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Abstract—We consider a practical multiunit heterogeneous
spectrum market in which each buyer may request multiple
channels with different bid prices at different geographical
regions and each channel is associated with a reserve price
indicating the desired revenue of the seller. The degree-of-freedom
brought by multiunit trading and (reserve and bid) price diversity
in such a market can be exploited to break the truthfulness of
the two most popular schemes adopted by secondary spectrum
auctions, namely Myerson’s Optimal Mechanism (MOM) and
Vickrey-Clarke-Groves (VCG), via bidder self-collusion. In this
paper, we conduct a thorough analysis on the root causes of
untruthfulness in MOM and VCG, and prove the fundamental
theories addressing when MOM and VCG are truthful and when
their truthfulness is broken by bid rigging. Particularly, we
demonstrate how self-collusion is exploited in MOM and VCG
to improve the untruthful bidders’ utility. The critical findings
provide a guidance for us to design a Self-collusion Resistant
Auction (SIRI) in multiunit heterogeneous spectrum markets with
reserve prices. The economic properties of SIRI are proved via
rigorous theoretical analysis.

Index Terms—Truthfulness; self-collusion; reserve price; mul-
tiunit heterogeneous spectrum market.

I. INTRODUCTION

In this paper, we consider the truthfulness of spectrum auc-
tions in a multiunit heterogeneous secondary spectrum market
that covers multiple non-overlapping geographical regions. In
such a market, a seller can supply multiple channels at each
region with diverse reserve prices to guarantee its revenue
and each buyer may demand one or more channels at each
region with diverse bids. Spectrum reuse is allowed at non-
adjacent regions, as the cellular networks do. This model is
more practical and flexible than those taken by most existing
research [1]–[12] that do not fully explore the heterogeneity of
secondary spectrum markets and tackles spectrum reuse based
on conflict graphs determined by the physical communication
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models. The major reasons lie in two aspects: i) in practice
bid and reserve price variate at different geographical regions
with different population density and degree of wealth; and
ii) spatial channel reuse can not be guaranteed if conflict
graphs are determined by communication models in a dynamic
environment due to node mobility and other factors.

However, the degree-of-freedom brought by multiunit trad-
ing and (bid/reserve) price diversity may be exploited via self-
collusion to break the truthfulness of the two most popular
schemes adopted by secondary spectrum auctions, namely
Myerson’s Optimal Mechanism (MOM) [13] and Vickrey-
Clarke-Groves (VCG) [14]. A buyer can easily perform self-
collusion by manipulating its bid prices on different channels
and/or at different regions to win the auction and improve its
utility, causing truthfulness violations. Such a “single member”
collusion is easy to launch but hard to detect compared to
multi-member collusions as colluding with another bidder
requires the two to trust each other and secure the post-auction
benefit distribution ahead of time. As a result, self-collusion
is more detrimental and insidious compared to multi-member
collusions. However, in spectrum markets, only a few efforts
have been done for self-collusion resistance [11], [15]–[18].
Specifically, among the most three popular auction mecha-
nisms, self-collusion in McAfee [19] is studied by [15]–[17],
self-collusion in Myerson’s optimal mechanism (MOM) [13] is
investigated by [11], [18], but self-collusion in Vickrey-Clarke-
Groves (VCG) [14] has not been paid attention to in literature
yet. Therefore, to effectively avoid market manipulation in
spectrum markets, more studies are needed to fill the gap in
self-collusion.

Therefore in this paper we investigate the vulnerabilities
of MOM and VCG to untruthfulness caused by self-collusion
in our multiunit heterogeneous spectrum market with reserve
prices as they serve as the bases for many mechanisms
targeting different spectrum markets. Our major activities and
contributions in this paper are summarized as follows:
• We extend traditional MOM and VCG to our multiunit

heterogeneous spectrum market with reserve prices and
establish fundamental theories to answer the following
questions: when are MOM and VCG truthful and when
are they not truthful? particularly, when are they vulner-
able to self-collusion? We present the conditions under
which YES answers or NO answers are provided.

• We use both toy examples and rigorous theoretical anal-
ysis to identify the root causes of MOM and VCG’s

Authorized licensed use limited to: George Mason University. Downloaded on July 07,2020 at 22:23:21 UTC from IEEE Xplore.  Restrictions apply. 



2332-7731 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCCN.2020.2996602, IEEE
Transactions on Cognitive Communications and Networking

2

untruthfulness. Our findings indicate that both MOM and
VCG suffer from untruthfulness due to the degree-of-
freedom brought by multiunit trading and (bid/reserve)
price diversity. What’s more, self-collusion can be easily
performed in both MOM and VCG by rigging the bid
prices on different channels and/or at different locations
to help improve utility.

• We employ our foundational theories and findings to
design an auction scheme termed SIRI for the multiunit
heterogeneous spectrum market with reserve prices and
prove that SIRI possesses the economic properties of
truthfulness (and self-collusion resistance) and individual-
rationality.

The rest of the paper is organized as follows. Related work
is briefly summarized in Section II. Preliminaries, the auction
model, and the cheating model are detailed in Section III.
Rigorous theoretical analysis on the truthfulness of VCG
and MOM in our multiunit heterogeneous spectrum market
with reserve prices are presented in Sections V and IV,
respectively. Our truthful (and self-collusion resistant) auction
scheme SIRI is proposed and analyzed in Section VI. This
paper is concluded in Section VII.

II. RELATED WORK

In the secondary spectrum market, the existing auction
mechanisms are mainly designed based on the three classical
auctions, including VCG for maximizing social welfare, MOM
for maximizing auction revenue, and McAfee for facilitating
bilateral auction.

Multiunit Spectrum Auction: In [1]–[3], [12], McAfee-
style multiunit double auctions were developed to simultane-
ously achieve truthfulness, individual-rationality and budget-
balance, with a sacrifice in social welfare and/or revenue;
particularly, homogeneous channels were considered in [12],
heterogeneous channels were taken into account in [1], and
price discount was provided for multiunit channel purchase
in [2], and the signal to interference and noise (SINR) was
used to measure users’ preference to channel allocation in [3].
Multiunit single-side spectrum auctions have been proposed
by [4]–[9] to maximize social welfare or revenue, which
differ in their approaches to determine winners and payments
with different computational complexity. But, [4], [5] did
not consider price diversity for spectrum bidding, [6] did to
consider diverse available locations of channels, and [7]–[9]
only studied homogeneous channels.

Collusion in Spectrum Auction: To prevent collusion
among bidders, deterministic mechanisms were explored
in [20]–[23], and probabilistic t-truthful spectrum auctions
were proposed in [24], [25] targeting small-group collusions.
In [26], group truthfulness is ensured by a group-buying
auction scheme consisting of a rule to form group and a rule to
computer payment. To improve the ability of collusion resis-
tance, a K Nearest Neighbor (KNN) learning-based algorithm
was proposed by [27], where however, the performance of
collusion resistance is only evaluated via simulations without
rigorous proof. Nevertheless, it has been claimed that collusion

can not be completely avoided unless a trivial posted-price
auction is taken [28].

Self-Collusion in Spectrum Auction: Previous works show
that McAfee may become vulnerable to self-collusion when
extended to heterogenous bids or multiunit trading. The reason
is that when a bidder has more than one bid, or a bidder
participates in multiple bid groups due to spatial channel reuse
and multiunit requests, its bids become the boundary bids via
manipulation, thus successfully affecting auction outcomes. To
tackle this issue, [15], [16] implemented a bid-independent
buyer-seller matching algorithm after buyer grouping and
before winner determination. In [17], the bidder groups are
sorted according to group size rather than group bid, so that
cheating on bid cannot change the sorted group sequence and
the clearing price. Self-collusion of MOM in the single-unit
heterogeneous spectrum market has been investigated in [11],
[18], but an in-depth analysis under a practical spectrum
market setting is missing. Self-collusion in VCG under any
setting has never been addressed, to our best knowledge.

Different from the most existing works that directly or
indirectly apply the traditional auction mechanisms, this paper
considers a multiunit heterogeneous spectrum market, intends
to reveal the root causes of untruthfulness and self-collusion
in MOM and VCG, and set up fundamental theories for
bid rigging prevention. By exploiting the critical theories
established in our theoretical analysis, we propose an effective
auction mechanism that is truthful and self-collusion resistant.

