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Abstract—We consider the problem of attack detection for IoT
networks based only on passively collected network parameters.
For the first time in the literature, we develop a blind attack
detection method based on data conformity evaluation. Network
parameters collected passively, are converted to their conformity
values through iterative projections on refined L;-norm tensor
subspaces. We demonstrate our algorithmic development in a
case study for a simulated star topology network. Type of attack,
affected devices, as well as, attack time frame can be easily
identified.

Index Terms—Internet of Things, security, L;-norm, data
conformity, tensors, tensor decomposition, principal-component-
analysis.

I. INTRODUCTION

A growing number of diverse physical devices are being
connected to the Internet at an unprecedented rate realizing the
idea of Internet of Things (IoT). IoT enabled physical objects
may sense the environment, and perform tasks together by
communicating with each other to coordinate decisions [1].
An IoT network is not a simple wireless sensor network;
it is a dense integration of the virtual and the real world
where communication between devices and humans takes
place. In a sense, it can be considered as an interwoven
medium of heterogeneous networks of different sizes making
up a large global network. Applications such as transportation,
healthcare, industrial automation, and smart homes are just
some domains which IoT networks will enable or enhance
[2]. IoT shifts from functionality to connectivity and data-
driven decision making. New requirements and constraints
are introduced on the network, on the physical communica-
tion channel, on the end device hardware and software [3].
End devices are tailored to their assigned tasks to have the
lowest possible size, cost, and energy consumption [4]. As
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a consequence, frequently the hardware has low resources in
terms of computation power, memory, battery, transmission
range, throughput, and delay. At the same time, for continuous
secure IoT operations key requirements are fault-tolerance,
self-healing against compromised nodes and attacks, energy
efficiency, scalability, and flexibility for heterogeneous net-
work formation over a wide area [4].

This new heterogeneous networking environment creates
significant challenges in applying known security schemes
to the IoT [3], [4]. Most of the state-of-the-art security
schemes are tailored to common networking standards and
architectures, in contrast with the goals defined in [5]. On
the contrary, a single IoT network could comprise of smaller
sub-networks utilizing different networking architectures and
standards, as well as end devices with different computation,
communications, and security capabilities and requirements.

Recently the research community started investigating the
use of intrusion detection systems (IDS) for the IoT net-
works, in order to tackle some of the security challenges
and successfully identify attacks and affected nodes in wide
wireless networks. Specifically, a complete analysis of an IDS
for WSNs is presented in [6]. The authors utilize the OSI
model and geographical attack propagation to classify attacks.
In [7], the authors analyze different IDS technologies and
provide useful guidelines for potential IDS applications in
WSNs. Descriptions of different WSN attacks are presented
in [4], where the authors provide detailed discussion about
the general concept of WSN security and its challenges.

Machine learning techniques such as principal component
analysis (PCA) for intrusion detection are introduced in [8].
The authors present a dimensionality reduction and clas-
sification system designed to detect malicious activity and
intrusions. Moreover, the work in [9] utilizes machine learning
ideas to capture global knowledge of the traffic patterns in the
wireless networks in order to identify intrusion attacks.

In this paper, we present for the first time in the literature
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Fig. 1: Typical wireless network architectures.

a blind tool for attack detection based on network parameter
conformity evaluation. The system utilizes only end devices’
network parameters passively collected by the base station
(BS) or by dedicated devices and calculates how conforming
the parameters across the end devices are in time. Conformity
is calculated iteratively by successive projections of the dataset
on carefully calculated subspaces that capture the relationship
between devices, network parameters, and time. Attacks on
end devices result in changes in the network parameters,
translating to low data conformity of these devices at the
specific time intervals. The proposed solution does not require
edge device collaboration for attack detection and works inde-
pendently of the IoT network architecture and implementation.

The rest of this paper is organized as follows. Section II
discuses security concerns in different IoT network architec-
tures and network parameters that may want to include in our
dataset. Section III describes the proposed data conformity
evaluation algorithm. Performance evaluation of the algorithm
on simulated network data is presented in Section IV. A few
concluding remarks are drawn in Section V.

II. PROBLEM STATEMENT

IoT security solutions should preserve user privacy, con-
fidentiality, data integrity, availability, and non-repudiation.
However, active edge device collaboration for security pur-
poses is challenging as it leads to increased energy consump-
tion, software and hardware resources, and maintenance re-
quirements. Moreover, the solutions should be agnostic to the
network architecture and edge device type. Different network
topologies are presented at Fig. 1. In a typical star topology,
the BS serves as the sink where all edge devices report to.
Hence, the BS is able to gather data regarding the devices’
state and features, such as received signal strength (RSS) and
packet delivery ratio (PDR), organically, without the need of
explicit edge device collaboration. This may enable anomaly
detection based only on parameters gathered locally. In other
end device topologies, such as mesh or tree networks, it is
challenging for an edge device to obtain such information.

