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ABSTRACT

We consider the problem of robust, interference-resistant
localization in GPS-denied environments. Each asset to be
self-localized is equipped with an antenna array and leverages
time-domain coded beacon signals from anchor nodes that
are placed at known locations. Collected data snapshots over
time at the antenna array are organized in a tensor data struc-
ture. The conformity of the received tensor data is evaluated
through iterative projections on robust, high-confidence data
feature characterizations that are returned by L1-norm tensor
subspaces. Non-conforming tensor slabs are more likely to
be contaminated by irregular, highly deviating measurements
due to interference, thus they are removed from the received
dataset. Subsequently, we estimate the direction-of-arrival of
the beacon signals by using L2-norm and L1-norm tensor
decomposition techniques on the conformity-adjusted dataset.
Finally, the relative position of the asset to the anchor nodes
is estimated via triangulation. We consider two anchor nodes,
one interferer, and one asset to be self-localized using radio
frequency signals at the 2.4 GHz ISM band in an indoor
laboratory environment. We evaluate the performance of the
proposed localization system in terms of angle-of-arrival esti-
mation accuracy experimental measurements from a software-
defined radio testbed.

I. INTRODUCTION

Autonomous Unmanned vehicles (AUVs) have attracted
considerable attention for military, scientific and industrial
applications including search and rescue [1], [2], industrial
inspection [3], [4], precision agriculture [5] and monitoring re-
mote environments [6]. Nearly all applications require precise
latitude and longitude estimates of the UAV during operation.
This level of localization may not be available in GPS-denied
and requires the use of often costly GPS hardware and IMUs.
Self-localization of AUVs relatively to known location GPS-
assisted beacons or other vehicles in swarm deployment can
help the vehicle navigate in the environment, reliably commu-
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nicate and network with other vehicles and stamp collected
sensor data with a spatial reference.

GPS-free localization schemes proposed for terrestrial ra-
dio networks involve intensive message exchanges and there-
fore are not suitable for deployments with low-bandwidth,
high-latency radios. Typical wireless localization techniques
rely on angle or distance measurements between wirelessly
communicating nodes that are collected by received-signal-
strength (RSS), time-of-arrival (ToA), time-of-flight (ToF),
time-difference-of-arrival (TDoA), and angle-of-arrival (AoA)
techniques [7]. Authors in [8] propose an ESPRIT-based angle-
of-arrival estimation method based on the L2-norm higher-
order singular value decomposition (HOSVD) for calculating
the underlying signal subspaces. In [9] a bearing-only local-
ization method was presented along with an approximation
algorithm with a constant factor performance guarantees. [10]
demonstrates how an agent is able to localize a stationary
target using bearing-only measurements. State-of-the-art works
utilize the simultaneous localization and mapping (SLAM)
method, which is well described in [11], [12]. SLAM algo-
rithms are used to develop landmark-based navigation systems
with the capability of online building mapping. Authors in
[13] presented the integration of vision-based measurements
with inertial navigation systems to simultaneously localize
an UAV through the position of some extracted features by
image processing. The above localization techniques offer
good accuracy under nominal operation conditions. However,
their performance significantly degrades in the presence of
outlier measurements due to intermittent environmental dis-
turbances, and hardware and/or channel impairments (such as
channel path variations, impulsive noise sources, and faulty
measurements).

Existing approaches for subspace-based parameter esti-
mation [14], [15] rely on organization of the collected data
snapshots at the receiver array in matrices by means of the
stacking operation. Matrix representation does not account
for the structure that is inherent in the wireless channel data
recordings. A more natural approach to store and manipulate
multidimensional data is given by tensors. In this paper, we
show that the tensor representation allows us to fully exploit
the structure of space-time coded data as these arrive at the
input of an antenna array. More specifically, we consider
the deployment of an autonomous unmanned vehicle that is
equipped with a D-element antenna array. The AUV can
robustly self-localize by accurately estimating the azimuth and
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elevation angles-of-arrival of reference transmitted beacons.
The beacons are single-antenna nodes that are deployed in
known locations and transmit time-domain coded signals in a
spread-spectrum fashion. Orthogonal codes of length L enable
simultaneous beacon transmissions in frequency and time. We
consider that all transmitted signals propagate over multi-path
fading channels in the presence of intermittent interference.
The received signals at the input of the antenna array are then
organized in a tensor structure. We show that by employing
data conformity evaluation [16] we can clean the received
tensor and remove slabs corrupted by interference, thus offer-
ing superior angle-of-arrival (AoA) estimation and positioning
accuracy. We demonstrate the effectiveness of our proposed
data cleaning technique on experimental measurements from
a software-defined radio testbed.