III. PRELIMINARIES AND MODELS

A. Preliminaries

An auction is a game-based resource allocation method
composed of two steps: winner determination and payment
(clearing price) computation. In this subsection, we outline the
major economic properties and basic concepts that are related
to our spectrum auction design. (1) Price Diversity: In a
spectrum auction, price diversity reflects the price fluctuations
of channels in frequency, space, and/or time domains. (2)
Single-unit & Multiunit: If each buyer requests only one
channel, the auction is single-unit; if each buyer demands one
or more channels, the auction is multiunit. (3) Individual-
rationality: An auction is individually-rational if no winner
obtains a negative utility. (4) Incentive-compatibility: An
auction is incentively-compatible if no bidder can improve its
received utility via untruthful bidding. Incentive-compatibility
is also called “truthfulness” or “strategy-proof”. (5) Self-
collusion: It is a cheating behavior that involves only one
bidder but at least two bids of this bidder. Self-collusion
helps illegally improve the bidder’s utility and thus results
in untruthfulness. (6) Reserve Price: A seller can commit not
selling the channel after the auction if the winning buyer’s
payment is lower than the reserve price. (7) Social Welfare:
It is the sum of all bidders’ bid values, indicating the resource
allocation efficiency of an auction. (8) Efficiency: An auction
is efficient if it maximizes the social welfare. (9) Optimality:
An auction is optimal if it maximizes the auction revenue,
subject to the individual-rationality and incentive-compatibility
constraints.
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Remarks: (i) Self-collusion is a special cheating behavior
of a bidder rigging its bids to win different channels. Therefore
an auction that is vulnerable to self-collusion is not truthful,
and a truthful auction must be self-collusion resistant. (ii) The
reserve price of a channel is different from the bid value on
the channel of a seller. Usually, a bid value is the seller’s
valuation on the channel, while the reserve price reflects
the seller’s desirable revenue from selling the channel. Thus,
even though the bid value of a channel is 0, the seller can
increase its revenue by setting a positive reserve price in the
auction [29], [30]. (iii) Because efficiency and optimality can
not be achieved simultaneously [29], [30], auction designers
have to decide which objective to achieve. Intuitively, a selfish
seller prefers an optimal auction to increase its revenue;
while a public auctioneer may choose an efficient auction for
resource utilization improvement.

B. Auction Model

Before introducing our auction model, the main notations
are presented in Table I.

TABLE I
NOTATIONS & DEFINITIONS

Notations Definitions
K Set of local regions
M Set of channels of spectrum access

provider (seller)
A = {aik} Seller’ reserve prices for each chan-

nel i at region k

N Set of spectrum access requesters
(buyers)

Bj = {bijk} Buyer j’s bid for channel i at region
k

Qj = (qj1, ..., qjK) Buyer j’s demand on channel i at
region k

zik Binary constant to indicate availabil-
ity of channel i at region k

xijk Binary variable to indicate channel
assignment

pj Buyer j’s payment for all assigned
channels

uj Buyer j’s utility

We consider a network that can be divided into a set of non-
overlapping local regions denoted by K (|K| = K,K ≥ 1). In
this network, a spectrum access service provider called “seller”
exists to supply a set of orthogonal channels represented by
M (|M| = M,M ≥ 1). Assume that there are Mk ∈ [0,M ]
available channels at region k ∈ [1,K]. Formally, if channel
i is available at region k, we set zik = 1; otherwise, zik =
0. There also exists a set of buyers N (|N | = N,N ≥ 1)
requesting spectrum access services from the seller.

In order to obtain a positive revenue, the seller has a reserve
price for each channel at each location, which is expressed as

A =


a11 a12 . . . a1K

a21 a22 . . . a2K

...
...

. . .
...

aM1 aM2 . . . aMK

 ;

where aik (i ∈ [1,M ], k ∈ [1,K]) is the reserve price of
channel i at region k.

To obtain channels, all buyers submit their bids to the
seller at the beginning of the auction. A buyer j could submit
different bid prices for different channels at different regions,
i.e., buyer j submits a bid matrix Bj .

Bj =


b1j1 b1j2 . . . b1jK

b2j1 b2j2 . . . b2jK

...
...

. . .
...

bMj1 bMj2 . . . bMjK

 ;

in which bijk (i ∈ [1,M ], j ∈ [1, N ], k ∈ [1,K]) represents
buyer j’s bid price for channel i at region k. Correspond-
ingly, we use B = {B1, B2, . . . , BN} to denote the set of
all buyers’ bids. Besides, buyer j also reports its demands
Qj = (qj1, qj2, . . . , qjK), where qjk (j ∈ [1, N ], k ∈ [1,K])
is the number of requested channels at region k.

Let xijk be an 0-1 binary variable with xijk = 1 indicating
that channel i is sold to buyer j at region k. Denote by G(K, E)
the “adjacent-region graph”. For any two regions k, k′ ∈ K,
there exists an edge e(k, k′) ∈ E if and only if k and k′ are
neighboring with each other. To improve channel utilization
while avoiding interference, we set up the following channel
allocation constraints (1)-(4):

Within the same region, each channel is assigned to only
one buyer; that is,

xijk × xij′k = 0, ∀i ∈ [1,M ], j 6= j′ ∈ [1, N ], k ∈ [1,K]. (1)

Within any two adjacent regions, a channel can be used
by the same buyer but cannot be used by different buyers, i.e.,

xijk × xij′k′ = 0, ∀i ∈ [1,M ], j 6= j′ ∈ [1, N ], e(k, k′) ∈ E . (2)

The number of traded channels can not exceed the seller’s
supply in each region:

M∑
i=1

N∑
j=1

zikxijk ≤Mk, ∀k ∈ [1,K]. (3)

The number of purchased channels is not larger than a
buyer’s demand in each region:

M∑
i=1

zikxijk ≤ qjk, ∀j ∈ [1, N ], k ∈ [1,K]. (4)

Let pj be the payment of buyer j for all its purchased
channels in the auction. Then the received utility uj of buyer
j is:

uj =

M∑
i=1

K∑
k=1

xijkbijk − pj . (5)

The social welfare W and revenue R of an auction are
computed by (6) and (7), respectively.

W =

M∑
i=1

N∑
j=1

K∑
k=1

xijkbijk. (6)

R =

M∑
i=1

N∑
j=1

K∑
k=1

xijk(bijk − aik). (7)

We denote the problem of Multi-unit Heterogeneous
Spectrum Auction with Reserve Price by MESAP. We
also consider a variant of MESAP, denoted by v-MESAP,
where the seller does not consider price diversity in the space
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Fig. 1. An example of auction model.

domain and views a channel as one single unit in the whole
network. Formally, the reserve price Â in v-MESAP is defined
as Â = (â1, â2, . . . , âi, . . . , âM ) with âi being the reserve
price of channel i and the revenue R̂ is

R̂ =

M∑
i=1

N∑
j=1

K∑
k=1

x̂ijkbijk −
M∑
i=1

ŷiâi, (8)

where

ŷi =


0, if

N∑
j=1

K∑
k=1

x̂ijk = 0,

1, if
N∑

j=1

K∑
k=1

x̂ijk ≥ 1,

in which x̂ijk = 1 indicates buyer j wins channel i at region
k, ŷi = 1 implies that channel i is successfully sold to at least

one buyer, and
M∑
i=1

ŷi is the total number of sold channels.

Let p̂j be the payment of buyer j in v-MESAP; then ûj and
Ŵ can be respectively defined according to (5) and (6).

Remarks: The consideration of the above two auction
models can be justified as follows. (1) Recently, the seller
model in v-MESAP has been adopted by almost all existing
research [10], [11], [15], [16], [31]–[33], in which spatial
channel reuse is considered based on the conflict graph among
all buyers determined by the physical communication models.
However, in such a model, the seller only cares whether a
channel is successfully sold to a buyer – it does not take into
account the number of buyers winning the channel. (2) Since
price diversity and channel heterogeneity are not fully explored
in v-MESAP, we establish a more practical model MESAP,
to consider price diversity and channel heterogeneity in both
frequency and space domains. In this paper, spatial channel
reuse is determined according to the conflict graph defined by
neighboring regions, which is more practical, stable, and flex-
ible because (i) conflict graphs determined by communication
models may change abruptly, leading to a short period of time
to use a purchased channel in a dynamic environment; and
(ii) a buyer may want to provide AP-like services to other
users and thus purchase a channel for a particular region.
(3) From the viewpoints of the type of trading and price
diversity, four cases are incorporated in both MESAP and v-
MESAP: (i) single-unit trading with a homogeneous reserve
price; (ii) single-unit trading with homogeneous bids; (iii)
multi-unit trading with homogeneous reserve price and bids;

and (iv) multi-unit trading with heterogeneous reserve prices
and bids. Thus, we can conduct an in-depth theoretical analysis
on self-collusion in VCG and MOM under MESAP and v-
MESAP. (4) For a multi-unit heterogeneous spectrum market,
combinatorial auctions could be an alternative choice. How-
ever, combinatorial auctions cannot support channel reuse due
to the following two constraints in resource allocation [29],
[34]: (i) any two bundles must be non-overlapping; and (ii)
each bundle is assigned to at most one buyer. Moreover,
tailoring combinatorial auctions to perform channel reuse is
not a trivial problem. We will investigate the self-collusion
issues in combinatorial auctions in our future research.

