
Distributed MST: A Smoothed Analysis

Soumyottam Chatterjee
University of Houston

Department of Computer Science
Houston, TX, USA

schatterjee4@uh.edu

Gopal Pandurangan∗

University of Houston
Department of Computer Science

Houston, TX, USA
gopalpandurangan@gmail.com

Nguyen Dinh Pham
University of Houston

Department of Computer Science
Houston, TX, USA

aphamdn@gmail.com

ABSTRACT

We study smoothed analysis of distributed graph algorithms, focus-

ing on the fundamental minimum spanning tree (MST) problem.

With the goal of studying the time complexity of distributed MST

as a function of the “perturbation” of the input graph, we posit a

smoothing model that is parameterized by a smoothing parameter

0 ≤ ϵ(n) ≤ 1 which controls the amount of random edges that can

be added to an input graph G per round. Informally, ϵ(n) is the
probability (typically a small function of n, e.g., n−

1
4) that a random

edge can be added to a node per round. The added random edges,

once they are added, can be used (only) for communication.

We show upper and lower bounds on the time complexity of

distributed MST in the above smoothing model. We present a dis-

tributed algorithm that, with high probability,1 computes an MST

and runs in Õ(min{ 1√
ϵ (n)

2O (
√
logn),D +

√
n}) rounds2 where ϵ is

the smoothing parameter, D is the network diameter and n is the

network size.

To complement our upper bound, we also show a lower bound of

Ω̃(min{ 1√
ϵ (n)
,D +

√
n}). We note that the upper and lower bounds

essentially match except for a multiplicative 2O (
√
logn) polylog(n)

factor.

Our work can be considered as a first step in understanding the

smoothed complexity of distributed graph algorithms.

CCS CONCEPTS

• Theory of computation → Distributed algorithms.

KEYWORDS

distributed algorithms, smoothed analysis, random model, mini-

mum spanning tree, lower bound

∗Supported, in part, by NSF grants CCF-1527867, CCF-1540512, IIS-1633720, and CCF-
1717075, and by BSF grant 2016419.
1Throughout, with high probability (whp) means with probability at least 1 − n−c , for
some fixed, positive constant c .
2The notation Õ hides a polylog(n) factor and Ω̃ hides a 1

polylog (n) factor, where n is

the number of nodes of the graph.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICDCN 2020, January 4–7, 2020, Kolkata, India

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7751-5/20/01. . . $15.00
https://doi.org/10.1145/3369740.3369778

ACM Reference Format:

Soumyottam Chatterjee, Gopal Pandurangan, and Nguyen Dinh Pham. 2020.

Distributed MST: A Smoothed Analysis. In 21st International Conference on

Distributed Computing and Networking (ICDCN 2020), January 4–7, 2020,

Kolkata, India. ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/

3369740.3369778

1 INTRODUCTION AND MOTIVATION

Smoothed analysis of algorithms was introduced in a seminal paper

by Speilman and Teng [23] to explain why the well-studied simplex

algorithm for linear programming does well in practice, despite

having an (worst-case) exponential run time in theory. The high-

level idea behind the smoothed analysis of the simplex algorithm

is the following:

(1) perturbing the input data with a small amount of random

noise (e.g., Gaussian noise with mean zero, parameterized

by the variance of the noise), and then

(2) showing that the perturbed input can be solved efficiently by

the simplex algorithm, i.e., in polynomial time. In particular,

Spielman and Teng quantify the run time as a function of

the perturbation; the more the perturbation (i.e., larger the

variance of the noise), the faster the run time.

Smoothed analysis is thus different from the worst-case analysis

of algorithms. It is also different from the average-case analysis,

which assumes a probability distribution on the set of all possible

inputs. Smoothed analysis, on the other hand, is sort of a hybrid

between the above two — it considers the worst-case input and

then randomly perturbs it. If even small perturbations (say, adding

random noise) lead to efficient run time, then this means that the

worst-case is quite sensitive to the input parameters. In practice,

there will usually be noise and thus the algorithm is likely to avoid

the worst-case behavior.

In this paper, we initiate the study of smoothed analysis of dis-

tributed graph algorithms. Our paper is motivated by the work

of Dinitz et al. [5] who initiated the study of smoothed analysis

for dynamic networks (we refer to Section 1.1 for more details). A

main contribution of our paper is positing smoothing models in

the context of distributed graph algorithms and performing anal-

yses of the models. While many smoothing models are possible

for such algorithms, a key goal is to identify models that lead to

non-trivial bounds on the distributed complexity (here we focus on

time complexity) of fundamental graph algorithms.

We focus on the distributed minimum spanning tree (MST) prob-

lem in synchronous CONGEST networks (see Section 2 for de-

tails on this standard distributed computing model). The worst-case

time (round) complexity of distributed MST has been extensively

studied for the last three decades and tight bounds are now well

established (see, e.g., [17, 18]). There is an optimal distributed MST

https://doi.org/10.1145/3369740.3369778
https://doi.org/10.1145/3369740.3369778
https://doi.org/10.1145/3369740.3369778

ICDCN 2020, January 4–7, 2020, Kolkata, India Soumyottam Chatterjee, Gopal Pandurangan, and Nguyen Dinh Pham

algorithm (see, e.g., [16]) that runs in Õ(D +
√
n) rounds, where D

is the graph diameter and n is the number of nodes in the network.

Also, there is a (essentially) matching lower bound of Ω̃(D +
√
n)

rounds that applies even to randomized Monte-Carlo distributed

algorithms [22].

The lower bound is shown by presenting a weighted graph (in

particular, a family of graphs) and showing that no distributed

algorithm can solve MST faster. This raises a motivating question

for smoothed analysis: Is the worst-case bound specific to the choice

of the weighted graph (family)? Or more precisely, is it specific to

the choice of the graph topology or the edge weights or both? If

small perturbations do not change the worst-case bound by too

much then we can say that the lower bound is robust and, if they do

we can say that the bounds are fragile [5]. Thus smoothed analysis

can lead to a better understanding of the complexity of distributed

MST by studying perturbations of the worst-case input. This is one

of the motivations in studying smoothed analysis of distributed

algorithms.

However, to answer the above questions, one has to first come

up with a suitable smoothing model. For example, one possible

smoothing model, in the spirit of Speilman and Teng’s original

smoothing model, would be perturbing the edge weights of the

input graph by a small amount. It is apparent that if the perturbation

is quite small relative to the weights (since the weights can be well-

spaced), then this does not any effect on the lower bound — it

remains Ω̃(D +
√
n). Another possible model, which we explore in

this paper, again in the spirit of original model but now applied

to perturbing the topology of the input graph, is smoothing the

input graph by adding3 a small number of random edges. While

there are a few possible ways to accomplish this, we focus on a

particular smoothing model described next. We will discuss other

smoothing models (which can be considered variants of this model)

in Section 5. A practical motivation for this kind of smoothing, i.e.,

adding a small number of random edges to a given graph, is that

many real-world networks might be better modeled by graphs with

some underlying structure with some amount of randomness. For

example, it is well know that real-world graphs have power-law

degree distribution, but they are not arbitrary (worst-case) power-

law graphs but can be reasonably modeled by random graphs with

power-law degree distribution [7].

We consider a smoothing model (see Section 2.2) that is parame-

terized by a smoothing parameter 0 ≤ ϵ = ϵ(n) ≤ 1 that controls

the amount of random edges that can be added to an input graph

G = (V ,E) per round. ϵ(n) is typically a small function of n, say,

ϵ(n) = n−
1
4 . More precisely, our smoothing model allows any node

to add a random edge with probability ϵ(n) in each round; the added
edges can be used for communication in later rounds. (We note that

the added edges, otherwise, do not change the underlying solution

with respect toG; e.g., for MST, the added edges have weight∞ and

hence don’t affect the MST of G.) Besides this additional feature,
nodes behave as in the standard model, i.e., can communicate using

edges of G. We formally define the model in Section 2.2. Note that

nodes can as well choose not to use this additional feature. Depend-

ing on ϵ(n), the number of random edges added per round can be

3One can also delete edges, although we don’t consider this in this paper, see Section
2.2.

small. (In Section 5, we consider a variant of this model, which

essentially gives the same bounds as the ones discussed here.)

