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The YBIJ equation (Young & Ben Jelloul, J. Marine Res., vol. 55, 1997, pp. 735-766)
provides a phase-averaged description of the propagation of near-inertial waves (NIW5s)
through a geostrophic flow. YBJ is obtained via an asymptotic expansion based on
the limit Bu — 0, where Bu is the Burger number of the NIWs. Here we develop
an improved version, the YBJ* equation. In common with an earlier improvement
proposed by Thomas, Smith & Biihler (J. Fluid Mech., vol. 817, 2017, pp. 406—438),
YBIJ* has a dispersion relation that is second-order accurate in Bu. (YBJ is first-order
accurate.) Thus both improvements have the same formal justification. But the
dispersion relation of YBJ* is a Padé approximant to the exact dispersion relation
and with Bu of order unity this is significantly more accurate than the power-series
approximation of Thomas et al. (2017). Moreover, in the limit of high horizontal
wavenumber k — oo, the wave frequency of YBJ® asymptotes to twice the inertial
frequency 2f. This enables solution of YBJ* with explicit time-stepping schemes
using a time step determined by stable integration of oscillations with frequency 2f.
Other phase-averaged equations have dispersion relations with frequency increasing
as k> (YBJ) or k* (Thomas et al. 2017): in these cases stable integration with an
explicit scheme becomes impractical with increasing horizontal resolution. The YBJ*
equation is tested by comparing its numerical solutions with those of the Boussinesq
and YBJ equations. In virtually all cases, YBJ* is more accurate than YBJ. The
error, however, does not go rapidly to zero as the Burger number characterizing the
initial condition is reduced: advection and refraction by geostrophic eddies reduces
in the initial length scale of NIWs so that Bu increases with time. This increase,
if unchecked, would destroy the approximation. We show, however, that dispersion
limits the damage by confining most of the wave energy to low Bu. In other words,
advection and refraction by geostrophic flows does not result in a strong transfer of
initially near-inertial energy out of the near-inertial frequency band.

Key words: internal waves, wave—turbulence interactions

1. Introduction

Near-inertial waves (NIWs) are generated in the ocean mixed layer by wind-
stress forcing with the 1000 km horizontal scale characteristic of ocean storms
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(Pollard 1980; D’ Asaro et al. 1995). But as a result of interaction with the mesoscale
and submesoscale eddy field, NIWs quickly develop smaller horizontal length scales
(Klein & Treguier 1995; Lee & Niiler 1998; Klein & Llewellyn Smith 2001; Klein,
Llewellyn Smith & Lapeyre 2004; Zhai, Greatbatch & Zhao 2005; Danioux, Klein
& Riviere 2008). This reduction in length scale is crucial in explaining the relatively
rapid vertical propagation of NIWs into the thermocline: if NIWs retain the 1000 km
scale characteristic of windy generation, then there is no vertical propagation on
sensible time scales (Gill 1984). Thus the interaction of NIWs with macroturbulence
is crucial to the characterization of upper-ocean physical variability.

Young & Ben Jelloul (1997) used a multiple time scale approach to derive a phase-
averaged equation, hereafter the YBJ equation, describing the slow evolution of NIWs
in a quasi-geostrophic eddy field. The YBJ equation captures three key processes that
shape the near-inertial spectral peak: (i) wave dispersion; (ii) advection of NIWs by
geostrophic velocity; (iii) refraction and focussing of NIWs by geostrophic vorticity.

The important dimensionless parameter in the asymptotic development of the YBJ

equation is the Burger number
ef Nk 2
BuY () : (1.1)

Jm

where k and m are horizontal and vertical wavenumbers of the NIW and N and f are
the buoyancy and Coriolis frequencies. A characteristic feature of the YBJ expansion
— justified by Bu < 1 — is that the pressure gradient does not appear at leading order.
Thus the leading-order horizontal velocity of NIWs can be represented compactly as

u+iv=e LA, (1.2)

where L is the frequently occurring differential operator

def . f*

L= 8Zﬁ81, (1.3)
and A(x, y, z, ) is a complex field; LA is the ‘backrotated velocity’. Other leading-
order NIW quantities, such as the vertical velocity and the pressure, can be expressed
in terms of A as in (2.10) through (2.12) below.

The propagation of NIWs through a geostrophic flow has recently been examined
by (Thomas, Smith & Biihler 2017, TSB hereafter). With numerical solutions of the
Boussinesq equations, TSB show that the modulation of NIWs by a geostrophically
balanced flow depends crucially on the relative size of two small parameters: Bu in
(1.1) and the Rossby number Ro of the geostrophic flow. The YBJ equation is a
reductive approximation based on the distinguished limit in which Bu — 0 with the
ratio Ro/Bu fixed. In other words, while Bu and Ro can be varied independently in
the parent Boussinesq equations, only the ratio Ro/Bu appears the YBJ equation: the
size of the parameter space has been reduced. This is a useful prediction of the YBJ
equation: for sufficiently small Bu, only the ratio Ro/Bu is decisive in determining the
modulation of NIWs by geostrophic flow.

In realistic situations, however, there is a spectrum of geostrophic eddies and also
a spectrum of NIWs, and there is neither a unique Ro nor a unique Bu characterizing
the flow. In other words, for some component NIWs of the near-inertial spectral
peak Ro/Bu is large, while for other components Ro/Bu is small: NIWs will be
modulated to varying degrees by macroturbulence resulting in complex spatial patterns.
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To capture these diverse regimes, TSB recommend separating the solution into vertical
modes and employing different phase-averaged equations based on the ratio Ro/Bu
associated with the gravest horizontal scale. A limitation of this approach is that even
NIWs sharing a single vertical mode number might — depending on the horizontal
scale k! — have very different values of the ratio Ro/Bu.