C. Cheating Model

In this paper, we assume that the bids of different buyers
are independent and that there is no collusion among the
buyers. We also assume that a buyer would like to cheat on
its bid matrix Bj only, rather than its demand Qj , because
the buyer’s service requirement may not be satisfied with an
untruthfully reduced demand and the buyer’s payment may
be raised with an untruthfully increased demand. Since each
buyer j’s bid Bj contains M×K different price values, buyer
j is able to manipulate these M ×K price values for utility
enhancement. Particularly, if more than one price value is
involved in manipulation, the cheating behavior is so-called
“self-collusion”. This paper intends to conduct a truthfulness
analysis on VCG [14] and MOM [13] when they are extended
to our multiunit heterogeneous spectrum market with reserve
prices.

The auction model and buyers’ cheating behaviors can be
illustrated via Fig. 1, where there are 3 channels available in
regions {k1, k2, k3}. Buyer 1 demands one channel in region
k1, and buyer 2 demands one channel in both regions k2 and
k3. Suppose MOM auction is adopted, and the reserve prices
and bid prices are shown in Table V. If buyer 2 bids truthfully,
she wins channel 3 in k2 and channel 2 in k3, and her utility is
3; if buyer 2 manipulates her bid prices, she can win channel
3 in k2 and channel 1 in k3, and increase her utility to 5. In
Section IV and Section V, we will use toy examples based
the network topology of Fig. 1 to analyze the root causes of
self-collusion and untruthfulness in both MOM and VCG.
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IV. TRUTHFULNESS OF MOM

Myerson’s optimal mechanism (MOM) aims to maximize
the seller’s revenue in the auction [13]. In MOM, truthful-
ness can be achieved if the winner determination is a non-
decreasing function of each buyer’s bid and each winning
buyer pays the smallest value with which it can win the
auction [29].

A. MOM in MESAP and v-MESAP

MOM in MESAP:
Winner Determination: Calculate

Xo ∈ arg max
X∈{0,1}M×N×K

R,

subject to (1), (2), (3), and (4). The objective function R
(see (7)) implies a non-negative marginal revenue of the sold
channels, i.e.,

bijk − aik ≥ 0. (9)

Clearing Pricing Scheme: Each winning buyer j’s payment
is its “critical bid”, computed by po

j = R∗B−j
− R∗−Bj

, in
which R∗B−j

is the maximum revenue when buyer j does not

participate in the auction, and R∗−Bj
= R∗ −

M∑
i=1

K∑
k=1

xo
ijkbijk

is the maximum revenue R∗ minus buyer j’s bid values.
The auction outputs are {xo

ijk} and {po
j}.

MOM in v-MESAP:
Winner Determination: Compute

X̂o ∈ arg max
X̂∈{0,1}M×N×K

R̂,

subject to (1), (2), (3), (4), and (9), as the objective function
R̂ (see (8)) cannot ensure a non-negative marginal revenue of
each sold channel.

Clearing Pricing Scheme: The payment of each winning

buyer j is p̂o
j = inf{h : h ≥

M∑
i=1

x̂o
ijkâi, h + R̂∗−Bj

≥ R̂∗B−j
}.

Accordingly, the auction outcomes are {x̂o
ijk} and {p̂o

j}.

VCG vs. MOM:
Similarities: (i) A winner pays its social opportunity cost

in VCG and its critical bid in MOM, which are the minimum
price for it to win the auction [13], [14], [29]. (ii) There is no
method to identify the clearing price of each channel in both
VCG and MOM when a buyer successfully purchase multiple
heterogeneous channels, because the social opportunity cost
and the critical bid are required to be independent of the
buyer’s bid and demand [29], [35].

Differences: (i) Objective: VCG maximizes social welfare
for efficiency; MOM maximizes auction revenue for optimal-
ity. It is claimed that MOM will become a modified VCG when
the seller submits a bid value equal to its reserve price [13],
[29], [30]. (ii) Allocation: VCG distributes as many channels
as possible to the buyers for better channel utilization; MOM
assigns each channel for a non-negative marginal revenue [29],
[30], [36]. (iii) Payment: VCG considers buyers’ bids only, but
MOM simultaneously takes into account the buyers’ bids and
the seller’s reserve prices [29], [30], [36].

B. When MOM is Truthful?

The truthfulness and self-collusion resistance of MOM in
MESAP are proved in Theorem 1.

Theorem 1: MOM in MESAP is truthful and self-collusion
resistant.

Proof: When buyer j bids truthfully with Bt
j and untruth-

fully with B′j , there are three cases to consider.
(i) If buyer j wins the auction with both Bt

j and B′j , the
corresponding payments are po

j = (R∗B−j
− R∗−Bj

) and p′oj =
(R′∗B−j

− R′∗−Bj
), respectively. Then the utility difference is

u′j−uj =
M∑
i=1

K∑
k=1

x′oijkb
t
ijk−

M∑
i=1

K∑
k=1

xo
ijkb

t
ijk +R′∗−Bj

−R∗−Bj
.

If
M∑
i=1

K∑
k=1

x′oijkb
′
ijk ≥

M∑
i=1

K∑
k=1

x′oijkb
t
ijk, then u′j − uj = (R′∗ −

R∗) −
M∑
i=1

K∑
k=1

x′oijk(b′ijk − btijk) ≤ 0, because
M∑
i=1

K∑
k=1

x′oijk ≥
M∑
i=1

K∑
k=1

xo
ijk and the increase of the auction revenue can not

be larger than the increase of the bids of a winning buyer’s

allocated channels. If
M∑
i=1

K∑
k=1

x′oijkb
′
ijk <

M∑
i=1

K∑
k=1

x′oijkb
t
ijk, then

u′j − uj =
M∑
i=1

K∑
k=1

x′oijk(btijk − b′ijk) − (R∗ − R′∗) ≤ 0, as

M∑
i=1

K∑
k=1

x′oijk ≤
M∑
i=1

K∑
k=1

xo
ijk and the decrease of the auction

revenue can not be smaller than the decrease of the bids of a
winning buyer’s allocated channels. Thus, u′j ≤ uj .

(ii) If buyer j loses with Bt
j but wins with B′j , u′j =

M∑
i=1

K∑
k=1

x′oijkb
t
ijk − (R′∗B−j

− R′∗−Bj
) = (R′∗ − R∗) −

M∑
i=1

K∑
k=1

x′oijk(b′ijk − btijk) ≤ 0 = uj according to the analysis

of (i).
(iii) If buyer j wins with Bt

j while losing with B′j , we have
uj ≥ 0 = u′j .

These three cases imply that buyer j cannot increase its util-

ity by rigging one or more bid values (i.e.,
M∑
i=1

K∑
k=1

x′oijkb
′
ijk),

i.e, buyer j’s utility is maximized if and only if it bids
truthfully. Therefore, MOM in MESAP guarantees truthfulness
and self-collusion resistance.

MOM in a single-unit auction with a uniform reserve price
and homogeneous bids in v-MESAP is self-collusion resistant
and truthful, as proved in Theorem 2.

Theorem 2: In a single-unit auction with a uniform reserve
price and homogeneous bids, MOM in v-MESAP is truthful
and self-collusion resistant.

Proof: In a single-unit auction with a uniform reserve
price and homogeneous bids, buyer j bids a single value bj for
all channels at any location and its payment can be computed
by p̂oj = max{â, (R̂∗B−j

− R̂∗−Bj
)}. There are three cases for

each buyer j.
(i) When (R̂∗B−j

− R̂∗−Bj
) ≤ btj < â, buyer j loses the

auction with btj . Thus, increasing btj to b′j could help it win
a channel. However, if buyer j wins with b′j , û′j = btj − â <
0 = ûj . Of course if buyer j is still a loser, û′j = ûj = 0.
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(ii) When (R̂∗B−j
− R̂∗−Bj

) < â ≤ btj , buyer j wins the
auction and pays â to the seller. Since (R̂∗B−j

− R̂∗−Bj
) is a

constant, buyer j’s payment is always equal to â if it wins the
auction. Thus, buyer j’s utility cannot be enhanced.

(iii) When â ≤ (R̂∗B−j
− R̂∗−Bj

) ≤ btj , buyer j is charged a
payment of (R̂∗B−j

−R̂∗−Bj
), which is a constant as the reserve

price and each buyer’s bids are uniform. Therefore, buyer j
needs to pay (R̂∗B−j

− R̂∗−Bj
) no matter how much it bids (as

long as it is a winner) and thus it cannot increase its utility.
These three cases indicate that buyer j cannot improve its

utility by cheating on its uniform bid. Thus, MOM is truthful.
The self-collusion resistance of MOM under this scenario
follows directly from the uniform reserve price and bids.