An alternate way of thinking about our smoothing model is as

follows. Assume that the graphG is embedded in a congested clique.

The congested clique model has been studied extensively in the

distributed computing literature; see, e.g., [2, 3, 10–12, 19–21]). A

node — besides using its incident edges in E — can also choose to

use a random edge (not inG , but in the clique) with probability ϵ in

a round to communicate (once chosen, a random edge can be used

subsequently till end of computation). Note that if ϵ is small, say, for

example ϵ = O(n−
1
4), then the probability of adding a random edge

by a node in a round is small. In particular, if ϵ = 0, then this boils

down to the traditional model, i.e., working on the given graph G
with no additional random edges, as ϵ increases, the number of

random edges increases with it.

We note that the smoothing model is sort of a hybrid between

the traditional model where communication is allowed only along

the edges of an arbitrary graphG and a model whereG is a random

graph (e.g., Erdos-Renyi graph model [4, 13]) or an expander (see

e.g., [1] and the references therein). In the smoothingmodel we start

with an arbitrary graph G and add random edges (parameterized

by ϵ). In Section 2.2, we further explore relationship between the

smoothing model and other distributed computing models.

Our goal is to study how the distributed complexity of MST

varies as a function of ϵ(n) (among other usual graph parameters

such as network size, network diameter, etc.). We show upper and

lower bounds on the time complexity of distributed MST in the

aforementioned smoothing model. We present a distributed algo-

rithm, which (with high probability) computes an MST and runs in

Õ(min{ 1√
ϵ (n)

2O (
√
logn),D+

√
n}) rounds, where ϵ is the smoothing

parameter, D is the network diameter, and n is the network size,

i.e., the number of nodes in the network.

To complement our upper bound, we also show a lower bound

of Ω̃(min{ 1√
ϵ
,D +

√
n}). Our bounds show non-trivial dependence

on the smoothing parameter ϵ(n), and the bounds are essentially

match except for a 2O (
√
logn) factor and a polylogarithmic factor.

1.1 Related work

Smoothed analysis was introduced by Spielman and Teng[23] and

has since been applied for various algorithms problems in the se-

quential setting (see, e.g., [24] for a survey).

The only work that we are aware of in the context of smoothed

analysis of distributed algorithms is that of Dinitz et al. [5] who

study smoothed analysis of distributed algorithms for dynamic

networks. Their dynamic network model is a dynamic graphH =
G1,G2, . . . that describes an evolving network topology, where Gi

is the graph at round i . It is assumed that all graphs inH share the

same node set, but the edges can change with some restrictions, e.g.,

each graph should be connected. They define a smoothing model

for a dynamic graph that is parameterized with a smoothing factor

k ∈ {1, 2, . . . ,
(n
2

)
}. To k-smooth a dynamic graphH is to replace

each static graph Gi in H with a smoothed graph G ′
i sampled

uniformly from the space of graphs that are: (1) within edit distance

k of G, and (2) are allowed by the dynamic network model (e.g.,

smoothing cannot generate disconnected graph). The edit distance

Distributed MST: A Smoothed Analysis ICDCN 2020, January 4–7, 2020, Kolkata, India

is the number of edge additions/deletions needed to transform one

graph to another, assuming they share the same node set.

Our smoothingmodel can also be thought of in terms of choosing

a random graph within a positive edit distance (i.e., edges are only

added to the original input graph) where the number of random

edges added is proportional to nϵ(n) (per round or in total — see

Section 5).

Dinitz et al. study three well-known problems that have strong

lower bounds in dynamic network models, namely, flooding, ran-

dom walks, and aggregation. For each problem, they study robust-

ness/fragility of the existing bound by studying how it improves

under increasing amounts of smoothing.

2 OUR MODEL

We first discuss the distributed computing model and then discuss

our smoothing model.

2.1 Distributed Computing Model

We consider a system of n nodes, represented as an undirected, con-

nected graph G = (V ,E). Each edge e ∈ E may have an associated

weightw(e), which can be represented using O(logn) bits. If there
is no weight on an edge, then it can be considered to be ∞. Each

node u runs an instance of a distributed algorithm and has a unique

identifier IDu of O(logn) bits.
The computation advances in synchronous rounds, where in

every round, nodes can send messages, receive messages that were

sent in the same round by neighbors in G, and perform some local

computation.

Our algorithms work in the CONGEST model [16], where in

each round a node can send at most one message of size O(logn)
bits via a single edge (whether the edge is in G or is a smoothed

edge).

2.2 Smoothing Model

Given a (arbitrary) undirected connected graphG(V ,E) (throughout
n = |V |), the smoothing model allows adding some random edges

to the input graphG , thereby “perturbing” graph structure. We call

this process smoothing, where we add a small number of random

edges to the original graph. We describe the process of adding edges

which is parameterized by a smoothing parameter 0 ≤ ϵ = ϵ(n) ≤ 1

as follows. The smoothing parameter (which in general is a function

of n, the network size4 controls the amount of random edges that

can be added per round. Henceforth, we call this as the ϵ-smoothing

model.

More precisely, every node, in every round, with probability

ϵ (the smoothing parameter) can add an edge to a random node

(chosen uniformly at random from V) in the graph. Let the added

random edges form the set R (different from the original edge set

E). Note that we allow multi-edges in the random edge choosing

process; however, if there is more than one edge between two nodes,

then only one edge (especially, if it belongs to E) that matters. The

added edge persists for future rounds and can be used henceforth

for communication; its weight is ∞. A distributed algorithm can

4We sometimes just write ϵ , understanding it to be a function of n.

potentially exploit these additional edges to improve the time com-

plexity.5

In this work, we only consider adding edges to the graph; one

can also consider deleting edges from the original graph. However,

for many problems such as MST, it is arguably more appropriate

to (potentially) add edges. In fact, deleting edges can change the

graph. Whereas, in the ϵ-smoothing model, since the added edges

to the given graphG are purely communicating edges (with weight

∞), the MST with respect to G is unchanged. In fact, the model

allows us to study tradeoffs between the amount of random edges

added to the efficiency of computing a solution of G.
As mentioned earlier, the ϵ-smoothing model gives a “smooth"

tradeoff between the traditional CONGEST model where there no

additional random edges (ϵ = 0) inG (the input graph) and a model

where there is a random graph embedded in G. In this sense, it is

different from studying distributed computing on (purely) random

graph models or expander graph models (e.g., [1, 4, 13]. We note the

work of Ghaffari et al[8, 9] embeds a random graph in a given graph

G and uses this embedding to design algorithms that depend on

the mixing time of G. This is still the traditional CONGEST model,

though we use their result in our algorithms.

As mentioned in Section 1, we can also relate the well-studied

congested clique model to the ϵ-smoothing model and also give a

way to understand computation tradeoffs between the traditional

CONGEST model and the congested clique model. Assuming the

input graphG is embedded in a congested clique, the ϵ parameter

controls the power to use the non-graph clique edges. If ϵ = 0,

then we have the traditional CONGEST model and for any ϵ > 0,

if we spend enough rounds, then one can throw a random edge

between every pair of nodes which boils down to the congested

clique. Of course, this is costly, which illustrates the power of the

congested clique model (where the clique edges can be used for

“free"). Studying time and message complexity bounds in terms of ϵ
can help us understand the power of the clique edges with respect

to solving a problem on a given input graph.

3 DISTRIBUTED MST IN THE SMOOTHING

MODEL

For the sake of exposition, we first present a distributed MST algo-

rithm that runs in Õ(min{ 1ϵ +2
O (
√
logn),D+

√
n}) rounds. Then we

present an improved algorithm that runs in Õ(min{ 1√
ϵ (n)

2O (
√
logn),

D+
√
n}) rounds. The second algorithm is a modification of the first

and its time complexity approaches the lower bound of Ω̃(min{ 1√
ϵ
,

D +
√
n}) shown in Section 4. Thus up to a multiplicative factor of

2O (
√
logn) polylogn, the bounds are tight.

