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ABSTRACT

Multi-modal tensor data sets arise with increasing frequency in modern day scientific and engineering appli-
cations, for example in biomedical sciences and autonomous engineered systems. Over the past twenty years,
tensor-domain data analysis has been attempted primarily in the context of standard (L2-norm) eigenvector
decompositions across tensor domains. The algorithms are not joint-tensor-domain optimal and exhibit the fa-
miliar sensitivity to faulty/corrupted/missing measurements that characterizes all L2-norm principal-component
analysis methods.

In this work, we present a robustified method to evaluate the conformity of tensor data entries with respect to
the whole accessible data set. Conformity evaluation is based on a continuously refined sequence of calculated L1-
norm tensor subspaces. The theoretical developments are illustrated in the context of a multisensor localization
application that indicates unprecedented estimation performance and resistance to intermittent disturbances.
An electroencephalogram (EEG) data analysis experiment is also presented.

Keywords: L1-norm, data conformity, conformity evaluation, tensors, tensor decomposition, anomaly detection,
principal-component analysis.

1. INTRODUCTION

In many real-world applications such as social networking data mining,1 video processing, biomedical signal pro-
cessing, wireless communications,2,3 and network traffic analysis,4,5 the use of high-dimensional tensor datasets
(multi-way arrays of order greater than two) has become prominent in order to capture relationships between
multi-modal data. The dimensionality of such data sets is usually high. Fortunately, high dimensional data
sets have frequently an intrinsic low-rank structure that can be captured through dimensionality reduction tech-
niques. Subspace estimation methods such as principal-component analysis (PCA) has been widely applied for
dimensionality reduction in matrix data sets due to their simplicity and effectiveness. Given a data set, PCA
finds a set of projection vectors (called principal components) that maximize a norm of the projection of the data
points. Conventional PCA uses the L2-norm and is prone to misrepresentation of the data characteristics in the
presence of outliers (the effect of outliers is exaggerated by the use of the L2-norm.) To alleviate this problem,
there has been a growing interest in robust PCA calculations by explicit L1-norm projection maximization.6 The
exact calculation of L1-norm principal components was presented in7 for the first time in the literature. Later,
suboptimal algorithms were developed8 for fast computation of the L1 principal components.

For tensor data sets, similar to matrix PCA, the TUCKER decomposition strives to jointly decompose the
collected n-way tensors and unveil the low-rank multi-linear data structure. Higher-Order SVD (HOSVD)9 and
Higher-Order Orthogonal Iteration (HOOI)10 algorithms are well-known solvers for TUCKER decompositions.
A detailed presentation of TUCKER decompositions and the respective solvers is offered in.10,11 Note that
both types of solvers can generally only guarantee a locally optimal solution. Both HOSVD and HOOI base
the calculation of the underlying subspaces on the L2-norm.12,13 Similar to,6 the work in14 reformulates the
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TUCKER2 problem ((n− 1)-way analysis of the tensor, where one dimension of the tensor (usually the sample
space) is not taken into account) and use the L1-norm for alleviating the effects of the outliers.

In spite of their robustness, for a given data set with potential outliers, the existing L1-TUCKER methods
calculate “one-shot” L1-norm subspaces, which can still be away from the true nominal subspaces of interest
when the data sets are significantly contaminated. In this paper, we propose an iterative approach that generates
an iteratively refined sequence of improved L1-norm subspaces. In each iteration, for each mode of the tensor,
the conformity of each sample is inferred by its distance relative to the L1-norm subspaces calculated in the
previous iteration. Highly conforming samples tend to be nominal samples; samples with lower conformity are
more likely to be outliers. Then, all the samples of the original tensor data set are weighted by their conformity
values and the L1-norm principal components of each mode are re-calculated. This way the contribution of
outlying samples in the tensor data set is further suppressed, resulting in improved L1-norm subspaces.

The remaining of this paper is organized as follows. In Section 2, we provide a detailed presentation of
the TUCKER decomposition, L1-norm PCA, as well as the necessary terminology and operations involving
tensors. In Section 3, we develop the iteratively refined L1-norm PCA algorithm for tensor data. In Section
4, the effectiveness of the proposed algorithm is demonstrated through two experiments: (i) joint direction-of-
arrival estimation and signature identification in an all-spectrum communication system, and (ii) supervised
classification of smoking versus non-smoking patients from EEG data from the UCI machine learning data set.
Finally, a few conclusions are drawn in Section 5.

