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Abstract This paper focuses on studying the message com-
plexity of implicit leader election in synchronous distributed
networks of diameter two. Kutten et al. [JACM 2015] showed
a fundamental lower bound of Ω(m) (m is the number of
edges in the network) on the message complexity of (im-
plicit) leader election that applied also to Monte Carlo ran-
domized algorithms with constant success probability; this
lower bound applies for graphs that have diameter at least
three. On the other hand, for complete graphs (i.e., graphs
with diameter one), Kutten et al. [TCS 2015] established a
tight bound of Θ̃(

√
n) on the message complexity of random-

ized leader election (n is the number of nodes in the network).
For graphs of diameter two, the complexity was not known.

In this paper, we settle this complexity by showing a
tight bound of Θ̃(n) on the message complexity of leader
election in diameter-two networks. We first give a simple
randomized Monte-Carlo leader election algorithm that with
high probability (i.e., probability at least 1− n−c, for some
fixed positive constant c) succeeds and uses O(n log3 n) mes-
sages and runs in O(1) rounds; this algorithm works without
knowledge of n (and hence needs no global knowledge). We
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then show that any algorithm (even Monte Carlo randomized
algorithms with large enough constant success probability)
needs Ω(n) messages (even when n is known), regardless of
the number of rounds. We also present an O(n logn) message
deterministic algorithm that takes O(logn) rounds (but needs
knowledge of n); we show that this message complexity is
tight for deterministic algorithms.

Together with the two previous results of Kutten et al.,
our results fully characterize the message complexity of leader
election vis-à-vis the graph diameter.

Keywords distributed algorithm · leader election ·
randomized algorithm · message complexity · time
complexity · lower bound

1 Introduction

Leader election is a classical and fundamental problem in dis-
tributed computing. The leader election problem requires a
group of processors in a distributed network to elect a unique
leader among themselves, i.e., exactly one processor must
output the decision that it is the leader, say, by changing a
special status component of its state to the value leader [14].
All the rest of the nodes must change their status compo-
nent to the value non-leader. These nodes need not be aware
of the identity of the leader. This implicit variant of leader
election is quite standard (cf. [14]), and has been extensively
studied (see e.g., [11] and the references therein) and is suf-
ficient in many applications, e.g., for token generation in a
token ring environment [13]. In this paper, we focus on this
implicit variant. 1

1 In another variant, called explicit leader election, all the non-leaders
change their status component to the value non-leader, and moreover,
every node must also know the identity of the unique leader. In this
variant, Ω(n) messages is an obvious lower bound (throughout, n de-
notes the number of nodes in the network) since every node must be



2 S. Chatterjee et al.

The complexity of leader election, in particular, its mes-
sage and time complexity, has been extensively studied both
in general graphs as well as in special graph classes such as
rings and complete networks, see e.g., [14, 17, 19, 20, 12, 11].
While much of the earlier work focused on deterministic al-
gorithms, recent works have studied randomized algorithms
(see e.g., [12, 11] and the references therein). Kutten et al.
[11] showed a fundamental lower bound of Ω(m) (m is the
number of edges in the network) on the message complexity
of (implicit) leader election that applied even to Monte Carlo
randomized algorithms with (large-enough) constant success
probability; this lower bound applies for graphs that have
diameter at least three. (They also showed that this bound is
tight.) On the other hand, for complete graphs (i.e., graphs
of diameter one), Kutten et al. [12] established a tight bound
of Θ̃(

√
n) on the message complexity of randomized leader

election (n is the number of nodes in the network).
For graphs of diameter two, the message complexity was

not known. In this paper, we settle this complexity by show-
ing a tight bound of Θ̃(n) on the message complexity of
leader election in diameter-two networks. Together with the
previous results [11, 12], our results fully characterize the
message complexity of leader election vis-à-vis the graph
diameter (see Table 1).

1.1 Our Results

This paper focuses on studying the message complexity of
leader election (both randomized and deterministic) in syn-
chronous distributed networks, in particular, in networks of
diameter two.

For our algorithms, we assume that the communication
is synchronous and follows the standard CONGEST model
[18], where a node can send in each round at most one mes-
sage of size O(logn) bits on a single edge. We assume that
the nodes have unique IDs. We assume that all nodes wake
up simultaneously at the beginning of the execution. (Addi-
tional details on our distributed computation model are given
in Section 1.3.)

We show the following results:
1. Algorithms: We show that the message complexity of

leader election in diameter-two graphs is Õ(n), by pre-
senting a randomized (implicit) leader election algorithm
(cf. Section 2), that takes O(n log3 n) messages and runs
in O(1) rounds with high probability (whp). 2 This al-
gorithm works even without knowledge of n. While it is
easy to design an O(n logn) messages randomized algo-
rithm with knowledge of n (see Remark 1), not having
knowledge of n makes the analysis more involved.

informed of the leader’s identity. Clearly, any lower bound for implicit
leader election applies to explicit leader election as well.

2 Throughout, “with high probability" means with probability at least
1−n−c, for some fixed positive constant c.

We also present a deterministic algorithm that uses only
O(n logn) messages, but takes O(logn) rounds. Also this
algorithm needs knowledge of n (or at least a constant
factor upper bound of logn) (cf. Section 4).
We note that all our algorithms will work seamlessly for
complete networks as well.

2. Lower Bounds: We show that, in general, it is not possi-
ble to improve over our algorithm substantially, by pre-
senting a lower bound for leader election that applies also
to randomized (Monte Carlo) algorithms. We show that
Ω(n) messages are needed for any leader election algo-
rithm (regardless of the number of rounds) in a diameter-
two network which succeeds with any constant probabil-
ity that is strictly larger than 1

2 (cf. Section 3). This lower
bound holds even in the LOCAL model [18], where there
is no restriction on the number of bits that can be sent on
each edge in each round. To the best of our knowledge,
this is the first non-trivial lower bound for randomized
leader election in diameter-two networks.
We also show a simple deterministic reduction that shows
that any super-linear message lower bound for complete
networks also applies to diameter-two networks as well
(cf. Section 5). It can be shown that Ω(n logn) mes-
sages is a lower bound for deterministic leader election
in complete networks [1, 10] (under the assumption that
the number of rounds is bounded by some function of
n). 3 By our reduction this lower bound also applies to
diameter-two networks. 4

1.2 Technical Overview

All our algorithms exploit the following simple “neighbor-
hood intersection" property of diameter-two graphs: Any two
nodes (that are non-neighbors) have at least one neighbor in
common (please refer to Observation 1).

Remark 1 Unlike complete networks (which have been ex-
tensively studied with respect to leader election — cf. Sec-
tion 1.5), in diameter-two networks, nodes generally do not
have knowledge of n, the network size (in a complete graph,
this is trivially known by the degree). This complicates ob-
taining sublinear in m (where m is the number of edges) mes-
sage algorithms that are fully localized (don’t have knowl-
edge of n).

Indeed, if n is known, the following is a simple random-
ized algorithm: each node becomes a candidate with proba-
bility Θ( logn

n ) and sends its ID to all its neighbors; any node

3 Afek and Gafni[1] show the Ω(n logn) message lower bound for
complete networks under the non-simultaneous wakeup model in syn-
chronous networks. The same message bound can be shown to hold in
the simultaneous wake-up model as well under the restriction that the
number of rounds is bounded by a function of n [10].

4 We point out that lower bounds for complete networks do not di-
rectly translate to diameter-two networks.
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R A N D O M I Z E D D E T E R M I N I S T I C
Diameter Time Messages Time Messages

D = 1: [12, 1]
Upper Bound O(1) O(

√
n log

3
2 n) O(1)† O(n logn) †

Lower Bound Ω(1) Ω(
√

n) Ω(1) Ω(n logn)

D≥ 3: [11]
Upper Bound O(D) O(m log logn) O(D logn) O(m logn)
Lower Bound Ω(D) Ω(m) Ω(D) Ω(m)

D = 2: Our Results
Upper Bound O(1) O(n log3 n) O(logn)†† O(n logn)$

Lower Bound Ω(1) Ω(n) Ω(1) Ω(n logn)
† Note that attaining O(1) time requires Ω(n1+Ω(1)) messages in cliques, whereas achieving O(n logn) messages requires

Ω(logn) rounds; see [1].
$ Needs knowledge of n.
†† Note that it is easy to show an O(1) round deterministic algorithm that takes O(m) messages.