In a network where the edge devices communicate directly
to each other, collecting RSS and PDR values for each
individual link is difficult without external help. To solve
this problem, researchers assume the presence of specialized
devices (agents) collecting data from the network [10]. Typi-
cally, these agents are devices with high hardware capabilities
able to gather and report network parameters, which due
to the device geographical separation and the nature of the
network’s architecture would not have been possible to obtain
otherwise. Two types of agents are considered, passive and

active. Passive agents are not part of the IoT network and are
able to only acquire data about their nearby environment and
end devices without interacting with the rest of the network.
Active agents are able to communicate with the rest of the
network, request and exchange information and are considered
as “super” powerful edge nodes.

Different attacks affect different network parameters in a
distinct way depending on the attacker’s goal and the IoT
network architecture and topology. In our studies, we consider
parameters that an agent or a BS is able to obtain and calculate
through normal network operation. These parameters include
PDR (the number of packets delivered over a specific time
interval), RSS (the average received signal strength over a
time interval), the number of different recipients’ addresses,
the distance between the agent/BS and the edge device, and
the edge devices’ latitude and longitude. Edge device battery
consumption is another important parameter affected by many
attacks, however, a passive agent is not usually able to retrieve
it, and therefore an active agent should be considered.

Next, we present two important attacks on an IoT network
that can be identified through the aforementioned parameters.

o Jamming attack: The main goal of this attack is to
disrupt the communication of the end devices close to
the attacker. The jamming attack can be divided into
four types [11]: constant, random, deceptive and reactive.
The signal disruption involves all the devices close to the
jammer and the effect for the victims is a substantial
decrease in the number of packets delivered while the
RSS at the BS or the agent remains relatively high.
Identification of a jamming attack can be carried out from
the PDR, RSS, percentage of attacked victims, and the
distance between victims values.

o Sybil: In such an attack, a single node forges multiple
identities delivering packets with wrong information and
deceiving the intended receiver. Demirbas et al. [12] show
how it is possible to detect the Sybil attack by using mul-
tiple “agents” collecting RSS data of the affected nodes.
In fact, if two or more nodes are uniquely identified,
and/or located at the same point, they are considered
forged, thus a Sybil attack can be detected [12], [13].
The device’s location can be estimated through RSS,
message delay (time-of-flight), or angle-of-arrival (AOA)
localization techniques [14].

III. DATA CONFORMITY EVALUATION ALGORITHM

For our dataset, we define the tensor X € RP*LXN wwhere
the columns correspond to end devices, rows to the parameters,
and the third dimension to time. The goal of the algorithm is to
convert the original data tensor X to a tensor YW € RP*XL*N
which contains the conformity value of each tensor element in
the [0, 1] range (Fig. 2). A security analyst, human or machine,
can then analyze the V tensor and infer which devices are
affected by different attacks at different time instances.

Next, we describe how we calculate the conformity of the
data through iterative L;-norm tensor decompositions. Without
loss of generality, we present the developed methodology with
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Fig. 2: The original dataset is converted to element-by-element
conformity values. The lower the value the less conforming the
element.

respect to the first mode of our tensor dataset X1y € RP*EN,
First, we calculate Ry principal components of the first mode
X1y denoted as Q(ll) € RP*E1 by solving the following
optimization problem

Q(ll) = argmax ‘X(Tl)QH . (1)
QERPXER 1
Q7Q-=Ix

The optimization problem in Eq. (1) calculates robust sub-
spaces by explicit Li-norm projection maximization. The
resulting principal components are called L;-norm principal
components, which have been proven to be extremely resistant
to misbehaving data [15]. We utilize this property to calculate
the conformity of our data by defining the Ly-norm distance
between each column of X ;) and the calculated subspace

gl) as

-1
di) = H(ID - Qi) X)) ||, - =12 LN
2)

We expect small d§13 values if d§13 is an “outlier” and large
if it is a nominal data column. Tﬁerefore, the conformity of
each data column of X ;) can be measured as the Ly-norm
distance from the calculated subspace, i.e.,

T
(1) _ 1 1 1
wit = [a) a) ol o

The vector w; is then converted to a tensor, where each
column ¢ is weighted by the same coefficient d;;,i =
1,2,...,LN.