C. When MOM is Untruthful and Vulnerable to Self-
Collusion?

Comparing MOM in MESAP and in v-MESAP, we obtain
the following two observations: (i) In MESAP, if winning
buyer j purchases channel i at region k, it brings a non-
negative marginal revenue (bijk − aik) and contributes to R
the same amount. That is, the marginal revenue brought by
the winning buyer j purchasing channel i at region k is equal
to the increase of the auction revenue. (ii) In v-MESAP, if
buyer j is the sole winner on channel i and wins channel i

at only one region, i.e.,
N∑
j=1

K∑
k=1

x̂o
ijk = 1, the increase of R̂

is
N∑
j=1

K∑
k=1

x̂o
ijkbijk − âi = (bijk − âi); if there are more than

one winner on channel i and/or buyer j wins channel i at

more than one region, i.e.,
N∑
j=1

K∑
k=1

x̂o
ijk > 1, the increase of

R̂ is
N∑
j=1

K∑
k=1

x̂o
ijkbijk− âi >

N∑
j=1

K∑
k=1

x̂o
ijk(bijk− âi). Thus, the

increase of R̂ is at least equal to the marginal revenue con-
tributed by the winning buyer j purchasing channel i at region

k, leading to the possibility of (R̂∗B−j
− R̂∗−Bj

) <
M∑
i=1

x̂o
ijkâi.

As a result, buyer j could improve its utility by winning
different channels via self-collusion. In this subsection, we
analyze the vulnerability of MOM to market manipulation
in v-MESAP when considering multiunit trading and (reserve
and bid) price diversity by illustrative examples based on Fig. 1
and identify the root causes.

Table II presents an example of a single-unit MOM with a
uniform reserve price in v-MESAP. In this example, buyer 2
wins channel 1 with û2 = 0 when bidding truthfully, while
winning channel 2 with û′2 = 2 by decreasing the bid on
channel 1 and increasing the bid on channel 2.

Table III describes a single-unit MOM example with diverse
reserve prices and homogeneous bids in v-MESAP. Via reduc-
ing the bid from 6 to 5, buyer 2 wins channel 1 instead of
channel 2, raising its utility from 0 to 3 in the auction.

In Table IV, an example of multiunit MOM with a uniform
reserve price and homogenous bids in v-MESAP is demon-
strated. We see that buyer 2 wins the channel at region 3 only
while winning the channel at three regions simultaneously by

TABLE II
A SINGLE-UNIT AUCTION EXAMPLE IN V-MESAP WITH HOMOGENEOUS

RESERVE PRICE.

Supply Z = {zik} Â = {âi} Q1 Q2

& Demand
(

1 1 1

1 1 1

)
(3, 3) (1, 0, 0) (0, 0, 1)

Buyer Bid Payment Allocation Utility

Buyer 2 B1 =

(
4 0 0

0 0 0

)
p̂o
1 = 3 x̂o

111 = 1 û1 = 1

bids B2 B2 =

(
0 0 3

0 0 5

)
p̂o
2 = 3 x̂o

123 = 1 û2 = 0

Buyer 2 B1 =

(
4 0 0

0 0 0

)
p̂o
1 = 3 x̂o

111 = 1 û1 = 1

bids B′
2 B′

2 =

(
0 0 1

0 0 6

)
p̂′o2 = 3 x̂′o

223 = 1 û′
2 = 2

TABLE III
A SINGLE-UNIT AUCTION EXAMPLE IN V-MESAP WITH HOMOGENEOUS

BIDS.

Supply Z = {zik} Â = {âi} Q1 Q2

& Demand
(

0 1 1

1 1 1

)
(3, 6) (1, 0, 0) (0, 0, 1)

Buyer Bid Payment Allocation Utility

Buyer 2 B1 =

(
7 0 0

7 0 0

)
p̂o
1 = 6 x̂o

211 = 1 û1 = 1

bids B2 B2 =

(
0 0 6

0 0 6

)
p̂o
2 = 6 x̂o

223 = 1 û2 = 0

Buyer 2 B1 =

(
7 0 0

7 0 0

)
p̂o
1 = 6 x̂o

211 = 1 û1 = 1

bids B′
2 B′

2 =

(
0 0 5

0 0 5

)
p̂′o2 = 3 x̂′o

123 = 1 û′
2 = 3

TABLE IV
A MULTIUNIT AUCTION EXAMPLE IN V-MESAP WITH HOMOGENEOUS

RESERVE PRICE AND BIDS.

Supply
Z = {zik} Â = {âi} Q1 Q2

& Demand
(

1 1 1
)

(2) (1, 0, 0) (1, 1, 1)

Buyer Bid Payment Allocation Utility

Buyer 2 B1 =
(

7 0 0
)

p̂o
1 = 6 x̂o

111 = 1 û1 = 1

bids B2 B2 =
(

3 3 3
)

p̂o
2 = 2 x̂o

123 = 1 û2 = 1

Buyer 2
B1 =

(
7 0 0

)
û1 = 0

bids B′
2 B′

2 =
(

4 4 4
)

p̂′o2 = 7

x̂′o
121 = 1

x̂′o
122 = 1

x̂′o
123 = 1

û′
2 = 2

increasing the bid from 3 to 4, improving its utility from 1 to
2.

Finally, Table V illustrates the existence of self-collusion
performed by buyer 2 in an example of MOM in v-MESAP.

From these examples, we conclude that in v-MESAP, (i)
MOM is vulnerable to self-collusion because of heterogeneous
bids; (ii) MOM loses truthfulness due to diverse reserve prices;
(iii) MOM is not truthful with multiunit trading; and (iv) MOM
cannot achieve truthfulness and self-collusion resistance in v-
MESAP.
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TABLE V
A MULTIUNIT AUCTION EXAMPLE IN V-MESAP.

Supply Z = {zik} Â = {âi} Q1 Q2

& Demand

 1 1 1

1 1 1

1 1 1

 (2, 5, 1) (1, 0, 0) (0, 1, 1)

Buyer Bid Payment Allocation Utility

Buyer 2 B1 =

 3 0 0

6 0 0

0 0 0

 p̂o
1 = 5 x̂o

211 = 1 û1 = 1

bids B2 B2 =

 0 3 4

0 0 5

0 4 0

 p̂o
2 = 6

x̂o
223 = 1

x̂o
322 = 1

û2 = 3

Buyer 2 B1 =

 3 0 0

6 0 0

0 0 0

 p̂o
1 = 2 x̂o

111 = 1 û1 = 1

bids B′
2 B′

2 =

 0 3 5

0 0 3

0 4 0

 p̂′o2 = 3
x̂′o
123 = 1

x̂′o
322 = 1

û′
2 = 5

D. Self-Collusion/Untruthfulness Analysis

As indicated in Section IV-C, price diversity and/or multiu-
nit trading lead to self-collusion and truthfulness violation in
MOM in v-MESAP. A detailed analysis is presented in this
subsection.

Theorem 3: For MOM in v-MESAP, buyer j can im-
prove its utility with B′j via self-collusion, if the following
two conditions are simultaneously satisfied: (i) (R̂∗B−j

−

R̂∗−Bj
) <

M∑
i=1

x̂o
ijkâi ≤

M∑
i=1

K∑
k=1

x̂o
ijkb

t
ijk; (ii) (p̂o

j − p̂′oj ) >

(
M∑
i=1

K∑
k=1

x̂o
ijkb

t
ijk −

M∑
i=1

K∑
k=1

x̂′oijkb
t
ijk).

Proof: Condition (i) indicates that buyer j’s payment de-
pends on the total reserve price of all allocated channels when
it bids truthfully. Condition (ii) indicates that the decrease of
the payment is larger than the decrease of the bid values when
buyer j wins untruthfully, or that the increase of the payment
is smaller than the increase of the bid values when buyer j
wins untruthfully.

It is possible that (p̂o
j − p̂′oj ) = [

M∑
i=1

x̂o
ijkâi −max{R̂′∗B−j

−

R̂′∗−Bj
,
M∑
i=1

x̂′oijkâi}] > (
M∑
i=1

K∑
k=1

x̂o
ijkb

t
ijk −

M∑
i=1

K∑
k=1

x̂′oijkb
t
ijk) as

long as the difference between
M∑
i=1

x̂o
ijkâi and

M∑
i=1

x̂′oijkâi is

sufficiently large. As a result, û′j − ûj = (
M∑
i=1

K∑
k=1

x̂′oijkb
t
ijk −

p̂′oj )−(
M∑
i=1

K∑
k=1

x̂o
ijkb

t
ijk− p̂o

j) = (p̂o
j− p̂′oj )−(

M∑
i=1

K∑
k=1

x̂o
ijkb

t
ijk−

M∑
i=1

K∑
k=1

x̂′oijkb
t
ijk) > 0. That is, buyer j can increase its utility

by winning different channels.
For example, in Table V, (R̂∗B−2

−R̂∗−B2
) = 1 < (â2+â3) =

6 and (p̂o
2 − p̂′o2 ) = 3 > (b223 − b123) = 1; thus buyer 2 can

enhance its utility from 3 to 5 via self-collusion. Note that
conditions (i) and (ii) hold simultaneously for buyer 2 in all
other examples presented in Section IV-C.

