Iteratively Re-weighted L1-PCA of Tensor Data
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Abstract—Modern big and multi-modal datasets often contain
corrupted entries or outliers. Standard methods for multi-
way/tensor data analysis, relying on L2-norm formulations, are
often very sensitive to such dataset corruptions. A new paradigm
in data analysis suggests the use of robust L1-norm formulations
instead. In this work, we present a novel method for iterative
tensor L1-PCA with data re-weighting. The proposed method (i)
returns significantly robust tensor bases and (ii) is capable to
identify outlying, non-conforming entries of the data tensor. The
presented algorithmic developments are validated with numerical
studies on real-world data.

INTRODUCTION

Multi-way arrays, also known as tensors, have been at-
tracting extended documented interest in the fields of signal
processing, data analytics, and machine learning [1], [2]. In
many applications, tensors offer a natural way to organize and
process multi-modal measurements, or measurements across
diverse sensor configurations. Accordingly, a broad selection
of methods for principal-component analysis (PCA) of tensor
data have been proposed in the literature, such as Tucker
and PARAFAC decomposition [3]-[5], that enable superior
inference and learning. Tucker decomposition is the extension
of matrix PCA to tensors and it is typically computed by means
of the Higher-Order Singular-Value Decomposition (HOSVD)
algorithm or the Higher-Order Orthogonal Iterations (HOOI)
algorithm [4]-[6].

Most of the state-of-the-art tensor decomposition algo-
rithms, such as HOSVD and HOOI, rely on L2-norm for-
mulations (minimization of the L2-norm of the residual-error
or, equivalently, maximization of the L2-norm of the multi-
way projection) and, accordingly, they have been shown to be
sensitive against faulty entries. The same sensitivity has also
been documented in matrix PCA, a special case of Tucker
for 2-way tensors (matrices). As both sensing modalities and
dataset sizes expand, data corruptions (e.g., in the form of
outliers) become increasingly common. Accordingly, over the
past years, an array of algorithms have been proposed for
robust, corruption-resistant analysis of tensors. In [7], the
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authors tackle the problem of robust low-rank tensor recov-
ery by proposing two efficient iterative methods with global
convergence guarantees. Authors in [8] consider the problem
of low-rank tensor factorization in the presence of outlying
slabs and propose an alternating optimization framework to
handle the minimization-based low-rank tensor factorization
problem. In addition, regularizations and constraints can be
incorporated to make use of a priori information on the latent
loading factors. In [7], a robust low-rank tensor recovery
method that relies on principal component pursuit (PCP) was
proposed. The method [7], called Higher Order Robust PCA
(HORPCA), is a direct extension of Robust PCA (RPCA) and
aims to decompose the tensor into a low-rank plus a sparse
part. However, these methods are shown to be sensitive to
parameter selection and non-sparse noise. A two-step approach
for low-rank tensor decomposition was proposed in [9]. In the
first stage, HORPCA is utilized to obtain a low-rank estimate
from the noisy tensor, while in the second stage, the low-rank
estimate is denoised by using truncated HOSVD.

For matrix decomposition, L1-norm PCA [10], formulated
by simple substitution of the L2 norm in PCA with the L1
norm, has exhibited solid robustness against heavily corrupted
data in an array of applications [11]-[14]. Similar outlier re-
sistance has been recently attained by algorithms for L1-norm
reformulation of Tucker2 decomposition of 3-way tensors (L1-
Tucker2) [15], [16]. In [17], two new methods for robust
L1-norm Tucker decomposition of general-order tensors were
proposed, namely L1-HOSVD and L1-HOOL.

In this paper, we propose a novel method that generates a
sequence of iteratively refined L1-norm tensor subspaces. In
each iteration, for each mode of the tensor, the conformity
of each tensor element is inferred by its distance relative
to the L1-norm tensor subspaces calculated in the previous
iteration. Highly conforming samples tend to be nominal
entries, while entries with lower conformity are more likely
to be outliers. Then, all the samples of the original tensor
dataset are weighted according to their conformity values
and the L1-norm tensor subspaces are re-calculated according
to L1-HOOI [17]. This way the contribution of outlying
entires is iteratively suppressed, resulting in improved tensor
subspace estimates. Moreover, the resulting conformity values
can indicate faulty/outlying entries of the data tensor.
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Fig. 1: L1-Tucker model for a 3-way tensor X' € Rt *T2xIs,

I. TECHNICAL BACKGROUND
A. Definitions and Notation

The order of a tensor denotes the number of its dimensions,
also known as ways or modes. A fiber is a vector extracted
from a tensor by fixing all modes but one. Matricization, also
known as unfolding, logically reorganizes tensors into other
forms without changing the tensor values themselves. The
mode-n matricization of a N-order tensor X € RI1xT2x-xIn
is denoted by X,,) € RInx Tz In—1lnt1--IN and arranges the
mode-n fibers of the tensor as columns of the resulting matrix.

