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Abstract—Modern big and multi-modal datasets often contain
corrupted entries or outliers. Standard methods for multi-
way/tensor data analysis, relying on L2-norm formulations, are
often very sensitive to such dataset corruptions. A new paradigm
in data analysis suggests the use of robust L1-norm formulations
instead. In this work, we present a novel method for iterative
tensor L1-PCA with data re-weighting. The proposed method (i)
returns significantly robust tensor bases and (ii) is capable to
identify outlying, non-conforming entries of the data tensor. The
presented algorithmic developments are validated with numerical
studies on real-world data.

INTRODUCTION

Multi-way arrays, also known as tensors, have been at-

tracting extended documented interest in the fields of signal

processing, data analytics, and machine learning [1], [2]. In

many applications, tensors offer a natural way to organize and

process multi-modal measurements, or measurements across

diverse sensor configurations. Accordingly, a broad selection

of methods for principal-component analysis (PCA) of tensor

data have been proposed in the literature, such as Tucker

and PARAFAC decomposition [3]–[5], that enable superior

inference and learning. Tucker decomposition is the extension

of matrix PCA to tensors and it is typically computed by means

of the Higher-Order Singular-Value Decomposition (HOSVD)

algorithm or the Higher-Order Orthogonal Iterations (HOOI)

algorithm [4]–[6].

Most of the state-of-the-art tensor decomposition algo-

rithms, such as HOSVD and HOOI, rely on L2-norm for-

mulations (minimization of the L2-norm of the residual-error

or, equivalently, maximization of the L2-norm of the multi-

way projection) and, accordingly, they have been shown to be

sensitive against faulty entries. The same sensitivity has also

been documented in matrix PCA, a special case of Tucker

for 2-way tensors (matrices). As both sensing modalities and

dataset sizes expand, data corruptions (e.g., in the form of

outliers) become increasingly common. Accordingly, over the

past years, an array of algorithms have been proposed for

robust, corruption-resistant analysis of tensors. In [7], the
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authors tackle the problem of robust low-rank tensor recov-

ery by proposing two efficient iterative methods with global

convergence guarantees. Authors in [8] consider the problem

of low-rank tensor factorization in the presence of outlying

slabs and propose an alternating optimization framework to

handle the minimization-based low-rank tensor factorization

problem. In addition, regularizations and constraints can be

incorporated to make use of a priori information on the latent

loading factors. In [7], a robust low-rank tensor recovery

method that relies on principal component pursuit (PCP) was

proposed. The method [7], called Higher Order Robust PCA

(HORPCA), is a direct extension of Robust PCA (RPCA) and

aims to decompose the tensor into a low-rank plus a sparse

part. However, these methods are shown to be sensitive to

parameter selection and non-sparse noise. A two-step approach

for low-rank tensor decomposition was proposed in [9]. In the

first stage, HORPCA is utilized to obtain a low-rank estimate

from the noisy tensor, while in the second stage, the low-rank

estimate is denoised by using truncated HOSVD.

For matrix decomposition, L1-norm PCA [10], formulated

by simple substitution of the L2 norm in PCA with the L1

norm, has exhibited solid robustness against heavily corrupted

data in an array of applications [11]–[14]. Similar outlier re-

sistance has been recently attained by algorithms for L1-norm

reformulation of Tucker2 decomposition of 3-way tensors (L1-

Tucker2) [15], [16]. In [17], two new methods for robust

L1-norm Tucker decomposition of general-order tensors were

proposed, namely L1-HOSVD and L1-HOOI.

