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Abstract—We consider the problem of robust self-localization
of underwater robots with no GPS assistance and no availability
of global clock synchronization. In particular, we consider self-
localization of autonomous underwater vehicles that are equipped
with a triangular hydrophone acoustic array and leverage time-
domain coded beacons from two single-hydrophone acoustic
nodes that are placed at known locations. Collected data snap-
shots over time at the hydrophone array are organized in
a tensor data structure. Highly robust iteratively refined L1-
norm space-time tensor subspaces that are calculated at the
underwater acoustic array receiver allow accurate estimation
of the azimuth and elevation angles-of-arrival and codes of the
two beacons. The relative position of the vehicle with respect
to the two beacons can then be estimated via triangulation.
Simulation studies over statistically modeled underwater acoustic
communication channels verify that the proposed beacon-assisted
localization technique offers superior positioning accuracy than
state-of-the-art methods that rely on L2-norm based MUltiple-
SIgnal-Classification (MUSIC) estimation of the angles-of-arrival
and codes of the beacons.

I. INTRODUCTION

Autonomous underwater vehicles (AUVs) have attracted
considerable attention for both military, scientific and indus-
trial applications including deep-sea oceanographic exploration
[1], scientific sampling [2], subsea search-and-rescue [3], re-
connaissance operations [4], pollution monitoring and aqua-
farming [5]. An important challenge in the deployment of
AUVs is self-localization of the underwater vehicle that cannot
access GPS satellite links. Self-localization of AUVs relatively
to known location GPS-assisted surface buoys or other vehicles
in swarm deployment can help the vehicle navigate in the
unknown deep-sea environment, reliably communicate and
network with other vehicles and stamp collected sensor data
with a spatial reference.

GPS-free localization schemes proposed for terrestrial ra-
dio networks involve intensive message exchanges, and there-
fore are not suitable for the low-bandwidth, high-latency
underwater acoustic (UW-A) channel. Existing state-of-the-art
approaches for undersea localization and tracking of AUVs
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either consider expensive inertial sensors [6], geophysical-
based [7], or acoustic communication techniques [8]. Acoustic-
based localization techniques rely on angle or distance mea-
surements between wirelessly communicating nodes that are
collected by received-signal-strength (RSS), time-of-arrival
(ToA), time-of-flight (ToF), time-difference-of-arrival (TDoA),
and angle-of-arrival (AoA) techniques. For example, long base-
line (LBL) and Ultra-Short Base-Line (USBL) involve acoustic
transponders that are used as reference nodes for underwater
localization and navigation. Both LBL and USBL employ
TDoA techniques between time-synchronized transponders [9].
Localization costs incurred by the complex deployment and
clock synchronization requirements of distributed transpon-
ders are addressed by the range-only single-beacon (ROSB)
method in [10], [11]. The ROSB method is based on tracking
underwater targets/assets by controlling the maneuvers of an
underwater vehicle. The vehicle periodically performs slant
range measurements using the ToF of messages exchanged
with underwater targets/assets [12]. The above localization
techniques offer good accuracy under nominal operation condi-
tions. However, their performance significantly degrades in the
presence of outlier measurements due to intermittent environ-
mental disturbances, and hardware and/or channel impairments
(such as channel path variations, impulsive noise sources, and
faulty measurements).

Sonar-based localization techniques utilize seabed images
generated from measuring the intensity of sonar reflected
signals. Features extracted from these images are then used
for data association in simultaneous-localization-and-mapping
(SLAM) methods [13]. Most SLAM-based techniques rely on
filtering algorithms such as extended Kalman filtering (EKF)
and particle filtering (PF) [14] to address linearization errors
and reduce computational cost. In [15] the smooth variable
structure filter method is introduced to solve the SLAM prob-
lem. The proposed method is proven to be robust to modeling
errors and uncertainties by utilizing existing subspace infor-
mation and a smoothing layer to keep the location estimates
bounded within a region of the true state trajectory.