Motivated by these results of TSB, and also by numerical difficulties encountered
in the solving the YBJ equation (see below), here we propose an improved version
of the YBJ equation. This YBJ* equation is

LA+ J(W, LHA) + %AWL*AJF %AA:O, (1.4)
where A% 92 + d; is the horizontal Laplacian and
Ly 1A (1.5)

In (1.4), ¥ is the streamfunction of the quasi-geostrophic eddy field and AV is
the relative vorticity. We show that YBJ* has an improved representation of NIW
dispersion and is a simpler alternative to the scheme proposed by TSB.

The plain and simple YBJ equation is recovered with the replacement L™ + L in
(1.4). In terms of the scaling used to derive (1.4) from the Boussinesq equations, the
extra term %A in the operator L™ is order Bu smaller than L. Thus YBJ* is retaining
a small term, iAA, that is asymptotically negligible relative to the dominant term L A.
Because of this extra term, YBJ* depends separately on Bu and Ro, not just the ratio
Ro/Bu.

In limiting cases YBJ* is more accurate than YBJ; moreover YBJ* has more
forgiving numerical properties. Both advantages can be appreciated by considering
freely propagating near-inertial waves, i.e. ¥ = 0. The YBJ* dispersion relation is
then obtained by substituting

A= ei(kx+mzfo+t) (16)

into (1.4). With uniform N, one finds that

4B
v B ] (1.7)
4+Bu?
where Bu is defined in (1.1). The corresponding YBJ dispersion relation is
f
=Bu—. 1.8
o u2 (1.8)

The formal requirement for accuracy of both YBJ and YBJ* is that Bu < 1. YBJ is
accurate only to first order in Bu; we show below, and in figure 1, that the YBJ*
dispersion relation is accurate to order Bu®. This enhanced accuracy addresses the
issues raised by TSB and is certainly welcome. But in our view enhanced accuracy
is not the only advantage of YBJ*.

Numerical expediency is also an important advantage of YBJ* over YBJ: in the YBJ
dispersion relation (1.8), o ock? as k— co. To resolve these waves explicitly one needs
to decrease the time step proportionally with the number of horizontal grid points.
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FIGURE 1. (Colour online) The black curve is the exact dispersion relation (1.10). The
other three labelled curves are the YBJ dispersion relation in (1.8), the YBJ* dispersion
relation in (1.7) and the two-term dispersion relation o, in (1.13).

This is impractical even with modest horizontal resolution. On the other hand, because

lim 0% =2f, (1.9)
Bu—o0
the YBJ* model has no such high-wavenumber restriction on the size of the time step.
The YBJ* time step must be short enough to ensure stable integration of oscillations
with frequency 2f; this requirement is independent of horizontal resolution. Explicit
schemes can thus be used to integrate YBJ™.

One can, of course, avoid numerical instability by using an unconditionally stable,
implicit time-stepping scheme. But implicit schemes distort the high-wavenumber
structure of the dispersion relation. In particular, one can show that integration of
the YBJ equation with the Crank—Nicolson scheme results in a numerical dispersion
relation that is qualitatively similar to o™ in (1.7): as k — oo the ‘Crank—Nicolson o’
asymptotes to a constant frequency as in (1.9). We prefer to guarantee numerical
stability by a physically motivated modification of the model equation, rather than by
relying on implicit time stepping. And there are compelling reasons to believe that
for waves with Bu of order unity, YBJ* is significantly more accurate than YBIJ.

The enhanced accuracy of YBJ* over YBJ can be appreciated by comparing the
dispersion relations in (1.7) and (1.8) with the exact dispersion relation for hydrostatic

internal waves
w=f~1+ Bu. (1.10)

With Bu < 1, the dispersion relations in (1.7) and (1.10) produce the Taylor expansion

L N
w—f= Bu—ZBu + ord(Bu’) 7 (1.11)
Thus ot agrees more closely with the exact dispersion relation (1.10) than does the
YBJ o in (1.8): see figure 1. In fact, (1.7) is a simple Padé sum of the two-term Taylor
series in (1.11) and boasts the robust numerical properties of these approximations. For
example, with Bu=3, the exact frequency from (1.10) is w =2f, while f +o" =13f/7.
In other words, with the small parameter equal to 3, the error in the YBJ* dispersion

relation (1.7) is 7 %.
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TSB proposed another improved description of NIW propagation. Their ‘intermediate
dispersion regime’ model is

LA +J(W, LA)+%AWLA+%fAA— %AZL-IAZO, (1.12)

where L~! is the inverse of the operator L in (1.3). This model has the dispersion
relation

oy = {Bu — iBuz] g (1.13)

which, like YBJ*, is in second-order agreement with the expansion of the exact
dispersion relation (1.10). But o, o< k* as k — oo, and the stability condition on
time stepping (1.12) is therefore even more restrictive than that of YBJ. Moreover,
although o™ and o, have the same formal level of accuracy, o™ is more accurate if
Bu is of order unity: see figure 1. TSB show that in integrations over long times, YBJ
develops significant phase errors with respect to the exact shallow-water equations;
the model in (1.12) is significantly more accurate than YBJ in this respect. On the
basis of figure 1, we anticipate that YBJ* will at least match, and probably exceed,
the long-time phase accuracy of (1.12).

To show how the Padé-summed dispersion relation (1.7) arises, in §2 we derive
the YBJ* equation in the simple case ¥ =0. In §3 we discuss the conservation laws
(action and coupled energy) of YBJ*. In §4 we compare solutions of YBJ and YBJ*
with solutions of the Boussinesq equation; this comparison confirms that YBJ* is more
accurate than YBIJ. Conclusions are presented in §5.