Theorem 4: For MOM in v-MESAP, buyer j cannot enhance
its utility by self-collusion if the following two conditions

simultaneously hold: (i) (R̂∗B−j
− R̂∗−Bj

) ≥
M∑
i=1

x̂o
ijkâi for Bt

j ;

and (ii) (R̂′∗B−j
− R̂′∗−Bj

) ≥
M∑
i=1

x̂′oijkâi for B′j 6= Bt
j .

Proof: From conditions (i) and (ii), we have p̂o
j =

(R̂∗B−j
− R̂∗−Bj

) and p̂′oj = (R̂′∗B−j
− R̂′∗−Bj

). Thus, buyer
j cannot improve its utility via self-collusion according to
Theorem 1.

In summary, avoiding self-collusion for MOM in v-MESAP
needs to: (i) ensure that the marginal revenue equals the
increase of the auction revenue when selling a channel; and
(ii) mitigate the diversity of the “aggregated reserve price”
M∑
i=1

x̂o
ijkâi for winning different channels.

V. TRUTHFULNESS OF VCG

The classical Vickrey-Clarke-Groves (VCG) auction pro-
posed for the traditional good market can simultaneously
achieve individual-rationality, truthfulness, and efficiency [14].
The efficiency of VCG comes from its clearing pricing
scheme, which states that a winning bidder pays its social
opportunity cost for its purchased goods. Thus, as long as the
winner determination procedure of VCG maximizes the social
welfare, its truthfulness can be guaranteed [30]. However, in
spectrum markets, the winner determination of VCG becomes
NP-hard due to channel reuse, significantly increasing the
difficulty in finding optimal solutions. In this section, we
extend VCG to our multiunit heterogeneous spectrum markets
with reserve prices and investigate whether multiunit trading
and (reserve and bid) price diversity affect its truthfulness in
MESAP and v-MESAP.

A. VCG in MESAP and v-MESAP

VCG in MESAP:
Winner Determination: Compute

Xv ∈ arg max
X∈{0,1}M×N×K

W,

subject to (1), (2), (3), and (4). That is, Xv = {xv
ijk} is an

optimal solution to VCG.
Clearing Pricing Scheme: For each winning buyer j, its

payment pv
j = W ∗B−j

−W ∗−Bj
, where W ∗B−j

is the maximum
social welfare when buyer j is removed from the auction
(B−j = B \ Bj) and W ∗−Bj

is the maximum social welfare

W ∗ less buyer j’s values, i.e., W ∗−Bj
= W ∗−

M∑
i=1

K∑
k=1

xv
ijkbijk.

The price pv
j is the so-called “social opportunity cost”.

Since each channel has a reserve price, the final winners
should be those whose payments can at least cover the
reserve prices of the winning channels, to ensure that the
seller receives at least the desired revenue. Therefore, if

pv
j ≥

M∑
i=1

K∑
k=1

xv
ijkaik, we set xijk = xv

ijk for i ∈ [1,M ] and
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k ∈ [1,K], and pj = pv
j ; otherwise, we set xijk = 0 for

i ∈ [1,M ] and k ∈ [1,K], and pj = 0.

VCG in v-MESAP:
The two steps of VCG in v-MESAP are the same as those

in MESAP; therefore {x̂v
ijk} and {p̂v

j}, and correspondingly
{x̂ijk} and {p̂j} can be calculated in the same way.

Remarks: (i) Social welfare is the sum of the bidder’s
values; it does not consider the seller’s reserve prices. (ii) The
winner determination and pricing procedures of VCG do not
consider the seller’s reserve price [29], [30], [36]. (iii) By
setting a reserve price for a channel, the seller has the right
to withhold the channel if the buyer’s payment is below the
reserve price [13], [29], [30]. (iv) The social opportunity cost
of a buyer is the payment of all allocated channels, and the
price of each channel cannot be calculated in VCG [29], [35].
Thus, if buyer j wins one or more channels in VCG with

payment pv
j <

M∑
i=1

K∑
k=1

xv
ijkaik (or p̂v

j <
M∑
i=1

x̂v
ijkâi), it cannot

get any channel from the seller.

B. When VCG is Truthful?
We use Theorem 5 to prove that spatial channel reuse

does not affect the truthfulness and self-collusion resistance
of VCG in single-unit auctions with a uniform reserve price
and homogeneous bids , i.e., the seller sets the same reserve
price for all channels in all regions and each buyer has the
same bid value for all demanded channels at all regions.

Theorem 5: In a single-unit auction with a uniform re-
serve price and homogeneous bids, VCG is truthful and self-
collusion resistant in both MESAP and v-MESAP.

Proof: Let’s focus on the truthfulness of VCG in MESAP
first. Since VCG under our consideration is a unilateral
auction, the seller is assumed to be truthful. As a result,
proving this theorem is equivalent to showing that no buyer
can improve its received total utility via cheating on its bid
price. There are three cases we should consider.

(i) When
M∑
i=1

K∑
k=1

xv
ijk = 0, buyer j does not get any

channel at the winner determination stage. Note that W ∗B−j

is a constant value to buyer j, i.e., W ∗B−j
= W ′∗B−j

. Therefore,
to get a higher utility, buyer j has to increase its bid from the
truthful value btj to a non-thuthful value b′j such that p′vj > pv

j .
Then if p′vj < a, buyer j’s utility u′j = uj = 0; if p′vj ≥ a,

its utility u′j =
M∑
i=1

K∑
k=1

x′ijkb
t
j − p′j ≤

M∑
i=1

K∑
k=1

x′vijkb
t
j − p′vj =

btj − p′vj = (W ′∗ −W ∗)− (b′j − btj) ≤ 0, as W ∗ = W ∗B−j
and

(W ′∗ −W ∗) ≤ (b′j − btj). Thus, u′j ≤ uj .

(ii) When
M∑
i=1

K∑
k=1

xv
ijk = 1 and pv

j < a, buyer j wins a

channel in the winner determination stage but its payment
in VCG cannot afford the channel due to reserve price. To
increase its utility, buyer j has to increase its bid value in
order to get the channel. However, increasing its bid value
does not improve pv

j ; thus buyer j cannot get the winning
channel via cheating on bid.

(iii) When
M∑
i=1

K∑
k=1

xv
ijk = 1 and pv

j ≥ a, buyer j wins the

auction and gets a channel. We argue that buyer j’s utility can

TABLE VI
A SINGLE-UNIT AUCTION EXAMPLE UNDER MESAP WITH A

HOMOGENEOUS RESERVE PRICE.

Supply Z = {zik} A = {aik} Q1 Q2

& Demand
(

1 1 1

1 1 1

) (
1 1 1

1 1 1

)
(0, 1, 0) (1, 0, 0)

Buyer Bid Payment Allocation Utility

Buyer 1 B1 =

(
0 3 0

0 4 0

)
pv
1 = 0 < 1 x112 = 0 u1 = 0

bids B1 B2 =

(
0 0 0

2 0 0

)
pv
2 = 1 x221 = 1 u2 = 1

Buyer 1 B′
1 =

(
0 2 0

0 6 0

)
p′v1 = 2 x′

212 = 1 u′
1 = 2

bids B′
1 B2 =

(
0 0 0

2 0 0

)
u2 = 0

not be increased by cheating on bid. If a non-thuthful bid is
small enough, buyer j may lose the auction, resulting in a 0
utility; if buyer j wins the auction with a non-truthful bid, its
utility should remain unchanged as buyer j’s clearing price is
not related to its bid price.

These three cases indicate that buyer j cannot receive a
higher utility by rigging its bid value; thus VCG is truthful in
MESAP. A similar analysis can be applied to prove that VCG
in v-MESAP is truthful.

In a single-unit auction with a uniform reserve price and
homogeneous bids, a buyer can not improve its utility by self-
collusion, as winning different channels results in the same
utility.

C. When VCG is Untruthful and Vulnerable to Self-Collusion?

Some claims in existing research are worthy of deliberation.
For examples, [37] argues that truthfulness of VCG is broken
in a unilateral single-unit spectrum auction due to spatial
channel reuse, and [15] claims that VCG is not truthful
in a bilateral single-unit spectrum auction because of bid
heterogeneity. These statements are incorrect as both [37]
and [15] employ greedy algorithms for winner determination,
which can not always achieve truthfulness as the achieved
social welfare may not be optimal (maximized) [30]. VCG is
proved to be self-collusion resistant in a bilateral single-unit
heterogeneous spectrum auction without reserve price [11].

