ((C(1)T )�1
C

(1)T )
and M

(2)
C

(2)T = (M(2)
C

(2)T ) · ((C(2)T )�1
C

(2)T ). Let
Im 2 Cm⇥m denote the identity matrix. Then this implies
that we can set C

(1) = [C(1,1),C
(2,1)] = IR1+R2,1 and

C
(2) = [C(1,2),C

(2,2)] = IR1+R2,2 in relation (8):



2

4
n11 � n22

n12

n22

3

5 = 0, (9)

where n1 = [nT

11, n
T

21]
T 2 C(R1+R2,1) with n11 2 CR1 and

n21 2 CR2,1 and n2 = [nT

12, n
T

22]
T 2 C(R1+R2,2) with n12 2

CR1 and n22 2 CR2,2 . Clearly, condition (9) is only satisfied
when n12 = 0, n22 = 0 and for any n11 = n22 2 CR1 . The
latter property implies that there exists at most R1 linearly
independent vectors in ker([X(1),X

(2)]). We can now conclude
that if [M(1,1),M

(2,1),M
(2,2)] has full column rank, then the

subspace ker([X(1),X
(2)]) is indeed R1-dimensional and that

relation (6) holds. Let us summarize the common subspace
identifiability condition in Lemma 1 below.

Lemma 1: Consider the matrix [X(1),X
(2)] 2 CIJ⇥(K1+K2),

in which X
(1) 2 CIJ⇥K1 and X

(2) 2 CIJ⇥K2 are given by
(4). If(

[M(1,1),M
(2,1),M

(2,2)] has full column rank,

C
(1) and C

(2) have full column rank,
(10)

then ker([X(1),X
(2)]) = range

�h
Q

(1)

Q
(2)

i�
, where Q

(1)

and Q
(2) are matrices with property range(X(1)

Q
(1)) =

range(X(2)
Q

(2)) = range(M(1,1)). Generically, the conditions
in (10) hold if R1 +R2,1 +R2,2  IJ , R1 +R2,1  K1 and
R1 +R2,2  K2.

Note that when the Khatri–Rao structure of M
(1,1) = A�B

is ignored, then it is clear from (7) that the full column rank
condition (10) is also necessary. In Section III-B we will
demonstrate that when the Khatri–Rao structure M

(1,1) =
A � B is taken into account, the full column rank condition
on [M(1,1),M

(2,1),M
(2,2)] can be relaxed without sacrificing

the uniqueness of the shared components M
(1,1) = A � B.

An important practical implication of (6) is that a basis for
range(M(1,1)) can be obtained from it. More precisely, since
range(X(1)

Q
(1)) = range(X(2)

Q
(2)) = range(M(1,1)), there

exists a nonsingular change-of-basis matrix F 2 CR1⇥R1 such
that we obtain Y 2 CIJ⇥R1 with factorizations

Y := X
(1)

Q
(1) = �X

(2)
Q

(2) = M
(1,1)

F
T = (A � B)FT .

(11)
Clearly, relation (11) corresponds to a matrix representation
of the CPD of a tensor

Y =
RX

r=1

ar � br � fr 2 CI⇥J⇥R1 . (12)

Since the factor matrix F has full column rank, the combina-
tion of Lemma 1 and Theorem 1 yields a uniqueness condition
for the shared CPD factors A and B. We summarize the result
as Theorem 2 below.

Theorem 2: Consider the joint low-rank factorization of
X

(1) 2 CIJ⇥K1 and X
(2) 2 CIJ⇥K2 in (4) with R1 shared

components and R2,1 +R2,2 unshared components. If
8
><

>:

[M(1,1),M
(2,1),M

(2,2)] has full column rank,

C
(1) and C

(2) have full column rank,
C2(A)� C2(B) has full column rank,

(13)

then the shared factor matrices A and B are unique. Gener-
ically, condition (13) holds if R1 + R2,1 + R2,2  IJ ,
R1 +R2,1  K1, R1 +R2,2  K2 and C2

R1
 C2

I
C2

J
.

An interesting property of Theorem 2 is that it admits
a constructive interpretation. In short, if condition (13) is
satisfied, then the CPD of Y given by (12), and obtained
via ker([X(1),X

(2)]) as earlier explained, can be computed by
means of an EigenValue Decomposition (EVD) [1], [9], [12].

B. Exploiting both common subspace and rank-one structures
We will now exploit both the common subspace structure

range(M(1,1)) and the rank-one structures between and within
X

(1) and X
(2). This means that we are now looking for a pair

of vectors v 2 C(R1+R1,2) and w 2 C(R1+R2,2) with properties

X
(1)

v � X
(2)

w = 0, (14)

X
(1)

v = a ⌦ b, (15)

X
(2)

w = a ⌦ b, (16)

where ’⌦’ denotes the Kronecker product. Note that relation
(14) takes the common subspace structure of range(M(1,1))
and the rank-one structure between X

(1) and X
(2) into account.