2. Derivation of YBJ*

In this section we derive (1.4) in the special case ¥ =0. This minimizes algebraic
details and shows clearly how the term iAA, arises. We then use physical and
heuristic arguments to obtain the higher-order terms with ¥ # 0.

2.1. Formulation

The expansion is based on a distinguished limit in which the Burger number, denoted
in this section by €?, is small. Following Young & Ben Jelloul (1997) one uses the
complex representation

U y1iv, and s x+iy. (2.1a,b)

It follows that

9, =12(0,—id)), 9y =1(3,+1d,), (2.2a,b)

and the horizontal Laplacian is
A=0}+0; =48,0,. (2.3)

Other useful results are u, + vy =U, + U} and v, — u, =ilU: — ild;.
We employ with a multiple time scale expansion

8 =0, +€d, +e*d, +--- (2.4)
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Then, with the complex notation outlined in (2.1) through (2.3), the scaled horizontal
momentum equation is

(0, + 1)U = —€*3,U — €*3,,U — €*2p,+ + ord(€°). (2.5)

The other equations of motion are

U +UL+w, =0, (2.6)
3,b + wN* = —€%9,,b + ord(e*), 2.7
p.—b=0. (2.8)

All fields are expanded in powers of €2: U =Uy + €*Us + €*U; + - - - and so on.
2.2. The expansion
At leading order, €°, the pressure is negligible in (2.5) and the general solution is
Uy=LAe ", (2.9)

where L is the operator in (1.3). Using LA in (2.9) facilitates expression of the other
leading-order fields in terms of A

o
Wo = — ﬁAme o 4 cc, (2.10)
by =ifA e 0 4 cc, (2.11)
po =ifA,e 0 +cc, (2.12)

where cc denotes complex conjugate.
At order €2, the horizontal momentum equation is

(B + 1)Uy = —8,LAe ™0 — 2ifA e 0 4 2jfA%, et (2.13)
Removing the resonant terms gives the leading-order evolution equation
d,LA + 2ifA =0. (2.14)
Solving the remnants of (2.13) one obtains
Us = A% et (2.15)

The ‘reconstituted’ velocity, U, + €U, has the slightly elliptic hodograph characteristic
of NIWs.
The second-order vertical velocity follows from (2.6)

Wa, = —Ayge M+ ce. (2.16)
Now we use the leading-order evolution equation in (2.14) to rewrite (2.16) as
2ifwy, = 0,LA,e ™ + ce. (2.17)

This reduces the number of x and y derivatives from three in (2.16) to one in
(2.17). Thus YBJ* avoids the high-order differential operator, A%, in (1.12). Another
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advantage of (2.17) is that one can now integrate with respect to z to obtain the
second-order vertical velocity

2
2ifw, = %BtzAme‘if“’ + cc. (2.18)

One rejoices that the boundary condition A, =0 ensures that both wy, and w, vanish.
This integration in z avoids the inverse operator L~! that complicates (1.12). For all
these reasons, the transition from (2.16) to (2.17) is a crucial technical step in the
derivation of YBJ*.

With w, in hand, the other second-order fields follow

by=10,Ae™™ +cc, and p,=10,A,e" +cc. (2.19a,b)
At fourth order, the horizontal momentum equation is

(ato + IJC)Z/{4 = _at4u0 - atzuz - 2P2s*, (220)
= —d,LAe 0 — 9, A% et — ], Ae 0 —§ A% et (221)

§

To remove the resonant terms from (2.21), we require

LA+ 3,A, =0. (2.22)

2.3. Reconstitution and remodelling

Following the philosophy of Roberts (1985), we now ‘reconstitute’ the perturbation
series by forming the linear combination (2.14) + €2 (2.22):

(0, +€%0,)LA + €20, A5 + 2ifA e = ord(e?). (2.23)

On the right-hand side above we indicate that there are higher-order terms that have
not been calculated explicitly. One such term is 643,4ASS*, which can be rescued from
the garbage on the right and moved to the left-hand side of (2.23) so that

(@, +€°9,) (LA + €’Ap) + 2ifA,- = ord(e?). (2.24)

Recalling 0,0, = iA, setting € = 1, throwing out the €* garbage and consolidating the
time derivatives with
3, + €23y, > 0, (2.25)

we thus obtain the ¥ =0 version of (1.4).

2.4. Non-zero ¥

Now we consider the higher-order terms associated with non-zero ¥. TSB show that
there are many such terms and most have no clear physical interpretation. Moreover,
some of the higher-order terms that do have a clear physical interpretation either do
very little, or even degrade the performance of the model e.g. see the discussion of
the ‘very weak dispersion regime’ in TSB.

In formulating (1.4) we have taken a minimalist approach by including just two
higher-order ¥ # 0 terms with clear physical effects

1 i1
J(w,.2rA) . and LAW-AA. (2.26a.b)
4 2771
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To preserve Galilean invariance, and to obtain the correct Doppler shifted dispersion
relation in the special case ¥ = —Uy, with constant U, one must have the first term
in (2.26). The second term in (2.26) also ensures that the YBJ* has the well-known
¢ /2-frequency shift (Mooers 1975; Kunze 1985).

We also demand that the YBJ* equation should have an action conservation law.
The second term in (2.26) ensures action conservation and other desirable conservation
laws: see §3.

