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High-dimensional data usually exhibit intrinsic low-rank structures. With tremendous amount of stream-
ing data generated by ubiquitous sensors in the world of Internet-of-Things, fast detection of such low-
rank pattern is of utmost importance to a wide range of applications. In this work, we present an L;-
subspace tracking method to capture the low-rank structure of streaming data. The method is based on
the L;-norm principal-component analysis (L;-PCA) theory that offers outlier resistance in subspace cal-
culation. The proposed method updates the L;-subspace as new data are acquired by sensors. In each
time slot, the conformity of each datum is measured by the L;-subspace calculated in the previous time
slot and used to weigh the datum. Iterative weighted L;-PCA is then executed through a refining func-
tion. The superiority of the proposed L;-subspace tracking method compared to existing approaches is
demonstrated through experimental studies in various application fields.
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1. Introduction

Principal-component analysis (PCA) is a prevalent method for
dimensionality reduction and subspace learning. Conventional L,-
norm-based principal-component analysis (L,-PCA), however, is
easily affected by “outlier” values that are numerically distant from
the nominal low-rank signal. To deal with the problem of outliers
in subspace approximation, there are extensive studies in robust
PCA methods. In the pioneer works [1-4] subspace learning is per-
formed under an L;-error minimization criterion, or its variants.
The robust PCA (RPCA), a.k.a. principal-component pursuit (PCP)
developed in [5] performs low-rank and sparse decomposition by
minimizing a weighted sum of the nuclear-norm of the low-rank
component and the L;-norm of the sparse component. More re-
cently, the robust PCA idea is adopted in DECOLOR [6], which in
addition uses Markov random-field (MRF) modeling to improve the
accuracy of detecting contiguous outliers. The method in [7] recast
the L;-error minimization problem into a weighted L,-error mini-
mization problem. By properly choosing the weights of data sam-
ples, the formulated L,-error minimization problem is equivalent
to the robust Lq-error minimization problem, and can be solved
efficiently via singular-value decomposition (SVD). The method in
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[8] learns the low-rank representation for data by utilizing locality
and similarity information among data, using graph-based mani-
fold analysis. In [9] a fast, iterative algorithm is proposed for out-
lier resistant two-dimensional PCA based on the Frobenius-norm
with respect to the spatial (attribute) dimensions and the 1-norm
for the summation over different data points. Authors in [10] pro-
pose to jointly select useful features and enhance the robustness
of PCA by the relaxation of the orthogonality constraints on the
transform matrix.

Another line of research performs robust subspace learning by
maximizing the Li-norm of the data projected onto the pursued
subspace [11-15]. The pursued principal components are called
Ly principal components. The work in [11] presented a subopti-
mal iterative algorithm for the computation of one L; principal
component and [12] presented an iterative algorithm for subop-
timal joint computation of d >1 Ly principal components. In [13],
for the first time in the literature, algorithms for exact calculation
of Ly principal components are developed. Later, suboptimal algo-
rithms were developed in [14] and [15] for fast computation of the
L, principal components. This L{-PCA method has been success-
fully applied to a wide range of research fields such as direction-
of-arrival (DoA) estimation [16] and robust face recognition [17].
Besides, compressed-sensed-domain L{-PCA methods were devel-
oped for low-rank background scene and sparse foreground mov-
ing objects extraction from compressed-sensed surveillance video
sequences [18]. In [19], a reweighted L;-PCA algorithm (L;-IRW)
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was developed to refine the pursued L;-subspace in an iterative
manner.