Theorem 5 indicates that a single-unit VCG with a homoge-
neous reserve price and uniform bids is self-collusion resistant.
In this subsection we use a few toy examples to demonstrate
VCG’s vulnerability to self-collusion and untruthfulness in
MESAP when considering multiunit trading and (reserve and
bid) price diversity, and analyze the root causes. Note that all
the examples are designed based on the topology illustrated
in Fig. 1.

Table VI shows a single-unit auction example of VCG with
a homogeneous reserve price. We observe that when the bid
prices are heterogeneous, buyer 1 can not get any channel
when bids truthfully with B1; but it can get channel 2 with
B′1 by self-collusion (decreasing its bid on channel 1 and
increasing its bid on channel 2.
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TABLE VII
A SINGLE-UNIT AUCTION EXAMPLE UNDER MESAP WITH

HOMOGENEOUS BIDS.

Supply Z = {zik} A = {aik} Q1 Q2

& Demand
(

1 1 1

1 1 1

) (
3 2 1

0 1 1

)
(1, 0, 0) (1, 0, 0)

Buyer Bid Payment Allocation Utility

Buyer 1 B1 =

(
5 0 0

5 0 0

)
pv
1 = 0 < 3 x111 = 0 u1 = 0

bids B1 B2 =

(
4 0 0

4 0 0

)
pv
2 = 0 x221 = 1 u2 = 4

Buyer 1 B′
1 =

(
3 0 0

3 0 0

)
p′v1 = 0 x′

211 = 1 u′
1 = 5

bids B′
1 B2 =

(
4 0 0

4 0 0

)
pv
2 = 0 < 3 x121 = 0 u2 = 0

TABLE VIII
A MULTIUNIT AUCTION EXAMPLE UNDER MESAP WITH HOMOGENEOUS

RESERVE PRICE AND BIDS.

Supply
Z = {zik} A = {aik} Q1 Q2

& Demand
(

1 1 1
) (

1 1 1
)

(1, 1, 1) (0, 0, 1)

Buyer Bid Payment Allocation Utility

Buyer 1 B1 =
(

2 2 2
)

pv
1 = 0 < 1 x111 = 0 u1 = 0

bids B1 B2 =
(

0 0 5
)

pv
2 = 4 x123 = 1 u2 = 1

Buyer 1
B′

1 =
(

4 4 4
)

p′v1 = 5

x′
111 = 1

x′
112 = 1

x′
113 = 1

u′
1 = 1

bids B′
1 B2 =

(
0 0 5

)
u2 = 0

Table VII demonstrates an example of single-unit auction
with homogeneous bids. We notice that buyer 1 wins when
decreasing its bid price from 5 to 3 in B′1 (buyer 1 is a loser
when bids truthfully with B1) due to the lower reserve price
of channel 2. This can be treated as a truthfulness violation
because each buyer bids the same price for all channels.

A multiunit auction example of VCG with a homogeneous
reserve price and uniform bids is illustrated in Table VIII. One
can see that buyer 1 improves its utility by cheating on its bid.

For a general setting, the example shown in Table IX
demonstrates the existence of self-collusion for buyer 1 to
improve its utility.

These examples indicate that in MESAP, (i) VCG suffers
from self-collusion due to bid diversity; (ii) VCG is not truth-
ful with heterogeneous reserve prices; (iii) VCG is not truthful
in multiunit auctions; and (iv) in a general setting, VCG is not
self-collusion resistant nor truthful. Similar examples can be
identified for VCG in v-MESAP. Therefore, we conclude that
VCG is vulnerable to bid manipulation in both MESAP and
v-MESAP.

TABLE IX
A MULTIUNIT AUCTION EXAMPLE UNDER MESAP.

Supply Z = {zik} A = {aik} Q1 Q2

& Demand
(

1 1 1

1 1 1

) (
5 1 0

2 2 2

)
(1, 1, 0) (0, 0, 1)

Buyer Bid Payment Allocation Utility

Buyer 1 B1 =

(
9 6 0

7 8 0

)
pv
1 = 0 < 7

x111 = 0

x212 = 0
u1 = 0

bids B1 B2 =

(
0 0 5

0 0 1

)
pv
2 = 0 x123 = 1 u2 = 5

Buyer 1 B′
1 =

(
1 6 0

7 1 0

)
p′v1 = 4

x′
112 = 1

x′
211 = 1

u′
1 = 9

bids B′
1 B2 =

(
0 0 5

0 0 1

)
pv
2 = 0 < 2 x223 = 0 u2 = 0

D. Self-Collusion/Untruthfulness Analysis

Section V-C indicates that self-collusion and untruthfulness
of VCG in both MESAP and v-MESAP are resulted from price
diversity and/or multiunit trading. In this section, we report our
analysis results.

Theorem 6: For VCG in MESAP, buyer j can become
a winner with a positive utility through cheating on a bid
or self-collusion, if the following three conditions simulta-

neously hold: (i) pv
j <

M∑
i=1

K∑
k=1

xv
ijkaik with Bt

j ; (ii) p′vj ≥
M∑
i=1

K∑
k=1

x′vijkaik with B′j ; and (iii) p′vj <
M∑
i=1

K∑
k=1

x′vijkb
t
ijk.

Proof: Conditions (i) and (ii) imply that buyer j loses
with true bid Bt

j while winning with false bid B′j . Condition
(iii) indicates a positive utility for buyer j with B′j .

Due to price diversity and/or multiunit trading,
M∑
i=1

K∑
k=1

xv
ijkaik and

M∑
i=1

K∑
k=1

x′vijkaik are not always

equal to each other. In other words, it is possible that

pv
j <

M∑
i=1

K∑
k=1

xv
ijkaik while p′vj ≥

M∑
i=1

K∑
k=1

x′vijkaik for buyer

j. As a result, p′vj <
M∑
i=1

K∑
k=1

x′vijkb
t
ijk is possible as long as

the difference between
M∑
i=1

K∑
k=1

xv
ijkaik and

M∑
i=1

K∑
k=1

x′vijkaik is

sufficiently large.
For instance, in Table IX, since pv

1 = 0 < (a11 + a22) = 7,
p′v1 = 4 > (a12 + a21) = 3, and p′v1 = 4 < (b112 + b211) = 13,
buyer 1 successfully wins the auction with a positive utility
u′1 = 9 via self-collusion. In fact, all the examples in
Section V-C demonstrate the co-existence of conditions (i),
(ii), and (iii) for buyer 1.

Thus, we conclude that buyer j can manipulate its bids to
get a positive utility when the three conditions hold.

Theorem 7: For VCG in MESAP, Buyer j cannot improve
its utility via cheating on a bid or self-collusion when any
of the following two conditions holds: (i) for any B′j 6= Bt

j ,

pv
j <

M∑
i=1

K∑
k=1

xv
ijkaik with Bt

j , and p′vj <
M∑
i=1

K∑
k=1

x′vijkaik with

B′j ; and (ii) for any B′j 6= Bt
j , pv

j ≥
M∑
i=1

K∑
k=1

xv
ijkaik with Bt

j ,
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and p′vj ≥
M∑
i=1

K∑
k=1

x′vijkaik with B′j .

Proof: When condition (i) is satisfied, buyer j is always
a loser and gets a zero utility in VCG.

When condition (ii) holds, buyer j is always the winner in
VCG. Moreover, for utilities uj and u′j , since W ∗B−j

= W ′∗B−j
,

we have u′j − uj =
M∑
i=1

K∑
k=1

x′vijkb
t
ijk −

M∑
i=1

K∑
k=1

xv
ijkb

t
ijk +

W ′∗−Bj
− W ∗−Bj

. If
M∑
i=1

K∑
k=1

x′vijkb
′
ijk ≥

M∑
i=1

K∑
k=1

x′vijkb
t
ijk, then

u′j − uj = (W ′∗ − W ∗) −
M∑
i=1

K∑
k=1

x′vijk(b′ijk − btijk) ≤ 0,

as
M∑
i=1

K∑
k=1

x′vijk ≥
M∑
i=1

K∑
k=1

xv
ijk and the increase of the social

welfare can not be larger than the increase of the bids of

a winning buyer’s allocated channels. If
M∑
i=1

K∑
k=1

x′vijkb
′
ijk <

M∑
i=1

K∑
k=1

x′vijkb
t
ijk, then u′j − uj =

M∑
i=1

K∑
k=1

x′vijk(btijk − b′ijk) −

(W ∗ − W ′∗) ≤ 0, because
M∑
i=1

K∑
k=1

x′vijk ≤
M∑
i=1

K∑
k=1

xv
ijk and

the decrease of the social welfare can not be smaller than the
decrease of the bids of a winning buyer’s allocated channels.
That is, u′j ≤ uj .