II. SYSTEM MODEL

We consider information symbol transmissions of K asyn-
chronous single-antenna beacons over a single-input multiple-
output (SIMO) flat fading channel with M resolvable propa-
gation paths as depicted in Fig. 1. The transmitted signal of
the k-th beacon is written as

xk(t) =
√

Ek

∑

n

bk[n]sk(t− nT )ej(2πfct+φk) (1)

where φk is the carrier phase, fc is the carrier center frequency
and the n-th symbol for the k-th beacon bk[n] is drawn from
a complex constellation C of energy Ek > 0, and modulated
by an all-spectrum digital waveform sk(t) that is given by

sk(t) =
L−1∑

l=0

dk[l]gTc
(t− lTc) (2)

where dk ∈
{
± 1√

L

}L

is a binary code of length L, and gTc
(·)

is a square-root raised cosine (SRRC) pulse with roll-off factor
α and duration Tc, so that T = LTc.

The transmitted signals propagate over Rayleigh fading
multipath channels with M resolvable paths and experience
additive Gaussian noise at the receiver. Multipath fading is
modeled by a liner tapped-delay line with taps that are spaced
at Tc intervals and are weighted by independent fading co-
efficients (i.e. Rayleigh distributed amplitude and uniformly
distributed phase).

The signals are received by an antenna array with D
elements. As a result, the array response vector a (φk, θk) , k =
1, . . . ,K to a far-field received signal that impinges on the
array at an azimuth angle φk and an elevation angle θk, is
given by

a(φk, θk) = exp

{
j2π

1

λc

PTv(φk, θk)

}
∈ C

D×1 (3)

where λc is the carrier wavelength, P includes the antenna
array element positions

P =

[
x1 x2 . . . xD

y1 y2 . . . yD
z1 z2 . . . zD

]
∈ R

3×D (4)
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Fig. 1: System model of the D antenna-element direction-of-
arrival estimation system.

and v(φk, θk) represents the projection of the received signal’s
steering vector on the antenna array coordinate system that is
defined as

v(φk, θk) =

[
cos(θk) sin(φk)
cos(θk) cos(φk)

sin(θk)

]
∈ R

3×1. (5)

The carrier demodulated and pulse-matched filtered re-
ceived signal vector after sampling over the symbol duration
and buffering LM = L + M − 1 samples, the n-th received
space-code data snapshot matrix Yn ∈ C

D×LM is written as

Yn =
K∑

k=1

√
Ekbk [n]a(φk, θk) (Hkdk)

T
+ In +Nn, (6)

where Hk ∈ C
LM×L denotes the multipath channel matrix of

the k-th beacon defined as

Hk ,




hk,1 0 · · · 0
hk,2 hk,1 · · · 0

...
... · · ·

...
hk,M hk,M−1 · · · 0
0 hk,M · · · hk,1

...
... · · ·

...
0 0 · · · hk,M




, (7)

where hk,m,m = 1, 2, . . . ,M is considered an independent
zero-mean complex Gaussian random variable that models
the m-th complex baseband channel coefficient for the k-
th beacon. In ∈ C

D×LM models colored interference at
the receiver array and Nn ∈ C

D×LM models zero-mean
additive white Gaussian noise with autocorrelation matrix
Rn , E

{
NNH

}
= σ2ID.