2. BACKGROUND

Next we describe necessary terminology and operations regarding tensors. We also provide an overview of the
Tucker model and L1-PCA. In Table 1, we list the notation used throughout the paper.

2.1 Tensors and Tensor Operations

The order of a tensor is the number of its dimensions, also known as ways or modes. A fiber is a vector extracted
from a tensor by fixing all modes but one. A slice of a tensor is a matrix extracted from a tensor by fixing
all modes but two. In particular, the [X]:,:,n slices of a third-order tensor X are called the frontal ones and we
succinctly denote them as Xn. Matricization, also known as reshaping or unfolding, logically reorganizes tensors
into other forms without changing the tensor values themselves. The mode-n matricization of a N -order tensor
X ∈ R

I1×I2×···×IN is denoted by X(k) ∈ R
In×I1I2...IK−1In+1...IN and arranges the mode-n fibers of the tensor as

columns of the resulting matrix. The tensor product or outer product of vectors a ∈ R
D×1 and b ∈ R

L×1 is
defined as the D×L matrix a}b with elements [a} b]i,j = [a]i [b]j , ∀i, j. Introducing a third vector c ∈ R

N×1

we can generalize to the outer product of three vectors, which is an D×L×N third-order tensor a}b} c with
elements [a} b} c]i,j,k = [a]i [b]j [c]k , ∀i, j, k.

Symbol Definition

X ,X,x, x Tensor, matrix, vector, scalar
[X]:,i , [X]i,: i-th column and row of X (same for tensors)

diag (x) Diagonal matrix with vector x on the diagonal
vec (X) Stacking all input matrix columns in vector form
Xn Shorthand for [X]:,:,n (n-th frontal slice of tensor X )
X(n) Mode-n matricization of tensor X
◦ Hadamard product (elementwise product of two tensors)
⊗ Kronecker product
} Outer product

Table 1: Notation used throughout the paper.



2.2 TUCKER Model

The TUCKER decomposition of a third-order tensor X ∈ R
D×L×N strives to jointly decompose the collected

three-dimensional tensor and unveil the low-rank multilinear structure of the underlying data distribution. For-
mally, the decomposition approximates the tensor by a sum of three outer products

X ≈
R∑

r=1

ur } vr }wr, (1)

where ur ∈ R
D×1, vr ∈ R

L×1, and wr ∈ R
N×1, and uT

i uj = vT
i vj = wT

i wj = 0, ∀i, j, i 6= j. If we as-
semble the column vectors ur, vr, wr as: U = [u1,u2, . . . ,uR] ∈ R

D×R, V = [v1,v2, . . . ,vR] ∈ R
K×R, and

W = [w1,w2, . . . ,wR] ∈ R
N×R, then U, V, W are called the factor matrices. An equivalent, more intuitive

formulation of (1) w.r.t the frontal slices Xn of the input tensor X ∈ R
D×L×N is

Xn ' USnV
H , k = 1, 2, . . . , N, (2)

where S ∈ R
R×R×N is an auxiliary tensor. Each frontal slice Sn of S contains the row vector [W]n,: along its

diagonal, i.e., Sk = diag
(
[W]n,:

)
. Equation (2) provides an intuitive interpretation of the TUCKER decompo-

sition, through its correspondence with L2-norm PCA: each slice Xn is decomposed to a set of factor matrices
U, V (similar to the singular vectors) which are common for all the slices, and a diagonal middle matrix (similar
to the singular values) which varies for each n-th slice. The low-rank approximation problem can be written as

(
Û, V̂,Ŵ

)
= argmax

U∈R
D×R1 ,UTU=IR1

,

V∈R
L×R2 ,VTV=IR2

,

W∈R
N×R3 ,WTW=IR3

∥∥UTX1 (V ⊗W)
∥∥2
F
, (3)

where ‖·‖F returns the summation of the absolute squares of the input matrix elements. The most popular
algorithm for fitting the TUCKER model is the TUCKER-Alternating Least Squares (ALS); the main idea
behind this method is to solve for one factor matrix at a time by fixing the rest. In that way, each subproblem
is reduced to a linear least-squares problem.
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Figure 1: Compact (reduced) TUCKER model: R1, R2, R3 are the mode (row, column, fiber, respectively) ranks
of X .