Table 1 Message and time complexity of (implicit) leader election.

that gets one or more messages acts as a “referee" and no-
tifies the candidate that has the smallest ID (among those it
has received). The neighborhood intersection property im-
plies that at least one candidate will be chosen uniquely as
the leader with high probability.

If n is not known, the above idea does not work. How-
ever, we show that if each node v becomes a candidate with
probability 1+log(dv)

dv
, (where dv is the degree of v) then the

above idea can be made to work. The main technical diffi-
culty is then showing that at least one candidate is present
(cf. Section 2.1) and in bounding the message complexity (cf.
Section 2.2). We use Lagrangian optimization to prove that
on expectation at least Θ(logn) candidates will be selected
and then use a Chernoff bound to show a high probability
result.

Our Ω(n) randomized lower bound is inspired by the
bridge crossing argument of [11] and [16]. In [11], the au-
thors construct a “dumbbell" graph G which is done by tak-
ing two identical regular graphs G1 and G2, removing an
edge from each and adding them as bridge edges between
G1 and G2 (so that regularity is preserved). The argument is
that any leader election algorithm should send at least one
message across one of the two bridge edges (bridge cross-
ing); otherwise, it can be shown that the executions in G1
and G2 are identical leading to election of two leaders which
is not valid. The argument in [11] shows that Ω(m) mes-
sages are needed for bridge crossing. As pointed out earlier
in Section 1, this construction makes the diameter of G at
least three and hence does not work for diameter-two graphs.

To overcome this, we modify the construction that takes two
complete graphs and add a set of bridge edges (as opposed to
just two); see Fig 1. This creates a diameter-two graph; how-
ever, the large number of bridge edges requires a different
style of argument and results in a bound different compared
to [11]. We show that Ω(n) messages (in expectation) are
needed to send a message across at least one bridge.

We also present a deterministic algorithm that requires
O(n logn) messages, but takes O(logn) rounds. Note that,
in a sense, this improves over the randomized algorithm that
sends O(n log3 n) messages (although, we did not strive to op-
timize the log factors). However, the deterministic algorithm
is slower by a log(n)-factor and is more involved compared
to the very simple randomized algorithm (although its anal-
ysis is a bit more complicated). Our deterministic algorithm
uses ideas similar to Afek and Gafni’s [1] leader election al-
gorithm for complete graphs; however, the algorithm is a bit
more involved. Our algorithm assumes knowledge of n (this
is trivially true in complete networks, since every node can
infer n from its degree) which is needed for termination. It is
not clear if one can design an O(n logn) messages algorithm
(running in say O(logn) rounds) that does not need knowl-
edge of n, which is an interesting open question (cf. Section
6).

Finally, we present a simple reduction that shows that
superlinear (in n) lower bounds in complete networks also
imply lower bounds for diameter-two networks, by showing
how using only O(n) messages and O(1) rounds, a complete
network can be converted to a diameter-two network in a dis-
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tributed manner. This shows that our deterministic algorithm
(cf. Section 4) is message optimal.

1.3 Distributed Computing Model

The model we consider is similar to the models of [1, 4, 6,
8, 9], with the main addition of giving processors access to
a private unbiased coin. We consider a system of n nodes,
represented as an undirected graph G = (V,E). In this paper,
we focus on graphs with diameter D(G) = 2, where D(G) is
the diameter of G = (V,E). An obvious consequence of this
is that G is connected, therefore m ≥ n− 1, where m = |E|
and n = |V |. Also, since G is not a complete graph, m <
n(n−1)

2 .
Each node has a unique identifier (ID) of O(logn) bits

and runs an instance of a distributed algorithm. The com-
putation advances in synchronous rounds where, in every
round, nodes can send messages, receive messages that were
sent in the same round by neighbors in G, and perform some
local computation. Every node has access to the outcome
of unbiased private coin flips (for randomized algorithms).
Messages are the only means of communication; in partic-
ular, nodes cannot access the coin flips of other nodes, and
do not share any memory. Throughout this paper, we assume
that all nodes are awake initially and simultaneously start
executing the algorithm. We note that initially nodes have
knowledge only of themselves, in other words we assume
the clean network model — also called the KT0 model [18]
which is standard and most commonly used. 5

1.4 Leader Election: Problem Definition

We formally define the leader election problem here.
Every node u has a special variable statusu that it can

set to a value in

{⊥,NON-ELECTED,ELECTED};
initially we assume statusu =⊥.

An algorithm A solves leader election in T rounds if,
from round T onwards, exactly one node has its status set
to ELECTED while all other nodes are in state NON-ELECTED.
This is the requirement for standard (implicit) leader election.
For explicit leader election, we further require that all non-
leader nodes should know the identity of the leader.

1.5 Other Related Works

The complexity of the leader election problem and algo-
rithms for it, especially deterministic algorithms (guaranteed

5 If one assumes the KT1 model, where nodes have an initial knowl-
edge of the IDs of their neighbors, there exists a trivial algorithm for
leader election in a diameter-two graph that uses only O(n) messages.

to always succeed), have been well-studied. Various algo-
rithms and lower bounds are known in different models with
synchronous (as well as asynchronous) communication and
in networks of varying topologies such as a cycle, a complete
graph, or some arbitrary topology (e.g., see [5, 14, 17, 19, 20,
12, 11] and the references therein).

The study of leader election algorithms is usually con-
cerned with both message and time complexity. We discuss
two sets of results, one for complete graphs and the other for
general graphs. As mentioned earlier, for complete graphs,
Kutten et al. [12] showed that Θ̃(

√
n) is the tight message

complexity bound for randomized (implicit) leader election.
In particular, they presented an O(

√
n log3/2 n) messages al-

gorithm that ran in O(1) rounds; they also showed an almost
matching lower bound for randomized leader election, show-
ing that Ω(

√
n) messages are needed for any leader election

algorithm that succeeds with a sufficiently large constant
probability.

For deterministic algorithms on complete graphs, it is
known that Θ(n logn) is a tight bound on the message com-
plexity [1, 10]. In particular, Afek and Gafni [1] presented an
O(n logn) messages algorithm for complete graphs that ran
in O(logn) rounds. For complete graphs, Korach et al. [7]
and Humblet [4] also presented O(n logn) message algo-
rithms. Afek and Gafni [1] presented asynchronous and syn-
chronous algorithms, as well as a tradeoff between the mes-
sage and the time complexity of synchronous determinis-
tic algorithms for complete graphs: the results varied from
a O(1)-time, O(n2)-messages algorithm to a O(logn)-time,
O(n logn)-messages algorithm. Afek and Gafni [1], as well
as [7, 9] showed a lower bound of Ω(n logn) messages for
deterministic algorithms in the general case. 6

For general graphs, the best known bounds are as fol-
lows. Kutten et al. [11] showed that Ω(m) is a very gen-
eral lower bound on the number of messages and Ω(D) is
a lower bound on the number of rounds for any leader elec-
tion algorithm. It is important to point out that their lower
bounds applied for graphs with diameter at least three. Note
that these lower bounds hold even for randomized Monte
Carlo algorithms that succeed even with (some large enough,
but) constant success probability and apply even for implicit
leader election. Earlier results, showed such lower bounds
only for deterministic algorithms and only for the restricted
case of comparison algorithms, where it was also required
that nodes may not wake up spontaneously and that D and n
were not known. The Ω(m) and Ω(D) lower bounds are uni-

6 This lower bound assumes non-simultaneous wakeup though. If
nodes are assured to wake up at the same time in synchronous complete
networks, there exists a trivial algorithm: if a node’s identity is some i,
it waits i time before it sends any message then leader election could
be solved (deterministically) in O(n) messages on complete graphs in
synchronous networks. Recently Kutten [10] shows that the Ω(n logn)
lower bound holds for simulataneous wakeup as well, if the number of
rounds is bounded.
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versal in the sense that they hold for all universal algorithms
(namely, algorithms that work for all graphs), apply to every
D≥ 3, m, and n, and hold even if D, m, and n are known, all
the nodes wake up simultaneously, and the algorithms can
make any use of node’s identities. To show that these bounds
are tight, they also present an O(m) messages algorithm (this
algorithm is not time-optimal). An O(D) time leader elec-
tion algorithm is known [17] (this algorithm is not message-
optimal). They also presented an O(m log logn) messages
randomized algorithm that ran in O(D) rounds (where D is
the network diameter) that is simultaneously almost optimal
with respect to both messages and time. They also presented
an O(m logn) and O(D logn) deterministic leader election
algorithm for general graphs.