We give a high-level overview of our approach of our first algo-

rithm before we get into the technical details. The algorithm can be

described in two parts which are described in Sections 3.1 and 3.2

respectively. At the outset we note that if 1/ϵ is larger compared

to Õ(D +
√
n), then we simply run the standard time-optimal MST

algorithm ([16]) without doing smoothing.

5In this paper, we focus only on time complexity, but message complexity can also be
relevant.

ICDCN 2020, January 4–7, 2020, Kolkata, India Soumyottam Chatterjee, Gopal Pandurangan, and Nguyen Dinh Pham

3.1 Part 1: Constructing an Expander

Initially the algorithm exploits the smoothing model to add about

O(logn) random edges per node. This can be accomplished as fol-

lows: each node (in parallel) tries to make a random edge selection

for the (first) Θ(lognϵ) rounds, where ϵ is the smoothing parameter.

Since the probability of adding a random edge, i.e., a smoothing

edge, is ϵ per round, it is easy to show that with high probability a

node will add Θ(logn) random edges. Via a union bound, this holds

for all nodes.

Now consider the graph R(G) induced only by the smoothed

(random) edges of G after Θ(lognϵ) rounds. In the following lemma

3.2, we show that R(G) is a graph with O(logn) mixing time.

The proof of this result comes from the relation of ϵ-smoothing

model to Erdos-Renyi random graph, which we will show next.

Lemma 3.1. Consider a graph G(V ,E) under ϵ-smoothing. If we

invoke smoothing for � rounds (where �ϵ = o(n)), then the graph

induced by the smoothed edges is an Erdos-Renyi random graph

G(n,p) where p = Θ
(
lϵ
n

)
.

Proof. We calculate the probability of a smoothed edge between

nodesu andv . Clearly the edge is present if eitheru orv successfully

adds the other end during � steps. Hence, p = 1 −
(
1 − ϵ

n

)2�
=

Θ
(
�ϵ
n

)
�

Remark 1. The following lemma (Lemma 3.2) applies only to R(G)
and not necessarily to G ∪ R(G).

Lemma 3.2. Let G = (V ,E) be an arbitrary undirected graph and

let R(G) = (V , F) be the random graph induced (only) by the set F

of random (smoothed) edges after Θ(lognϵ) rounds. Then, with high

probability, R(G) has mixing time τmix (R) = O(logn).

Proof. Using Lemma 3.1, where � = Θ(lognϵ), we have R(G) is a
Erdos-Renyi random graphG(n,p = Θ(lognn). It is well-known that

with high probability the this random graph is an expander (i.e.,

has constant conductance) and thus has O(logn) mixing time (see

e.g., [8]). �

3.2 Part 2: Constructing an MST

In the second part, the algorithm uses R(G) as a “communication

backbone” to construct an MST in O(log2 n)2O (
√
logn) rounds.

Our algorithm crucially uses a routing result due to Ghaffari et

al. [8, 9] who show, given an arbitrary graphG = (V ,E), how to do

permutation (or more generally, multi-commodity) routing fast. We

briefly describe the problem and themain result here and refer to [9]

for the details. Permutation or multi-commodity routing is defined

as follows: given source-destination pairs of nodes (si , ti) ∈ V ×V
and suppose si wants to communicate with ti (ti does not know
si beforehand, but si knows the ID of ti). The width of the pairs

isW if each v ∈ V appears at mostW times as si or ti . The goal
is to construct a routing path Pi (not necessarily simple) from si
to ti such that the set of routing paths has low congestion and low

dilation. Congestion is the maximum number of times any edge

is used in all the paths. Dilation is simply the maximum length

of the paths. The main result of [9] is that routing paths Pi with

low congestion and dilation can be found efficiently. Once such low

congestion and dilation routing paths are found, using a standard

trick of random delay routing, it is easy to establish that messages

can be routed between the source and destination efficiently, i.e.,

proportional to congestion and dilation.

Theorem 3.3 (Efficient Routing). (Theorem 8 from [9]).Suppose

we solve a multicommodity routing instance {(si , ti)}i and achieve
congestion c and dilation d . Then, in Õ(c + d) rounds, every node si
can send one O(logn)-bit message to every node ti , and vice versa.

Next, let us formally restate their routing results for ease of

discussion. First we state their result on multi-commodity routing

on a random graph G(n, logn), i.e., a random graph where each

node has O(logn) random edges (each endpoint chosen uniformly

at random.)

Theorem 3.4. (Theorem 1 from [9]) Consider a multicommodity

routing instance of width Õ(1). There is a multicommodity routing

algorithm on a random graph G(n, (logn)) that achieves congestion
and dilation 2O (

√
logn), and runs in time 2O (

√
logn).

Then, by the construction of a random-graph-like hierarchy

routing over a given graph G, we have the following result.

Lemma 3.5. (Lemma 11 from [9]) On any graphG withn nodes and

m edges, we can embed a random graph G(m,d) with d ≥ 200 logn
intoG with congestion Õ(τmix ·d) and dilation τmix in time Õ(τmix ·
d).

Using Lemma 3.5, we have the following trivial corollary for

permutation routing.

Corollary 1 (Permutation Routing). Consider a graph G =
(V ,E) and a set of n point-to-point routing requests (si , ti), where
si , ti are IDs of the corresponding source and destination. Each node

of G is the source and the destination of exactly one message. Then

there is a randomized algorithm that delivers all messages in time

τmix (G)2O (
√
logn), w.h.p.

Based on their multicommodity routing algorithm, they showed

how to construct an MST of G in τmix (G)2O (
√
logn) rounds (Ghaf-

fari et al. [8]). However, this MST algorithm cannot be directly

employed in our setting, i.e., to construct a MST ofG , overG∪R(G).
We briefly summarize the idea from section 4 in their paper [8],

to explain why this algorithm is not applicable directly in a black

box manner. The main reason for this: while the algorithm of [8]

operates on the graph G, ours operates on graph G ′ = G ∪ R(G).
Applying the algorithm directly toG∪R(G) can (in general) yield an
algorithm running in τmix (G ′)2O (

√
logn) rounds where τmix (G ′) is

the mixing time ofG ′. Note that τmix (G ′) (in general) can be of the

same order of τmix (G) (even for constant smoothing parameter ϵ) in
some graphs6. Thus the running time bound does not (in general)

depend on ϵ and does not give our desired bound of Õ(logn/ϵ)
rounds. We give more details on the approach of [8] and then

discuss our algorithm.

The approach of [8] is to modify Boruvka’s algorithm [15], where

the MST is built by merging tree fragments. In the beginning, each

6For example consider two cliques of size n/2 connected to each other viaO (n) edges.

Distributed MST: A Smoothed Analysis ICDCN 2020, January 4–7, 2020, Kolkata, India

node is a fragment by itself. The fragment size grows by merg-

ing. To ensure efficient communication within a fragment, they

maintain a virtual balanced tree for each fragment. A virtual tree is

defined by virtual edges among nodes, where virtual edges are com-

munication paths constructed by the routing algorithm. It follows

that for each iteration, fragment merging may increase the num-

ber of virtual edges of some node v by dG (v), where dG (v) is the
degree of v in G. Since Borukva’s method takes O(logn) iteration,
the virtual degree of any node v is at most dG (v)O(logn). Thus
virtual trees communication is feasible via commodity routing by

theorem 3.4 which takes τmix (G)2O (
√
logn) rounds. Applying the

above approach directly to our setting yields only an MST algo-

rithm running in τmix (G ′)2O (
√
logn) rounds as mentioned in the

last paragraph.