2.3 L1-norm Principal Component Analysis

For N = 1, the third-order tensor X ∈ R
D×L×N is converted to a D×L matrix X. The low-rank approximation

problem in (3) is then simplified to

(U,V) = argmax
U∈R

D×R1 ,UTU=IR1
,

V∈R
L×R2 ,VTV=IR2

∥∥UTXV
∥∥2
F
, (4)

for which the optimal U and V are built optimally by the R1 left-hand and R2 right-hand singular vectors of
X, respectively.



In the matrix case the columns of X are the real-valued sample vectors of the data matrix; it is of interest
to calculate the principle components corresponding to the features of our data, not the samples. Hence, the
rank-R1 approximation problem can be written as

QL2
= argmax

Q∈R
D×R1 ,

QTQ=IR1

∥∥XTQ
∥∥
2
. (5)

Motivated by its resistance to anomalous data L1-norm decomposition was proposed for robust low-rank subspace
computation. Replacing the L2-norm in (5) by the L1-norm the so-called L1-norm PCA calculates principal
components in the form

QL1
= argmax

Q∈R
D×R1 ,

QTQ=IR1

∥∥XTQ
∥∥
1
, (6)

where ‖·‖1 returns the sum of the absolute values of its input matrix elements. QL1
in (6) is likely to be closer

to the true nominal rank-R1 subspace than QL2
. As shown in,6 the exact calculation of the L1-norm principal

components in Eq. (6) can be written as a combinatorial problem

QL1 = max
Q∈R

D×R1 ,

QTQ=IR1

∥∥XTQ
∥∥
1
= max

Q∈R
D×R1 ,

QTQ=IR1

max
B∈{±1}L×R1

tr
(
QTXB

)

= max
B∈{±1}L×R1

tr
(
BQTX

)
= max

B∈{±1}L×R1

‖XB‖∗ , (7)

The optimal solution for (7) can be obtained by exhaustive search in the space of the binary antipodal matrix
B with complexity O

(
2LR1

)
. By denoting BOPT the optimal solution, we perform SVD on XBOPT = UΣVT

and form the L1-norm principal components as QL1 = [U]:,R1
VT . Therefore, the overall complexity for finding

R1 L1-norm principal components via exhaustive search is O
(
2LR1 min

{
D2R1, DR2

1

})
.

In,8 a fast greedy single-bit-flipping (SBF) algorithm was proposed for the computation of the rank-1
L1-norm principal components with complexity O

(
L3

)
. The suboptimal algorithm is extended in7 for the

calculation of the R1 < rank (X) L1-norm principal components of X with complexity O (LDmin {L,D}
+L2

(
R4

1 + rank (X)R2
1

)
+ rank (X)LR3

1

)
. The SBF algorithm for rank R1 > 1 starts with an initial binary

matrix Binit ∈ {±1}L×R1 and iteratively produces a sequence of new binary matrices Bl, l = 1, 2, . . . , where
Bl+1 at the (l + 1)-th iteration differs from Bl only in a single bit position. At each iteration, just the bit that

results in the highest increase of ‖XB‖∗ is flipped to reach a (suboptimal) solution of (7), denoted as B̂. The
associated L1-norm projection operator QL1 can be obtained by performing the following steps: 1) Perform SBF

with input Binit to obtain B̂, 2) Perform SVD on XB̂ = UΣVT , and 3) Return QL1 = [U]:,R VT .

3. ITERATIVE L1-TENSOR DECOMPOSITION WITH DATA CONFORMITY
CONSIDERATIONS

3.1 Methodology

Motivated by the challenges presented in Section 2, we propose an iterative algorithm for tensor decomposition,
that exploits the outlier resistance properties of L1-norm PCA. In the following, we describe the design of our
algorithm for decomposing the tensor and calculating the subspaces. Without loss of generality, we present our
algorithmic developments for a third order tensor X ∈ R

D×L×N . In the initialization step of the algorithm, with
respect to the first mode of the tensor X(1) ∈ R