2.5. The reconstituted velocity and phase-averaged kinetic energy

In the discussion of conservation laws in §3 we will need the backrotated velocity
correct to order €*. The field I, is obtained by solving (2.21) after the right-hand side
has been simplified by removal of resonant terms. Combining the resulting expression
for U, with earlier expressions for U, and U/, one obtains

U=LAe ™ 4 247, et 4 e“] 3,A% e + ord(e®). (2.27)

The NIW kinetic energy is therefore
HUP =3ILAP + 5 1AL1 +- - (2.28)

where - - - indicates terms of order €°, but also terms of order €* and €* containing
the second harmonics e*?. The second harmonics are destroyed by a phase average
and

Agl? =AgAL . =A AL +V - F=L|AA? 4+ V - F, (2.29)

where F' is a horizontal flux whose detailed form is unimportant. Thus phase averaging
(2.28) yields

phase average {i1U|*} =3ILAI* +€*1E[AAP 4+ €'V - F 4 ord(e®). (2.30)

3. Conservation laws: action and coupled energy
3.1. Conservation laws of YBJ*
In this section we discuss the conservation laws of YBJ*. To obtain conservation of
action, we form L*A* (1.4) + L*A (1.4)* and find
dl1

+A12\
) (ILFAP?) =0, (3.1)

where () denotes a spatial average. The action itself can be written as

1

2

1 1
<|L+A|2>:5 <|LA|2+

\o}

2, 1 2

2N2|VAZ| + 16|AA| > (3.2)
The first and last terms on the right of (3.2) correspond to the phase-averaged kinetic
energy in (2.30) and the middle term on the right of (3.2) is the potential energy,
b*/2N*. We conclude that in YBJ*, the action is an approximation to the total phase-
averaged NIW energy, correct to order Bu?.

Danioux, Vanneste & Biihler (2015) noted that if ¥, =0 (steady eddies) then the
YBIJ equation has a second conservation law that can be used to make interesting
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deductions concerning the concentration of NIW energy into anticyclones. The YBJ*
analogue is obtained by forming (iL*A} (1.4) — iL*A, (1.4)*), leading to

1f2 1 4 AW
9, { ——|VA.|>+ —|AA]? Y= — { — 8 J(LFA*, LFA) + —0,|LTA> ) . 3.3
f<4N2| : +16| |> <2f,( )+ a7 /| |> (3.3)

If ¥ does not depend on ¢ then the right of (3.3) is a time derivative and the linear
conservation law of Danioux et al. (2015) follows.

3.2. Xie and Vanneste’s coupled energy

Xie & Vanneste (2015, XV hereafter) derived a generalized-Lagrangian-mean model
which couples the YBJ equation to the quasi-geostrophic equation; see also Salmon
(2016) and Wagner & Young (2016). As an experimental modification of XV, we
propose here that eddy evolution is governed by the quasi-geostrophic potential
vorticity (PV) equation

g9:+JW,q) =0, (3.4

where the PV of the ‘XV™* system’ is

g=A¥ +LV¥ + iJ(|_+A* LYA) + iA|L+A|2 (3.5)
2f ’ 4f ' '

The XV PV is recovered by Lt +— L in (3.5).

Justification for extension of the L+ L™ rule to XV via an asymptotic expansion
is beyond the scope of this paper. Nonetheless, this seemingly ad hoc modification of
XV is impressive because the resulting system consisting of (1.4), (3.4) and (3.5) has
the expected nonlinear conservation law for ‘coupled energy’: forming (¥ (3.4)) one
finds

1 1f? i AY
O ( =IVU PP+ -=w? ) = ( —3J(L"A*, L'A) + —3,|L7A” ) . 3.6
,<2| |+2NH> <2ft( )+ 5 |> (3.6)
Summing (3.3) and (3.6), we obtain the ‘coupled energy’
1 1f? 1 f? 1
(S IVUP+ =2+ ——|VA | + —|AA]* ) =0. 3.7
z<2| 3 e VAL + |> (3.7)

The first two terms in () above constitute the standard quasi-geostrophic energy, the
third term is the NIW potential energy and the final term, |AA|?/16, is the result of
the L+ L™ modification of XV.

4. Numerical tests
4.1. Formulation

To test the new proposed model, we compare numerical solutions of YBJ and YBJ*
to solutions of the non-hydrostatic Boussinesq (BQ) equations, the latter of which we
take as ‘truth’. The three models are initialized with a single vertical mode inertial
wave,

u=ugcosmz, and v=w=b=p=0. (4.1a,b)
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Following TSB, this wave is superposed on a barotropic geostrophic flow with
streamfunction
v = (LU, sin(x/£) sin(y/{); 4.2)

we use the convention U = (—¥,, ¥,). The pressure is defined so that this flow
is a steady solution of the Boussinesq equations (but note that the fully nonlinear
equation set is nevertheless integrated). We verified that the barotropic component
departs from its steady solution by much less than one part in 10® over the time of
interest. Moreover, this very weak evolution of the geostrophic component was found
to be comparable over the entire range of parameters considered, thus eliminating
it as a source of error. The wave component solution of the Boussinesq model is
obtained by subtracting the steady solution, equation (4.2), from the total solution.
Because we use a very small wave-to-flow amplitude factor, uy/Uy = 107*, this is a
good approximation.

For simplicity, N and f are assumed to be constant, the domain is horizontally
periodic 2 x 27€, and is bounded vertically by rigid lids located at z=0 and —Th.
The dimensional wavenumbers are therefore quantized with k = k’/¢ and m = m'/h
where k' and m’ are integers. The wave in (4.1) has £ =0 and variable m’. Notice that
the total horizontal wavenumber of the geostrophic flow in (4.2) is +/2/£. Because the
geostrophic flow is barotropic, the vertical wavenumber m of the NIWs is set by the
initial condition in (4.1) and does not change throughout the integration.