By defining the power-scaled, channel-processed signa-
ture matrix S = [s1, . . . , sK ] ∈ C

LM×K , where sk =√
EkHkdk ∈ C

LM×1, the rank-D steering matrix A =
[a (φ1, θ1) , . . . ,a (φK , θK)] ∈ C

D×K , and a diagonal matrix
B [n] = diag ([b1 [n] , b2 [n] , . . . , bK [n]]), the n-th received
data snapshot matrix in (6) can be expressed in matrix form
as

Yn = ABnS
T + In +Nn ∈ C

D×LM . (8)

We observe that the received matrices can be viewed as slices
of a three-way tensor YC ∈ C

D×LM×N . Some of the N slabs
are going to be corrupted by colored interference. Our goal
is to evaluate the conformity of each slab of the received
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tensor Y and remove the slabs that are more likely to be
contaminated by irregular, highly deviating measurements due
to interference.

In order to continue our algorithmic developments, we
define the real-valued representation Ā ∈ R

2m×2n of any
complex-valued matrix A ∈ C

m×n by concatenating real and
imaginary parts as follows

Ā =

[
Re {A} −Im {A}
Im {A} Re {A}

]
, (9)

where Re {·} and Im {·} return the real and imaginary part
of each matrix element, respectively. The transition from A ∈
C

m×n to Ā ∈ R
2m×2n is based on what is commonly referred

to as complex-number realification in representation theory.
Realification allows for any complex system of equations to
be converted and solved through a real system.

With the realification operation, we convert our com-
plex tensor Y ∈ C

D×LM×N to a real-valued tensor Ȳ ∈
R

2D×2LM×2N

III. DATA CONFORMITY EVALUATION

Data conformity evaluation converts the original tensor
data to a new tensor of the exact same dimensions, where
each new tensor entry measures the conformity of that entry
with respect to all other data points. The conformity metric
will take values from the [0, 1] set of real numbers, with
conformity values close to 1 indicating “misbehaving” data
points, and values close to 0 corresponding to nominal data
points. This is achieved, by utilizing iteratively refined L1-
norm (absolute-error) data subspaces [15], [17], [18]. Detection
of non-conforming data entries enables the identification of
contaminated received slabs.

L1-norm principal component analysis (PCA), is by itself
a fundamental data feature learning approach that is arguably
best suited for robust, high-confidence characterization and
identification of faulty data patterns [19]. Data conformity
evaluation of tensor data was proposed for outlier identification
in [16]. Without loss of generality, we describe the steps of
the tensor conformity evaluation algorithm with respect to the
column unfolding of the tensor Ȳ(1) ∈ R

2D×4LMN .

Unfolding along the columns of the tensor we calculate the

1 ≤ r1 ≤ (4LMN) principal components Q
(0)
1 ∈ R

2D×r1 by
solving the following maximization problem [17], [18]

Q
(0)
1 = argmax

Q∈R
2D×r1 ,

QTQ=Ir1

∥∥∥ȲT
(1)Q

∥∥∥
1
. (10)

The resulting basis describes accurately the subspace spanned
by the columns of the original tensor Y that contain nominal
data. Columns that are contaminated with anomalous data are
not spanned by the resulting basis vectors. The conformity
of the data columns is computed by projecting each column[
Ȳ(1)

]
:,i1

, i1 = 1, 2, . . . , 4LMN on the calculated subspace

Q
(0)
1 as

d
(1)
1,i1

=
∥∥∥Q(0)

1 Q
(0)T

1

[
Ȳ(1)

]
:,i1

∥∥∥
−1

2
∀i1 = 1, 2, . . . , 4LMN.

(11)

Algorithm 1 Data Cleaning and Angle-of-Arrival Estimation
through Data Conformity Evaluation

Input: Y ∈ C
D×LM×N ; ranks r1, r2, r3; weights α1, α2, α3

Output: angles-of-arrival φk, θk, k = 1, 2, . . . ,K
1: Calculate Ȳ ← realification (Y) according to Eq. (9)

2: Calculate W̃ ← DataConformityEvaluation
(
Ȳ
)

3: Calculate w̄ ∈ [0, 1]
N×1

according to (14).
4: Calculate Y

′ by removing slabs from Ȳ with mean con-
formity w̄n less than the threshold tcorr.

5: Calculate QSC ← SVD
(
vec

(
Y

′))

6: Find the K maximum peaks of PSC according to (16).