D×LN (unfolding along the columns of the tensor) we calculate

the R1 principal components Q
(0)
1 ∈ R

D×R1 by solving the maximization problem in (6). The resulting basis
emphasizes the subspace spanned by the columns of the original tensor X that contain nominal data and de-
emphasizes columns that are contaminated with anomalous data. Next, we calculate the orthogonal projection

of each column
[
X(1)

]
:,i1

, i1 = 1, . . . , LN on the calculated subspace Q
(0)
1 as

d
(1)
1,i1

=
∥∥∥Q(0)

1 Q
(0)T

1

[
X(1)

]
:,i1

∥∥∥
2
∀i1 = 1, 2, . . . , LN. (8)



We expect small d
(1)
1,i1

values if
[
X(1)

]
:,i1

is an anomalous data point and large d
(1)
1,i1

values if
[
X(1)

]
:,i1

is a nominal

data point. After the calculation of the projection of each column on the subspace, the conformity values are
brought back to tensor form

W(1)
1 = tensorization

([
d
(1)
1,1 d

(1)
1,2 . . . d

(1)
1,LN

]T
LN×1

◦ 1D×LN

)
∈ R

D×L×N , (9)

where 1D×LN stands for an all-ones matrix of dimension D × LN , and the tensorization operator converts

the argument matricized tensor, to its original tensor form. The tensor W(1)
1 contains the conformity values

corresponding to each column of the original tensor X . The same procedure is repeated for the rest of the modes

calculating the corresponding conformity tensors, W(1)
2 ,W(1)

3 .

With all the mode conformity tensors calculated, we then weigh them according to the ”importance” of the
corresponding dimension and combine them in an additive fashion. The final Step-1 conformity tensor W̃(1) is
then normalized so that each element is in the [0, 1] range,

W̃(1) =

∑3
k=1 αkW(1)

k −min
(∑3

k=1 αkW(1)
k

)

max
(∑3

k=1 αkW(1)
k

)
−min

(∑3
k=1 αkW(1)

k

) (10)

where α1, α2, α3 ∈ R
+,

∑3
k=1 αk = 1 (for example, α1 = α2 = α3 = 1

3 ), model the presumed importance of the
corresponding dimension of the original tensor.

A new L1-norm subspace of each tensor mode is then calculated on the conformity-adjusted data tensor by
element-by-element multiplication by the conformity tensor. For mode one for example, we calculate

Q
(1)
1 = argmax

Q∈R
D×R1 ,

QTQ=IR1

∥∥∥QT
(
X(1) ◦ W̃(1)

(1)

)∥∥∥
1
, (11)

where ◦ is the element-wise (Hadamard) product. The same holds for rest of the modes. The subspaces are

iteratively refined until numerical convergence of the data conformity tensor W̃(l) is observed. In Table 1, we
present the pseudo-code corresponding to the proposed algorithm for a general tensor X I1×I2×···×IK .



Table 2 Iterative L1-norm tensor decomposition

Input: X ∈ R
I1×I2×···×IK , ranks R1, . . . , RK ∈ Z

+, and weights α1, . . . , αK ,∈ R
+,

∑K

k=1 αk = 1

Output: W̃ ∈ R
I1×I2×···×IK

1: for k = 1, . . . , K do

2: Q
(0)
k = argmax

Q∈R
Ik×Rk ,

QTQ=IRk

∥∥QTX(k)

∥∥
1

3: Mk =
∏K

i=1,i 6=k Ii, l = 1
4: end for

5: while convergence criterion is not met do
6: for k = 1, . . . ,K do

7: d
(l)
k,ik

=
∥∥∥Q(l−1)

k Q
(l−1)T

k

[
X(k)

]
:,ik

∥∥∥
2
, ∀ik = 1, 2, . . . ,Mk

8: W(l)
k ← tensorizationk

([
d
(l)
k,1 d

(l)
k,2 . . . d

(l)
k,Mk

]T
Mk×1

◦ 1Mk×Ik

)

9: end for

10: W̃(l) =

∑

K

k=1 αkW(l)
k

−min
(

∑

K

k=1 αkW(l)
k

)

max
(

∑

K

k=1 αkW(l)
k

)

−min
(

∑

K

k=1 αkW(l)
k

)

11: for k = 1, . . . ,K do

12: Q
(l)
k = argmax

Q∈R
Ik×Rk ,

QTQ=IRk

∥∥∥QT
(
X(k) ◦ W̃(l)