Important dimensionless numbers emerging from this formulation are the domain-
scale Burger number of TSB

o (Nh\?
B (T 43)
and the Rossby number
o U
Ro¥ ﬁf’ (4.4)

(The superscript 1, 1 in (4.3) indicates that ¥ = 1 and m’' = 1.) There is a third
non-dimensional number, u,/U,, which we set to 10~*; this is so small that wave—
wave interactions and wave feedback on the geostrophic flow can be ignored over the
duration of the integration (typically 50 inertial periods).

The main interaction is distortion of the wave field in (4.1) by the barotropic
geostrophic flow in (4.2). The initial Burger number of the wave field in (4.1) is zero
because the flow has infinite horizontal scale, k¥’ = 0. The geostrophic flow quickly
impresses its horizontal scale ¢, onto the waves. Subsequent evolution results in the
wave field developing a spectrum of horizontal wavenumbers, and depending on m,
the high k components of this spectrum might have large values of the effective wave
Burger number, Bu in (1.1). We comment further on this important point in §4.5.

Table 1 outlines the parameter set explored. In a nutshell, simulations span
non-dimensional vertical wavenumbers m’' =1 to 12, and three Rossby numbers. To
fix ideas, the bottom entries of the table give one possible set of realistic dimensional
parameters corresponding to the above dimensionless parameters. Of course, any
combination of parameters yielding a given dimensionless numbers set leads to the
same YBJ and YBJ* solution. This is made clear in the non-dimensional form of the
YBJ* equation. Using ¢ to scale x and y, h to scale z and (Bu''f)~' to scale ¢, the
non-dimensional YBJ* equation is

Ro i 1
aLtA + 2 | L"A) + EAWUA +504=0, (4.5)

u
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Dimensionless parameters Ro =0.01, 0.03, and 0.05

m =1 to 12

Bu'' =1/4
Typical parameters f=10"* 57!

N/f =257/4

£=50 km, th=4 km
Uy=35, 15 and 25 cm s~!

Model resolution Ax=Ay=27ml/64~5 km
Az=mh/256~ 15 m
At~20 s
1 Ro . def 21l
"= — —, with kK = —
4k7 Bu 3Ax

TABLE 1. Key parameters of the numerical simulations.

where ¥ =sinxsiny and, since N is constant,
L"A=A.. + ;Bu"' AA. (4.6)

Once again, the plain YBJ version is obtained by removing the term ;Bu''AA from
the definition of L*A. The above equation set highlights an important distinction
between the two approximate models: YBJ only depends on the ratio Bu''/Ro,
whereas YBJ* depends on Bu''' and Ro independently. This signals a superior
parameter sensitivity for YBJ*. We comment on this in §4.6.

The testing procedure goes as follows: the YBJ and YBJ* versions of (4.5) and
(4.6) are integrated over 50 inertial periods using the parameter set in table 1. The
accuracy of the two models is then assessed by comparing their solutions to that
of the non-hydrostatic Boussinesq model used by Asselin, Bartello & Straub (2018).
To put emphasis on the models rather than numerics, all three equation sets are
integrated using the same numerical methods and parameters (cf. table 1). That is,
the YBJ, YBJ* and BQ models are pseudo-spectral, allowing horizontal derivatives to
be computed with spectral accuracy. The 2/3 rule is used to remove aliased modes.
Vertical derivatives are approximated with second-order centred finite differences.
Time integration is accomplished with the leap-frog scheme with a diffusion parameter
y = 1072 (Asselin 1972). To facilitate comparison between the models, no spatial
diffusion is applied (except in a supporting simulation in §4.5). Both temporal and
vertical resolution were increased to convergence to eliminate them as sources of
error. Horizontal resolution is much lower than vertical resolution to allow explicit
treatment of the dispersive term for both YBJ and YBJ*. Indeed, with a horizontal
resolution of 64 x 64, explicit treatment of the dispersive term in plain YBJ requires
a time step of only 20 s. We verified that results below are unchanged as horizontal
resolution is increased.

4.2. Overview comparison of YBJ and YBJ*

In both YBJ and YBJ* the wave kinetic energy, estimated using the leading-order term

in the expansion (2.28), is

def |\ 412
WKE = 1|LAJ. 4.7)
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To assess the error relative to the Boussinesq solution we introduce

def ¢ ((WKE — WKEp)?) “s)

E =
® (WKEZ,)

Above, the brackets () indicate spatial averaging over the horizontal coordinates
and subscript BQ indicates the solution of the Boussinesq solutions. The error is
independent of the vertical level because WKE and WKEp, share the same vertical
structure.

(We emphasize that to define WKE for YBJ* we use L, not Lt, in (4.7). We have
verified by examination of the numerical solutions that the difference between LA and
L*A is small and thus there are only small differences between the two definitions
of WKE. Moreover, the discussion following (3.2) provides a physical rationale in
support of (4.7): |L*A|* contains a term corresponding to NIW potential energy.)

Figure 2 shows E, the E(f) time averaged over the first 50 inertial periods of
integration. The error is plotted against m’' for the three Rossby numbers (one for
each panel). In virtually all cases YBJ* is more accurate that YBJ, as one would
expect from the superior accuracy of YBJ*. Furthermore, for fixed m’ the error
decreases monotonically with Ro for both models. In the lowest Ro case (bottom
panel), both models are accurate with just a few per cent error. This is consistent
with the improved accuracy of their formal expansion as Ro — O.

The error dependence on m' is more puzzling. With increasing m’ in the initial
condition (4.1), the wave Burger number Bu in (1.1) decreases as m'~2. The formal
expansion indicates that both YBJ and YBJ* become more accurate as Bu is reduced.
One might thus expect that the error in figure 2 should decrease monotonically and
rapidly with increasing m/'. In fact the dependence of error on m’ in figure 2 is
non-monotonic. Moreover, while the error does eventually decrease monotonically
for large m/, this decrease is quite slow. To understand, or at least rationalize, the
non-intuitive dependence of error on m’, we examine two illustrative cases: one with
low (m' =1) and one with high (m’' = 8) vertical wavenumber.