In this paper, we propose a novel method that generates a

sequence of iteratively refined L1-norm tensor subspaces. In

each iteration, for each mode of the tensor, the conformity

of each tensor element is inferred by its distance relative

to the L1-norm tensor subspaces calculated in the previous

iteration. Highly conforming samples tend to be nominal

entries, while entries with lower conformity are more likely

to be outliers. Then, all the samples of the original tensor

dataset are weighted according to their conformity values

and the L1-norm tensor subspaces are re-calculated according

to L1-HOOI [17]. This way the contribution of outlying

entires is iteratively suppressed, resulting in improved tensor

subspace estimates. Moreover, the resulting conformity values

can indicate faulty/outlying entries of the data tensor.
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Fig. 1: L1-Tucker model for a 3-way tensor X ∈ R
I1×I2×I3 .

I. TECHNICAL BACKGROUND

A. Definitions and Notation

The order of a tensor denotes the number of its dimensions,

also known as ways or modes. A fiber is a vector extracted

from a tensor by fixing all modes but one. Matricization, also

known as unfolding, logically reorganizes tensors into other

forms without changing the tensor values themselves. The

mode-n matricization of a N -order tensor X ∈ R
I1×I2×···×IN

is denoted by X(n) ∈ R
In×I1I2...In−1In+1...IN and arranges the

mode-n fibers of the tensor as columns of the resulting matrix.

B. L1-norm Tucker Decomposition

Given N -way tensor X ∈ R
I1×I2×···×IN and low-

dimensions r1, r2, . . . , rN such that rn ≤ min
(
In, Ĩn

)
for

all n, tensor L1-Tucker is formulated as [17], [18]

maximize
{Un∈S(In,rn)}n∈[N]

∥∥X ×n∈[N ] U
T
n

∥∥
1
, (1)

where Ĩn =
∏

k∈[N ]\n Ik, ×n denotes the mode-n tensor-to-

matrix product, [N ] denotes the set {1, 2, . . . , N}, S(I, r) is

the set of I×r matrices with orthonormal columns, ×n∈[N ]U
T
n

summarizes the mutli-mode product ×1U
T
1 · · · ×N UT

N , and

‖·‖1 is the L1-norm, returning the summation of the absolute

entries of its tensor argument. If the set of bases {Ûn}n∈[N ]

is a solution to (1), then the compressed data tensor (also

known as Tucker core) is given by Ĝ = X ×n∈[N ] Û
T
n ∈

R
r1×r2×...×rN . A schematic illustration of this tensor analysis

is offered in Fig. 1. The formulation in (1) constitutes a robust

L1-norm-based analogous to standard Tucker decomposition,

which employs instead the corruption-responsive L2-norm.

Moreover, similar to Tucker decomposition, the exact solution

to 1 remains to date unknown. For the special case of N = 3,

r1 = r2 = 1, and Û3 fixed to II3 –i.e., no compression across

mode 3– the exact solution to (1) was recently presented in

[15]. For the general problem in (1) successful approximate

algorithms have been proposed in the literature, such as L1-

HOSVD and L1-HOOI [17], [18].

II. PROPOSED ITERATIVELY RE-WEIGHTED L1-PCA

In the following, we describe our algorithmic developments

for robust tensor decomposition. In the initialization step of

the algorithm we set the tensor N bases {Û(1)
n }n∈[N ] to the

solution of L1-HOOI [17]. The resulting bases emphasize

the subspaces spanned by the nominal (uncorrupted) entries

of the original tensor X and de-emphasizes entries that are

contaminated with outlier data.

Next, for the n-th tensor unfolding for all n ∈ [N ] ,

we project all columns of X(n) onto the calculated bases

{Û(1)
n }n∈[N ] and measure

dn,in =
∥∥∥Û(1)

n Û(1)T

n

[
X(n)

]
:,in

∥∥∥
2
, (2)

for every in ∈ [Ĩn], where for any A ∈ R
m×n, ‖A‖2 is

defined as
√∑m

i=1

∑n

j=1 | [A]i,j |2 and |·| denotes absolute

value of a real number. Interestingly, we expect small dn,in
value if data vector

[
X(n)

]
:,in

is an outlying and large dn,in
value if the data vector is nominal, or conforming.