In our setting, to obtain an algorithm running in Õ(logn/ϵ)
rounds, we would like to perform routing (only) on R(G) instead
of G ∪ R(G). However, if we use the same algorithm of [8] in R(G)
then during the computing of the MST in G, some node v may

become overloaded by dG (v) virtual edges which causes too much

congestion in R(G) (where each node has degree Θ(logn) only)
when dG (v) is large. It follows that the routing is infeasible in

R(G) and the algorithm fails. To solve the problem we proposed a

modified algorithm that uses aggregate routing.

The idea of aggregate routing is to perform permutation routing,

where some destinations are the same. In other words assume a

permutation routing problem where there are only k ≤ n (distinct)

destinations and t1, . . . , tk and there are n sources s1, . . . , sn . Let
Ci be the set of sources who have the same destination ti . In ag-

gregate routing, we would like to aggregate the set of messages in

Ci and deliver it to ti . The aggregate function can be a separable

(decomposable) function such asmin,max or sum. Then we can

modify the permutation routing easily as follows. For a node u that

is performing the routing, suppose there are multiple messages

arriving at u in the same round. Then u computes the aggregate of

the messages belong to the same set Ci (for every 1 ≤ i ≤ k) and
forwards that message according to the routing algorithm. At the

destination, the aggregate is computed over any received messages

destined for this particular destination. With this intuition, we state

the following definitions and lemma.

Definition 3.6 (k-Aggregate Routing). Consider a graphG = (V ,E),
where nodes are divided into k disjoint partitions C1,C2, . . . ,Ck .

For each partition Ci , there is a leader li , known to all members of

Ci . Each node u ∈ V has one message to deliver to its leader. Let f
be a separable aggregate function (such asmin,max , or sum). The

k-aggregate routing problem is to compute the aggregate f over

the nodes in each partition and route it to the corresponding leader

of the partition.

We show that k-aggregate routing can be solved in the same

time bounds as multi-commodity routing.

Lemma 3.7. Consider a graph G = (V ,E) with an instance of k-
aggregate routing problem. There is a randomized algorithm that

solves the problem in time τmix (G)2O (
√
logn), w.h.p.

Proof. Letmu denote the original message at u. We will send

the tuple (mu , lu) where lu is the leader of the partition that u
belongs to. Let f be the separable aggregate function.

Each node v executes the multi-commodity routing algorithm,

with this extra rule: In a round t , suppose v receives multiple mes-

sages having the same destination, which is some leader li , v com-

putes the aggregate ft,i over those messages, and prepares a tuple

(ft,i , li). v then forwards the aggregated message to the appropri-

ate next-hop neighbor in the routing path for the next round. v
performs the same reduction for messages targeting other leaders.

It is easy to see that this routing schema is not congested, i.e., it

is as fast as the multi-commodity/permutation routing. Observing

the local invariance of permutation routing: for each destination

u, every node, in each round of the algorithm, sends out at most

one message routing towards u. This invariance holds in our k-
aggregate routing, by the above construction.

At the end of the routing, each leader aggregates over its received

messages, which is the aggregate in its partition. �

While k-aggregate routing can be seen as upcast [16], the com-

plementary operation of downcast, i.e., sending a message from a

source to several destinations, can also be done efficiently as shown

below.

Lemma 3.8 (k-Aggregate Routing and Downcast). Consider a

graphG = (V ,E)with an instance of the k-aggregate routing problem.

Furthermore, we require that every member of a partition knows the

corresponding aggregate value. There is a randomized algorithm that

solve the problem in time τmix (G)2O (
√
logn), w.h.p.

Proof. Using the algorithm in lemma 3.7, each node also records

the source of the incoming messages together with the associated

leader ID and round number. Then the routing can be reversed.

Starting from the leader of each partition, it sends out the aggre-

gate message with its ID, and each node reverses the aggregate

message towards the matching sender. Hence the downcast can

be accomplished in the same number of rounds as k-aggregate
routing. �

We are now ready to implement the MST algorithm.

Theorem 3.9. Consider a weighted graph G = (V ,E) in the ϵ-
smoothing model. There exists a randomized distributed algorithm

that finds an MST of G in time Õ(1ϵ + 2
O (
√
logn)), w.h.p.

Proof. As discussed in Part 1 (Section 3.1) the algorithm exe-

cutes Θ(lognϵ) rounds of random edge selection to construct the

random graph R(G) (the graph induced only by the random edges).

As shown in Lemma 3.2, R(G) is an expander with constant con-

ductance and hence has O(logn) mixing time.

We use the permutation routing result of [9] to construct the

routing structure on R(G), which allows permutation routing in

τmix (R(G))2O (
√
logn) = O(logn)2O (

√
logn) = 2O (

√
logn) rounds.

Our MST algorithm is based on the standard Gallagher-Humblet-

Spira (GHS)/Boruvka algorithm, see e.g., [16] which is also used in

[8] and many other MST algorithm see e.g., [6, 17]. The main modi-

fication compared to the standard GHS algorithm is that growth

(diameter) of fragments are controlled during merging (as in con-

trolled GHS algorithm [16]).

ICDCN 2020, January 4–7, 2020, Kolkata, India Soumyottam Chatterjee, Gopal Pandurangan, and Nguyen Dinh Pham

We summarize the algorithm here and sketch how it is imple-

mented.

LetT be the (unique) MST onG (we will assume that all weights

of edges of G are distinct). A MST fragment (or simply a fragment)

F ofT is defined as a connected subgraph ofT , that is, F is a subtree

of T . An outgoing edge of a MST fragment is an edge in E where

one adjacent node to the edge is in the fragment and the other is

not. The minimum-weight outgoing edge (MOE) of a fragment F is

the edge with minimum weight among all outgoing edges of F . As
an immediate consequence of the cut property for MST, the MOE

of a fragment F = (VF ,EF) is an edge of the MST.

The GHS algorithm operates in phases (see e.g., [16]). In the first

phase, the GHS algorithm starts with each individual node as a

fragment by itself and continues till there is only one one fragment

— the MST. That is, at the beginning, there are |V | fragments, and

at the end of the last phase, a single fragment which is the MST. All

fragments find their MOE simultaneously in parallel.

In each phase, the algorithm maintains the following invariant:

EachMST fragment has a leader and all nodes know their respective

parents and children. The root of the tree will be the leader. Ini-

tially, each node (a singleton fragment) is a root node; subsequently

each fragment will have one root (leader) node. Each fragment is

identified by the identifier of its root — called the fragment ID —

and each node in the fragment knows its fragment ID.

We describe one phase of the GHS (whp there will be O(logn)
phases as discussed below). Each fragment’s operation is coordi-

nated by the respective fragment’s root (leader). Each phase consists

of two major operations: (1) Finding MOE of all fragments and (2)

Merging fragments via their MOEs.

We first describe how to perform the first operation (finding

MOE). Let F be the current set of fragments. Each node in V finds

its (local) minimum outgoing edge (if any), i.e., an edge to a neighbor

belonging to a different fragment that is of least weight. We then

execute a |F |-Aggregate Routing and Downcast, usingmin as the

aggregate function, with each node being the source and having

its fragment leader as its destination. At the end of this step, for

each fragment, every member knows the minimum outgoing edge

(MOE) of the entire fragment. This MOE edge will be chosen for

merging in the second operation (merging fragments). Also, each

node keeps the reversed routing paths for further usage.

Once the merging (MST) edges are identified the second op-

eration — merging — is processed. In order to avoid long chains

of fragments, a simple randomized trick is used. Each fragment

chooses to be a head or tail with probability 1/2. Only tail frag-

ments will merge if their outgoing edge points to a head fragment.

It can be shown (e.g., see [8] that this merging (still) leads to a

constant factor decrease in the number of fragments (on average)

and hence the number of phases will beO(logn) in expectation and

with high probability.

We now describe how a merge can be implemented efficiently,

There will be no change in the head fragment, but all the tail ones

will update to acknowledge the head leader as the new leader. For

a tail fragment T , let v ∈ T be the node that is making the merge,

v knows the ID of the head leader by communicating with its

neighbor which is a member of the head fragment). v routes this

new leader ID to the current leader of T . This is done in parallel by

permutation routing. The current leader of T downcasts the new

leader ID to all T members. This is done via the saved reversed

routing paths. The merging is now completed, and time for one

iteration is the same as that of permutation routing as before, i.e.,

O(logn)2O (
√
logn).