Likewise, relations (15) and (16) take the rank-one structures
within X

(1) and X
(2) into account. In the next sections we

explain how to combine all of the mentioned structures.
1) Exploiting common subspace structure range(M(1,1)):

Using (14), the common subspace structure range(M(1,1)) can
be exploited. In Section III-B5 it will become clear that it is
more convenient to work with the equivalent expressions

(IR1+R2,1 ⌦ X
(1))(v ⌦ v)� (IR1+R2,1 ⌦ X

(2))(v ⌦ w) = 0,
(17)

(IR1+R2,2 ⌦ X
(1))(w ⌦ v)� (IR1+R2,2 ⌦ X

(2))(w ⌦ w) = 0.
(18)

2) Exploiting rank-one structure between X(1) and X(2):
Using (14), we can also exploit the rank-one structure between
X

(1) and X
(2). For ease of presentation, we use the following

notation for the rank-one terms in (4):
H

(r) = ar � br = arb
T

r
2 CI⇥J , r 2 {1, . . . , R1}. (19)

The rank-one constraint implies that�����
h(r)
i1j1

h(r)
i1j2

h(r)
i2j2

h(r)
i2j2

����� = h(r)
i1j1

h(r)
i2j2

� h(r)
i2j2

h(r)
i1j2

= 0, (20)

where 1  i1 < i2  I and 1  j1 < j2  J . The
combination of (14) and (20) yields�����

(e(I)
i1

⌦ e
(J)
j1

)T X
(1)

v (e(I)
i1

⌦ e
(J)
j2

)T X
(2)

w

(e(I)
i2

⌦ e
(J)
j1

)T X
(1)

v (e(I)
i2

⌦ e
(J)
j2

)T X
(2)

w

�����

= q
(n,1,2) (v ⌦ w) = 0, (21)

where q
(n,1,2) = ((e(I)

i1
⌦e

(J)
j1

)T X
(1))⌦((e(I)

i2
⌦e

(J)
j2

)T X
(2))�

((e(I)
i2

⌦ e
(J)
j1

)T X
(1))⌦ ((e(I)

i1
⌦ e

(J)
j2

)T X
(2)), in which the su-

perscript ’n’ in the row-vector q
(n,1,2) 2 C1⇥(2R1+R2,1+R2,2)

2

takes all the subscripts i1, i2, j1 and j2 into account. Through-
out this section the variables L = 2R1 + R2,1 + R2,2 and
N = C2

I
C2

J
will be used. Stacking yields



Q
(N,1,2) (v ⌦ w) = 0, (22)

where Q
(N,1,2) = [q(1,1,2)T , . . . , q

(N,1,2)T ]T 2 CN⇥L
2

. In
Section III-B5 it will become clear that it is more convenient
to also consider the following combination of (14) and (20):�����

(e(I)
i1

⌦ e
(J)
j1

)T X
(2)

w (e(I)
i1

⌦ e
(J)
j2

)T X
(1)

v

(e(I)
i2

⌦ e
(J)
j1

)T X
(2)

w (e(I)
i2

⌦ e
(J)
j2

)T X
(1)

v

�����

= q
(n,2,1) (w ⌦ v) = 0, (23)

where q
(n,2,1) = ((e(I)

i1
⌦e

(J)
j1

)T X
(2))⌦((e(I)

i2
⌦e

(J)
j2

)T X
(1))�

((e(I)
i2

⌦ e
(J)
j1

)T X
(2)) ⌦ ((e(I)

i1
⌦ e

(J)
j2

)T X
(1)), in which the

superscript ’n’ in the row-vector q
(n,2,1) 2 C1⇥L

2

takes all
the subscripts i1, i2, j1 and j2 into account. Stacking yields

Q
(N,2,1) (w ⌦ v) = 0, (24)

where Q
(N,2,1) = [q(1,2,1)T , . . . , q

(N,2,1)T ]T 2 CN⇥L
2

.
3) Exploiting rank-one structure within X(1): The combi-

nation of (15) and (20) yields�����
(e(I)

i1
⌦ e

(J)
j1

)T X
(1)

v (e(I)
i1

⌦ e
(J)
j2

)T X
(1)

v

(e(I)
i2

⌦ e
(J)
j1

)T X
(1)

v (e(I)
i2

⌦ e
(J)
j2

)T X
(1)

v

�����

= q
(n,1,1) (v ⌦ v) = 0, (25)

where q
(n,1,1) = ((e(I)

i1
⌦ e

(J)
j1

)T X
(1))⌦ ((e(I)

i2
⌦ e

(J)
j2

)T X
(1))