Direction-of-arrival (DoA)-guided localization methods
typically utilize subspace-based parameter estimation tech-
niques based on L2-norm or L1-norm principal-component
analysis (PCA) [16]. In [17] a particle filter is used for
DoA estimation of an acoustic source. Existing approaches
for subspace-based parameter estimation [16], [18] rely on
organization of the collected data snapshots at the receiver
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array in matrices by means of the stacking operation. Matrix
representation clearly does not account for the grid structure
that is inherent in the wireless channel data recordings. A more
natural approach to store and manipulate multidimensional
data is given by tensors. In this paper, we show that the
tensor representation allows us to fully exploit the structure
of underwater acoustic space-time coded data as these arrive
at the input of an acoustic array. More specifically, we consider
the deployment of an autonomous underwater vehicle that is
equipped with an equilateral triangular hydrophone acoustic
array. The AUV can robustly self-localize in 3D by accurately
estimating the codes and azimuth and elevation angles-of-
arrival of the transmitted beacons from two reference nodes.
The beacons are single-hydrophone acoustic nodes that are
deployed in known locations and transmit time-domain coded
signals in a spread-spectrum fashion. Orthogonal codes of
length L enable simultaneous beacon transmissions in fre-
quency and time. We consider that all transmitted beacons
propagate over UW-A multipath fading channels. The received
beacons at the input of the hydrophone array are then organized
in a tensor structure. We show, for the first time, that under-
water acoustic DoA estimation through L1 norm space-time
tensor subspaces significantly outperforms both L2-norm PCA-
based tensor and matrix processing methods, thus offering
superior underwater positioning accuracy. Simulation studies
are conducted over multipath and Doppler spread channels that
are generated by an UW-A channel simulator [19].

II. SYSTEM MODEL

We consider underwater acoustic transmissions from K
asynchronous single-hydrophone UW-A beacons over single-
input multiple-output (SIMO) frequency-selective fading chan-
nels with M resolvable paths as depicted in Fig. 1. The
transmitted signal of the k-th acoustic beacon is written as

xk(t) =
√

Ek

∑

n

bk[n]sk(t− nT )ej(2πfct+φk) (1)

where φk is the carrier phase, fc is the carrier center acoustic
frequency and the n-th symbol for the k-th user bk[n] is
drawn from a complex constellation C of energy Ek > 0,
and modulated by an all-spectrum digital waveform sk(t) that
is given by

sk(t) =
L−1∑

l=0

dk[l]gTc
(t− lTc) (2)

where dk ∈
{
± 1√

L

}L

is a binary code of length L, and gTc
(·)

is a square-root raised cosine (SRRC) pulse with roll-off factor
α and duration Tc, so that T = LTc. The bandwidth of the
k-th transmitted signal is B = (1 + α)/Tc.

We assume that transmitted signals propagate over inde-
pendent time-varying frequency-selective UW-A channels with
M resolvable paths, with ak,m(t) and τk,m(t) denoting the
m-th path’s time-varying amplitude coefficient and path delay
for the k-th user, respectively. For mathematical tractability,
we assume that τk,m(t) can be approximated by a first-order
polynomial τk,m(t) = τk,m − βk,mt, where βk,m = uk,m/c,
uk,m is the radial velocity of the m-th path and c is the speed

Fig. 1. System setup of K = 2 single-hydrophone underwater acoustic
beacons and a triangular hydrophone acoustic array receiver.

of sound in water. After multipath fading channel “processing”,
the received signal at the input of an equilateral triangular array
with 3 elements is given by

y(t) =
K−1∑

k=0

M−1∑

m=0

a (φk, θk) am(t)xk(t(1 + βm)− τm) + n(t)

(3)
where a (φk, θk) ∈ C

3 is the hydrophone array response vector
for the k-th beacon defined as

a(φ, θ) = exp

{
j2π

1

λc

PTk(φ, θ)

}
∈ C

3×1 (4)

where λc is the carrier wavelength, the matrix P contains the
hydrophone array element values

P =

[
x1 x2 . . . xD

y1 y2 . . . yD
z1 z2 . . . zD

]
∈ R

3×3 (5)

and the vector k(φ, θ) represents the projection of the received
signal’s steering vector on the hydrophone array coordinate
system defined as

k(φ, θ) =

[
cos(θ) sin(φ)
cos(θ) cos(φ)

sin(θ)

]
∈ R

3×1. (6)