After the calculation of the projections, we fold the dn,in
values into tensor form

Wn = tensorization
(
1In

[
dn,1, dn,2, . . . , dn,Ĩn

]
, n

)
, (3)

where the operator tensorization(·, n) folds its argument

along the n-th dimension (reversing the unfolding procedure).

We say that the resulting tensor Wn ∈ R
I1×I2×···×IN contains

the conformity values corresponding to each mode-n fiber of

the original tensor X .

Having calculated the conformity tensors Wn, ∀n ∈ [N ],
the individual entry conformity tensor is produced by additive

weighting of the conformity tensors (according to assumed

relative “importance”) and max-min normalization to the range

[0, 1]:

W
(1) =

∑N

n=1 αnWn −min
(∑N

n=1 αnWn

)

max
(∑N

n=1 αnWn

)
−min

(∑N

n=1 αnWn

) ,

(4)

where the weighting parameter αn measures the importance

of the n-th tensor mode,
∑

n∈[N ] an = 1, min (·) returns the

minimum element of its tensor argument, and max (·) returns

the maximum element. The normalization in (4) leads to value

0 for the least conforming elements and value 1 for the most

conforming ones.

In the next step of the algorithm, the original tensor dataset

is globally weighted through the conformity tensor W
(1) by

element-by-element multiplication of X with W
(1). The new

re-weighted dataset is denoted by

X
(1) = X ◦W(1), (5)

where ◦ is the element-wise or Hadamard product. The refined

L1-norm tensor bases of rank {rn}n∈[N ], {Û(2)
n }n∈[N ], are

calculated anew by means of L1-HOOI on X
(1) initialized at

{Û(1)
n }n∈[N ].

Along this way, we continue the iterative generation of con-

formity weights W(1),W(2), . . . , until numerical convergence

to W is observed at iteration k ≥ 2; i.e.,

W = W
(k) such that

∥∥∥W(k) −W
(k−1)

∥∥∥
F
< ε (6)

for some small ε > 0. Algorithm 2 presents the complete

pseudo-code for the calculation of W .
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Algorithm 1 Proposed algorithm for iteratively re-weighted

L1-PCA of tensor data

Input: X ∈ R
I1×I2×···×IN ; {rn}n∈[N ]; {αn}n∈[N ]; initialize

{Û(0)
n }n∈[N ] (e.g., arbitrary or HOSVD); ε > 0

1: Initialize l ← 1; W(1) ← 1I1×I2×···×IN ; a←
∥∥∥W(1)

∥∥∥
2
;

X
(1) ← X

2: while a > ε do

3: {Û(l)
n }n∈[N ] ← L1−HOOI

(
X

(l), {Û(l−1)
n }n∈[N ]

)

4: for n ∈ [N ] do

5: for i ∈ [Ĩn] do

6: dn,i ←
∥∥∥Û(l)

n Û
(l)T

n

[
X(n)

]
:,i

∥∥∥
2

7: Wn←tensorization
(
1In

[
dn,1, . . . , dn,Ĩn

]
,n
)

8: Wtemp ←
∑

n∈[N ] αnWn; µ← min (Wtemp);
ξ ← max (Wtemp); l← l + 1

9: W
(l) ← Wtemp−µ

ξ−µ
; X (l) ← X ◦W(l)

10: a←
∥∥∥W(l) −W

(l−1)
∥∥∥
2

Output: W
(l) and {Û(l)

n }n∈[N ]

Function: L1-HOOI
(
X , {U(0)

n }n∈[N ]

)
[17]

1: l← 1; a←
∑

n∈[N ] ‖U
(0)
n ‖22

2: while a > ε do

3: for n ∈ [N ] do

4: B ← X ×m<n U
(l)T

m ×k>n U
(l−1)T

k ;

Q0 ← U
(l−1)
n ; t← 0

5: for t ∈ [T ] do

6: [U,Σ,VT ]← SVD
(
B(n)sgn

(
BT

(n)Qt−1

))