Whereas most previous works characterized the message
complexity of leader election in terms of a graph’s density,
the recent work of [2] showed bounds for leader election
in terms of the graph conductance. In particular, they pro-
vide a class of graphs with conductance φ , and show that
Ω(
√

n ·φ− 3
4 ) messages are required for solving leader elec-

tion with high probability. Note that this does not contradict
the message complexity bound of Ω(m) of [11], since the lat-
ter was shown by leveraging a bottleneck construction that
has very small conductance. [2] also provides a leader elec-
tion algorithm that uses O(

√
n log

7
2 n · tmix) messages and

O(tmix log2 n) time in any graph, even when nodes do not
have any knowledge of the mixing time tmix.

2 A Randomized Algorithm

In this section, we present a simple randomized Monte Carlo
algorithm that works in a constant number of rounds. Algo-
rithm 1 is entirely local, as nodes do not require any knowl-
edge of n. Nevertheless, we show that we can sub-sample
a small number of candidates (using only local knowledge)
that then attempt to become leader. In the remainder of this
section, we prove the following result.

Theorem 1 There exists a Monte Carlo randomized leader
election algorithm that, with high probability, succeeds in n-
node networks of diameter at most two in O(1) rounds, while
sending O(n log3 n) messages.

2.1 Proof of Correctness: Analyzing the number of
candidates selected

We use the following property of diameter-two graphs cru-
cially in our algorithm.

Observation 1 Let G = (V,E) be a graph of diameter two.
Then for any u,v ∈V , either (u,v) ∈ E or ∃w ∈V such that
(u,w) ∈ E and (v,w) ∈ E, i.e., u and v have at least one com-
mon neighbor w (say).

We note that if one or more candidates are selected, then
only the candidate node with the minimum ID is selected
as the leader. That is, the leader is unique, and therefore the
algorithm produces the correct output. The only case when
the algorithm may be wrong is if no candidates are selected
to begin with, in which case no leader is selected. In this
section, we show that, with high probability, at least two can-
didates are selected. We note that having only one candidate
is sufficient for our purposes, so having two (guaranteed by
Lemma 3) or more candidates is actually even better, infor-
mally speaking.

We make use of the following fact in order to show that.

Lemma 1 Let f (x1,x2, . . . ,xn) be a function of n variables
x1,x2, . . . ,xn, where x1,x2, . . . ,xn are positive reals. f is de-
fined as

f (x1,x2, . . . ,xn)
def
=

n

∑
i=1

1+ log(xi)

xi
.

Let C be a real number ≥ n
√

2. Then f (x1,x2, . . . ,xn) is min-
imized, subject to the constraint ∑

n
i=1 xi = C, when xi =

C
n ,

for all 1 ≤ i ≤ n. The minimum value that f (x1,x2, . . . ,xn)

takes is at the point

(C
n ,

C
n , . . . ,

C
n ), and is given by

f min = f (
C
n
,
C
n
, . . . ,

C
n
) =

n2

C
(1+ log(

C
n
)).

Proof We use standard Lagrangian optimization techniques
to show this. Please refer to the appendix for the full proof.

Lemma 2 Let X be a random variable that denotes the total
number of candidates selected in Algorithm 1. Then for any
n≥ 119, the expected number of selected candidates is lower-
bounded by

E[X ]> 2+ 1
2 logn.

Proof Let Xv be an indicator random variable that takes the
value 1 if and only if v becomes a candidate. Then E[Xv] =

Pr[Xv = 1] = 1+log(dv)
dv

. Thus if X denotes the total number
of candidates selected, then

E[X ] = ∑
v∈V

E[Xv] = ∑
v∈V

1+ log(dv)

dv
.

Since G is connected, m ≥ n− 1 =⇒ 2m ≥ 2n− 2 >
n
√

2, i.e., the precondition for the applicability of Lemma 1
is satisfied.

Thus by By Lemma 1, E[X ] is minimized subject to the
constraint

∑
v∈V (G)

dv = 2m,

when dv =
2m
n for all v ∈V (G), i.e., when G is regular.
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Algorithm 1 Randomized leader election in O(1) rounds and O(n log3 n) message complexity

1: Each node v ∈V selects itself to be a “candidate” with probability 1+log(dv)
dv

, where dv is the degree
of v.

2: if v becomes a candidate then v sends its ID to all its neighbors.
3: Each node acts as a “referee node” for all its candidate neighbors (including, possibly itself).
4: If a node w receives ID’s from its neighbors v1,v2, . . . ,v j (say), then w computes the minimum ID of

those and sends it back to those neighbors. That is, w sends min
{

ID(v1), ID(v2), . . . , ID(v j)
}

back
to each of v1,v2, . . . ,v j.

5: A node v decides that it is the leader if and only if it receives its own ID from all its neighbors.
Otherwise v decides that it is not the leader.

Case 1 (n−1≤m≤ n
3
2 ): The minimum value that E[X ]

takes is given by

E[X ]|min =
n2

2m
(1+ log(

2m
n
))

>
n2

2m
(since 1+ log( 2m

n )> 1)

≥
√

n
2

(since m≤ n
3
2 )

Case 2 (n
3
2 < m ≤

(n
2

)
): The minimum value that E[X ]

takes is given by

E[X ]|min =
n2

2m
(1+ log(

2m
n
))

> 1+ log(
2n

3
2

n
) (since n2

2m > 1 and m > n
3
2 )

= 1+ log2+ log(n
1
2 ) = 2+

1
2

logn.

Finally, we note that
√

n
2 > 2+ 1

2 logn for all n≥ 119, and
this completes the proof.

Lemma 3 If X denotes the number of candidates selected,
then Pr[X ≤ 1]< n−

1
4 .

Proof We set δ = 2+logn
4+logn . Then clearly 0 < δ < 1, and 1−

δ = 2
4+logn . Also, substituting the lower bound for µ from

Lemma 2, we have that

(1−δ )µ > 1. (1)

We want to apply Chernoff bound, so we first compute a
lower bound for the quantity µδ 2

2 :

µδ 2

2
= (

µ

2
) ·δ 2

> (
4+ logn

2
) · (2+ logn

4+ logn
)2

(since µ > 4+logn
2 from Lemma 2)

=
(2+ logn)2

4(4+ logn)
=

4+ logn(4+ logn)
4(4+ logn)

=
1

4+ logn
+

logn
4

>
logn

4
(2)

Hence from Equation 1, we have that

Pr[X ≤ 1]≤ Pr[X ≤ (1−δ )µ]

≤ exp(−µδ 2

2
)

(by Chernoff bound [15, Theorem 4.5(2)])

< exp(− logn
4

)

(since µδ 2

2 > logn
4 from Equation (2))

< 2−
logn

4 = n−
1
4 .

2.2 Computing the message complexity

We use the following variant of Chernoff Bound [15, Theo-
rem 4.4(3)] in the following analysis.

Theorem 2 (Chernoff Bound) Let X1,X2, . . . ,Xn be inde-
pendent indicator random variables, and let X = ∑

n
i=1 Xi.

Then the following Chernoff bound holds: for R ≥ 6E[X ],
Pr[X ≥ R]≤ 2−R.

Now on to the analysis.
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Computing the expected total message complexity of the al-
gorithm. Note that the expected total message complexity of
the algorithm can be bounded as follows. Let Mentire be a ran-
dom variable that denotes the total messages sent during the
course of the algorithm. Let Mv be the number of messages
sent by node v. Thus

Mentire = ∑
v∈V

Mv.

A node v becomes a candidate with probability 1+log(dv)
dv

and, if it does, it sends dv messages (the referee nodes reply to
these, but that increases the total number of messages by only
a factor of 2). Hence by linearity of expectation, it follows
that

E[Mentire] = ∑
v∈V

E[Mv] = ∑
v∈V

2
1+ log(dv)

dv
dv

= 2 ∑
v∈V

(1+ log(dv))≤ 2 ∑
v∈V

(1+ logn)

≤ 2n+2n logn.

Showing concentration by introducing the idea of “buckets”.
To show concentration, we cannot directly apply a standard
Chernoff bound, since that works for 0-1 random variables
only, whereas the Mvs are not 0-1 random variables (they
take values either 0 or dv). To handle this, we “bucket” the
degrees into different categories, called “buckets”, based on
their value; we then use a Chernoff bound as detailed below.