4.3. A detailed look at the case m' =1, Ro=0.05 and Bu''=1/4

We first examine the case that one would naively assume to be most challenging: the
solution with Ro=0.05, Bu"! =1/4 and m’' = 1. In this strongly dispersive case, it is
useful to introduce the parameter

def Ro
- Bull’

4.9)

In the limit n — 0, the YBJ* equation (4.5) can be solved perturbatively with the
initial condition in (4.1) (Young & Ben Jelloul 1997; Thomas et al. 2017). For YBJ*
this solution is

A=¢e"[1+n(l —e ") sinxsiny+ ord(n*)] cos(m'z), (4.10)
where
. 2 . 2 2 B 1,1 R 2
Y 2 and 0% m S 2 (4.11a,b)
2m'* + Bu'! 8 Bu!-!
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(a) 40 —

®® Ro=0.05, YBJ

— +

e +—+ Ro=0.05, YBJ
S
I

0 L L L L L L L L L L L L

1 2 3 4 5 6 7 8 9 10 11 12

(b) 20 :

@@ Rp=10.03, YBJ
+—+ Ro=0.03, YBJ*

0\ L L L L L L L L L L L

1 2 3 4 5 6 7 8 9 10 11 12

(c) 5 ; ; , ,

®® Ro=0.01, YBJ

4 +—+ Ro=0.01, YBJ* ||
/-\3
IS
ILuz
1

0\ L L L L L L L L L L L

FIGURE 2. (Colour online) Error in WKE, defined in (4.8), and averaged over the first 50
inertial periods. Each marker represents a different simulation, with blue dots and green
pluses for the error in the YBJ and YBJ* models, respectively. Each panel has a fixed
Rossby number.

(In their ‘strong dispersion regime’, TSB considered an asymptotic limit of the
rotating shallow-water equations in which the Burger number is fixed and of order
unity, while the Rossby number limits to zero. The more exact TSB version of (4.10)
has the same structure: the leading-order term is a spatially uniform near-inertial
oscillation and the higher-order terms contain the spatial dependence of the solution.)

The wave kinetic energy of the n < 1 solution in (4.10) is

WKE(#) = WKE(0)[1 + 2n(1 — cos £2¢) sinx siny + o). 4.12)
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FIGURE 3. (Colour online) Case: m' =1, Ro = 0.05 and Bu'"' = 1/4. Distribution of

normalized wave kinetic energy as predicted by the YBJ, YBJ* and Boussinesq (BQ)
models at intervals of one inertial period (IP).

The YBJ version of (4.12) is obtained by neglecting Bu'! relative to 2m” in the

definition of £2 above. In the present case n = 0.2 and (4.12) predicts WKE(?)
has modulations with amplitude reaching 80 % of the initial level WKE(0). This
modulation has the same horizontal structure as the streamfunction (or vorticity, since
in this case AY = —2¥). Indeed, the effect of the refractive term AWL'A in (4.5) is
to imprint the length scale of AW onto the wave field. Now the squared horizontal
wavenumber of ¥ is 2 and therefore, although the domain-scale Burger number is
Bu''! = }1, the effective Burger number of the NIW immediately after this initial
imprinting is

Butjny = 3. (4.13)

The formal expansion used to derive both YBJ and YBJ* assumes that Bu < 1 and
thus this test with an initial Burger number 1/2 should be challenging.

Figure 3 displays the horizontal distribution of wave kinetic energy in the first ten
inertial periods of integration. Each row is associated with one of the three models,
with the middle row BQ regarded as truth. These numerical solutions are broadly
consistent with the asymptotic solution, (4.12). First, wave energy concentrates in
regions of negative vorticity, i.e. following the predicted spatial structure sin x sin y
in (4.12). YBJ predicts that the period of the oscillation, 27t/$2, is 4 inertial periods
(IP); YBJ*predicts 4.5 IP. Figure 3 shows that the YBJ* prediction is closer to the
period of the Boussinesq solution. Finally, (4.12) predicts a modulation reaching
4n =80% of WKE(0), which is comparable to that of the BQ solution. We verified
that both YBJ and YBJ* become more accurate as Ro — 0 (and thus n — 0).

Although the overall horizontal structure of the BQ solution is well captured by the
YBJ and YBJ* models, the amplitude of the YBJ/YBIJ* oscillation is roughly 50 %
larger than that of the BQ solution. This can be appreciated in the bottom panel of
figure 4, which displays the time series of WKE at one of its maxima, the centre
of the bottom left quarter, X’ =y = w/2. YBJ and YBJ* equally overestimate the
amplitude of the BQ oscillation and miss some of its detailed structure. The plain
YBJ solution also quickly shifts out of phase with the BQ solution. By comparison,
YBJ* predicts the phase of the oscillation significantly better than YBJ, as expected
from its more accurate dispersion relation. This is reflected by an overall smaller
error for YBJ* during most of the integration (cf. figure 4a), until the YBJ solution
coincidentally comes back into phase after 40 inertial periods.

To recap, in this challenging high-Ro m’ = 1 case, WKE undergoes a weak
modulation whose horizontal structure is well captured by both YBJ and YBJ*
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(a) 50

— YBJ
40 |— YBI* N

Inertial periods

FIGURE 4. (Colour online) Case: m' =1, Ro=0.05 and Bu'"! =1/4. (a) Time series of
the error, (4.8), for both YBJ (blue) and YBJ* (green) models. (b) Time series of the
wave kinetic energy density at the core of the bottom left quarter for YBJ (blue), YBJ*
(green) and Boussinesq (BQ, red) solutions.

models. The main source of error comes from an amplitude mismatch. YBJ* captures
the phase of oscillation much better than does YBJ, and this accounts for its higher
accuracy.