The carrier demodulated and pulse-matched filtered re-
ceived signal vector after sampling over the symbol duration
and buffering LM = L + M − 1 samples, the n-th received
space-code data snapshot is written as

Yn =
K∑

k=1

√
Ekbk [n]a(φk, θk) (Hkdk)

T
+Jn+Nn ∈ C

3×LM

(7)
where Hk ∈ C

LM×L is the multipath channel matrix for the
k-th beacon, which is assumed to be invariant over channel co-
herence time Tcoh. We assume the same fading and multipath
fading across all the array elements for each beacon. Colored
interference by J[n] ∈ C

3×LM models colored interference at
the input of the hydrophone array, and [N[n]]i,j is an additive
noise component.

Ambient noise in the underwater acoustic channel is
frequency-dependent and produced by sources such as turbu-
lence, wave action, ship traffic, and thermal noise from random
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motion of water molecules [20]. The power spectral density of
ambient UW-A noise can be approximated as1

NAVG(f) = 50− 18 log(f) dB re μPa/Hz (8)

for frequency f in kHz [21].

By defining the power-scaled signature
matrix S = [s1, . . . , sK ] ∈ R

LM×K , where
sk =

√
PkHkdk, the rank-3 steering matrix

A = [a (φ1, θ1) , . . . ,a (φK , θK)] ∈ C
3×K , and a diagonal

matrix B [n] = diag ([b1 [n] , b2 [n] , . . . , bK [n]]), the n-th
received data snapshot matrix in (7) can be expressed in the
following matrix form

Yn = ABnS
T +Jn+Nn ∈ C

3×LM , n = 1, 2, . . . , N. (9)

We observe that the received matrices can be viewed as slices
of an 3 × LM × N three-way tensor Y ∈ C

3×LM×N . Our
goal is to utilize the tensor structure of our data in order to
accurately estimate the angles of arrival, as well as identify
the waveforms the beacons are using.

III. DIRECTION-OF-ARRIVAL ESTIMATION THROUGH

L1-NORM SPACE-TIME TENSOR SUBSPACES

A. Preliminaries

We begin our algorithmic developments by defining the
real-valued representation A ∈ R

2m×2n of any complex-
valued matrix A ∈ C

m×n by concatenating real and imaginary
parts as follows

A =

[
Re {A} , − Im {A}
Im {A} , Re {A}

]
∈ R

2m×2n (10)

where Re {·} and Im {·} return the real and imaginary part
of each matrix element, respectively. The transition from A ∈
C

m×n to A ∈ R
2m×2n is based on what is commonly referred

to as complex-number realification in representation theory.
Realification allows for any complex system of equations to
be converted and solved through a real system.

B. DoA Estimation and Beacon Identification

By (10), we define the n-th “realified” snapshot Yn as

Yn = ABn S
T
+Nn ∈ R

6×2LM , n = 1, 2, . . . , N. (11)

With the realification operation, we convert our complex tensor
Y ∈ C

3×LM×N to a real-valued tensor Y ∈ R
6×2LM×N .

From (11), we notice that the angle components of interest
lie in the R1 ≥ 2K dimensional space SA = span

(
A
)
, while

the code components of interest lie in the 2K dimensional
space SD = span

(
S
)
. The following propositions highlight

the utility of SA and SD for estimating the target directions of
arrival (DoA’s) and code sequences in A and D, respectively.

Proposition 1. For any pair (φ, θ) ∈
(
−π

2 ,
π
2

]
,

span (a (φ, θ)) ⊆ SA if and only if (φ, θ) ∈ A. Set
equality holds only if K = 1.

1The term re µPa denotes with reference to the intensity of a plane wave
with RMS pressure of 1 µPa. Unless otherwise specified, this reference is
considered to be at a distance of 1 m from the sound source.
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Fig. 2. Relative magnitude and time delay of channel paths over time for the
link between the first beacon node (300 m), and the hydrophone array. Labels
denote the direct (D) path, surface reflection (S), bottom reflection (B), and
the bottom-surface (B-S) and surface-bottom (S-B) reflections which should
arrive approximately simultaneously.
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Fig. 3. Relative magnitude and time delay of channel paths over time for
the link between the second beacon node (500 m), and the hydrophone array.