There are O(logn) phases and each phase can be implemented

in O(logn)2O (
√
logn) rounds and hence the total time for Part 2 is

O(log2 n)2O (
√
logn).

The total time for MST construction is the number of rounds for

Part 1 pluses the number of rounds in Part 2:

Θ(lognϵ) +O(log2 n)2O (
√
logn) = Õ(1ϵ + 2

O (
√
logn)). �

3.3 An Improved Algorithm

We now present an algorithm that is a variant of the previous algo-

rithm and improves upon it. The time complexity of the improved

algorithm approaches the lower bound (cf. Section 4). The idea is to

use controlled GHS algorithm [16] to construct MST fragments of

suitable size. Then we apply the smoothing (with a smaller number

of rounds compared to previous algorithm, i.e., Õ(1√
ϵ
) instead of

Õ(1ϵ)) to add an expander over the super-graph induced by the MST

fragments where each super-node is one fragment (partition). Then

we compute the final MST in a similar fashion to Theorem 3.9 on

the super-graph.

Theorem 3.10. Given aweighted graphG(V ,E) in the ϵ-smoothing

model. Then there exists a randomized distributed algorithm that finds

an MST of G in time Õ(1√
ϵ
)2O (

√
logn), w.h.p.

Proof. We give the algorithm along with its analysis, as follows.

RunO(logn√
ϵ
) rounds of smoothing. Denote by S the set of smoothed

edges generated. Using Lemma 3.1, the probability that a smoothed

edge occurs between two nodes in G is p = Θ(
√
ϵ logn
n).

Run controlled GHS [16] for log 1√
ϵ
phases. This takes O(logn√

ϵ
)

rounds. Every cluster (each of which is an MST fragment) will have

size Ω(1√
ϵ
) and diameter O(1√

ϵ
), and there will be O(n

√
ϵ) such

clusters [16, Section 7.4]. We call these clusters as base fragments.

We note that communication within a cluster (i.e., between any

node of the cluster and its leader) takes O(1√
ϵ
) rounds.

View these clusters as a set of super-nodes, denoted by V ′. Let
E ′ ⊂ E be the set of inter-super-node edges, let S ′ ⊂ S be the set

of inter-super-node smoothed edges. Consider two super-graphs:

G ′(V ′,E ′) and R′(V ′, S ′). It is easy to show that due to the proba-

bility p of the random edges introduced by the smoothing process,

the super-graph R′(V ′, S ′) is an Erdős–Rényi random graph or a

G(n′,p′)-random graph, where

n′ = O(n
√
ϵ) (1)

and

p′ ≥ Ω

((
1
√
ϵ

)2)
p = Ω

(
log (n′)

n′

)
(2)

Thus, the super-graphsG ′ ∪R′ is equivalent to the smoothed graph

of our model in Section 2.

Similar to the previous algorithm, we solve the MST problem

using the Boruvka’s algorithm on the super-graph G ′, using the

Distributed MST: A Smoothed Analysis ICDCN 2020, January 4–7, 2020, Kolkata, India

routing structure of Ghaffari et al. [8, 9] and the aggregate rout-

ing over R′. To implement the algorithm on the super-graph, we

pipeline messages within all the super-nodes, i.e., inside the base

fragments. There are O(logn) phases of the Boruvka’s algorithm
and each phase takes O(1√

ϵ
) · 2O (

√
logn) rounds. The extra term of

O(1√
ϵ
) is incurred by communication within a super-node. Thus,

in total, the second part takes O(1√
ϵ
· logn) · 2O (

√
logn) rounds.

Combining the MST edges over the super-graph G ′, and the

MST edges in each super-node, we have the MST for the original

graph. Therefore, the total time complexity of the algorithm is

O(logn√
ϵ
) +O(logn√

ϵ
) · 2O (

√
logn) = Õ(1√

ϵ
) · 2O (

√
logn).

�

4 LOWER BOUND

In this section, we show the following lower bound result on the

ϵ-smoothing model. We note that Ω̃(D +
√
n) is an unconditional

lower bound (without smoothing) that holds even for randomized

Monte-Carlo approximate MST algorithms[22].

Theorem 4.1 (Smooth MST Lower Bound). There exists a fam-

ily of graphs G, such that, under the ϵ-smoothing model, any dis-

tributed MST algorithm must incur a running time of Ω̃(1√
ϵ
), in

expectation.

We will prove the lower bound theorem by using the technique

used in [22]. First, we will briefly recall the lower bound poof of

Ω̃(
√
n) (we assume D = O(logn)) without smoothing. For purposes

of exposition, we simplify and slightly modify the technique in

the mentioned paper, to show only the bound for exact distributed

MST. Then we extend it to the smoothing model. The procedure

is to establish a chain of algorithm reductions which is the same

as in [22], such that it relates distributed MST to a problem with a

known lower bound. The following are the chain of reductions:

• Set Disjointness (SD) to Distributed Set Disjointness (DSD).

We first reduce the set disjointness (SE) verification problem,

a standard well-studied problem in two-party communica-

tion complexity to the problem of distributed set disjointness

(DSD) verification. In the set disjointness problem (SD), we

have two parties Alice and Bob, who each have a k-bit string
— x = (x1,x2, . . . ,xk) and y = (y1,y2, . . . ,yk) respectively.
The goal is to verify if the set disjointness function is defined

to be one if the inner product 〈x ,y〉 is 0 (i.e., there is no i
such that xi = yi = 1) and zero otherwise. The goal is to

solve SD by communicating as few bits as possible between

Alice and Bob.

In the distributed set disjointness (DSD) verification, the goal

is to solve SD in a given input graph G = (V ,E), where two
distinguished nodes s, t ∈ V have the bit vectors x and y re-

spectively. In other words, instead of communicating directly

as in the two-party problem (between Alice and Bob), the

two nodes s and t (standing respectively for Alice and Bob)

have to communicate via the edges of G (in the CONGEST

model) to solve SD. The goal is to solve the DSD problem us-

ing as few rounds as possible in the CONGEST model (where

only O(logn) bits per edge per round are allowed).

• Reduction of Distributed set disjointness (DSD) to connected

spanning subgraph (CSS) verification. In the CSS problem,

we want to solve a graph verification problem which can

be defined as follows. In distributed graph verification, we

want to efficiently check whether a given subgraph of a

network has a specified property via a distributed algorithm.

Formally, given a graph G = (V ,E), a subgraph H = (V ,E ′)
with E ′ ⊆ E, and a predicate Π, it is required to decide

whether H satisfies Π (i.e., when the algorithm terminates,

every node knows whether H satisfies Π). The predicate Π
may specify statements such as “H is connected” or “H is

a spanning tree" or “H contains a cycle”. Each vertex in G
knows which of its incident edges (if any) belong to H .

In the connected spanning subgraph (CSS) verification the

goal is to verify whether the given subgraph H is connected

and spans all nodes of G, i.e., every node in G is incident to

some edge in H . The goal is to solve CCS in as few rounds

as possible (in the CONGEST model).

• The last reduction is to reduce CCS verification to computing

an MST.

The last two reductions above are done exactly as in the paper of

[22] that show the time lower bound of Ω̃(D+
√
n) rounds; however,

the first reduction from SD to DSD is different in the smoothing

model, as the input graph used in the DSD can use the (additional)

power of the smoothing model.

We will first briefly discuss the reductions as in [22] and then

discuss how to modify the first reduction to work for the smooth-

ing model. Here we first state the bounds that we obtain via these

reductions, and refer to [22] for the details. The well-known com-

munication complexity lower bound for the SD problem is Ω(k)
(see e.g.,[14]), where k is the length of the bit vector of Alice and

Bob. This lower bound holds even for randomized Monte-Carlo

algorithms and even under shared public coin.