� ((e(I)
i2

⌦ e
(J)
j1

)T X
(1))⌦ ((e(I)

i1
⌦ e

(J)
j2

)T X
(1)), and the super-

script ’n’ in the row-vector q
(n,1,1) 2 C1⇥(R1+R2,1)

2

takes all
the subscripts i1, i2, j1 and j2 into account. Stacking yields

Q
(N,1,1) (v ⌦ v) = 0, (26)

where Q
(N,1,1) = [q(1,1,1)T , . . . , q

(N,1,1)T ]T 2CN⇥(R1+R2,1)
2

.
4) Exploiting rank-one structure within X(2): As before,

the combination of (16) and (20) yields�����
(e(I)

i1
⌦ e

(J)
j1

)T X
(2)

w (e(I)
i1

⌦ e
(J)
j2

)T X
(2)

w

(e(I)
i2

⌦ e
(J)
j1

)T X
(2)

w (e(I)
i2

⌦ e
(J)
j2

)T X
(2)

w

�����

= q
(n,2,2) (w ⌦ w) = 0, (27)

where q
(n,2,2) = ((e(I)

i1
⌦ e

(J)
j1

)T X
(2))⌦ ((e(I)

i2
⌦ e

(J)
j2

)T X
(2))

� ((e(I)
i2

⌦ e
(J)
j1

)T X
(2))⌦ ((e(I)

i1
⌦ e

(J)
j2

)T X
(2)), and the super-

script ’n’ in the row-vector q
(n,2,2) 2 C1⇥(R1+R2,2)

2

takes all
the subscripts i1, i2, j1 and j2 into account. Stacking yields

Q
(N,2,2) (w ⌦ w) = 0, (28)

where Q
(N,2,2) = [q(1,2,2)T , . . . , q

(N,2,2)T ]T 2CN⇥(R1+R2,2)
2

.
5) Combination of common subspace and rank-one struc-

tures: The combination of the common subspace structures
(17) and (18) and the rank-one structures (22), (24), (26) and
(28) yields

G
(tot) ([ v

w ]⌦ [ v

w ]) = 0, (29)

where G
(tot) 2 CNtot⇥L

2

is given by

G
(tot) =

2

66666664

⇥
(IR1+R2,1 ⌦ X

(1)),�(IR1+R2,1 ⌦ X
(2)), 0

⇤
⇧⇧⇧1⇥

(IR1+R2,2 ⌦ X
(1)),�(IR1+R2,2 ⌦ X

(2)), 0
⇤
⇧⇧⇧2⇥

Q
(N,1,1), 0

⇤
⇧⇧⇧3⇥

Q
(N,1,2), 0

⇤
⇧⇧⇧4⇥

Q
(N,2,2), 0

⇤
⇧⇧⇧5⇥

Q
(N,2,1), 0

⇤
⇧⇧⇧6

3

77777775

,

(30)

in which Ntot = LIJ +4N , {⇧⇧⇧n} denote appropriate column
permutation matrices and {0} denote zero matrices of con-
formable sizes. Let SL denote the C2

L
-dimensional subspace

of vectorized (L ⇥ L) symmetric matrices. From (29) it is
clear that if the dimension of the subspace ker(G(tot)) \ SL

is minimal (i.e., R1), then V and W can be obtained from it.
In more detail, let the columns of R 2 CL

2⇥R1 form a basis
for ker(G(tot)) \ SL, then there exists a nonsingular change-
of-basis matrix F 2 CR1⇥R1 such that

R = (
⇥

V

W

⇤
�
⇥

V

W

⇤
)FT . (31)

Clearly, (31) corresponds to a third-order tensor

R =
R1X

r=1

[ vr
wr ] � [

vr
wr ] � fr 2 CL⇥L⇥R1 , (32)

whose CPD is unique. We summarize the result as Theorem
3 below.

Theorem 3: Consider the joint low-rank factorization of
X

(1) 2 CIJ⇥K1 and X
(2) 2 CIJ⇥K2 in (4) with R1 shared

components and R2,1 +R2,2 unshared components. If
(

C
(1) and C

(2) have full column rank,

ker(G(tot)) \ SL is an R1-dimensional subspace,
(33)

then the shared shared factor matrices A and B are unique.
Theorem 3 can be understood as a version of Theorem 1 for

joint low-rank factorizations with shared and unshared com-
ponents in which we are interested in the shared components.
Note that condition (33) in Theorem 3 is only sufficient and
it can be improved upon by the use of tensorization methods
[12].