7: Qt ← [U]:,1:rn [V]T:,1:rn
8: U

(l)
n ← QT

9: a←∑
n∈[N ]

∥∥∥U(l)
n U

(l)T

n −U
(l−1)
n U

(l−1)T

n

∥∥∥
2

2
10: l← l + 1

III. EXPERIMENTAL STUDIES

We consider the problem of tensor reconstruction where

our objective is to reconstruct the original (clean) tensor X

from a corrupted tensor X
corr of the same dimensions. We

utilize the Uber Pick Up dataset which contains timestamped

coordinate data (GPS coordinates) from five Uber drivers in

the greater New York area over a six month period. The dataset

is inherently sparse, since rarely the drivers share the same

pickup coordinates. In order to produce a more interpretable

dataset we convert the GPS coordinates to their corresponding

zip codes. We calculate the number of pickups per zip code

per driver over each month. This transformation reduces the

sparsity of the dataset, as well as the overall tensor dimension.

The final data tensor X ∈ R
150×5×6 contains the number

of pickups of 150 different postal codes for 5 drivers over 6
months.

The dataset is then corrupted by replacing uniformly across

1 1.5 2 2.5 3 3.5 4 4.5 5
40
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Proposed

Fig. 3: Squared reconstruction error (SRE) versus number of

components, r, for corruption percentage ρ = 20%.

each dimension the entries of the original tensor with integer

values in the [10, 100] range to create X
corr ∈ R

150×5×6. The

percentage of corrupted entries is controlled by a parameter ρ.

The corruption simulates wrong entries or miscalculated posi-

tion coordinates. Our goal is to decompose X
corr ∈ R

150×5×6

and calculate the bases Û1 ∈ R
150×r1 , Û2 ∈ R

5×r2 , and

Û3 ∈ R
6×r3 and the core tensor Ĝ ∈ R

r1×r2×r3 , which are

utilized to reconstruct the original uncorrupted tensor X as

X̂ = Ĝ ×n∈[N ] Ûn. (7)

We measure the squared reconstruction error (SRE) be-

tween the estimated X̂ and the original clean X as ‖X̂ −
X‖22. We compare the performance of our proposed method

versus standard L2-norm tensor decomposition techniques

such as HOSVD and HOOI [4], [6], as well as HORPCA

[7]. For HORPCA the parameters were set as in [7] to

r = 1/
√
Imax, where Imax = max (I1, I2, I3) = 150 and

µ = 10std
(
vec

(
X(1)

))
, where std (·) calculates the standard

deviation of the input vector.

In Figure 3, we plot the SRE for corruption percentage

ρ = 20%, versus the number of components. For the L2-

norm based methods (HOSVD and HOOI) and the proposed

L1-norm based method the number of components is set

to r1 = 5r, r2 = r, r3 = r. This is done because the

first dimension of out dataset is larger than the rest. It is

clearly shown that the proposed method captures the low-rank

characteristics of the nominal data better compared to the state-

of-the-art and is able to outperform HORPCA for these tuning

parameters.

Figure 4 depicts the SRE versus the corruption percentage

parameter ρ. We vary the percentage of corrupted entries from

5% to 50% and observe that the proposed L1-norm based

method significantly outperforms its counterparts, for every

level of corruption.

IV. CONCLUSIONS

We presented a novel, iteratively re-weighted L1-norm

tensor decomposition algorithm, which weighs each individual

tensor entry according its conformity with respect to the whole

tensor dataset. In each iteration, the L1-norm tensor bases
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Fig. 4: Squared reconstruction error (SRE) versus corruption

percentage, ρ, for fixed r = 4.

are computed computed by means of L1-HOOI in order to

calculate the conformity of each data entry. Non-conforming

entries are weighted down, resulting in bases that represent

better the nominal data. The proposed method significantly

enhances performance in tasks such as tensor reconstruction

compared against Tucker-decomposition algorithms.
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