By proposition 1, we can accurately decide whether some
pair (φ, θ) ∈

(
−π

2 ,
π
2

]
is a target DoA or not by means of any

orthonormal basis Q1 ∈ R
6×2K that spans SA as

(
I6 −Q1Q

T
1

)
a (φ, θ) = 06×2 ⇔ (φ, θ) ∈ A. (12)

Thus, in view of proposition 1, and in accordance to
common practice, target DoAs in A can be approximated
by the K highest peaks of the MUSIC-like pseudo-spectrum
defined as

PA (φ, θ) =
∥∥(I6 −Q1Q

T
1

)
a (φ, θ)

∥∥−2
(13)

The same holds for the waveform estimation problem, as
stated in the following proposition.

Proposition 2. For any d ∈
{
± 1√

L

}L

, span
(
d
)
⊆ SD if and

only if d ∈ D. Set equality holds only if K = 1.

By proposition 2, the target sequences can be estimated by
any R2 ≥ 6 dimensional orthonormal basis Q2 ∈ R

2LM×2K

that spans SD as
(
I6 −Q2Q

T
2

)
d = 06×2 ⇔ d ∈ D. (14)
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Fig. 4. Azimuth and elevation pseudo-spectra for L1-norm [26] (Left) and
L2-norm tensor decompositions [22] (Right) before the estimation of the the
beacon nodes’ codes.

And the corresponding pseudo-spectrum is

PD

(
d
)
=

∥∥(I2LM
−Q2Q

T
2

)
d
∥∥−2

. (15)

Peaks in the two pseudo-spectra in (13) and (15) identify
DoAs and waveform sequences without uniquely associating
angles and sequences. In order to have this correspondence,
we create all possible DoA pairs and waveform sequence
candidates as

z (φ, θ,d) = a (φ, θ)⊗ d ∈ C
3LM×1. (16)

Then, we calculate the K principle components, Qsc, of the
space-code matrix Ysc = [vec (Y1) , . . . , vec (YN )] by means
of SVD. We utilize the following pseudo-spectrum to find
the peaks corresponding to the exact DoAs and waveform
sequence associations

PSC (z) =
∥∥(I3LM

−QscQ
H
sc

)
z
∥∥−2

. (17)

C. L2-norm Tensor Subspaces

Following the TUCKER tensor model, the L2-norm tensor
subspace estimation problem for a 3-dimensional tensor X ∈
R

D×L×N can be written as(
Q̂1, Q̂2, Q̂3

)
= argmax
U∈R

D×R1 ,QT

1
Q1=IR1

,

Q2∈R
L×R2 ,QT

2
Q2=IR2

,

Q3∈R
N×R3 ,QT

3
Q3=IR3

∥∥QT
1 X(1) (Q2 ⊗Q3)

∥∥2
F

(18)
where ‖·‖F returns the summation of the absolute squares of

the input matrix elements, and X(1) ∈ C
D×LN denotes the

matricization of the tensor X ∈ C
D×L×N with respect to the

columns. The most popular algorithm for calculating the tensor
subspaces is the TUCKER-Alternating Least Squares (ALS);
the main idea behind this method is to solve for one factor
matrix at a time by fixing the rest. In that way, each subproblem
is reduced to a linear least-squares problem solved by singular
value decomposition. A detailed presentation of TUCKER, and
the respective solvers is offered in [22] and [23]–[25].

D. Iteratively Refined L1-norm Tensor Subspaces

L2-norm matrix and tensor decompositions are susceptible
to corrupted, highly deviating, irregular measurements in the
received signal record, such as impulsive noise. A promising
approach to PCA and TUCKER with increased robustness
to outliers is L1-norm based tensor decompositions [26],

Fig. 5. Azimuth and elevation pseudo-spectra for L1-norm [26] (Left) and
L2-norm tensor decompositions [22] (Right) of beacon 1.

Fig. 6. Azimuth and elevation pseudo-spectra for L1-norm [26] (Left) and
L2-norm [22] tensor decompositions (Right) of beacon 2.

[27]. The tensor subspaces are continuously refined by of
calculating the conformity of each received signal element with
respect to the rest. The calculated tensor subspaces indicate
unprecedented subspace estimation performance and resistance
to intermittent disturbances.