Wfl) = tensorization (ng) ° 1D><LN) “)

where the “tensorization” operation converts the mode-n ma-
trix back to the original tensor form. After calculating the
tensors Wl(l), we repeat the same process for the two other
modes to obtain WQ(U and Wél). Then, we combine in an
additive fashion to form the final data conformity tensor

WO = a Wi + a4+ azwiY 5)

where ) € RT,k = 1,2,3,> , o, = 1 are weights
corresponding to the prescribed importance of each dimension
of the dataset (for example oy = o = ag = %, if all treated
equal). The weight tensor W) is then normalized
1
1) w)

1)
VS e ©

The final weight tensor WO contains the data conformity
value of each individual element enabling element-wise con-
formity evaluation of the data. Then the L;-norm subspace of
the first mode may be refined by

Q= g o (oW 0

argmax
QEeRP* 1
QT Q=Ig,
where o is the element-wise (Hadamard) product. The same
holds true for the other modes. The data conformity values can
be iteratively refined until numerical convergence of the data
conformity tensor W) is observed. In Table I, we present

the complete pseudo-code of the algorithm for a tensor X €
Rll X 12 X 13 X

Algorithm 1 Data conformity evaluation through L;-norm
tensor decomposition

Input: X € R11>*12X1s ranks Ry, Ry, Ry € Z, and weights
ay,ag,03 >0

Output: w
1. fork=1, 2, 3 do
0
2 Q) = argmax [|Q"X ),
QEeRTE X R
Q" Q=Ixg,
3
3: My =TTy o0 L
4: end for, [ =0
5: while convergence criterion is not met do
6: for k=1,2,3do )
0 _ (-1 qu-n7T -
7 Dy iy, = H (Ifk —Q ) Xw].,
2
1,2,..., M,
. o _ [0 0 o 1"
8: W, = dk71 dk72 thk Moxi
9: ngl) < tensorizationg (w,(f) olr, ka)
10:  end for
1. WO = iy Wy

= Tt
122 for k=1,2,3 do

13: Q](cl) = argmax ‘QT (X(k) © WEQ)) H
QERKX Rk 1
QTQ:IRk

14: endfor, [=1[1+1

15: end while

TABLE I: Data conformity evaluation through L;-norm tensor
decomposition

IV. CASE STUDY

For testing our algorithm, we choose two attacks which are
most relevant for IoT networks, namely constant jamming and
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Fig. 3: Simulated network: Three end devices located outside,
and three nodes located inside buildings.
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Fig. 4: (a) PDR conformity values across devices. (b) Param-
eter conformity across time for attacked device 4. The red
circles indicate the non-conforming parts of the dataset.

sybil. The simulated network comprises of six end devices
and a BS in a star topology shown in Fig. 3. Three of the
devices are located inside buildings and the rest are located
outside in known locations. The devices utilize the LoRaWAN
protocol and LoRa physical layer. They are programmed to
sent at least two packets to the base station every minute. The
sampling of the devices’ state is done passively by the base
station every minute. For calculation of the RSS parameter
we utilize the well known Friis transmission equation [16]
assuming that each device and the BS are equipped with
a single omnidirectional antenna and are transmitting at the
900 MHz frequency band.

A. Detection of Constant Jamming Attack

Fig. 4-(a) depicts the calculated PDR conformity across all
end devices. We observe that between the 20 — 40th slabs
end devices 1 and 4 are affected by an attack, as their PDR
conformity indications are much larger compared to the rest.
Fig. 4-(b) depicts the conformity of all parameters of end
device 4. It is clear that the device is affected by an attack,
as all parameters have a high conformity, while PDR has low
conformity.

B. Detection of Sybil Attack

During the Sybil attack an attacker forges messages of a
random victim for a period of 20 minutes (or 20 slabs).
This results in the BS to misinterpret the received packets,
and assign them to the attackers location. The parameters
latitude, longitude, distance, RSS are affected by this attack.
In Fig. 5-(a) depicts the longitude conformity value across all
devices. It is clear that device 2 is under attack as the longitude
conformity is higher compared to the rest. Moreover, on the
same time interval, the distance parameters is non-conforming
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Time Time o
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Fig. 5: (a) Distance conformity across edge devices. (b)
Parameter conformity across time for attacked device 2. The
red circles indicate the non-conforming parts of the dataset.

as well, which means that the node is under the Sybil attack
(Fig. 5-(b)).