B. Li-norm Tucker Decomposition

Given N-way tensor X € RIOXI2xxXIn and Jow-
dimensions rq,79,...,rx such that r, < min (In,fn) for
all n, tensor L1-Tucker is formulated as [17], [18]

maximize

T
{Un€S(Tn,mn) e ay HX Xnen) Up, Hl, (1)

where I,, = [Txeinp\n Iks Xn denotes the mode-n tensor-to-
matrix product, [N] denotes the set {1,2,..., N}, S(I,r) is
the set of / xr matrices with orthonormal columns, X ,¢[x] u’?
summarizes the mutli-mode product x 1Uf -+ xn Uy, and
||I-||; is the L1-norm, returning the summation of the absolute
entries of its tensor argument. If the set of bases {ﬁn}ne[ N
is a solution to (1), then the compressed data tensor (also
known as Tucker core) is given by G = X X, ¢[n) Ul ¢
Rr1x7r2x.-XTN - A gchematic illustration of this tensor analysis
is offered in Fig. 1. The formulation in (1) constitutes a robust
L1-norm-based analogous to standard Tucker decomposition,
which employs instead the corruption-responsive L2-norm.
Moreover, similar to Tucker decomposition, the exact solution
to 1 remains to date unknown. For the special case of N = 3,
ri =r9 =1, and ﬂg fixed to Iy, —i.e., no compression across
mode 3— the exact solution to (1) was recently presented in
[15]. For the general problem in (1) successful approximate
algorithms have been proposed in the literature, such as L1-
HOSVD and L1-HOOI [17], [18].

II. PROPOSED ITERATIVELY RE-WEIGHTED L1-PCA

In the following, we describe our algorithmic developments
for robust tensor decomposition. In the initialization step of
the algorithm we set the tensor N bases {IAJS)},LE[ N to the
solution of L1-HOOI [17]. The resulting bases emphasize
the subspaces spanned by the nominal (uncorrupted) entries

of the original tensor X and de-emphasizes entries that are
contaminated with outlier data.

Next, for the n-th tensor unfolding for all n € [N] ,
we project all columns of X(,) onto the calculated bases

{ﬂg) }nen) and measure

; )

dni, =[O0 X))

in
for every i, € [I,], where for any A € R™ " |A]|, is
defined as />7;", 377 [[A], ;> and || denotes absolute
value of a real number. Interestingly, we expect small d,, ;,
value ?f data vector [X('n)] i 'is an outlying apd large dy, 5,
value if the data vector is nominal, or conforming.

After the calculation of the projections, we fold the d,, ;,
values into tensor form

W,, = tensorization (11n {dml, dna,... ,dnjn} ,n) , 3

where the operator tensorization(-,n) folds its argument
along the n-th dimension (reversing the unfolding procedure).
We say that the resulting tensor W,, € RI1x2>=XIn contains
the conformity values corresponding to each mode-n fiber of
the original tensor X’.

Having calculated the conformity tensors W,,,Vn € [N],
the individual entry conformity tensor is produced by additive
weighting of the conformity tensors (according to assumed
relative “importance”) and max-min normalization to the range
[0,1]:

25:1 a, W, —min (25:1 aan)

W = max (22[:1 O‘"W") ~min <Z£’=1 O‘”W">

b

“4)
where the weighting parameter «,, measures the importance
of the n-th tensor mode, °, (v an = 1, min (-) returns the
minimum element of its tensor argument, and max (-) returns
the maximum element. The normalization in (4) leads to value
0 for the least conforming elements and value 1 for the most
conforming ones.

In the next step of the algorithm, the original tensor dataset
is globally weighted through the conformity tensor w by
element-by-element multiplication of X with WO The new
re-weighted dataset is denoted by

x0 - xo W(l), 5)

where o is the element-wise or Hadamard product. The refined
L1-norm tensor bases of rank {7, },e[ni, {IAJ%Q)},IG[N], are
calculated anew by means of L1-HOOI on X () initialized at
{ﬂgll)}ne[N]

Along this way, we continue the iterative generation of con-
formity weights V\i(l)7 V\i(z)7 ..., until numerical convergence
to VWV is observed at iteration k > 2; i.e.,

W = W® such that Hw““) - w(’“*”HF <e (6)

for some small ¢ > 0. Algorithm 2 presents the complete
pseudo-code for the calculation of W.
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Algorithm 1 Proposed algorithm for iteratively re-weighted
L1-PCA of tensor data