4.4. A detailed look at case m' =8, Ro=0.05 and Bu'' =1/4

Let us now turn our attention to a case with a larger vertical wavenumber, m’ = 8§,
keeping the Rossby number to its most challenging value, Ro = 0.05. Relative to the
m' =1 solution of figure 4, m' =8 reduces the Burger number by a factor of 64: the
analogue of (4.13) is an initially imprinted Burger number

Butjny = 1. (4.14)
One expects that with this small Burger number, YBJ and YBJ* should be more
faithful to the BQ solution. Alas, the error summarized in figure 2 is not much less
at m' =8 than at m' = 1.

To understand why, we refer to figure 5, which displays the horizontal WKE
distribution (@) along with the associated error time series (b) for m’ = 8. As in the
m' =1 case, WKE initially concentrates in regions of negative vorticity. But there are
two striking differences: (i) the anomaly is almost two orders of magnitude stronger:
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FIGURE 5. (Colour online) Case: m' =8, Ro = 0.05 and Bu"! = 1/4. (a) Normalized
WKE distribution for the first 50 inertial periods of integration. A logarithmic scale is
used to reveal both the fine-scale structure of the solution and the strong focussing of
energy in the centre of negative vorticity cores. (b) Corresponding time series of error,
equation (4.8).

up to 3000 % as opposed to about 60 % in the m' =1 case (note that a logarithmic
scale is used for m’ =8); (ii) the m’ =8 solution has a much finer horizontal structure.
Because Bu ock?, a fine-scale structure implies that the effective Bu is, in fact, much
larger than the initially imprinted Burger number in (4.14). This crucial result deserves
further discussion.

4.5. Evolution of effective Burger number

As shown above, a larger m’ does not imply that Bu remains small throughout
the integration. As m' is increased, Bu;,; tends to zero and the dispersive term,
1AA/2 in (4.5), is initially very small relative to advection and refraction. Weakening
dispersion results in the NIWs developing finer scale features, with higher horizontal
wavenumber k, and a larger effective Bu o k*. This rationalizes the slow decrease
of error as m’ is increased, but it also begs the question: does weakening dispersion
fatally compromise the YBJ and YBJ* models, which are based on the assumption
of small Bu? At least in our test computations, the answer is ‘no’ because dispersive
wave propagation is effective in opposing advection and refraction.

Rocha, Wagner & Young (2018) show that lateral straining increases the horizontal
group velocity of NIWs so that the waves accelerate and escape from straining regions.
This ‘wave escape’ ensures that NIWs do not suffer a forward cascade of action to the
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FIGURE 6. (Colour online) Cumulative wave energy as a function of the Burger number.
The different colours represent YBJ* solutions for different m’, all evaluated after 50
inertial periods. Horizontal wavenumbers are binned by integer steps, and therefore the
spacing between points in Bu thus depends on m'.

small horizontal scales on which dissipation is effective. In a flow that rapidly stirs
passive scalar into diffusive oblivion, NIWs concentrate in vortex centres and wave
action is robustly conserved, even as passive-scalar variance disappears in a few eddy
turnover times.

As evidence that wave escape is operating in our solutions, figure 6 shows the
cumulative distribution of wave energy, %|L+A|2, as a function of the Burger number.
That is, the ordinate at a given Bu corresponds to the sum of wave energy at all
Burger numbers equal to or smaller than Bu. Remarkably, the case m' =1 actually
contains less energy at Bu ~ 1 than all other cases, including m’ = 8. Indeed, in
the former case more of the energy remains in the k' = 0 mode, or equivalently,
oscillations of the solution have a much weaker amplitude. In that sense, the effective
Bu for m' =8 is more challenging than for m' =1, even though Bu;,, at m' =8 is 64
smaller than at m' = 1.

The numerical size of Bu is important in this discussion. Suppose that the initial
Bu;,; is very small, say 1/128. If advection increases the effective Bu to 1/5, then
that is a large increase relative to Bu;,; = 1/128. But waves with Bu = 1/5 have
o = 1.09f and are therefore still near inertial. Thus it is striking that in figure 6
the range 0 < Bu < 0.2 contains at least 90 % of wave energy for all m' shown.
This also means that 90 % of waves oscillate with a frequency between f and 1.09f.
The amount of energy above Bu =1 (equivalently above 1.4f) is minute, reaching a
maximum of approximately 2% in the case m’ = 8. Thus although small horizontal
scales are created by advection and refraction, and although there is a very large
increase in Bu relative to Bu,;, the amount of energy reaching Burger numbers large
enough to challenge YBJ*, such as Bu=1 in figure 1, is small.

We emphasize that although dispersion becomes weak at high »7, it is by no means
negligible. Figure 7 illustrates this point by showing equilibrium wave energy spectra
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FIGURE 7. (Colour online) Wave energy spectra as a function horizontal wavenumber.
YBIJ* solutions with Ro =0.05 and m’ = 8 are shown with (purple) and without (olive)
dispersion. Spectra are captured at equilibria after 300 inertial periods, and are averaged
over the 50 surrounding inertial periods. The spectra are normalized so that the initial
condition sums to unity. These simulations have the same parameters as in the rest of this
paper, except that the resolution is 256° and hyperdiffusion was added to remove small
horizontal scales.

for YBJ* at m’ =8 and Ro =0.05, with and without the dispersive term iAA/2 in (4.5).
For these simulations only, the resolution was increased to 256 and a small amount
of hyperdiffusion was included to smooth small horizontal scales. The cases with
and without dispersion are strikingly different. In the absence of dispersion (green),
wave energy tends to equipartition between all the available modes, approaching a
k' spectrum till an abrupt hyperdiffusive cutoff. In other words, without the small
dispersive term, large scales are rapidly purged of their energy, which cascades to
smaller scales. But with small dispersive case (purple) energy remains at larger scales
with small Bu. After a few hundred inertial periods, more than 90 % of the initial
energy remains, whereas about only 10 % remains in the case without dispersion. (We
have verified that these results are robust to changes in resolution and the strength of
the hyperdiffusion coefficient.)