IV. PERFORMANCE EVALUATION

We evaluate the performance of the proposed DoA esti-
mation scheme in terms of root-mean-squared error (RMSE).
The performance of the DoA estimation scheme is compared
to state-of-the-art matrix and tensor L2-norm based DoA
estimation techniques. We consider two beacons transmitting
time-domain coded waveforms to a triangular hydrophone
array receiver. Simulations are carried out using time-varying
channel realizations, generated by an UW-A channel simulator
[19] that follows the statistical model in [28]. As depicted in
Fig. 1, we consider two beacons deployed in a 20 m deep
UW-A channel. The beacons are fixed at 9 m and 12 m, above
the seabed, and positioned 500 m and 300 m away from the
hydrophone array receiver. The receiver array is fixed at 5 m
above the seabed. From this geometry, propagation paths and
delays are calculated for each beacon. Channel variations that
account for effects such as surface scattering are introduced
to the simulation studies, while ambient noise is generated
according to (8).

In our simulations, the coherence time of small-scale chan-
nel variations is set to 1 s. The channel gains for the simulated
UW-A channel are depicted in Fig. 2 and Fig. 3 as a function
of induced time delay. We consider frame transmissions of
binary phase-shift keying (BPSK) symbols. The beacons utilize
Hadamard codes of length L = 4 for their transmissions at
frequency fc = 5 KHz using bandwidth B = 1 KHz and
roll-off factor α = 0.6.
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Fig. 7. Root-mean-squared-error (RMSE) of the proposed DoA estimation
method after beacon identification (for the first beacon node, 300 m) vs. state-
of-the-art tensor and matrix processing techniques.

Fig. 4 depicts the pseudo-spectra of the elevation and
azimuth angles-of-arrival calculated according to (13) prior to
utilizing each beacon’s code to identify the beacon of interest.
It is clear that L1-norm tensor analysis offers superior DoA
estimation performance compared to its L2-norm counterpart.
Fig. 5 and Fig 6 depict the pseudo-spectra corresponding
to the elevation and azimuth angles calculated according to
(17) after utilizing the estimated beacon code to identify
the triplet (φ, θ,d). It is clear that the proposed iteratively-
refined L1-norm tensor decomposition method [26] produces
a disturbance-free, uncorrupted spectrum (Fig. 5-Left), in
contrast to the TUCKER-ALS [22] spectrum which is contam-
inated by the underwater channel variations and disturbances
(Fig. 5-Right).

Fig. 7 depicts the RMSE defined as

RMSEk=

√√√√ 1

N

N∑

n=1

(
φk − φ̂n

)2

+
(
θk − θ̂n

)2

, k = 1, . . . ,K

(19)
for the proposed DoA estimator for the first beacon node
(300 m) as a function of the transmitted symbol energy Ek in
dB re μPa. The RMSE is calculated over N = 5000 indepen-
dent trials. The true azimuth and elevation angles of arrival for
the two beacons are assumed to be (φ1 = 30◦, θ1 = 40◦), and
(φ2 = −30◦, θ2 = 60◦). The transmitted symbol energy was
fixed to be equal for both beacon nodes. The L1-norm tensor
DoA technique is compared to L2-norm PCA space-time
processing, and L2-norm TUCKER-ALS tensor processing
[22] methods. As shown, the proposed DoA estimation method
offers significantly better RMSE performance. Similar RMSE
performance can be observed for the second beacon node
(500 m) in Fig. 8.

V. CONCLUSIONS

We present and evaluate for the first time the performance
of a beacon-assisted underwater localization system that can
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Fig. 8. Root-mean-squared-error (RMSE) of DoA estimation after beacon
identification for beacon 2.

be utilized for 3D self-localization of AUVs. Robust DoA-
guided localization of the AUVs is achieved by iteratively
refined L1-norm space-time tensor subspaces. The proposed
localization system leverages the tensor structure of space-time
coded reference beacon signals at the input of a triangular
hydrophone array (that will be mounted on the AUV) to
jointly estimate the angles-of-arrival of the beacons, as well as,
identify the codes corresponding to each beacon. Simulation
studies verify the superiority of the proposed localization
technique compared to state-of-the-art L2-norm based tensor
and matrix DoA estimation methods.
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