Due to the graph topology used in the DSD problem (see Figure

1 without the smoothing edges) the value of k is to beΘ(
√
n) (which

is the best possible). The reduction from SD to DSD shows that

the lower bound for DSD, is Ω̃(
√
n) rounds. (Note that the diameter

of the lower bound graph is O(logn) and hence subsumed.) This

reduction uses the Simulation Theorem (cf. Theorem 3.1 in [22])

which is explained later below.

The reduction from DSD to CCS shows that the same time lower

bound of Ω̃(
√
n) rounds holds for the CCS problem. This reduction

shows that the given subgraph H in the CCS problem is spanning

connected if and only if the input vectors x and y are disjoint.

The reduction from CCS to MST problem shows that the time

lower bound for CCS verification which is Ω̃(
√
n) also holds for the

MST problem. This reduction takes as input the CCS problem and

assigns weight 1 to the edges in the subgraph H and weight n to all

other edges inG . It is easy to show that H is spanning connected if

and only if the weight of the MST is less than n. Hence the same

time lower bound that holds for CCS also holds for MST.

4.1 Reduction of SD to DSD: The Simulation

Theorem

In this section, we explain the key reduction from SD to DSD which

uses the Simulation Theorem as in [22]. The reduction idea is as

ICDCN 2020, January 4–7, 2020, Kolkata, India Soumyottam Chatterjee, Gopal Pandurangan, and Nguyen Dinh Pham

u0
0

u
p−1
0

u
p−1
1

s = u
p
0

u
p
1

u
p
2

u
p
ℓ
= u

p
√
n−1
= r

v1
0

v1
1

v1
2

v1√
n−1

vl
0

vl
1

vl
2

vl√
n−1

v
√
n

0
v
√
n

1
v
√
n

2

v
√
n

√
n−1

R2C2

Figure 1: The lower bound graph.

follows. Assuming that we have an algorithm for DSD that finished

in r rounds, Alice and Bob will simulate this algorithm in the two

party model by sending as few bits as possible. The Simulation

theorem accomplishes this. The Simulation theorem in [22] et al that

shows the simulation in the standard graph (without smoothing)

uses constant number of bits per round to do the simulation. Thus

if the DSD algorithm finishes in r rounds, then the Alice and Bob

would have solved SD by exchanging O(r) bits. If r = o(k) (where
k is the length of the input bit string), then this will contradict the

lower bound of set disjointness in the two party model which is

Ω(k) (even for randomized algorithms).

We note that the reduction is similar to that in [22] as the input

graphG(x ,y) for the DSD is the same (see Figure 1). However, in the

smoothing model, the algorithm has the additional power of using

the smoothing edges and hence the lower bound will be smaller as

we will show below. We will first briefly describe the idea behind

the Simulation Theorem as it applicable toG without the smoothing.

The lower bound graphG(x ,y) used in the Simulation Theorem is as

follows. Note that the input graphG for DSD has two distinguished

nodes s and t that have the inputs x and y (corresponding to Alice

and Bob) respectively.

4.1.1 The lower bound graph (family) for MST. G(x ,y) is depicted
as in Figure 1, where |x | = |y | =

√
n. G(.) includes

√
n paths, and a

full binary tree (to reduce the diameter to O(logn)). Each path has

length of

√
n; these are called the path edges. The full binary tree

has

√
n leaves, and hence, has the height of p =

logn
2

. We number

the leaves and the path nodes from left to right — 0, 1, . . . , ℓ. Note

that leaf numbered 0 is node s and leaf numbered ℓ is t . Consider
each leaf 0 < j < ℓ, let it connect to all the nodes j in all paths, we

call these spoke edges. Note that the binary tree edges, the path

edges, and the spoke edges from leaf nodes other than s and t are
present in every graph of the family.

It is straightforward that G(x ,y) has Θ(n) nodes, and diameter

D = Θ(logn).
In the reduction from SD to DSD, Alice and Bob wants to solve

SD problem with Alice having input vector x = (x1,x2, . . . ,xk) and
Bob having input vector y = (y1,y2, . . . ,yk) where we fix k =

√
n.

Depending on x and y, Alice and Bob will fix the spoke edges from

nodes s and t . For the SD problem, Alice will add edges from s to
the first node in path i if and only if xi = 0. Similarly Bob will add

edges from t to the last node in the path i if and only if yi is 0.
Now we are ready to describe the Simulation Theorem which

really gives an algorithm for Alice and Bob to simulate any given

algorithm for DSD problem. If the DSD algorithm runs in r rounds,
the Simulation theorem will show how to solve the SD problem by

exchanging O(r) bits. We sketch the main idea here, which is quite

simple, and leave the full details which can be found in [22].

How will Alice and Bob start the simulation? Note that they

want to solve the SD problem on their respective inputs x and y in

the two-party model. They will then use their respective inputs to

construct G(x ,y) as described above. Note that Alice will be able

to construct all edges of G except the spoke edges of t (since that
depends on Bob’s input) and vice versa for Bob. Then, assuming that

there is an algorithm for the DSD problem on the same inputs that

runs in r rounds, Alice and Bob will simulate the DSD algorithm

whose output will also give the output for the SD problem (by

definition).

The main idea is for Alice and Bob to keep the simulation going

as long as possible. If one disregards the binary tree edges, all paths
are of length ℓ = Θ(

√
n) and hence it is easy to keep the simula-

tion going for ℓ/2 rounds (say). This is because, Alice has all the

information needed to simulate the DSD algorithm till ℓ/2 steps

(i.e., the middle of the path). Why? Because Alice knows her own

input and all other nodes in G does not have any input. She does

Distributed MST: A Smoothed Analysis ICDCN 2020, January 4–7, 2020, Kolkata, India

not know Bob’s input, but does not matter for �/2 steps since in
so many rounds nothing from Bob’s part of the graph reaches the

“middle" of the path. But of course, the above is not true because

of the binary tree edges which has smaller diameter. So to keep

the simulation going for Bob, Alice sends the minimum amount of

information needed by him. Note that after i rounds the computa-

tion from Alice’s side (which are the set of nodes numbered u
p
0 and

v10 ,v
2
0 , . . . ,v

√
n

0 will have reached nodes at distance i on the path.

We define the Ri (intuitively i-Right) set as follows: Ri includes

all nodes on the paths with subscript j ≥ i , all leaf nodes u
p
j where

j ≥ i , and all ancestor of these leaves, see Figure 1.

In round i , Bob needs to keep the correct computation for Ri . To

achieve that, Alice sends only the messages sent by the tree nodes in

Ri−1 crossing into the tree nodes in Ri (see Lemma 3.4 in [22]). (A

similar observation applies for Alice to do her simulation). Hence

only messages sent by at most O(logn) nodes in the binary tree

are needed. Hence in every round at most O(log2 n) bits need to be

exchanged by Alice and Bob to keep the simulation going. Thus if

the DSD algorithm finishes in o(�/log2 n) = o(
√
n/log2 n) rounds,

then the simulation will also end successfully.

Thus we can show the following Simulation Theorem.

Theorem 4.2 (Simulation Theorem). (Simplified version of The-

orem 3.1 in [22]) Given the DSD problem with input size Θ(
√
n),

encoded as G(x ,y) (i.e., the x and y are bit vectors of length Θ(
√
n)),

if there is a distributed algorithm that solves the DSD problem in time

at most T rounds, using messages of size O(logn). Then there is an

algorithm in the two-party communication complexity model that

decides SD problem while exchanging at most O(T log2 n) bits.

4.2 Lower bound with smoothing

Under the ϵ-smoothing model, we will use the same lower bound

graph G(x ,y). However, the smoothing model gives the algorithm

additional power to add random edges in G(x ,y) during the course

of the simulation. We will show how to modify the Simulation

Theorem to apply to the smoothing model. Naturally, since the

algorithm has additional power, it can finish faster, and hence the

corresponding lower bound will be smaller.