(k)

)∥∥∥
1

13: end for, l = l + 1
14: end while

4. SIMULATION STUDIES

4.1 Joint Direction-of-Arrival and Waveform Identification

We consider K single-antenna spread-spectrum beacons transmitting over a single-input single-output (SISO)
additive white Gaussian noise (AWGN) channel. Particularly, the k-th beacon, k = 1, . . . ,K transmits symbols
bk[n], n = 1, 2, . . . , N from a complex alphabet C, at rate 1/T , modulated by a spread-spectrum digital waveform
dk(t) of duration T . The transmitted signal is represented by

xk(t) ,

N∑

n=1

√
Pkbk [n] sk (t− nT ) e2πfct (12)

where Pk > 0 denotes the transmitted energy per bit, and fc is the carrier frequency. The spread-spectrum
digital waveform is of the form

sk(t) ,

L−1∑

l=0

dk[l]gTc
(t− lTc) (13)

where dk is a length L normalized antipodal sequence, i.e. dk ∈
{
±1/
√
L
}L

, uniquely allocated to beacon k,

and gTc
(·) is a square-root raised cosine (SRRC) pulse-shaping waveform of duration Tc, so that T = LTc.

The beacon signals are received by a D element antenna array from an azimuth angle φ and an elevation
angle θ. The size D × 1 array response vector a(φ, θ) to a far-field received signal that impinges on the array, is
given by

a(φ, θ) = exp

{
j2π

1

λc

PTk(φ, θ)

}
∈ C

D×1, (14)



where λc is the carrier wavelength, the matrix P contains the antenna array element values

P =



x1 x2 . . . xD

y1 y2 . . . yD
z1 z2 . . . zD


 ∈ R

3×D (15)

and the vector k(φ, θ) represents the projection of the received signal’s steering vector on the antenna array
coordinate system defined as

k(φ, θ) =



cos(θ) sin(φ)
cos(θ) cos(φ)

sin(θ)


 ∈ R

3×1. (16)

Upon carrier demodulation at the carrier frequency fc, pulse matched filtering, sampling at Tc, and buffering
L samples, the n-th received space-code data snapshots is given by

Yn =

K∑

k=1

√
Pkbk [n]a(φk, θk)s

T
k +Nn ∈ C

M×L, n = 1, 2, . . . , N, (17)

where [N[n]]i,j is an additive noise component with E {Nn} = 0M×L, E
{
nin

H
j

}
= σ2IM , ∀i, j ∈ {1, . . . , L} , i 6= j,

E
{
nH
i nj

}
= σ2IL∀i, j ∈ {1, . . . ,M} , i 6= j. We define A as the set of active angle-of-arrival pairs (φk, θk), k =

1, 2, . . . ,K, and D as the set of active waveform sequences sk, k = 1, 2, . . . ,K.

By defining the power-scaled signature matrix S = [s1, . . . , sK ] ∈ R
L×K , where sk =

√
Pkdk, the rank-M

steering matrix A = [a (φ1, θ1) , . . . ,a (φK , θK)] ∈ C
M×K , and a diagonal matrix B [n] =

diag ([b1 [n] , b2 [n] , . . . , bK [n]]), the n-th received data snapshot matrix in (17) can be expressed in the following
matrix form

Yn = ABnS
T +Nn, ∈ C

D×L n = 1, 2, . . . , N. (18)

We observe that the received matrices can be viewed as slices of an M ×L×N three-way tensor Y ∈ C
D×L×N .

Our goal is to utilize the tensor structure of our data in order to accurately estimate the angles of arrival, as
well as identify the waveforms the beacons are using.

In order to begin our algorithmic developments, we define the real-valued representation A ∈ R
2m×2n of any

complex-valued matrix A ∈ C
m×n by concatenating real and imaginary parts as follows

A =

[
Re {A} , − Im {A}
Im {A} , Re {A}

]
∈ R

2m×2n, (19)

where Re {·} and Im {·} return the real and imaginary part of each matrix element, respectively. The transition
from A ∈ C

m×n to A ∈ R
2m×2n is based on what is commonly referred to as complex-number realification

in representation theory. Realification allows for any complex system of equations to be converted and solved
through a real system. Before we proceed, we review briefly in the Lemma bellow some fundamental properties
of matrix realification.