Nevertheless, existing L;-PCA methods in [11-19] are batch al-
gorithms designed for fixed data ensemble. As sensors keep acquir-
ing streaming data, it is essential to update the calculated subspace
with new information and track the potential gradual change of
data’s low-rank pattern. Robust subspace tracking has been devel-
oped to tackle this problem. A computationally efficient incremen-
tal PCA algorithm is developed in [20] for adaptive background
modeling and active object recognition. The authors in [21] pro-
pose an incremental non-negative matrix factorization scheme for
online processing of large data sets. The scheme incrementally up-
dates its factors by appropriately reflecting the influence of each
data sample on the factorization. In [22], an online robust PCA
method is proposed that alternates between standard L,-PCA for
updating PCs and probabilistic selection of the new samples which
alleviates the impact of outliers. The online robust PC (OR-PCA)
method proposed in [23] reformulates the objective function of
PCP [5] by decomposing the nuclear norm into an explicit prod-
uct of two low-rank matrices, which can be solved by a stochas-
tic optimization algorithm. The method in [24] adopted similar
approach to that in [23], and applied it to track the low-rank
structure of traffic flow volume in backbone networks. An adaptive
projected subgradient method based algorithm is proposed in [25],
introducing a cost function properly calculated for each time in-
stance and searching for the set of points which score zero loss.
Outlier detection and correction of corrupted data is employed to
purify data. The Grassmann Averages method proposed in [26] for-
mulates subspace estimation as the computation of the average
of subspaces spanned by data samples, which is scalable to large
datasets and robust to outliers. The Grassmannian robust adaptive
subspace tracking algorithm (GRASTA) [27] is an efficient and ro-
bust online algorithm for tracking subspaces from highly incom-
plete information. It uses a robust ¢;-norm cost function to im-
pose sparsity on the outliers which is formulated as an augmented
Lagrangian function, then the subspace and the outlier are esti-
mated by the alternating direction method of multiplier (ADMM).
The method in [28] adopts a similar approach to [27], and it also
maintains the proximity of the updated subspace to the previ-
ous subspace estimate. The recursive projected compressive sens-
ing (ReProCS) algorithm was developed in [29], [30] which per-
forms online robust subspace estimation, and was further extended
to a practically usable version (Prac-ReProCS) [31]. This series of
studies addressed the problem of recursively recovering sparse
and correlated signals in the presence of low-rank and correlated
noise. The methods were successfully applied to the scenario of
separating a slowly changing video background from correlated
moving foreground objects/regions. In [32], an online mixture of
Gaussians (MoG) low-rank matrix factorization method (OMoGMF)
is proposed for robust video background subtraction. It modeled
the foreground as a MoG and the model is also regularized by
the learned foreground/background in previous frames. The model
can be formulated as a concise probabilistic maximum a poste-
riori probability (MAP) model, and can be readily solved by the
expectation-maximization (EM) algorithm. In [33], a union of sub-
spaces tracking algorithm is proposed for online anomaly detec-
tion. The observed data samples are assumed to have a Gaus-
sian mixture model whose covariance matrices each are dominated
by a low-rank component. The online discriminative multi-task
tracker [34] is proposed with structured and weighted low rank
regularization.

In this paper, we propose an L;-subspace tracking method. As
new data are successively acquired over time, the procedure up-
dates the L;-subspace to capture the underlying low-rank data
structure. In each time slot, nominal compliance of each sample
in the current processing window is inferred by its relative dis-

tance to the L;-subspace calculated in the previous time slot and
translated to a “weight”. Samples with larger weights tend to be
nominal samples and samples with smaller weights are more likely
to be the outliers. Iterative weighted L;-PCA is then carried out
via a refining function. The function alternatively updates the bits
associated with the pursued L;-subspace and the sample weights.
Upon convergence, the function returns a refined L;-subspace for
the current time slot. The whole procedure has the merits of out-
lier suppression through sample weighting and processing acceler-
ation through a warm-start bit-flipping technique.

The remainder of this paper is organized as follows. In
Section 2, we introduce necessary background on L{-PCA. In Sec-
tion 3, the proposed L;-subspace tracking algorithm is developed.
In Section 4, the effectiveness of the proposed algorithm is demon-
strated through four experiments: (i) synthetic data example, (ii)
moving objects detection from streaming surveillance videos, (iii)
robust online cooperative spectrum sensing in a cognitive radio
network, and (iv) DoA tracking in wireless communications. Com-
putational complexity is analyzed in Section 5. Finally, we draw
conclusions and discuss future work in Section 6.

2. Background of L, principal-component analysis
2.1. L;-PCA and its solvers

Consider N real-valued samples Xxi,X, ..., xy of dimension D
(N < D) that form the D x N data matrix

X=[x1 ).6) ...XN], (1)

In conventional L,-PCA, one seeks to describe (approximate) data
matrix X by a rank-r product PQ" where P ¢ RP*" Q e RN*" r<N.
Given data matrix X, L,-PCA minimizes the sum of the element-
wise squared error between the original matrix X and its rank-r
representation PQ’ in the form of Problem Ple defined below,

P (P, Q) = arg min X —PQ'||>. (2)
P c RP>" PTP =1,

QE RNXT

where I is an r x r identity matrix, and matrix P has r orthonormal
columns. Problem sz is equivalent to the following two problems,

PP, =arg min [X-PP'X|;, (3)
Pe RDxr
P'’P=1I,

and

P2 P, =arg max [[X'P|;, (4)
P e RDXT
P’P=1,

for which the solution is given by the r dominant left singular vec-
tors of the original data matrix X.