Input: X € RIvT2xxIn: b s {a brenys initialize
{fJSP}nG[N] (e.g., arbitrary or HOSVD); ¢ > 0
1: Initialize [ < 1; wh 1 xloxxIns G HW(I)’
xW—x
2: while a > € do
3 {ﬁg)}nep\/] + L1 —-HOOI (X(l), {ﬂg_l)}nep\ro
4: for n € [N] do
5
6

i

2

for i € [I,,] do

A~ A~ T
7: W, <tensorization (1In [dn,l, ceey dn,fn:I ,n)

8: Wtemp — Zne[N] anWh; g < min (Wtemp)§
&+ max Whemp); | 1 +1
9. WO o Weemezit, O o x oy
—u K

10 a+ HW(” — W”‘”H
2
Output: W and {ﬂg)}nG[N]

Function: Ll—HOOI(X, {U%O)}HG[N]) [17]

e liae Yoe U3
2: while a > ¢ do
3: for n € [N] do
T
4 B« X Xppepn UY
Qo + Ug_l); t« 0
for t € [T] do
[U,%, V7] « SVD (B(n)sgn (B@)QH))
Q: + (U] 1, [V] 1,
Ul « Qr
T T
a +— ZnG[N] HU’SLZ)USLI) _ Ugllfl)Usllfl)
10: l—1+1

(=0T,
Xk>n Uk )

2

L % W

2

III. EXPERIMENTAL STUDIES

We consider the problem of tensor reconstruction where
our objective is to reconstruct the original (clean) tensor X
from a corrupted tensor X°°** of the same dimensions. We
utilize the Uber Pick Up dataset which contains timestamped
coordinate data (GPS coordinates) from five Uber drivers in
the greater New York area over a six month period. The dataset
is inherently sparse, since rarely the drivers share the same
pickup coordinates. In order to produce a more interpretable
dataset we convert the GPS coordinates to their corresponding
zip codes. We calculate the number of pickups per zip code
per driver over each month. This transformation reduces the
sparsity of the dataset, as well as the overall tensor dimension.
The final data tensor X € R!59%5x6 contains the number
of pickups of 150 different postal codes for 5 drivers over 6
months.

The dataset is then corrupted by replacing uniformly across
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Fig. 3: Squared reconstruction error (SRE) versus number of

components, r, for corruption percentage p = 20%.

each dimension the entries of the original tensor with integer
values in the [10, 100] range to create X" € R159%5%6 The
percentage of corrupted entries is controlled by a parameter p.
The corruption simulates wrong entries or miscalculated posi-
tion coordinates. Our goal is to decompose X ™ € R1P0x5%6
and calculate the bases U; € R0%m U, € R®*"2, and
ﬂg € R%%7™s and the core tensor G € R™X7m2X73 which are
utilized to reconstruct the original uncorrupted tensor X as

X=g Xne[N] U,. (7

We measure the squared reconstruction error (SRE) be-
tween the estimated X and the original clean X as ||X —
X||3. We compare the performance of our proposed method
versus standard L2-norm tensor decomposition techniques
such as HOSVD and HOOI [4], [6], as well as HORPCA
[7]1. For HORPCA the parameters were set as in [7] to
r = 1/v/Inax, Where Iy = max (I1, 12, I3) = 150 and
1 = 10std (vec (X(1))), where std (-) calculates the standard
deviation of the input vector.

In Figure 3, we plot the SRE for corruption percentage
p = 20%, versus the number of components. For the L2-
norm based methods (HOSVD and HOOI) and the proposed
L1-norm based method the number of components is set
to ry = br,ro = 7,73 = r. This is done because the
first dimension of out dataset is larger than the rest. It is
clearly shown that the proposed method captures the low-rank
characteristics of the nominal data better compared to the state-
of-the-art and is able to outperform HORPCA for these tuning
parameters.

Figure 4 depicts the SRE versus the corruption percentage
parameter p. We vary the percentage of corrupted entries from
5% to 50% and observe that the proposed L1-norm based
method significantly outperforms its counterparts, for every
level of corruption.

IV. CONCLUSIONS

We presented a novel, iteratively re-weighted L1-norm
tensor decomposition algorithm, which weighs each individual
tensor entry according its conformity with respect to the whole
tensor dataset. In each iteration, the L1-norm tensor bases
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Fig. 4: Squared reconstruction error (SRE) versus corruption  [10]
percentage, p, for fixed r = 4.
(11]
are computed computed by means of L1-HOOI in order to (2]
calculate the conformity of each data entry. Non-conforming
entries are weighted down, resulting in bases that represent
better the nominal data. The proposed method significantly (13]
enhances performance in tasks such as tensor reconstruction
compared against Tucker-decomposition algorithms. [14]
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