We focus on Bob and show how he can keep his simulation

going. (A similar argument applies for Alice.) We consider how

Bob maintains correct states for Ri in round i . Beside the required
messages as discussed in Theorem 4.2, Bob needs to know the

messages sent over (potential) smoothed edges crossingV \Ri intoRi .

Since there are more messages to keep track, Bob cannot keep the

simulation longer than that of the non-smoothing case. Let δ be the

number of rounds the simulation is valid without exceeding Θ(
√
n)

bits of communication. Since the smoothing process is randomized,

we bound δ in expectation.

We will use a pessimistic estimation to estimate the number of

smoothed edges that “affect" Bob from Alice’s side. LetCi = V \ Ri ,

let Si be the expected number of smoothed edges crossing Ci and

Ri . Si indicates the number of extra messages Bob needs to know,

in round i . Notice that |Ci | = iΘ(
√
n).

Si = 2ϵiΘ(
√
n)
(n − iΘ(

√
n))

n
(3)

Since δ < Θ(
√
n), for every round i , Si = Θ(ϵδ

√
n). After δ

rounds, the expected number of messages over the smoothed edges

is thus: Θ(ϵδ2
√
n). Also, by Theorem 4.2, we need to keep track of

(δ logn) messages. To stay within the budget of
√
n bits for DSD

communication, we require: ϵδ2Θ(
√
n) + δΘ(logn) ≤

√
n
B .

With B = Θ(logn) (the message size), we have δ ≤ Θ(1√
ϵ logn

).

Thus, we can keep the simulation going for up to Θ(1√
ϵ logn

)

rounds.

To complete the lower bound argument, the same lower bound

applies for MST in the ϵ-smoothing model by the chain of reduc-

tions.

5 OTHER SMOOTHING MODELS

In this section, we discuss some of the other plausible smooth-

ing models for the distributed MST problem. The most natural

smoothing model that comes into the mind first in respect to a

numerical-valued computing problem and that is similar in spirit

to the original Spielman-Teng smoothing [23] is where one “per-

turbs” the edge-weights in the given input graph. However, as we

have already noted (see Section 1) this may not make for anything

interesting if the perturbations are too small with respect to the

original edge-weights.

These considerations motivate us to explore an alternate av-

enue where the graph topology rather than the edge-weights are

perturbed. In particular, we consider smoothing models where

the perturbation process adds more edges to the original input

graphs.Below we describe two such models where additional edges

characterize the perturbed graph compared to the original input

graph. We call these models the k-smoothing models. We distinguish

these two models based on whether or not the smoothed edges are

known to the algorithm.

5.1 The k-smoothing model with known

smoothed edges

Themainmodel that we follow in this paper, the ϵ-smoothingmodel

(see Section 2.2) adds smooth edges by node-local computation

during the course of an algorithm. We can look at models where

smooth edges are added all at once, by some external process, prior

to the commencement of the algorithm.

(1) Consider a smoothing modelM(k, ∗) where the “perturba-
tion” process adds k additional edges to the original input

graph. In our notation, ∗ denotes the fact that the smoothed

(i.e., additional) edges are known to the algorithm.

These k additional edges are chosen uniformly at random

from all the
(n
2

)
possible edges of the graph.

(2) Consider another smoothing modelM(δ , ∗) where the “per-
turbation” process adds — independently for each of the

(n
2

)
possible edges — an edge with probability δ .

Remark 2. It is not difficult to see that the modelM(ϵ, ∗) is essen-
tially equivalent to the modelM(k, ∗) for the case when ϵ = k

n .

Remark 3. By Lemma 3.1, consider the ϵ-smoothing model with �

rounds of smoothing, then:M(k = 2�ϵn, ∗) andM(δ = 2�ϵ
n , ∗) are

the equivalent models.

ICDCN 2020, January 4–7, 2020, Kolkata, India Soumyottam Chatterjee, Gopal Pandurangan, and Nguyen Dinh Pham

5.2 The k-smoothing model with unknown
smoothed edges

Essentially, we have the counterparts of M(k, ∗) and M(δ , ∗) for
the particular case when the smoothed edges are not known to the

algorithm. We denoted these models M(k,×) and M(δ ,×).
We also note that both M(k,×) and M(ϵ,×) are essentially

equivalent to the smoothing model proposed by Dinitz et al. [5],

where the new, perturbed input graph is chosen uniformly at ran-

dom from the set of all possible graphs whose edge-sets are at a

(positive) edit-distance k from the original input graph. The only

subtle difference is that, in their model [5], the edit-distance can

be positive as well as negative. We, however, consider only positive
edit-distances here.

We note that the algorithms specified in this paper do not (at

least directly) work when the smoothing edges are not known.

However, note that the lower bound holds (for appropriate choice

of k in terms of ϵ).

6 CONCLUSION
In this paper, we study smoothed analysis of distributed graph

algorithms focusing on the well-studied distributed MST problem.

Our work can be considered as a first step in understanding the

smoothed complexity of distributed graph algorithms.

We present a smoothing model, and upper and lower bounds for

the time complexity of distributed MST in this model. These bounds

quantify the time bounds in terms of the smoothing parameter ϵ .

The bounds are within a factor of 2
O (
√
logn)

polylogn and a key

open problem is whether this gap can be closed.

While we focus on one specific smoothing model, our results also

apply to other related smoothing models (discussed in Section 5).

A commonality among these models, besides adding random edges,

is that the added edges are known to the nodes. This knowledge of

the random edges are crucial to obtaining our upper bounds. Of

course, our lower bounds apply regardless of this knowledge.

An important open problem is to show non-trivial bounds when

the random edges are unknown to the nodes; i.e., the input graph

consists of the original graph G plus the random edges and the

nodes cannot distinguish between edges inG and the added random

edges.

It would also be interesting to explore other fundamental dis-

tributed graph problems such as leader election, shortest paths,

minimum cut etc., in the smoothing model.

REFERENCES
[1] John Augustine, Gopal Pandurangan, Peter Robinson, and Eli Upfal. 2012. To-

wards robust and efficient computation in dynamic peer-to-peer networks. In

Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algo-
rithms, SODA 2012, Kyoto, Japan, January 17-19, 2012. 551–569.

[2] Leonid Barenboim and Victor Khazanov. 2018. Distributed Symmetry-Breaking

Algorithms for Congested Cliques. In Computer Science – Theory and Applications,
Fedor V. Fomin and Vladimir V. Podolskii (Eds.). Springer International Publishing,

Cham, 41–52.

[3] Keren Censor-Hillel, Michal Dory, Janne H. Korhonen, and Dean Leitersdorf.

2019. Fast Approximate Shortest Paths in the Congested Clique. In Proceedings
of the 2019 ACM Symposium on Principles of Distributed Computing (PODC ’19).
ACM, New York, NY, USA, 74–83. https://doi.org/10.1145/3293611.3331633

[4] Soumyottam Chatterjee, Reza Fathi, Gopal Pandurangan, and Nguyen Dinh

Pham. 2018. Fast and Efficient Distributed Computation of Hamiltonian Cycles in

Random Graphs. In 38th IEEE International Conference on Distributed Computing
Systems, ICDCS 2018, Vienna, Austria, July 2-6, 2018. 764–774.

[5] Michael Dinitz, Jeremy T. Fineman, Seth Gilbert, and Calvin Newport. 2018.

Smoothed analysis of dynamic networks. Distributed Computing 31, 4 (01 August

2018), 273–287. https://doi.org/10.1007/s00446-017-0300-8

[6] Michael Elkin. 2017. A Simple Deterministic Distributed MST Algorithm, with

Near-Optimal Time and Message Complexities. In Proceedings of the ACM Sym-
posium on Principles of Distributed Computing (PODC ’17). ACM, New York, NY,

USA, 157–163. https://doi.org/10.1145/3087801.3087823

[7] Alessandro Ferrante, Gopal Pandurangan, and Kihong Park. 2008. On the hard-

ness of optimization in power-law graphs. Theor. Comput. Sci. 393, 1-3 (2008),
220–230.