Lemma 4.1. For any A ∈ C
m×n and B ∈ C

n×q the following hold (A+B) = A + B, (AB) = AB, and

(AH) = A
T
.

By (19) and Lemma 1, we define the n-th real-valued snapshot Yn as

Yn = ABn S
T
+Nn ∈ R

2D×2L, n = 1, 2, . . . , N (20)

With the realification operation, we convert our complex tensor Y ∈ C
D×L×N to a real-valued tensor Y ∈

R
2D×2L×N . From (20), we notice that the angle components of interest lie in the R1 ≥ 2K dimensional space
SA = span

(
A
)
, while the waveform components of interest lie in the 2K dimensional space SD = span

(
S
)
. The

following propositions highlight the utility of SA and SD for estimating the target directions of arrival (DoA’s)
and waveform sequences in A and D, respectively.



Proposition 1. For any pair (φ, θ) ∈
(
−π

2 ,
π
2

]
, span (a (φ, θ)) ⊆ SA if and only if (φ, θ) ∈ A. Set equality holds

only if K = 1. By proposition 1, we can accurately decide whether some pair (φ, θ) ∈
(
−π

2 ,
π
2

]
is a target DoA

or not by means of any orthonormal basis Q1 ∈ R
2D×2K that spans SA as

(
I2K −Q1Q

T
1

)
a (φ, θ) = 02K×2 ⇔ (φ, θ) ∈ A. (21)

Thus, in view of proposition 1, and in accordance to common practice, target DoAs in A can be approximated
by the K highest peaks of the MUSIC-like pseudo-spectrum defined as

PA (φ, θ) =
∥∥(I2D −Q1Q

T
1

)
a (φ, θ)

∥∥−2
(22)

The same holds for the waveform estimation problem, as stated in the following proposition

Proposition 2. For any s ∈
{
± 1√

L

}L

, span (s) ⊆ SD if and only if s ∈ D. Set equality holds only if K = 1.

By 2, the target sequences can be estimated by any R2 ≥ 2K dimensional orthonormal basis Q2 ∈ R
2L×2K

that spans SD as (
I2K −Q2Q

T
2

)
s = 02L×2 ⇔ s ∈ D. (23)

And the corresponding pseudo-spectrum is

PD (s) =
∥∥(I2L −Q2Q

T
2

)
s
∥∥−2

. (24)

Peaks in the two pseudo-spectra in (22) and (24) identify DoAs and waveform sequences without associating
angles and sequences. In order to have this correspondence, we create all possible DoA pairs and waveform
sequence candidates as

z (φ, θ, s) = a (φ, θ)⊗ s ∈ C
ML×1. (25)

Then, we calculate the K principle components, Qsc, of the space-code matrix Ysc = [vec (Y1) , vec (Y2) , . . . ,
vec (YN )] by means of SVD. We utilize the following pseudo-spectrum to find the peaks corresponding to the
exact DoAs and waveform sequence associations

PSC (z) =
∥∥(IDL −QscQ

H
sc

)
z
∥∥−2

. (26)

Algorithm 2 Joint direction-of-arrival estimation and waveform identification

Input: Q1 ∈ R
2M×R1 , Q2 ∈ R

2L×R2 , Y ∈ R
2M×2L×N

Output: {(φk, θk)} ∈
(
−π

2 ,
π
2

]
, and {sk} ∈

{
±1/
√
L
}L

, k = 1, . . . ,K

1: Calculate PA (φ, θ) =
∥∥(I2D −Q1Q

T
1

)
a (φ, θ)

∥∥−2
, ∀ (φ, θ) ∈

(
−π

2 ,
π
2

]

2: Find the peaks of the PA (s) pseudo-spectrum

3: Calculate PD (s) =
∥∥(I2L −Q2Q

T
2

)
s
∥∥−2

, ∀ s ∈
{
±1/
√
2L

}2L

4: Find the peaks of the Pc (s) pseudo-spectrum
5: Calculate Qsc = SVD([vec (Y1) , vec (Y2) , . . . , vec (YN )])
6: Calculate the space-code candidates z (φ, θ, s) = a (φ, θ)⊗ s ∈ C