Thus, as long as either condition (i) or condition (ii) holds,
buyer j cannot successfully cheat on a bid and self-collude.

Similar conclusions can be drawn for VCG in v-MESAP,
which are summarized by the following two theorems (without
proof due to similarity).

Theorem 8: For VCG in v-MESAP, when the following
three conditions simultaneously hold, buyer j can become a
winner with a positive utility via cheating on a bid or self-

collusion: (i) p̂v
j <

M∑
i=1

x̂v
ijkâi with Bt

j ; (ii) p̂′vj ≥
M∑
i=1

x̂′vijkâi

with B′j ; and (iii) p̂′vj <
M∑
i=1

K∑
k=1

x̂′vijkb
t
ijk.

Theorem 9: Buyer j cannot improve its utility via self-
collusion in VCG in v-MESAP when any of the following two

conditions holds: (i) for any B′j 6= Bt
j , p̂v

j <
M∑
i=1

x̂v
ijkâi with

Bt
j , and p̂′vj <

M∑
i=1

x̂′vijkâi with B′j ; and (ii) for any B′j 6= Bt
j ,

p̂v
j ≥

M∑
i=1

x̂v
ijkâi with Bt

j , and p̂′vj ≥
M∑
i=1

x̂′vijkâi with B′j .

Therefore, to prevent market manipulation in VCG for
MESAP (or v-MESAP), mitigating the diversity in the “ag-

gregated reserve price”
M∑
i=1

K∑
k=1

xv
ijkaik (or

M∑
i=1

x̂v
ijkâi) is a key

point. This property is exploited in Section VI to design our
truthful and self-collusion resistant auction for MESAP and
v-MESAP.

VI. TRUTHFUL AND SELF-COLLUSION RESISTANT
AUCTION DESIGN

In this section, we propose a novel auction scheme termed
Self-collusion Resistant Auction (SIRI) for the multiunit het-
erogeneous spectrum auction with reserve prices. Our design

is motivated by the following observations made in Sections
IV and V to prevent market manipulation:

(1) In both MOM and VCG, mitigating the diversity of the
aggregated reserve price caused by multi-unit trading and/or
price diversity is key to self-collusion resistance.

(2) In MOM, ensuring that the marginal revenue equals the
increase of the auction revenue when selling a channel is key
to self-collusion resistance.

A. Deducted Bid

In order to prevent self-collusion, we introduce the concept
of “deducted bid” to remove the impact of reserve price
diversity. This is done as follows. In MESAP, we transform
Bj to the “deducted bid” B̃j by computing b̃ijk = bijk−aik to
get B̃ = {B̃j : j ∈ [1, N ]}, and set ãik = aik−aik = 0 for all
i ∈ [1,M ], k ∈ [1,K] to obtain the “deducted reserve price”;
in v-MESAP, we set b̃ijk = bijk − âi and ãi = âi − âi = 0.

By utilizing {b̃ijk} and {ãik} (or {ãi}), we successfully
tackle the challenges to guarantee self-collusion resistance
and truthfulness in MOM and VCG in the following way:
(i) Since ãik = 0 (or ãi = 0) , the aggregated reserve price

for all sold channels
M∑
i=1

K∑
k=1

x̃ijkãik =
M∑
i=1

K∑
k=1

x̃′ijkãik = 0

(or
M∑
i=1

x̃ijkãi =
M∑
i=1

x̃′ijkãi = 0). As a result, the conditions

for a buyer to perform self-collusion cannot hold according
to Theorems 6, 8, and 3. (ii) The auction revenue R̃ =
M∑
i=1

N∑
j=1

K∑
k=1

x̃ijk(b̃ijk − ãik) =
M∑
i=1

N∑
j=1

K∑
k=1

x̃ijk b̃ijk = W̃ ,

which implies that VCG and MOM are equivalent with the
deducted bids and reserve prices. Therefore in v-MESAP, the
obtained marginal revenue equals the increase of the auction
revenue when a channel is sold.

Accordingly, the optimization problem is formulated by
(10), in which the objective (10a) is to maximize the “deducted
social welfare” W̃ . The constraints (10b), (10c), (10d), and
(10e) respectively correspond to (1), (2), (3), and (4) of the
auction model in Section III-B.

max W̃ =

M∑
i=1

N∑
j=1

K∑
k=1

x̃ijk b̃ijk; (10a)

s.t. x̃ijk × x̃ij′k = 0, ∀i ∈ [1,M ], j 6= j′ ∈ [1, N ],

k ∈ [1,K]; (10b)

x̃ijk × x̃ij′k′ = 0, ∀i ∈ [1,M ], j 6= j′ ∈ [1, N ],

e(k, k′) ∈ E ; (10c)
M∑
i=1

N∑
j=1

zikx̃ijk ≤Mk, ∀k ∈ [1,K]; (10d)

M∑
i=1

K∑
k=1

zikx̃ijk ≤ qjk, ∀j ∈ [1, N ], k ∈ [1,K]; (10e)

x̃ijk ∈ {0, 1}. (10f)

B. Design of SIRI Auction

The proposed auction consists of two stages: winner deter-
mination and payment calculation.
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Algorithm 1 Winner Determination
1: Input: M, N , K, B̃ = {b̃ijk}, E .
2: Output: {x̃ijk}.
3: Set B̃′ = B̃, Sell(i, k) = 0, and Buy(j, k) = 0;
4: while B̃′ 6= ∅ do
5: Select a bid b̃ijk = argmax

B̃′
{b̃i′j′k′};

6: if b̃ijk ≥ 0, Sell(i, k) < Mk, Buy(j, k) < qjk, and channel
i is not assigned at region k or k’s conflicting regions in E
then

7: Set x̃ijk = 1;
8: end if
9: Update Sell(i, k) and Buy(j, k);

10: B̃′ = B̃′ \ b̃ijk;
11: end while
12: return {x̃ijk}.

1) Winner Determination: The winners are iteratively de-
termined in a greedy way until no channel can be sold where
the pseudo-code is presented in Alg. 1. Denoted by Sell(i, k)
and Buy(j, k) the number of distinct channels sold at region
k and the number of distinct channels purchased by buyer
j at region k, respectively, which can be used to check the
constraints (10d) and (10e). As shown in Alg. 1, in each
iteration, a maximum bid b̃ijk is selected. Regarding a non-
negative bid, if channel i is not assigned to any buyer at region
k and k’s conflicting regions in graph E , and the supply and
demand constraints are not violate, buyer j gets channel i at
region k. Then, update x̃ijk, Sell(i, k) and Buy(j, k), and
remove b̃ijk from B̃′.

2) Payment Calculation: The “deducted payment” p̃ijk is
introduced to represent the payment paid by buyer j for
channel i at region k, thus the total payment of buyer j is

p̃j =

M∑
i=1

K∑
k=1

p̃ijk.

To compute the payments, the critical neighbor of each winner
should be identified first, in which the winner will become
the loser if his bid is smaller than his critical neighbor’s bid.
Different from the most existing works where each winner
has only one critical neighbor, in MESAP and v-MESAP, one
winner may have more than one critical neighbor because there
may be a critical neighbor in every channel at every region.
To ensure truthfulness as well as to resist self-collusion in
such complicated situation, we find the critical neighbor of
buyer j with respect to each bid b̃ijk if x̃ijk = 1. The key
idea is that without the participation of buyer j, his critical
neighbor (e.g. buyer j′) can win channel i at region k or k’s
conflicting region. If such a critical neighbor j′ can be found,
we set p̃ijk = b̃ij′k; otherwise, p̃ijk = 0. The corresponding
pseudo-code is presented in Alg. 2.