Definition 1 Let k be a positive integer such that 2k−1 < n≤
2k. For 0≤ j≤ k, let Vj ⊂V be the set of vertices with degree
in (2 j−1,2 j], i.e., if v ∈Vj, then 2 j−1 < dv ≤ 2 j. Thus

V0
def
= {v ∈V | dv = 1} ,

V1
def
= {v ∈V | dv = 2} ,

V2
def
= {v ∈V | dv = 3 or dv = 4} ,

V3
def
= {v ∈V | dv ∈ {5,6,7,8}} , and so on.

Remark 2 We note that

k

∑
j=0

n j = n, where n j = |Vj| for 0≤ j ≤ k.

In particular, n j ≤ n for all j ∈ [0,k].

Intuition behind this idea of “bucketing”.

– Nodes are bucketed according to the logarithm of their
respective degree (ceiling of the logarithm, to be more
precise) (cf. Definition 1). Thus nodes in the same bucket
send approximately the same amount of messages.

– Nodes in a higher-degree bucket will send a higher num-
ber of messages each, than nodes in a lower-degree bucket.
The greater effect of a higher-degree bucket, however, is
counterbalanced by the the smaller number (in expecta-
tion) of candidates in that bucket.

– Thus the number of messages contributed by each bucket
— whether high-degree or low-degree — is approximately
the same (cf. Lemma 4).

– We can, therefore, easily “add” the contributions made
by each bucket — there are at most (dlogne+ 1) such
buckets — and obtain the combined (total) message com-
plexity (cf. Lemma 5).

Counting the number of messages sent in the first round by
each individual node.

1. Analyzing vertices with degree ≤ 2: We recall that Xv
is an indicator random variable that takes the value 1 if
and only if v becomes a candidate. Then Pr[Xv = 1] = 1
if v ∈V0∪V1, i.e., every vertex with degree 1 or degree 2
selects itself to be a candidate, deterministically.

For v ∈ V , let mv denote the number of messages that v
sends. So mv = dv if v becomes a candidate, and mv = 0
otherwise. Let M j be the total number of messages that
members of Vj send, i.e.,

M j
def
= ∑

v∈V j

mv ≤ ∑
v∈V j

dv

≤ ∑
v∈V j

2 j = n j.2 j ≤ n.2 j

=⇒ M0 ≤ n and M1 ≤ 2n.

2. Analyzing vertices with degree > 2: We recall that for
v ∈ V , Xv is an indicator random variable that takes the
value 1 if and only if v becomes a candidate. Let i be an
integer in [2,k] and let v ∈Vi. Then

Observation 2 i
2i < E[Xv]<

3i
2i .

Proof For v ∈Vi, 2i−1 < dv ≤ 2i. So

E[Xv] = Pr[Xv = 1]

(since Xv is an indicator random variable)

=
1+ log(dv)

dv

=⇒ 1+ log(2i−1)

2i < E[Xv]<
1+ log(2i)

2i−1

(since 2i−1 < dv ≤ 2i)

or,
i
2i < E[Xv]<

i+1
2i−1 ≤

3i
2i

(since i≥ 2 =⇒ 3i
2 ≥ i+1)

For 0 ≤ j ≤ k, let Yj be a random variable that denotes
the total number of candidates selected from Vj.



8 S. Chatterjee et al.

Observation 3 For 2≤ i≤ k, ini
2i < E[Yi]<

3ini
2i .

Proof

Yi = ∑
v∈Vi

Xv =⇒ E[Yi] = E[∑
v∈Vi

Xv]

= ∑
v∈Vi

E[Xv] (by linearity of expectation)

=⇒ ∑
v∈Vi

i
2i < E[Yi]< ∑

v∈Vi

3i
2i

=⇒ ini

2i < E[Yi]<
3ini

2i .

Remark 3 ∀u,v ∈ V (G), u 6= v, Xu and Xv are indepen-
dent, and for 0≤ j ≤ k, we define Yj as

Yj = ∑
v∈V j

Xv,

i.e., Yj is a sum of independent, 0-1 random variables.
Hence we can use Theorem 2 to show that Yj is concen-
trated around its mean (expectation).

We recall that for 0 ≤ j ≤ k, M j is the total number of
messages that members of Vj send, i.e., for 2≤ i≤ k,

Mi = ∑
v∈Vi

mv = ∑
v∈Vi,Xv=1

dv.

Lemma 4 For any integer i ∈ [2,k], it holds that

Pr[Mi ≥ 24n log2 n]≤ 1
n4 .

Proof

Mi = ∑
v∈Vi

mv = ∑
v∈Vi,Xv=1

dv

=⇒ ∑
v∈Vi,Xv=1

2i−1 < Mi ≤ ∑
v∈Vi,Xv=1

2i

(since 2i−1 < dv ≤ 2i)

=⇒ 2i−1.Yi < Mi ≤ 2i.Yi.

Case 1 (E[Yi] = 0): E[Yi] = 0 if and only if ni = 0, i.e.,
if and only if @v ∈V such that 2i−1 < dv ≤ 2i. But ni =
0 =⇒ Vi = φ , the empty set. Therefore, Mi = 0.

Case 2 (0 < E[Yi] < 1): Assuming n ≥ 3, 4 logn > 6 >
6E[Yi]. Therefore, by Theorem 2,

Pr[Yi ≥ 4logn]≤ 2−4logn = n−4

=⇒ Pr[Mi ≥ 2i.4logn]≤ n−4 (since Mi ≤ 2i.Yi)

=⇒ Pr[Mi ≥ 8n logn]≤ n−4 (since i≤ k < logn+1)

Case 3 (E[Yi] ≥ 1): We have shown before that E[Yi] ≤
3ini
2i . But ni ≤ n for all 2 ≤ i ≤ k. Hence E[Yi] ≤ 3ni

2i . As-
suming n≥ 3, 4 logn > 6. Therefore, by Theorem 2,

Pr[Yi ≥ 12n logn.
i
2i ]≤ Pr[Yi ≥ 4lognE[Yi]]

≤ 2−4lognE[Yi] = n−4E[Yi] ≤ n−4 (since E[Yi]≥ 1)

=⇒ Pr[Mi ≥ 12in logn]≤ n−4 (since Mi ≤ 2i.Yi)

But we have, i≤ k < logn+1< 2logn =⇒ 12in logn<
24n log2 n. Hence

Pr[Mi ≥ 24n log2 n]≤ Pr[Mi ≥ 12in logn]≤ n−4.

Combining the effects of all the nodes.

Lemma 5 If M denotes the total number of messages sent
by the candidates (in the first round only), then

Pr[M ≥ 27n log3 n]< 1
n3 .

Proof

M def
=

k

∑
i=0

Mi = M0 +M1 +
k

∑
i=2

Mi

≤ n+2n+
k

∑
i=2

Mi (since M0 ≤ n and M1 ≤ 2n)

= 3n+
k

∑
i=2

Mi.

But for 2 ≤ i ≤ k, Pr[Mi ≥ 24n log2 n] ≤ 1
n4 . Taking the

union bound over 2≤ i≤ k,

Pr[Mi′ ≥ 24n log2 n] for some i′ ∈ [2,k] is ≤ logn
n4 <

1
n3

=⇒ Pr[
k

∑
i=2

Mi ≥ 24n log3 n]<
1
n3

=⇒ Pr[3n+
k

∑
i=2

Mi ≥ 3n+24n log3 n]<
1
n3

=⇒ Pr[M ≥ 3n+24n log3 n]<
1
n3

(since M ≤ 3n+∑
k
i=2 Mi)

But 3n≤ 3n log3 n for n≥ 2, so, 3n+24n log3 n≤ 27n log3 n.
Hence

Pr[M ≥ 27n log3 n]≤ Pr[M ≥ 3n+24n log3 n]<
1
n3 .

Lemma 6 If Mentire denotes the total number of messages
sent during the entire run of Algorithm 1, then

Pr[Mentire ≥ 54n log3 n]< 1
n3 .

Proof Let M′ denote the number of messages sent by the
“referee” nodes in the second round of the algorithm. We re-
call that M is the number of messages sent by the “candidate”
nodes in the first round of the algorithm. Then M′ ≤M, and
Mentire = M+M′ ≤ 2M, and the result follows.

This completes the proof of Theorem 1.
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3 A Lower Bound for Randomized Algorithms

In this section we show that Ω(n) is a lower bound on the
message complexity for solving leader election with any ran-
domized algorithm in diameter-two networks. Notice that
[12] shows a lower bound of Ω(

√
n) for the special case of

diameter-one networks, and we know from [11] that the mes-
sage complexity becomes Ω(m) for (most) diameter-three
networks. Thus Theorem 3 completes the picture regarding
the message complexity of leader election when considering
networks according to their diameter.