[8] Mohsen Ghaffari, Fabian Kuhn, and Hsin-Hao Su. 2017. Distributed MST and

Routing in Almost Mixing Time. In Proceedings of the ACM Symposium on Princi-
ples of Distributed Computing (PODC ’17). ACM, New York, NY, USA, 131–140.

https://doi.org/10.1145/3087801.3087827

[9] Mohsen Ghaffari and Jason Li. 2018. New Distributed Algorithms in Almost

Mixing Time via Transformations from Parallel Algorithms. In 32nd International
Symposium on Distributed Computing (DISC 2018) (Leibniz International Proceed-
ings in Informatics (LIPIcs)), Ulrich Schmid and Josef Widder (Eds.), Vol. 121.

Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 31:1–

31:16. https://doi.org/10.4230/LIPIcs.DISC.2018.31

[10] Mohsen Ghaffari and Krzysztof Nowicki. 2018. Congested Clique Algorithms

for the Minimum Cut Problem. In Proceedings of the 2018 ACM Symposium on
Principles of Distributed Computing (PODC ’18). ACM, New York, NY, USA, 357–

366. https://doi.org/10.1145/3212734.3212750

[11] Tomasz Jurdziński and Krzysztof Nowicki. 2018. MST in O (1) Rounds of Con-

gested Clique. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA ’18). Society for Industrial and Applied Mathe-

matics, Philadelphia, PA, USA, 2620–2632. http://dl.acm.org/citation.cfm?id=

3174304.3175472

[12] Janne H. Korhonen and Jukka Suomela. 2018. Towards a Complexity Theory for

the Congested Clique. In Proceedings of the 30th on Symposium on Parallelism
in Algorithms and Architectures (SPAA ’18). ACM, New York, NY, USA, 163–172.

https://doi.org/10.1145/3210377.3210391

[13] K. Krzywdziński and K. Rybarczyk. 2015. Distributed Algorithms for Random

Graphs. Theor. Comput. Sci. 605, C (Nov. 2015), 95–105.

[14] Eyal Kushilevitz and Noam Nisan. 1997. Communication complexity. Cambridge

University Press. https://www.cambridge.org/core/books/communication-

complexity/427E022FCBAC3FB5CEE4D39008D1E118

[15] Jaroslav Nešetřil, Eva Milková, and Helena Nešetřilová. 2001. Otakar Borůvka on

minimum spanning tree problem Translation of both the 1926 papers, comments,

history. Discrete Mathematics 233, 1 (2001), 3–36. https://doi.org/10.1016/S0012-

365X(00)00224-7 Czech and Slovak 2.

[16] Gopal Pandurangan. 2019. Distributed Network Algorithms. https://sites.google.

com/site/gopalpandurangan/dnabook.pdf

[17] Gopal Pandurangan, Peter Robinson, and Michele Scquizzato. 2017. A Time-

and Message-optimal Distributed Algorithm for Minimum Spanning Trees. In

Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing
(STOC 2017). ACM, NewYork, NY, USA, 743–756. https://doi.org/10.1145/3055399.

3055449

[18] Gopal Pandurangan, Peter Robinson, and Michele Scquizzato. 2018. The Dis-

tributed Minimum Spanning Tree Problem. Bulletin of the EATCS 125 (2018).

http://eatcs.org/beatcs/index.php/beatcs/article/view/538

[19] Merav Parter. 2018. (∆ + 1)-Coloring in the Congested Clique Model. In 45th
International Colloquium on Automata, Languages, and Programming (ICALP 2018)
(Leibniz International Proceedings in Informatics (LIPIcs)), Ioannis Chatzigiannakis,
Christos Kaklamanis, Dániel Marx, and Donald Sannella (Eds.), Vol. 107. Schloss

Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 160:1–160:14.

https://doi.org/10.4230/LIPIcs.ICALP.2018.160

[20] Merav Parter and Hsin-Hao Su. 2018. Randomized (∆+1)-Coloring inO (log∗ ∆)
Congested Clique Rounds. In 32nd International Symposium on Distributed Com-
puting (DISC 2018) (Leibniz International Proceedings in Informatics (LIPIcs)), Ulrich
Schmid and Josef Widder (Eds.), Vol. 121. Schloss Dagstuhl–Leibniz-Zentrum

fuer Informatik, Dagstuhl, Germany, 39:1–39:18. https://doi.org/10.4230/LIPIcs.

DISC.2018.39

[21] Merav Parter and Eylon Yogev. 2018. Congested Clique Algorithms for Graph

Spanners. In 32nd International Symposium on Distributed Computing (DISC 2018)
(Leibniz International Proceedings in Informatics (LIPIcs)), Ulrich Schmid and

Josef Widder (Eds.), Vol. 121. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,

Dagstuhl, Germany, 40:1–40:18. https://doi.org/10.4230/LIPIcs.DISC.2018.40

[22] Atish Das Sarma, Stephan Holzer, Liah Kor, Amos Korman, Danupon Nanongkai,

Gopal Pandurangan, David Peleg, and Roger Wattenhofer. 2012. Distributed

Verification and Hardness of Distributed Approximation. SIAM J. Comput. 41, 5
(2012), 1235–1265. https://doi.org/10.1137/11085178X

[23] Daniel A. Spielman and Shang-Hua Teng. 2004. Smoothed Analysis of Algorithms:

Why the Simplex Algorithm Usually Takes Polynomial Time. Journal of the ACM
51, 3 (May 2004), 385–463. https://doi.org/10.1145/990308.990310

[24] Daniel A. Spielman and Shang-Hua Teng. 2009. Smoothed Analysis: An Attempt

to Explain the Behavior of Algorithms in Practice. Commun. ACM 52, 10 (October

2009), 76–84. https://doi.org/10.1145/1562764.1562785

https://doi.org/10.1145/3293611.3331633
https://doi.org/10.1007/s00446-017-0300-8
https://doi.org/10.1145/3087801.3087823
https://doi.org/10.1145/3087801.3087827
https://doi.org/10.4230/LIPIcs.DISC.2018.31
https://doi.org/10.1145/3212734.3212750
http://dl.acm.org/citation.cfm?id=3174304.3175472
http://dl.acm.org/citation.cfm?id=3174304.3175472
https://doi.org/10.1145/3210377.3210391
https://www.cambridge.org/core/books/communication-complexity/427E022FCBAC3FB5CEE4D39008D1E118
https://www.cambridge.org/core/books/communication-complexity/427E022FCBAC3FB5CEE4D39008D1E118
https://doi.org/10.1016/S0012-365X(00)00224-7
https://doi.org/10.1016/S0012-365X(00)00224-7
https://sites.google.com/site/gopalpandurangan/dnabook.pdf
https://sites.google.com/site/gopalpandurangan/dnabook.pdf
https://doi.org/10.1145/3055399.3055449
https://doi.org/10.1145/3055399.3055449
http://eatcs.org/beatcs/index.php/beatcs/article/view/538
https://doi.org/10.4230/LIPIcs.ICALP.2018.160
https://doi.org/10.4230/LIPIcs.DISC.2018.39
https://doi.org/10.4230/LIPIcs.DISC.2018.39
https://doi.org/10.4230/LIPIcs.DISC.2018.40
https://doi.org/10.1137/11085178X
https://doi.org/10.1145/990308.990310
https://doi.org/10.1145/1562764.1562785

	Abstract
	1 Introduction and Motivation
	1.1 Related work

	2 Our Model
	2.1 Distributed Computing Model
	2.2 Smoothing Model

	3 Distributed MST in the Smoothing Model
	3.1 Part 1: Constructing an Expander
	3.2 Part 2: Constructing an MST
	3.3 An Improved Algorithm

	4 Lower Bound
	4.1 Reduction of SD to DSD: The Simulation Theorem
	4.2 Lower bound with smoothing

	5 Other Smoothing Models
	5.1 The k-smoothing model with known smoothed edges
	5.2 The k-smoothing model with unknown smoothed edges

	6 Conclusion
	References