Nevertheless, by minimizing the sum of squared errors, L, prin-
cipal component calculation becomes sensitive to extreme error
value occurrences caused by the presence of outlying samples in
the data matrix (samples that are numerically distant from the
nominal data, appear only few times in the data matrix, and are
not to appear under normal system operation upon design). Moti-
vated by this observed drawback of L, subspace signal processing,
subspace-decomposition based on L{-norm maximization was pro-
posed for robustness. Replacing the Ly-norm in P§2 by L;-norm,
the so-called L{-PCA calculates principal components in the form
of

Pl P, =arg max |X'P|;. (5)
Pe RDXT

P'P =1,
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Since the Li-norm metric is less likely to exaggerate the contri-
bution of outliers on the data projection, Py, in (5) is likely to
be closer to the true nominal rank-r subspace than L,-PCA. The r
columns of P;, in (5) are the so-called r Ly principal components
that describe the rank-r subspace in which X lies. As shown in [13],
exact calculation of the L; principal components in P41 can be re-
cast as a combinatorial problem. In short, when the rank of the
nominal signal is r = 1, Pl1 reduces to

p, =arg max_ [X'p[;. (6)
peRP
Ipll2 =1
which can be reformulated as
max_ [|X'plli = max max b’X"p= max max p'Xb
pe RDP pe RD be{£1}V be{£1}N pe RD
lpll2 =1 Ipll2=1 pll2=1
= max |Xbl|l, = max (b"X"Xb)!/2. 7
pTax, IXb]l2 be{il}N( ) (7)

The optimal solution for (7) can be obtained by exhaustive search
in the N-dimensional space of the binary antipodal vector b with
complexity ©(2N-1). Denote this optimal solution as b°Pt, then the
pursued principal component is given by

Xbopt
T IXboRt[°

When the rank of the nominal data is r> 1, problem P can be
recast into [13]

p (8)

max |X'P|; = max max tr(PTXB)
P ¢ RPxr P € RDx7 Be{£1}Nr
P’P=1I, P/P=1,
= max max tr(BP'X)= max |XB|. (9)
P e RDxT Be(x1}¥r Be{+1)Nxr
PP =1,
where ||-||« stands for nuclear norm. By Proposition 4 of

Markopoulos et al. [13], to find exactly the optimal L{-norm pro-
Jection operator Py, in (9) we can perform the following steps:

1) Solve (9) to obtain the optimal binary matrix B°Pt e { £ 1}N*T,

2) Perform singular value decomposition (SVD) on XB°Pt, such that
XB°P' = UXVT.

3) Return Py, =[U]. 1,V

2.2. Sub-optimal bit-flipping algorithm for L;-PCA

From (7), we know that finding the optimal rank-1 L;-subspace
for a data matrix X € RP*N is equivalent to finding the optimal bi-
nary antipodal vector b°Pt e { £ 1}N. In [14], a fast bit-flipping (BF)
algorithm was proposed to solve (7). The BF algorithm for rank
r=1 starts with an initial binary vector b® e{+1}¥, and itera-
tively produces a sequence of new binary vectors bt (iteration in-
dex k=1,2,...), in which b&+1 differs from b®) only in a single
bit position, selected so as to achieve the highest increase of the
quadratic value b”X"Xb in (7). Upon convergence, the BF algorithm
generates a suboptimal binary vector b¢ (superscript ¢ stands for
“at convergence”), then a suboptimal solution for the L; principal
component py, is obtained by

P Xb¢
L= To -
X,

The above BF algorithm is extended in [15] for the calculation of
r>1 L; principal components. From (9), we know that the problem

(10)

1 [U).1. , stands for the first r columns of matrix U.

of finding r principal components is equivalent to finding a binary
matrix Be{+1}N*" that maximizes ||XB||-. The corresponding BF
algorithm starts with an initial binary matrix B(®) e {+1}¥*" and
iteratively produces a sequence of new binary matrices B() (itera-
tion index k=1,2,...), in which B*+D differs from B%) only in a
single bit position, selected so as to achieve the highest increase of
|IXB||« in (9). The associated suboptimal solution for the rank-r L;-
subspace Py, can be obtained by performing the following steps:
1) Run BF with input B(®) to obtain a suboptimal binary matrix
B¢ e {+1}¥*; 2) Perform SVD on XBC¢ such that XB° = UXV’; and
3) Return Py, =[U]. 1V,