4.6. Dimensional reduction of the parameter space

The non-dimensional equation set (4.5) and (4.6) also deserves further discussion.
For a fixed initial condition, the solution of a given equation system, YBJ, YBJ*
or BQ, is uniquely defined by its set of dimensionless numbers. For instance, the
solution of the inviscid non-hydrostatic Boussinesq equations is determined by three
control parameters: Ro, Bu and Ar, where Ar is the aspect ratio. That is, for a fixed
initial condition, there is only one solution associated with each point of the cube
of dimensions Ro x Bu x Ar. Both the YBJ and YBJ* model assume hydrostatic
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FIGURE 8. (Colour online) Normalized wave kinetic energy density at the surface, m' =6,
for the three models (three rows). Each column displays a solution with a different set of
Ro and Bu'-!, but with their ratio held fixed. As such, when time is appropriately stretched
the YBJ model has the same output (upper panels). On the other hand, the output of the
Boussinesq and YBJ* models are influenced by the independent changes in Ro and Bu''.

balance, which imply Ar — 0: the space of possible solutions shrinks to a Ro-Bu
plane. Furthermore, (4.5) and (4.6) highlight that YBJ in fact only depends on
Burger-to-Rossby ratio, and thus admits only one solution per straight line in the
Bu—Ro plane. This was appreciated by Thomas et al. (2017), who defined their
various dispersion regimes based on the slope of the line crossing the Bu—Ro plane
(cf. their figure 3).

YBJ* has more degrees of freedom than YBJ: YBJ* is sensitive to Bu and Ro
independently. This is illustrated in figure 8. As usual, the three rows are associated
with the three models. But instead of showing a time series from left to right, figure 8
shows snapshots from two simulations with different Rossby and Burger numbers but
fixed Bu'!/Ro. Here, the right panel has its Burger and Rossby numbers multiplied
by 3, and is thus shown at a dimensional time divided by 3. As expected, the YBIJ
solution is the same in both cases. However, both BQ and YBJ* change rather
importantly between the two cases, leaving YBJ behind. Unsurprisingly, YBJ* does
better as Bu and Ro are increased while keeping their ratio fixed.

5. Conclusion

In this contribution we have introduced YBJ*, an improved model for the evolution
of near-inertial waves in a geostrophic flow. The YBJ* equation is obtained by
replacing the operator L with L™ =L + %A throughout the YBJ equation. Compared
with its predecessor, YBJ* brings the twin advantages of superior accuracy and
numerical expediency whilst maintaining ease of implementation.

The YBJ* dispersion relation is second-order accurate in Bu and is therefore much
more accurate than that of YBJ. This improvement results in a significant reduction of
phase error (e.g. figure 4). Furthermore, while YBJ depends solely on the ratio Ro/Bu,
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YBJ* depends on Ro and Bu independently. This superior parameter sensitivity allows
YBJ* to track the Boussinesq solution over a wider region of parameter space (see
figure 8). YBJ* is more accurate than YBJ in virtually all cases we considered (see
figure 2). Compared with the second-order accurate model proposed by TSB, YBJ*
is a Padé approximant to the exact dispersion relation, yielding superior accuracy for
near-unity Bu (see figure 1).

Aside from this gain in accuracy, YBJ* requires less computational effort. The
time step required for a stable explicit integration of YBJ decreases proportionally
with horizontal resolution. In practical applications the YBJ equation can thus
only be solved with an implicit time-stepping scheme, which necessarily distorts
high-frequency waves. On the other hand, in YBJ* the frequency of waves asymptotes
to 2f at high horizontal wavenumbers. One can thus conveniently integrate the
dispersive term with an explicit scheme and a reasonable computational effort. We
also remark that YBJ* is readily implemented from an existing YBJ model: the
algorithm for the LA — A inversion is the same as for the ¢ — v inversion required
in a quasi-geostrophic model.

The main appealing features of YBJ are preserved in the improved version. First
and foremost, YBJ* only requires a time scale separation between the geostrophic
flow and the waves; no spatial scale separation is required. The processes of advection,
refraction and dispersion are each conveniently associated with a different term in the
equation. YBJ* also enjoys conservation laws analogue to YBJ (see §3).

The numerical test of YBJ* in §4 forced us to confront some facts of NIW life.
In particular, we found that the YBJ and YBJ* errors do not decrease monotonically
with Bu;,; (or m~!; see figure 2). This is surprising: one expects YBJ and YBJ* to
become more accurate as Bu;,; tends to zero. With closer examination we found that
as a result of advection and refraction, solutions with higher m develop finer-scale
horizontal structure so the effective Bu o k* becomes larger than the initial Burger
number Bu;,;. In other words, even if Bu,,; is very small, advection and refraction
attack the approximation by increasing Bu. The approximation is rescued by small,
but non-negligible, dispersion that successfully opposes advection and refraction and
confines most of the NIW energy to relatively large scales and low Bu (see figure 6).
We conclude by recommending the use of YBJ* over YBJ as a phase-averaged model
of near-inertial wave dynamics.
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