Theorem 3 Any algorithm that solves implicit leader elec-
tion with probability at least 1

2 + ε in any n-node network
with diameter at most two, for any constant ε > 0, sends at
least Ω(n) messages in expectation. This holds even if nodes
have unique IDs and know the network size n.

In the remainder of this section, we prove Theorem 3.

Proof by contradiction. Assume towards a contradiction, that
there is an algorithm that elects a leader with probability
1
2 + ε that sends o(n) messages with probability approach-
ing 1. In other words, we assume that the event where the
algorithm sends at least Ω(n) messages (of arbitrary size)
happens with probability at most o(1).

Unique IDs vs. Anonymous. Before describing our lower
bound construction, we briefly recall a simple reduction used
in [12] that shows that assuming unique IDs does not change
the success probability of the algorithm by more than 1

n :
Since we assume that nodes have knowledge of n, it is straight-
forward to see that nodes can obtain unique IDs (whp) by
choosing a random integer in the range [1,nc], for some con-
stant c≥ 4. Thus, we can simulate an algorithm that requires
unique IDs in the anonymous case and the simulation will
be correct with high probability. Suppose that there is an
algorithm A that can break the message complexity bound
of Theorem 3 while succeeding with probability ≥ 1

2 + ε ,
for some positive constant ε , when nodes have unique IDs.
Then, the above simulation yields an algorithm A′ that works
in the case where nodes are anonymous with the same mes-
sage complexity bound as algorithm A and succeeds with
probability at least ( 1

2 + ε − 1
n ) ≥

1
2 + ε ′, for some positive

constant ε ′. We conclude that proving the lower bound for
the anonymous case is sufficient to imply a lower bound for
the case where nodes do have unique IDs.

The Lower Bound Graph. Our lower bound is inspired by
the bridge crossing argument of [11] and [16]. For simplic-
ity, we assume that n

4 is an integer. Consider two cliques C1
and C2 of n

2 nodes each and let G′ be the n-node graph con-
sisting of the two (disjoint) cliques. The port numbering of
an edge e = (ui,v j) ∈ E(G′) refers to the port number at ui

and the respective port number at v j that connects e. The port
numberings of the edges defines an instance of G′.

Given an instance of G′, we will now describe how to ob-
tain an instance of graph G that has the same node set as G′.
Fix some arbitrary enumeration u1, . . . ,u n

2
of the nodes in C1

and similarly let v1, . . . ,v n
2

be an enumeration of the nodes
in C2.7 To define the edges of G, we randomly choose a max-
imal matching M1 of n

4 edges in the subgraph C1. Consider
the set of edges M′2 = {(vi,v j) | ∃(ui,u j) ∈ M1}, which we
can think of as a mapping of the matching M1 to C2. Then,
we define M2 to be a randomly chosen maximal matching on
C2 restricted to the edges in E(G′)\M′2. Next, we remove all
edges in M1∪M2 from G′. So far, we have obtained a graph
where each node has one unwired port.

The edge set of G consists of all the remaining edges of
G′ in addition to the set of bridge edges

M = {(u1,v1), . . . ,(u n
2
,v n

2
)},

where we connect these bridge edges by using the unwired
ports that we obtained by removing the edges as described
above. We say that an edge is an intra-clique edge if it has
both endpoints in either C1 or C2. Observe that the intra-
clique edges of G are a subset of the edges of G′. Figure 1
gives an illustration of this construction.

Lemma 7 Graph G is an n-node network of diameter two
and the port numbering of each intra-clique edge in G is the
same as of the corresponding edge in G′.

Proof By construction, each node in C1 has the same port
numbering in both graphs, except for its (single) incident
edge that was replaced with a bridge edge to some node in
C2. Thus we focus on showing that G has diameter two.

We will show that node ui ∈C1 has a path of length two to
every other node in G. Observe that any two nodes ui,u j ∈C1
each have n

2−2 incident intra-clique edges and since n
2−2>

|C1|
2 they must have a common neighbor. Now, consider some

node v j ∈ C2 and assume that j 6= i, as otherwise there is
the bridge edge (ui,vi) ∈ M ⊆ E(G), and we are done. If
(ui,u j) ∈ E(G), then the result follows because (u j,v j) ∈M.
Thus, assume (ui,u j) /∈ E(G). It follows that there is a path
ui→ vi→ v j in G, since, by construction, the edge (vi,v j) ∈
M′2 and (vi,v j) /∈M2, thus (vi,v j) ∈ E(G).

A symmetric argument shows that every node has dis-
tance ≤ 2 from a given node in C2.

A state σ of the nodes in C1 is a n
2 -size vector of the local

states of the n
2 nodes in C1. Since we assume that nodes are

anonymous, a state σ that is reached by the nodes in C1, can
also be reached by the nodes in C2. More formally, when exe-
cuting the algorithm on the disconnected network G′, we can
observe that every possible state σ (of n

2 nodes) has the same

7 This enumeration is used only for the description of the lower
bound construction and is unbeknownst to the nodes.
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u1

u2

u3

u4

u5

u6

v1

v2

v3

v4

v5

v6

Fig. 1 The lower bound graph construction used in Theorem 3 for n = 12, with cliques C1 and C2, where
V (C1) = {u1, . . . ,u6} and V (C2) = {v1, . . . ,v6}. The dotted red edges are the edges in M1 and M2 that
are removed from C1 and C2 when constructing G and the blue dashed inter-clique edges are given by
the maximal matching M between C1 and C2. Each blue edge incident to some node ui is connected by
using the port number of ui’s (removed) red edge.

probability of occurring in C1 as in C2. Thus, a state where
there is exactly one leader among the n

2 nodes of a clique in
G′, is reached with some specific probability q depending on
the algorithm. By a slight abuse of notation, we also use G′

and G to denote the event that the algorithm executes on G′

respectively G. For the probability of the event One, which
occurs when there is exactly 1 leader among the n nodes, we
get

Pr
[
One

∣∣ G′
]
= 2q(1−q)≤ 1

2
, (3)

which holds for any value of q. Since G′ is disconnected, the
algorithm does not need to succeed with nonzero probability
when being executed on G′. However, below we will use this
observation to obtain an upper bound on the probability of
obtaining (exactly) one leader in G.

Now consider the execution on the diameter-two network
G (obtained by modifying the ports of G′ as described above)
and let C1 =C2 be the event that no message is sent across
the bridges between C1 and C2. Since we assume the port
numbering model where nodes are unaware of their neigh-

bors initially, it follows by Lemma 7 that

Pr [One |C1=C2,G] = Pr
[
One

∣∣ G′
]

. (4)

Let M be the event that the algorithm sends o(n) mes-
sages. Recall that we assume towards a contradiction that
Pr [M | G] = 1−o(1).

Lemma 8 Pr [C1↔C2 | G,M] = o(1).

Proof The proof is inspired by the guessing game approach
of [3] and Lemma 16 in [16]. Initially, any node u ∈C1 has
n
2 − 1 ports that are all equally likely (i.e., with probability

1
n
2−1 ) to be connected to the (single) bridge edge incident to
u. As u sends messages to other nodes, it might learn about
some of its ports connecting to non-bridge edges and hence
this probability can increase over time. However, we condi-
tion on event M, i.e., the algorithm sends at most o(n) mes-
sages in total and hence at least n

4 ports of each node u remain
unused at any point.

It follows that the probability of some node u to send
a message over a (previously unused) port that connects a
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bridge edge is at most 4
n at any point of the execution. Let

X be the total number of ports connecting bridge edges over
which messages are sent during the run of the algorithm and
let Xu be the indicator random variable that is 1 iff node u
sends a message across its bridge edge. Let Su be the number
of messages sent by node u. It follows by the hypergeometric
distribution that

E[Xu | G,M] =
Su

Θ(n)
,

for each node u and hence,

E[X | G,M] = ∑u∈V (G)
Su

Θ(n) =
1

Θ(n) ∑u∈V (G) Su = o(1),

where we have used the fact that ∑u∈V (G) Su = o(n) due to
conditioning on event M. By Markov’s Inequality, it follows
that the event C1↔C2, i.e., X ≥ 1, occurs with probability
at most o(1).