By now, we have the solutions {x̃ijk} and {p̃j}. For ∀i ∈
[1,M ], ∀j ∈ [1, N ], and ∀k ∈ [1,K], we set xijk = x̃ijk in

MESAP and x̂ijk = x̃ijk in v-MESAP. Then, if
M∑
i=1

K∑
k=1

xijk ≥

1 (or
M∑
i=1

K∑
k=1

x̂ijk ≥ 1), we set pj = p̃j +
M∑
i=1

K∑
k=1

xijkaik for

MESAP (or p̂j = p̃j+
M∑
i=1

x̂ijkâi for v-MESAP). Finally, SIRI

Algorithm 2 Payment Calculation for p̃ijk
1: Input: b̃ijk, M, N , K, B̃ = {b̃ijk}, E .
2: Output: p̃ijk.
3: Set p̃ijk = 0, B̃′ = B̃, B̃′′ = B̃ \ b̃ijk, Sell(i, k) = 0, and

Buy(j, k) = 0;
4: while B̃′′ 6= ∅ do
5: Select a bid b̃i′j′k′ = argmax

B̃′′
{b̃i′′j′′k′′};

6: if b̃i′j′k′ ≥ 0, Sell(i′, k′) < Mk′ , Buy(j′, k′) < qj′k′ ,
and channel i′ is not assigned at region k′ or k′’s conflicting
regions in E then

7: Set x̃i′j′k′ = 1;
8: end if
9: Update Sell(i′, k′) and Buy(j′, k′);

10: if j′ 6= j, i′ == i, and (k′ == k or e(k′, k) ∈ E) then
11: p̃ijk = b̃i′j′k′ ;
12: end if
13: B̃′′ = B̃′′ \ b̃i′j′k′ ;
14: end while
15: return p̃ijk.

outputs {xijk} and {pj} for MESAP and {x̂ijk} and {p̂j} for
v-MESAP.

C. Economic Property Analysis
Theorem 10: SIRI is individually-rational in both MESAP

and v-MESAP.
Proof: For each winning buyer j, p̃ijk = 0 or p̃ijk =

b̃i′j′k′ . Since B̃′′ = B̃ \ b̃ijk, we have b̃ijk ≥ p̃ijk ac-
cording to line 5 of Alg. 1 and line 5 of Alg. 2. Thus,

pj = p̃j +
M∑
i=1

K∑
k=1

xijkaik ≤
M∑
i=1

K∑
k=1

xijkbijk in MESAP,

and p̂j = p̃j +
M∑
i=1

x̂ijkâi ≤
M∑
i=1

K∑
k=1

xijkbijk in v-MESAP.

Accordingly, we have uj =
M∑
i=1

K∑
k=1

xijkbijk − pj ≥ 0

and ûj =
M∑
i=1

K∑
k=1

x̂ijkbijk − p̂j ≥ 0. Therefore, SIRI is

individually-rational in both MESAP and v-MESAP.
Lemma 1: The winner determination in SIRI is monotonic,

i.e., buyer j can still win the auction with b′ijk if he wins with
bijk (b′ijk ≥ bijk).

Proof: Note that b′ijk ≥ bijk means b̃′ijk ≥ b̃ijk. From
line 5 of Alg. 1, this lemma is proved.

Lemma 2: In SIRI auction, p̃ijk is the critical price of buyer
j in channel i at region k; that is, buyer j cannot win channel
i at region k if b̃ijk < p̃ijk.

Proof: According to Alg. 1 and Alg. 2, we can conclude
that x̃ijk = 1 if b̃ijk > b̃i′j′k′ and b̃ijk > 0 and that x̃ijk = 0
if b̃ijk < b̃i′j′k′ or b̃ijk < 0. Thus, this lemma can hold.

Theorem 11: SIRI is truthful and self-collusion resistant in
MESAP.

Proof: When buyer j bids with truthful bids Btj , we have
the deducted bids B̃tj , the payment ptj , the set of assigned
channels Cht

j , and the utility ut
j . When buyer j bids with

untruthful bids B′j , we correspondingly obtain B̃′j , p′j , Ch′j ,
and u′j . Moreover, in MESAP,

ptj = p̃tj +

M∑
i=1

K∑
k=1

x̃t
ijkaik =

Cht
j∑
(p̃tijk + aik),
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and

p′j = p̃′j +

M∑
i=1

K∑
k=1

x̃′
ijkaik =

Ch′j∑
(p̃′ijk + aik).

If buyer j bids untruthfully, there are five cases for consider-
ation.

(i) Cht
j = Ch′j . From Lemma 1 and Lemma 2, we have

ut
j = u′j .
(ii) Cht

j ⊂ Ch′j . In this case, ∆Chj = Ch′j \Cht
j 6= ∅; that

is, there is at least one channel at a region such that xt
ijk = 0

and x′ijk = 1. Thus, we have u′j = ut
j + ∆uj , where ∆uj

is the utility received from channels in ∆Chj . According to
Lemma 1 and Lemma 2, there must be ∆uj ≤ 0. Hence,
u′j ≤ ut

j .
(iii) Cht

j ⊃ Ch′j . So, ∆Chj = Cht
j \ Ch′j 6= ∅, and ut

j =
u′j + ∆uj . In ∆Chj , all channels are obtained due to truthful
bidding, and thereby ∆uj ≥ 0 from Theorem 10. Thus, ut

j ≥
u′j .

(iv) Cht
j ∩ Ch′j = ∩(Chj) 6= ∅. Let ∆Cht

j = Cht
j \ Ch′j

and ∆Ch′j = Ch′j \ Cht
j . Accordingly, ut

j = ∆ut
j + ∩(uj)

and u′j = ∆u′j + ∩(uj), in which ∆ut
j , ∆u′j , and ∩(uj)

are the utilities corresponding to ∆Cht
j , ∆Ch′j , and ∩(Chj),

respectively. Theorem 10, Lemma 1, and Lemma 2 indicate
that ∆ut

j ≥ 0, ∆u′j ≤ 0, and ∩(uj) ≥ 0. As a result, ut
j ≥ u′j .

(v) Cht
j ∩ Ch′j = ∩(Chj) = ∅. From Theorem 10,

Lemma 1, and Lemma 2, we have the similar conclusion:
ut
j ≥ 0 and u′j ≤ 0, implying that ut

j ≥ u′j .
From the aforementioned five cases, we can conclude that

our proposed auction is truthful and self-collusion resistant in
MESAP.

By using the proof process similar to that in Theorem 11,
we can obtain the following theorem.

Theorem 12: SIRI can achieve truthfulness and self-
collusion resistance in v-MESAP.

D. Case Study

To better understand the performance of our auction SIRI,
two illustrative cases are presented.

1) SIRI vs MOM: The network scenario of Table V is used
to compare SIRI and MOM auctions. As shown in Table V,
in MOM, buyer 2 can increase the utility from 3 to 5 by
manipulating 2 price values. The deducted bids of buyer 1
and buyer 2 who submits truthful and untruthful bids are:

B̃1 =

 1 −2 −2
1 −5 −5
−1 −1 −1

 ;

B̃2 =

 −2 1 2

−5 −5 0

−1 3 −1

 ;

B̃′
2 =

 −2 1 3

−5 −5 −2
−1 3 −1

 .

From Algs. 1 and 2, the results of SIRI are as follows. (i)
Buyer 2 bids B̃2: x̂111 = 1, p̂1 = 2 and û1 = 3− 2 = 1 for
buyer 1; x̂123 = 1, x̂322 = 1, p̂2 = 3 and û2 = 8 − 3 = 5
for buyer 2. (ii) Buyer 2 bids B̃′2: the results remain the

same, which means buyer 2 cannot obtain a higher utility via
manipulation in our auction SIRI.

2) SIRI vs VCG: In the comparison between SIRI and
VCG, the network scenario of Table IX is adopted, in which
buyer 1 enhances the utility from 0 to 9 by cheating under
VCG. In SIRI, the two buyers’ deducted bids when buyer 1
bid truthfully and untruthfully are:

B̃1 =

(
4 5 0

5 6 −2

)
;

B̃′
1 =

( −4 5 0

5 −1 −2

)
;

B̃2 =

( −5 −1 5

−2 −2 −1

)
.

Accordingly, we have the following results. (i) Buyer 1 bids
B̃1: x111 = 1, x212 = 1, p1 = 7 and u1 = 17 − 7 = 10
for buyer 1; x123 = 1, p2 = 0 and u2 = 5 for buyer 2. (ii)
Buyer 1 bids B̃′1: Case 1: x′112 = 1, x′211 = 1, p′1 = 8 and
u′1 = 13 − 8 = 5 for buyer 1; u2 = 0 for buyer 2. Case 2:
x′211 = 1, p′1 = 2 and u′1 = 7− 2 = 5 for buyer 1; x123 = 1,
p2 = 5 and u2 = 0 for buyer 2. These results show that buyer
1’s utility is reduced when bidding untruthfully in our auction
SIRI.

The above comparison confirms that our auction SIRI can
resist users’ self-collusion behaviors in the multiunit hetero-
geneous spectrum markets.

VII. CONCLUSION

In this paper, we rigorously investigate the root causes of
untruthfulness of both MOM and VCG in a multiunit het-
erogeneous spectrum market with reserve prices. We identify
the conditions under which untruthfulness (and self-collusion)
can/cannot happen in MOM and VCG. Furthermore, based
on our fundamental theories, we propose a novel truthful
auction scheme SIRI and analyze its performance. In our
future research, we will target the design of “small-group”
collusion resistant auctions in our multiunit heterogeneous
spectrum market with reserve prices. We will also consider
more robust auctions in practical secondary spectrum markets.
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