V. CONCLUSIONS

We considered the problem of attack detection for IoT net-
works based only on passively collected network parameters.
For the first time in the literature, we developed a blind
attack detection method based on data conformity evaluation.
Network parameters collected passively, are converted to their
conformity values through iterative projections on refined
Li-norm tensor subspaces. We demonstrated our algorithmic
development in a case study for a simulated star topology
network. Type of attack, affected devices, as well as, attack
time frame can be easily identified.

REFERENCES

[1] FA. Alaba, M. Othman, I.A.T. Hashem, F. Alotaibi, “Internet of Things
security: A survey”, Elsevier J. Netw. Comput. Appl. 88 (2017) 10-28.

[2] L. Atzori, A. Iera, and G. Morabito, “The Internet of Things: A survey,”
Comput. Netw., vol. 54, no. 15, pp. 2787-2805, 2010.

[3] D. Mocrii, Y. Chen, P. Musilek, “IoT-based smart homes: A review of
system architecture, software, communications, privacy and security”,
Journal of Internet of Things, vol. 1-2, pp. 81-98, Sept. 2018.

[4] K, Tamil, D. Sridharan, “Security Vulnerabilities In Wireless Sensor
Networks: A Survey”, Journal of Information Assurance and Security,
vol. 5, pp. 31-44, 2010.

[5S] M. Chernyshev, Z. Baig, O. Bello and S. Zeadally, "Internet of Things
(IoT): Research, Simulators, and Testbeds,” in IEEE Internet of Things
Journal, vol. 5, no. 3, pp. 1637-1647, June 2018.

[6] V. Garcia-Font, C. Garrigues, and H. Rif4d-Pous, “Attack classification
schema for smart city WSNs*, Sensors, vol. 17, Apr. 2017.

[7]1 O. Can, O. K. Sahingoz, “A survey of intrusion detection systems in
wireless sensor networks”, IEEE Communications Surveys Tutorials, vol.
16, issue 1, pp. 266-282, May 2013.

[8] H. H. Pajouh, R. Javidan, R. Khaymi, A. Dehghantanha, and K. R Choo,
“A Two-layer Dimension Reduction and Two-tier Classification Model
for Anomaly-Based Intrusion Detection in IoT Backbone Networks”,
IEEE Transactions on Emerging Topics in Computing, Nov. 2016.

[9] S. Suthaharan, “Big Data Classification: Problems and Challenges in
Network Intrusion Prediction with Machine Learning®, Performance
Evaluation Review, vol. 41, issue 4, pp. 70-73, 2014.

[10] T. Bhattasali, R. Chaki, and S. Sanyal, “Sleep Deprivation Attack
Detection in Wireless Sensor Network”, arXiv preprint arXiv:1203.0231.

[11] W. Xu, W. Trappe, Y. Zhang, and T. Wood, “The Feasibility of Launch-
ing and Detecting Jamming Attacks in Wireless Networks”, Proceedings
of the 6th ACM international symposium on Mobile ad hoc networking
and computing (MobiHoc), pp. 46-57, Urbana-Champaign, IL, USA,
May 25 - 27, 2005.

Authorized licensed use limited to: University at Buffalo Libraries. Downltﬁé’&’é on July 07,2020 at 22:36:09 UTC from IEEE Xplore. Restrictions apply.



[12]

[13]

[14]

2019 IEEE 5th World Forum on Internet of Things (WF-IoT)

M. Demirbas and Y. Song, "An RSSI-based Scheme for Sybil Attack
Detection in Wireless Sensor Networks,” Proc. of the 2006 International
Symposium on a World of Wireless, Mobile and Multimedia Networks,
pp. 564-570, 2006.

S. T. Patel, and N. H. Mistry, “A Review: Sybil attack detection
techniques in WSN”, In Proc. 4th Int. Conf. on Electronics and
Communication Systems (ICECS), Coimbatore, India, 24-25 Feb. 2017.
P Sarigiannidis, E Karapistoli, and A. A. Economides, “Detecting

[15]

[16]

Sybil attacks in wireless sensor networks using UWB ranging-based
information”, Expert Systems with Applications, vol. 42, issue 21, pp.
7560-7572, Nov. 2015.

P. P. Markopoulos, S. Kundu, S. Chamadia, and D. A. Pados, “Efficient
L1-norm principal-component analysis via bit flipping”, IEEE Trans. on
Signal Processing, vol. 65, pp. 4252-4264, Aug. 2017.

H.T. Friis, “A Note on a Simple Transmission Formula’, Proceedings of
the IRE, vol. 34 , issue 5, pp. 254-256, May 1946.

Authorized licensed use limited to: University at Buffalo Libraries. Downkﬁéb@ on July 07,2020 at 22:36:09 UTC from IEEE Xplore. Restrictions apply.