We now combine the above observations to obtain

Pr [One | G,M] (5)

= Pr [One |C1=C2,G,M]Pr [C1=C2 | G,M]

+Pr [One |C1↔C2,G,M]Pr [C1↔C2 | G,M]

≤ Pr [One |C1=C2,G,M]+o(1) (by Lemma 8)

≤ 1
2
+o(1), (6)

where the last inequality follows by first using (4) and noting
that the upper bound (3) still holds when conditioning on the
event M.

Finally, we recall that the algorithm succeeds with prob-
ability at least 1

2 + ε and Pr [M | G]≥ 1−o(1), which yields

1
2
+ ε ≤ Pr [One | G]≤ Pr [One | G,M]+o(1)≤ 1

2
+o(1),

which is a contradiction, since we have assumed that ε > 0
is a constant.

This completes the proof of Theorem 3.

4 A Deterministic Algorithm

Our algorithm (Algorithm 2) is inspired by the solution of
Afek and Gafni [1] for the n-node clique. However, there are
some complications that we explain below, since we cannot
rely on every pair of nodes to be connected by an edge. Note
that our algorithm assumes that n (or a constant factor upper
bound for logn) is known to all nodes.

For any node v ∈V , we denote the degree of v by dv and
the ID of v by IDv. At any time-point in the algorithm, Lv
denotes the highest ID that v has so far learned (among all
the probe messages it has received, in the current round or in
some previous round).

The algorithm proceeds as a sequence of dlogne phases.
Initially every node is a “candidate” and is “active”. Each
node v numbers its neighbors from 1 to dv, denoted by

wv,1,wv,2, . . . ,wv,dv

respectively. In phase i, if a node v is active, v sends probe-
messages containing its ID to its neighbors wv,2i−1 , . . . ,wv,k,
where k = min

{
dv,2i−1

}
. 8 Each one of them replies back

with the highest ID it has seen so far. If any of those ID’s is
higher than IDv, then v stops being a candidate and becomes
inactive. Node v also becomes inactive if it has finished send-
ing probe-messages to all its neighbors. After finishing the
dlogne phases v becomes the leader if it is still a candidate.

The idea behind the algorithm is to exploit the neighbor-
hood intersection property (cf. Observation 1) of diameter-
two networks. Since for any u,v ∈ V , there is an x ∈ V that
is connected to both u and v (unless u and v are directly
connected via an edge) and acts as a “referee” node for can-
didates u and v. This means that x serves to inform u and v
who among them is the winner, i.e., has the higher ID. Thus
at the end of the algorithm, every node except the one with
the highest ID should know that he is not a leader. We present
the formal analysis of Theorem 4 in Sections 4.1 and 4.2.

Theorem 4 There exists a deterministic leader election al-
gorithm for n-node networks with diameter at most two that
sends O(n logn) messages and terminates in O(logn) rounds.

In the pseudocode and the subsequent analysis we use v
and IDv interchangeably to denote the node v.

4.1 Proof of Correctness

Define vmax to be the node with the highest ID in G.

Lemma 9 vmax becomes a leader.

Proof Since vmax has the highest ID in G, the if-clause of
Line 15 of Algorithm 2 is never satisfied for vmax. Therefore
vmax never becomes a non-candidate, and hence becomes a
leader at the end of the algorithm.

Lemma 10 No other node except vmax becomes a leader.

Proof Consider any u ∈V such that u 6= vmax.

– Case 1 (vmax and u are connected via an edge): Since
vmax has the highest ID in G, the if-clause of Line 15 of
Algorithm 2 is never satisfied for vmax. Therefore vmax be-
comes inactive only if it has already sent probe-messages
to all its neighbors (or vmax never becomes inactive). In
particular, u always receives a probe-message from vmax

containing IDvmax . Since IDvmax > IDu, u becomes a non-
candidate at that point (if u was still a candidate until that
point) and therefore does not become a leader.

8 We note that this is the main idea borrowed from the Afek-Gafni
algorithm [1] — the number of messages sent by each “active” node
increases exponentially in every phase. That effect is, however, coun-
terbalanced by the exponentially decreasing number of “active” nodes.
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Algorithm 2 Deterministic Leader Election in O(logn) rounds and with O(n logn) messages: Code for a
node v

1: v becomes a “candidate” and “active”.
2: Lv← IDv.
3: Nv← IDv.
4: v numbers its neighbors from 1 to dv, which are called wv,1,wv,2, . . . ,wv,dv respectively.
5: for phase i = 1 to dlogne do . This uniformity hypothesis is needed only for termination.
6: if v is active then
7: v sends a “probe" message containing its ID to its neighbors wv,2i−1, . . . ,wv,min{dv,2i−1}.
8: if dv ≤ 2i−1 then . If v is finished with exploring its adjacency list, v becomes inactive.
9: v becomes inactive.

10: end if
11: end if
12: Let Xv be the set (possibly empty) of neighbors of v from whom v receives messages in this

round.
13: Let ID(Xv) be the set of ID’s sent to v by the members of Xv.
14: Let IDu be the highest ID in ID(Xv).
15: if IDu > Lv then
16: Lv← IDu. . v stores the highest ID seen so far in Lv.
17: v tells Nv about Lv = IDu, i.e., the highest ID it has seen so far.
18: Nv← x. . v remembers neighbor who told v about Lv.
19: v becomes “inactive” and “non-candidate”.
20: end if
21: v tells every member of Xv about Lv, i.e., the highest ID it has seen so far.
22: end for
23: if v is still a candidate then
24: v elects itself to be the leader.
25: end if

– Case 2 (vmax and u do not have an edge between them):
By Observation 1, there is some x ∈ V such that both
vmax and u have edges going to x. Then it is clear that
x will cause u to become a non-candidate at some point
of time or another. We can do a more rigorous case-by-
case analysis, but we defer that mundane technicality to
the appendix (Section A.3) for the sake of maintaining
fluency of the presentation here in the main paper.

Lemmas 9 and 10 together imply that Algorithm 2 elects
a unique leader (the node with the highest ID) and is there-
fore correct.

4.2 Message Complexity

Lemma 11 At the end of round i, there are at most n
2i “active”

nodes.

Proof Consider a node v that is active at the end of round
i. This implies that the if-clause of Line 15 of Algorithm 2

has not so far been satisfied for v, which in turn implies that
IDv > IDwv, j for 1≤ j ≤ 2i−1, therefore none of

wv,1,wv,2, . . . ,wv,2i−1

is active after round i. Thus for every active node at the end
of round i, there are at least 2i−1 inactive nodes. We call this
set of inactive nodes, together with v itself, the “kingdom” of
v after round i, i.e.,

KINGDOMi(v)
def
= {v}∪

{
wv,1,wv,2, . . . ,wv,2i−1

}
and |KINGDOMi(v)|= 2i.

If we can show that these kingdoms are disjoint for two dif-
ferent active nodes, then we are done.

Proof by contradiction. Suppose not. Suppose there are two
active nodes u and v such that

u 6= v and KINGDOMi(u)∩KINGDOMi(v) 6= φ
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(after some round i, 1 ≤ i ≤ logn). Let x be such that x ∈
KINGDOMi(u)∩KINGDOMi(v). Since an active node ob-
viously cannot belong to the kingdom of another active node,
this x equals neither u nor v, and therefore

x ∈
{

wv,1,wv,2, . . . ,wv,2i−1
}
∩
{

wu,1,wu,2, . . . ,wu,2i−1
}

,

that is, both u and v have sent their respective probe-messages
to x. Then it is straightforward to see that x would not allow
u and v to be active at the same time. We can do a more
rigorous case-by-case analysis, but we defer that mundane
technicality to the appendix (Section A.3) for the sake of
maintaining fluency of the presentation here in the main pa-
per.

Lemma 12 In round i, at most 3n messages are transmitted.

Proof In round i, each active node sends exactly 2i−1 probe
messages, and each probe-message generates at most two
responses (corresponding to Lines 17 and 21 of Algorithm 2).
Thus, in round i, each active node contributes to, directly or
indirectly, at most 3.2i−1 messages. The result immediately
follows from Lemma 11.

Since the algorithm runs for logn rounds, the total num-
ber of messages transmitted is at most 3n logn, and Theorem
4 immediately follows.

5 A Deterministic Lower Bound

In this section we show that Ω(n logn) is a lower bound on
the message complexity for solving leader election with any
deterministic algorithm in diameter-two networks. Notice
that [1] shows a lower bound of Ω(n logn) for the special
case of complete graphs (i.e., diameter-one networks), and
we know from [11] that the message complexity becomes
Ω(m) for (most) diameter-three networks. Thus, Theorem 5
completes the picture regarding the message complexity of
leader election when considering networks according to their
diameter.