Function: Data Conformity Evaluation Algorithm [16]

Input: X ∈ C
I1×I2×I3 ; ranks r1, r2, r3 ∈ Z

+; weights
α1, α2, α3

Output: W ∈ R
I1×I2×I3

1: for k = 1, 2, 3 do

2: Q
(0)
k = argmax

Q∈R
Ik×rk ,

QTQ=Irk

∥∥∥XT
(k)Q

∥∥∥
1

3: Mk =
∏3

i=1,i 6=k Ii; l = 1
4: end for
5: while convergence criterion is not met do
6: for k = 1, 2, 3 do

7: d
(l)
k,ik

=
∥∥∥Q(l−1)

k Q
(l−1)T

k

[
X(k)

]
:,ik

∥∥∥
2
, ∀ik =

1, 2, . . . ,Mk

8: D =
[
d
(l)
k,1 . . . d

(l)
k,Mk

]T
Mk×1
� 1Mk×Ik

9: W
(l)
k ← tensorization (D, k)

10: end for

11: W
(l) =

∑3
k=1 αkW

(l)
k

−min
(

∑3
k=1 αkW

(l)
k

)

max
(

∑3
k=1 αkW

(l)
k

)

−min
(

∑3
k=1 αkW

(l)
k

)

12: for k = 1, 2, 3 do

13: Q
(l)
k = argmax

Q∈C
Ik×rk ,

QTQ=Irk

∥∥∥∥
(
X(k) ◦W(l)

(k)

)T

Q

∥∥∥∥
1

14: end for
15: l = l + 1
16: end while

Large d
(1)
1,i1

values are expected if
[
Ȳ(1)

]
:,i1

is an anoma-

lous data vector and small d
(1)
1,i1

values if
[
Ȳ(1)

]
:,i1

is a

nominal data vector. After the calculation of the projection
of each column on the subspace, the conformity values are

converted to a tensor W
(1)
1 ∈ R

2D×2LM×2N

W
(1)
1 = tensorization

([
d
(1)
1,1, . . . , d

(1)
1,LMN

]T
� 12D×4LMN , 1

)

(12)
where 12D×4LMN stands for an all-ones matrix of dimension
2D × 4LMN , and the tensorization(·) operation converts the
first mode of the tensor to the original three mode tensor form

(reverting the unfolding process). The tensor W
(1)
1 contains

the conformity values corresponding to each column of the
original tensor Y . We repeat the above process for the rest
of the modes of the original data tensor, and calculate the
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Fig. 3: Software-defined radio transmitters and receiver (left)
and the topology of the testbed; the four antennas in the front
are the ULA, while the two antennas in the back are the
transmitter and the interferer.

conformity tensors W
(1)
2 and W

(1)
3 . We calculate the final

conformity tensor W
(1) by combining the above calculated

tensors in an additive fashion as well as normalizing the tensor
so that each element is in the [0, 1] range

W
(1) =

∑3
k=1 αkW

(1)
k −min

(∑3
k=1 αkW

(1)
k

)

max
(∑3

k=1 αkW
(1)
k

)
−min

(∑3
k=1 αkW

(1)
k

)

(13)
where α1, α2, α3 ∈ R

+,
∑3

k=1 αk = 1 correspond to weights
for each mode of the tensor that model the weighting of
the corresponding dimension of the original tensor. The final

conformity tensor W
(1) enables element-wise conformity of

the original tensor data. The data conformity values can be
iteratively refined until numerical convergence of the data

conformity tensor W(l).

In order to identify slabs that are contaminated by inter-
ference, we calculate the mean data conformity value per slab
as

w̄n =
1

4DL

2D∑

d=1

2L∑

l=1

[W ]l,d,n , n = 1, 2, . . . , 2N. (14)

Slabs with high conformity values contain contaminated data,
while low-conformity slabs contain nominal data. We choose
to remove slabs with conformity value w̄n above a pre-defined
threshold tcutoff from the received tensor Y , resulting in a

new tensor Y ′ ∈ R
2D×2LM×N ′

, where N ′ < 2N . The new
tensor Y ′ contains only slabs that are not contaminated by
interference, which results in better estimation of the beacons’
angles-of-arrival.