ML×1

7: Calculate Psc (z) =
∥∥(IML −QscQ

H
sc

)
z
∥∥−2

8: Find the peaks of the Psc (z) pseudo-spectrum

We test the effectiveness of our proposed joint direction-of-arrival estimation and signature detection method
on a system with two single-antenna, all-spectrum transmitters, transmitting N = 10 BPSK symbols on signa-
tures of length L = 8 from angles (φ1 = −50, θ1 = 20) , (φ2 = 15, θ2 = 60) to a receiver equipped with a triangular
array. A single-antenna, spread-spectrum interferer is transmitting with probability p = 0.3 on the same signature
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Figure 2: Left: Signature estimation spectra (two targets and one interferer), Right: DoA estimation spectra
(two targets and one interferer).
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Figure 3: Left: Absolute error percentage of signature estimation, Right: Root-mean-squared-error (RMSE) of
DoA estimation.

as transmitter 1, disrupting the joint DoA and Identification operation. Fig.2-Right depicts the pseudo-spectrum
corresponding to the elevation angle, while 2-Left depicts the pseudo-spectrum corresponding to the signatures.
It is clear that our proposed iteratively-refined L1-norm tensor decomposition method produces an uncorrupted
spectrum, in contrast to the HOSVD spectrum which is corrupted by the interferer. Fig. 3-Left depicts the
root-mean-squared-error (RMSE), over 5000 independent realizations, of the proposed DoA estimation method,
L1-TUCKER and the standard L2-norm PCA-based one (MUSIC), as a function of the signal-to-noise ratio
(SNR) of the interferer transmitter. As shown, the proposed method offers much better RMSE performance
compared against HOSVD, as well as L1-TUCKER2. The absolute symbol error (percentage) of the signature
identification is show in Fig. 3-Right. Again, the proposed method outperforms HOSVD and L1-TUCKER.

4.2 Classification by Conformity L1-norm PCA

We consider the problem of unsupervised classification of alcoholic versus non-alcoholic patients from electroen-
cephalogram (EEG) data.15 The data set contains measurements from 64 electrodes placed on subject’s scalps
which were sampled at 256 Hz (3.9-msec epoch) for 1 second, forming a series of real matrices with dimensions
64 × 256. Two groups of subjects exist: alcoholic and control. Each subject was exposed to either a single
stimulus (S1) or to two stimuli (S1 and S2) which were pictures of objects chosen from the 1980 Snodgrass and
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Figure 4: The receiver operating characteristic (ROC) curves of the EEG data set.

Vanderwart picture set. When two stimuli were shown, they were presented in either a matched condition where
S1 was identical to S2 or in a non-matched condition where S1 differed from S2.

For our experiments we create a tensor data set X ∈ R
60×64×256, where 60 is the number of patients, 64 is the

number of electrodes, and 256 is the number of samples per patient. The data set consists of 54 control patients
and 6 alcoholic patients, which we consider the outliers class. We calculate the subspaces corresponding to each
dimension of the tensor X with R1 = 20, R2 = 20, R3 = 40 principal components per dimension. Subsequently,
the L2-norm projection of each slice [X]n,:,: ∈ R

64×256, n = 1, . . . , 60 corresponding to each patient on the

subspaces
∥∥∥QT

2 [X]n,:,: Q3

∥∥∥
F
is calculated as the outlier score, and the samples with the lowest score are detected

as outliers, i.e. alcoholic patients. We carried out 100 independent experiments, and plot the receiver operating
characteristic curve (ROC) of the proposed algorithm compared agains HOSVD. The ROC plots the true positive
rate versus the false positive rate. As shown in Fig. 4, the proposed iteratively-refined L1 tensor decomposition
method demonstrates the ability to capture the outliers significantly better than HOSVD.

5. CONCLUSION

We presented a novel, iteratively refined L1-norm tensor decomposition algorithm, which measures the conformity
of each tensor element with respect to the whole tensor data set. In each iteration, the L1-norm subspace of each
dimension computed in the previous iteration is utilized to calculate the conformity of each data sample. Non-
conforming samples are weighted down, resulting in subspaces that better represent the nominal subspace of each
tensor dimension. The proposed method significantly enhances performance in tasks such as DoA estimation
and outlier detection, compared to traditional L2-norm methods and L1-TUCKER2 methods.
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