More Formally: For every deterministic algorithm that
solves implicit leader election in all diameter-two networks,
there exists some graph of diameter two where the said algo-
rithm sends at least Ω(n logn) messages. As usual, n is the
number of nodes in the network.

In other words, we show that

Theorem 5 There is no deterministic algorithm that solves
leader election in every diameter-two network of n nodes
with o(n logn) messages.

Remark 4 In [1], the Ω(n logn) message lower bound was
showed for complete networks under the non-simultaneous
wakeup model in synchronous networks. The same message
bound can be shown to hold in the simultaneous wake-up

model as well under the restriction that the number of rounds
is bounded by a function of n [10]. We will show a lower
bound of Ω(n logn) message complexity by reducing the
problem of “leader election in complete graphs” to that of
“leader election in graphs of diameter two”. This reduction
itself would take two rounds and O(n) messages. Then, since
the former is known to have Ω(n logn) message complexity
under the aforementioned constraints, the latter would have
the same lower bound too (cf. Section 1.1).

In the remainder of this section, we prove Theorem 5.

Proof by reduction. Suppose A is a leader election algo-
rithm that works for any graph of diameter two. Let G =
(V,E) be our input instance for the problem of “leader elec-
tion in complete graphs”, i.e., G is the complete graph on n
nodes, say.

The Reduction. G sparsifies itself into a diameter-two graph
(G′, say, where G′ = (V,E ′), where E ′ ( E) on which A
works thereafter. This sparsification takes O(n) messages
and a constant number of rounds (two, to be exact) and is
done as follows.

– Round 1: Each node v chooses one of its neighbours w
(any arbitrary one), say, and asks its ID. If IDw > IDv,
then both v and w agree to “drop" that edge, i..e., it won’t
use that for communication in the subsequent simulation
of A . Otherwise v and w keep that edge.
For v ∈ V , if v has d n

2e or more edges removed, then v
makes itself a “candidate”.

– Round 2: The candidates from the previous round send
their ID’s to all the nodes in the network using edges of G.
By Lemma 13, there can be at most two such nodes. Thus
the total number of messages sent is still O(n). Then each
node (including the candidates themselves) receives the
ID’s of up to two candidates and chooses the highest of
them to be the ID of the leader.

If no such node exists which has had d n
2e or more edges

removed, then G′ has diameter two (please refer to Lemma
14), and we run A on G′. A returns a leader on G′ which
makes itself the leader of G too, and informs all its neighbors.
This takes O(n) messages.

5.1 Proof of Correctness

Observation 4 E has at most (n−1)-edges more than E ′.

Proof Each node except the node with the highest ID drops
at most one edge. The node with the highest ID drops no
edge.
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Lemma 13 For n≥ 3, there can be at most two nodes in G′

that has had d n
2e or more edges removed.

Proof A simple counting argument tells us that Lemma 13
follows from Observation 4. We need to be careful with the
ceiling operators and the floor operators here though. We can
do a more rigorous case-by-case analysis (for the two cases
when n is even and when n is odd, respectively), but we defer
that mundane technicality to the appendix (Section A.4) for
the sake of maintaining fluency of the presentation here in
the main paper.

Lemma 14 If no node exists in G′ which has had d n
2e or

more edges removed, then G′ has diameter two.

Proof Clearly G′ is not of diameter one since the node with
the smallest ID in V always drops at least one edge.

Now let us consider any pair of nodes u and v, say. We
show that the distance between u and v cannot be greater
than 2. This follows from this simple “pigeon hole principle”
argument: If no node has had n

2 or more edges removed, then
all nodes are of degree at least n

2 ; so for each pair of nodes
there should be at least one common neighbour.

Of course, we need to be careful with the ceiling opera-
tors and the floor operators here. We can do a more rigorous
case-by-case analysis (for the two cases when n is even and
when n is odd, respectively), but we defer that mundane tech-
nicality to the appendix (Section A.5) for the sake of main-
taining fluency of the presentation here in the main paper.

6 Conclusion

We settle the message complexity of leader election through-
out the diameter spectrum, by presenting almost tight bounds
(tight upto polylog(n) factors) for diameter-two graphs which
were left open by previous results [12, 11]. Several open
problems arise from our work.

1. Is it possible to show a high probability bound of O(n)
messages for randomized, implicit leader election that
runs in O(1) rounds? This will match the lower bounds,
by closing the polylog(n) factor. It might be possible to
improve the analysis of our randomized, implicit algo-
rithm to show O(n logn) messages.

2. Coming to deterministic algorithms, another very inter-
esting question is whether explicit leader election can
be performed in Õ(n) messages in diameter-two graphs
deterministically.

3. The question of explicit leader election naturally begs the
question whether broadcast, another fundamental prob-
lem in distributed computing, can be solved determinis-
tically in diameter-two graphs with Õ(n) messages and
O(polylog(n)) rounds if n is known. 9

9 In contrast, we note that Ω(m) is a lower bound for deterministic
on graphs of diameter at least three, even if n is known [11].

4. Removing the assumption of the knowledge of n (or
showing that it is not possible) for deterministic, implicit
leader election algorithms with Õ(n) message complex-
ity and running in Õ(1) rounds is open as well.
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A Appendix

A.1 Proof for function minima in Lemma 1

Proof We define the Lagrangian as

L
def
= f (x1,x2, . . . ,xn)−λ (

n

∑
i=1

xi−C) (7)

where λ is the Lagrange multiplier. We can find the critical points of
the Lagrangian by solving the set of equations

∂ f
∂xi

= λ
∂ ∑

n
i=1 xi

∂xi
for i = 1,2, . . . ,n (8)

and

n

∑
i=1

xi =C (9)

Simplifying Equation 8, we get

− logxi

x2
i

= λ for i = 1,2, . . . ,n (10)

One possible (feasible) solution of Equations 10 and 9 is,

xi =
C
n

for all 1≤ i≤ n (11)

and

λ
∗ =−

log(C
n )

(C
n )

2
(12)

Let X∗ be a vector of dimension n defined by X∗ def
= (C

n ,
C
n , . . . ,

C
n ). Then

we have already shown that X∗ and λ ∗ are a critical point for the La-
grange function L . We claim that X∗ is also a local minima for f (x)
under the constraint of Equation 9.

We show that by constructing the Bordered Hessian matrix HB

of the Lagrange function. Let L∗i j
def
= ∂

∂x j
( ∂L

∂xi
)
∣∣∣
X∗

, where L is the La-
grange function as defined in Equation 7. Then

HB =


0 1 1 · · · 1
1 L∗11 L∗12 · · · L∗1n
1 L∗21 L∗22 · · · L∗2n
...

...
...

. . .
...

1 L∗n1 L∗n2 · · · L∗nn


We note that L∗ii =

2log(C
n )−1

(C
n )

3 −λ ∗ for all 1≤ i≤ n, and L∗i j = 0 for all

(i, j) such that i 6= j. Hence

HB =



0 1 1 · · · 1

1 2log(C
n )−1

(C
n )

3 −λ ∗ 0 · · · 0

1 0 2log(C
n )−1

(C
n )

3 −λ ∗ · · · 0

...
...

...
. . .

...

1 0 0 · · · 2log(C
n )−1

(C
n )

3 −λ ∗


We show that HB is positive definite (which is a sufficient condition for
X∗ to be a local minima) by checking the signs of the leading principal

minors. For any 1 ≤ i ≤ n, |HB
i | is the determinant of a square matrix

of dimension i+1, and is given by

|HB
i |=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1 1 · · · 1

1 2log(C
n )−1

(C
n )

3 −λ ∗ 0 · · · 0

1 0 2log(C
n )−1

(C
n )

3 −λ ∗ · · · 0

...
...

...
. . .

...

1 0 0 · · · 2log(C
n )−1

(C
n )

3 −λ ∗

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=−i( 2log(C

n )−1
(C

n )
3 −λ ∗)i−1.

But
2 log(C

n )−1

(C
n )

3
> 0 (since C ≥ n

√
2, 2 log(C

n )−1 > 0)

and λ
∗ =−

log(C
n )

(C
n )

2
< 0.

Hence

2log(C
n )−1

(C
n )

3
−λ

∗ > 0

=⇒ −i(
2log(C

n )−1

(C
n )

3
−λ

∗)i−1 < 0

i.e., |HB
i |< 0 for all 1≤ i≤ n

=⇒ HB is positive definite.