A nice property of Theorem 3 is that it leads to relaxed iden-
tifiability conditions. We will now consider an example that
demonstrates that improved identifiability conditions can be
obtained by simultaneously exploiting the common subspace
structure range(M(1,1)) and the rank-one structures between
and within X

(1) and X
(2). In Table I we report upper bounds

on R1 + R2,1 + R2,2 as a function of I = J when R1 = 10
and conditions (13) and (33) are used. By inspection of the
table it is clear that improved identifiability conditions can
be obtained by simultaneously exploiting (i) the common
subspace structure range(M(1,1)), (ii) the rank-one structure
between X

(1) and X
(2) and (iii) the rank-one structures within

X
(1) and X

(2). Note also that when the Khatri–Rao structure
of M

(1,1) is taken into account, the uniqueness of A and B

can be guaranteed, despite the fact that [M(1,1),M
(2,1),M

(2,2)]
does not have full column rank.

I = J 5 6 7 8
condition (13) 25 36 49 64
condition (33) 29 47 68 93

TABLE I
AN UPPER BOUND ON R1 +R2,1 +R2,2 AS A FUNCTION OF I = J WHEN

R1 = 10 AND CONDITIONS (13) AND (33) ARE USED.

Another interesting property of Theorem 3 is that it admits
a constructive interpretation. In short, if condition (32) is
satisfied, then V and W can be obtained via the CPD of R



given by (32). which in turn can be computed by means of
an EVD [1], [9], [12]. Once V and W have been computed,
A and B can be obtained via (15) and (16). (Due to space
limitations, further details are deferred to a journal version.)
C. A joint unbalanced orthogonal Procrustes and CPD fitting
approach (joint dimensionality reduction and CPD fitting)

In practice, the decomposition (4) is rarely exact. For
this reason, we will now briefly discuss an optimization-
based approach for computing the shared factors A and B

from noisy observation matrices X
(1) and X

(2). Consider the
matrix

⇥
V

W

⇤
in (31) and whose columns have the properties

(14)–(16). Let ZF
�T =

⇥
V

W

⇤
denote the factorization in

which Z 2 C(2R1+R2,1+R2,2)⇥R1 is columnwise orthonormal
(ZH

Z = IR1 ) and F 2 CR1⇥R1 is nonsingular. As an
alternative to (4) we propose to compute A and B via

f(Z,A,B,F) =

����


X
(1)

0

0 �X
(2)

�
Z �


A � B

A � B

�
F
T

����
2

F

, (34)

where k·k
F

denotes the Frobenius norm. Observe that if we fix
A, B and F, then the problem of minimizing (34) corresponds
to an Unbalanced Orthogonal Procrustes (UOP) problem [15].
Likewise, if we fix Z, then (34) basically corresponds to a
CPD fitting problem. Hence, the problem of minimizing (34)
can be interpreted as a joint UOP and CPD fitting problem.
This can also be understood as a joint dimensionality reduction
and CPD fitting approach for computing A and B.

Let us end the section with an illustrative example. Consider
(4) with I = J = 7, K1 = R1 + R2,1, K2 = R1 + R2,2,
R2,1 = R2,2 = 5 and varying R1. The goal is to estimate
A and B from Y

(n) = X
(n) + N

(n), n 2 {1, 2}, where
N

(n) is an unstructured perturbation matrix. In each trial of
the Monte Carlo experiment, the involved factor and noise
perturbation matrices are randomly drawn from a Gaussian
distribution with zero mean and unit variance. As a perfor-
mance measure we use the distance between A and its esti-
mate, bA. The distance is measured according to the criterion:
P (A) = min⇧⇧⇧⇤⇤⇤

���A � bA⇧⇧⇧⇤⇤⇤
���
F

/ kAk
F

, where ⇧⇧⇧ and ⇤⇤⇤ denote
a permutation matrix and a diagonal matrix, respectively. We
compare the joint UOP and CPD fitting approach1 with the two
algebraic EVD-based methods associated with Theorems 2 and
3. The mean P (A) over 50 Monte Carlo runs in which R1 = 5
or R1 = 10 are shown in Figure 1. A gain in performance is
observed when the perturbation noise is taken into account.

IV. CONCLUSION

We first presented identifiability conditions for joint low-
rank factorizations with shared and unshared components. In
particular, we showed that by jointly exploiting the common
subspace and low-rank structures of the shared components,
more relaxed identifiability conditions can be obtained. Next,

1Numerically, we minimize (34) by means of an alternating optimization
method that alternates between the updates of A, B, F and Z. For the updates
of A, B and F standard conditional least squares updates are used. For the
update of Z a column-by-column based updating approach is used in which
the spherical constraint kzrkF = 1 is first relaxed and then imposed in a
subsequent projection step.
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Fig. 1. (Left) Mean P (A) values over 50 Monte Carlo runs when R1 = 5.
(Right) Mean P (A) values over 50 Monte Carlo runs when R1 = 10.

we also briefly explained that in the noiseless case, the shared
components can be computed by means of an EVD. Finally, a
joint UOP and CPD fitting approach for computing the shared
components in the noisy case was proposed.
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