The next step in the localization process is the estimation of
the beacons’ angles-of-arrival. We utilize ”MUSIC”-type AoA
estimation by using the extended space-code search vector

z̄ (d, φ, θ) , realify (a (φ, θ)⊗ d) ∈ R
2DLM×2, (15)

where the realification(·) operation realifies the input vec-
tor according to Eq. (9), a (φ, θ) is the antenna response

vector given by (3), and d ∈ {±1}LM×1
corresponds to

a binary waveform of length L. By vectorizing each tensor

Fig. 4: Software-defined radio transmitters and receiver (left)
and the topology of the testbed; the four antennas in the front
are the ULA, while the two antennas in the back are the
transmitter and the interferer.

slab into a vector y′
n = vec (Y′

n) ∈ R
4DLM×1 and con-

catenating the resulting vectors, we create the data matrix
Y′ = [y′

1,y
′
2, . . . ,y

′
N ′ ]. Then we calculate the rank rSC signal

subspace of Y′, QSC ∈ C
4DLM×rSC by means of SVD and

create the ”MUSIC”-type spectrum

PSC (d, φ, θ) =
1∥∥QSCQ

H
SCz (d, φ, θ)

∥∥
2

. (16)

The peak of Pdk,SC(φ, θ) correspond to the angles-of-arrival
of the k-th beacon. Algorithm ?? offers a complete description
of the proposed data cleaning and angle-of-arrival estimation
techniques.

IV. PERFORMANCE EVALUATION

We tested our algorithmic developments by conducting
experiments on real data transmitted by one beacon in the
presence of one sporadic interferer, gathered by a uniform-
linear array (ULA). Our goal was to clear the received data
and be able to clearly identify the AoA of the beacon. Our
experimental setup consisted of two single antenna transmitters
(one used by the beacon and one by the interferer) and
D = 4 element ULA receiver. The antennas were placed on a
1.21×0.61 m pegboard and the distance between the transmit
and the received antennas was 1.19 m. The distance between
the beacon and the interferer was 0.3 m and the ULA antennas
were placed d = 0.2104 m apart from each other. For the
beacon and the interferer, we utilized two National Instruments
USRPs N200 transmitting Binary-Phase-Shift-Keying (BPSK)
symbols utilizing the same waveform s(t) at 2.4 GHz carrier
frequency. The transmitted signals were received by the ULA
connected to a National Instruments USRP X310. With respect
to the broadside of the ULA the beacon signal is received from
an angle φ1 = 0◦, while the interferer signal is received from
an angle φ2 = 15◦. Figure 3 depicts the experimental setup.
Since a ULA is used on the receiver side, we can only identify
the received azimuth angle φ, thus in the antenna response
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Fig. 5: Azimuth pseudo-spectrum of the received signal.

vector equation Eq. (3) we set θ = 0. We run the data cleaning
and conformity evaluation algorithm on the complex received
data and calculate the conformity values of each slab. Fig. 4
depicts the per slab conformity values across N = 7000 tensor
slabs. It is clearly shown that there are time instances were the
received signal is highly non-conforming (conformity values
close to 1).

After the removal the non-conforming slabs, we calculate
the pseudo-spectrum PSC according to Eq. (16) for θ = 0.
We compared against ”MUSIC” L2-norm AoA estimation and
state-of-the-art L2-norm based techniques (SVD) for calcula-
tion of the subspaces in the data conformity function (instead
of L1-norm based). Fig. 5 depicts the AoA spectrum of the
cleaned data set. The unclean L2-norm MUSIC and the L2-
norm based data conformity cleaning clearly fail to identify
the AoA of the beacon, and the spectrum is corrupted. The
proposed L1-norm based data conformity cleaning method
produces a clean spectrum, where the AoA of the beacon is
clearly distinguishable.

V. CONCLUSIONS

We presented a novel data cleaning method for angle-of-
arrival estimation based on data conformity evaluation. The
proposed method utilizes an iteratively refined L1-norm tensor
decomposition algorithm, which measures the conformity of
each received tensor entry with respect to the whole tensor
dataset. Non-conforming slabs are removed, resulting in a
clean dataset for AoA estimation. We show on real data that
the proposed method significantly enhances the performance
of AoA estimation compared to traditional L2-norm methods.
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