A.2 Detailed proof of Lemma 10

Proof Consider any u ∈V such that u 6= vmax.
– Case 1 (vmax and u are connected via an edge): Since vmax has

the highest ID in G, the if-clause of Line 15 of Algorithm 2 is
never satisfied for vmax. Therefore vmax becomes inactive only if it
has already sent probe-messages to all its neighbors (or vmax never
becomes inactive). In particular, u always receives a probe-message
from vmax containing IDvmax . Since IDvmax > IDu, u becomes a non-
candidate at that point (if u was still a candidate until that point)
and therefore does not become a leader.

– Case 2 (vmax and u do not have an edge between them): By
Observation 1, there is some x ∈V such that both vmax and u have
edges going to x. And we have already established that vmax will
always send a probe-message to x at some point of time or another.

– Case 2(a) (u does not send a probe-message to x): This
implies that u became inactive before it could send a probe-
message to x. But then u could have become inactive only if
the if-clause of Line 15 of Algorithm 2 got satisfied at some
point. Then u became a non-candidate too at the same time
and therefore would not become a leader.

– Case 2(b) (u sends a probe-message to x before vmax does):
Suppose u sends a probe-message to x at round i and vmax

sends a probe-message to x at round i′, where 1≤ i< i′ ≤ logn.
If x had seen an ID higher than IDu up until round i, then x
immediately informs u and u becomes a non-candidate.
So suppose not. Then, after round i, x sets its local variables
Lx and Nx to IDu and u respectively. Let j > i be the smallest
integer such that x receives a probe-message from a neighbor
u′ at round j, where IDu′ > IDu. Note that vmax will always
send a probe-message to x, therefore such a u′ exists. Then,
after round j, x sets its local variables Lx and Nx to IDu′ and
u′ respectively, and informs u of this change (please see Line
17 of Algorithm 2). u becomes a non-candidate at that point of
time.
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– Case 2(c) (u and vmax each sends a probe-message to x at
the same time): Since IDvmax is the highest ID in the network,
Lx is assigned the value IDvmax at this point, and x tells u about
Lx = IDvmax > IDu, causing u to become a non-candidate.

– Case 2(d) (u sends a probe-message to x after vmax does):
Suppose vmax sends a probe-message to x at round i and u
sends a probe-message to x at round i′, where 1≤ i< i′ ≤ logn.
Then x sets its local variables Lx and Nx to IDvmax and vmax,
respectively, after round i. So when u comes probing at round
i′ > i, x tells u about Lx = IDvmax > IDu, causing u to become
a non-candidate.

A.3 Detailed proof of Lemma 11

Proof Consider a node v that is active at the end of round i. This im-
plies that the if-clause of Line 15 of Algorithm 2 has not so far been
satisfied for v, which in turn implies that IDv > IDwv, j for 1≤ j≤ 2i−1,
therefore none of

wv,1,wv,2, . . . ,wv,2i−1

is active after round i. Thus for every active node at the end of round i,
there are at least 2i−1 inactive nodes. We call this set of inactive nodes,
together with v itself, the “kingdom” of v after round i, i.e.,

KINGDOMi(v)
def
= {v}∪

{
wv,1,wv,2, . . . ,wv,2i−1

}
and |KINGDOMi(v)|= 2i.

If we can show that these kingdoms are disjoint for two different active
nodes, then we are done.

Proof by contradiction. Suppose not. Suppose there are two active
nodes u and v such that

u 6= v and KINGDOMi(u)∩KINGDOMi(v) 6= φ

(after some round i, 1≤ i≤ logn). Let x be such that x∈KINGDOMi(u)∩
KINGDOMi(v). Since an active node obviously cannot belong to the
kingdom of another active node, this x equals neither u nor v, and there-
fore

x ∈
{

wv,1,wv,2, . . . ,wv,2i−1
}
∩
{

wu,1,wu,2, . . . ,wu,2i−1
}

,

that is, both u and v have sent their respective probe-messages to x.
Without loss of generality, let IDv > IDu.

– Case 1 (u sends a probe-message to x before v does): Suppose u
sends a probe-message to x at round j and v sends a probe-message
to x at round j′, where 1 ≤ j < j′ ≤ i. If x had seen an ID higher
than IDu up until round j, then x immediately informs u and u
becomes inactive. Contradiction.
So suppose not. Then, after round j, x sets its local variables Lx
and Nx to IDu and u respectively. Let k > j be the smallest integer
such that x receives a probe-message from a neighbor u′ at round k,
where IDu′ > IDu. Note that v sends a probe-message to x at round
j′, where j < j′ ≤ i, and IDv > IDu. Therefore such a u′ exists.
Then, after round k, x sets its local variables Lx and Nx to IDu′ and
u′ respectively, and informs u of this change (please see Line 17
of Algorithm 2). u becomes inactive at that point of time, i.e., after
round k, where k ≤ j′ ≤ i. Contradiction.

– Case 2 (u and v each sends a probe-message to x at the same
time): Suppose that u and v each sends a probe-message to x at
the same round j, where 1≤ j ≤ i. Since IDv > IDu, x has at least
one neighbor u′ such that IDu′ > IDu. Therefore x would not set
Lx to IDu (or Nx to u), and x would inform u about that after round
j, causing u to then become inactive. Contradiction.

– Case 3 (u sends a probe-message to x after v does): Suppose v
sends a probe-message to x at round j and u sends a probe-message
to x at round j′, where 1≤ j < j′ ≤ i. Then x sets its local variables
Lx and Nx to IDv and v, respectively, after round j. So when u
comes probing at round j′ > j, x tells u about Lx ≥ IDv > IDu,
causing u to become inactive. Contradiction.

A.4 Detailed proof of Lemma 13

Proof We consider the two cases separately — when n is even and
when n is odd — in order to make the presentation simpler.

– Case 1: n = 2k for some integer k ≥ 2.

Proof by contradiction. Suppose that there are three or more
nodes that have had d n

2 e = k or more edges removed each (either
by themselves or by their neighbors). Let u, v, and w be three such
nodes. Since an edge is removed only if one of the incident nodes
has a higher ID than the other, all of (u,v), (v,w), and (w,u) can-
not have been removed. Thus by a simple counting argument (by
the “principle of inclusion-exclusion”), the total number of edges
removed is at least (3k−3)+1 = 3k−2 > 2k−1 = n−1, which
contradicts Observation 4.

– Case 2: n = 2k+1 for some integer k ≥ 1.

Proof by contradiction Suppose that there are three or more
nodes that have had d n

2 e= k+1 or more edges removed each (ei-
ther by themselves or by their neighbors). Let u, v, and w be three
such nodes. Since an edge is removed only if one of the incident
nodes has a higher ID than the other, all of (u,v), (v,w), and (w,u)
cannot have been removed. Thus by a simple counting argument
(by the “principle of inclusion-exclusion”), the total number of
edges removed is at least (3(k+1)−3)+1 = 3k+1 > 2k = n−1,
which contradicts Observation 4.

A.5 Detailed proof of Lemma 14

Proof Clearly G′ is not of diameter one since the node with the smallest
ID in V always drops at least one edge. Now let us consider any pair of
nodes u and v, say. We show that the distance between u and v cannot
be greater than 2.

If (u,v) ∈ E ′, then we are already done. So suppose (u,v) /∈ E ′.
Next we show that for any u,v∈V , either u and v are directly connected
in G′ or ∃w ∈V such that (u,w) ∈ E ′ and (w,v) ∈ E ′.

We consider the two cases — when n is even and when n is odd —
separately, in order to make the presentation simpler.

– Case 1: n = 2k for some integer k ≥ 2.
Since no node exists in G′ which has had d n

2 e = k or more edges
removed, every node in G′ has degree at least (n−1)− (k−1) = k.
Thus for any u,v ∈V , if (u,v) /∈ E ′, then there are at least k+ k−
(n−2) = 2 nodes in V \{u,v} that are common neighbors to both
u and v.

– Case 2: n = 2k+1 for some integer k ≥ 1.
Since no node exists in G′ which has had d n

2 e = k + 1 or more
edges removed, that implies that every node in G′ has degree at
least (n− 1)− k = k. Thus for any u,v ∈ V , if (u,v) /∈ E ′, then
there is at least k+ k− (n− 2) = 1 node in V \ {u,v}, which is a
common neighbor to both u and v.
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