2.3. Iterative re-weighted L;-PCA

Our preliminary study [19] proposed the iterative re-weighted
L{-PCA (L;-IRW) that generates a sequence of improved rank-r L;-
subspaces Pill‘) e RP*" with iteration index k=0, 1,... for a fixed

data matrix X = [Xq, ..., Xy] € RP*N_ Initially, the batch L;-subspace
of (5) is obtained with the BF algorithm and denoted as PE?). Then,

P{?) is iteratively updated. In the kth iteration, the L;-subspace cal-

culated in the (k — 1)th iteration PE’IH) is available. The conformity
of the nth data sample X, is measured by the L, error between X,
and its rank-r surrogate

43 = % PV, n=1, N, (1)

We expect large d,(qk) if X, is an “outlier” and small d,ﬁk) if X, is a
nominal sample. Then the sample weight is defined as the inverse
of the distance

w2 @®y-1" n=1,... N, (12)
followed by normalization,

wih

N s
> it
n=1

When computing the L;-subspace, data samples with larger weight
should contribute more and samples with smaller weight should
be suppressed such that the resulting calculated L;-subspace is
more accurate. Hence, in [19] we proposed that each data sample
X, is weighed by v~v,(1k). We form a weight matrix

w0 o0

wil = n=1,...,N. (13)

~ w0 L.

W 2 : (14)
0 0o ... wy

and update the L;-subspace by solving

Pl —arg max |[(XW®)TP|; (15)
Pe RDXT
PTP=1,

with the BF algorithm. The approach automatically suppresses
outliers in each iteration, resulting in a sequence of re-
fined L;-subspaces. When |[w® —wk*-D|, <¢, where wk £
[wg"),wg‘),...,w}\,")]T and € >0 is a predefined threshold, the al-
gorithm converges at a suboptimal rank-r subspace. It was demon-
strated that this iterative sample re-weighting technique leads to
more robust subspace estimation [19] than the original one-time
L,-subspace calculation.

3. Proposed L;-subspace tracking

In this work, we propose an L;-subspace tracking algorithm for
streaming data. The proposed scheme is based on the BF technique
[14], [15] and the preliminary study on L;-IRW [19].
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The problem statement is the following. At time slot t — 1, the
data matrix is X;_1 = {X;_1.}"_; € RPN, where x; 1 , € R repre-
sents the nth sample (column) of the data matrix at time-slot t — 1.
Hereafter we use the same notation. Assume we obtained the fol-
lowing quantities at time-slot t — 1: rank-1 subspace p{_; € RP (or
rank-r subspace P{_; € RP*), the suboptimal binary vector b |
{£1}N (or binary matrix BC _, €{£1}¥7), and the weight matrix
Wi, = diag{wfim ..... wi_ lN} where w{_,  stands for the un-
normalized weight at convergence for X, 1, n=1,2,..., NZ At
time-slot t, t>2, a new datum X € RP is acquired, and we aim at
updating p;_; (P{_;) to obtain p{ (Pf). A straight-forward method
is to incorporate the new datum in the old data matrix X;_; and
re-run L{-IRW. Nevertheless, as more data are acquired, the size of
the data matrix keeps increasing. Moreover, L{-IRW with BF starts
from an arbitrarily initialized binary vector (or matrix), resulting in
slow convergence speed.

Instead, our task is to find pf{ (Pf) without solving Ll-lRW in
(15) from scratch but by exploiting the results pf , (Pf_;), bf ,
(Bf_;), and W{_, obtained in the previous time slot. ln the follow—
ing subsectlons we elaborate the rank-1 and rank-r (r > 1) cases in
detail.

3.1. Rank-1 L;-subspace tracking

The proposed rank-1 L;-subspace tracking is outlined in
Algorithm 1. The inputs are X;_q, pf_;, W;_;, bf_,, the new da-
tum X, and two positive parameters 0 <8 <1 and € « 1. The out-
puts are the solutions at convergence for time-slot t: pf, bf, and
W¢. Algorithm 1 is executed every time a new datum is acquired,

updating the rank-1 L;-subspace on-the-fly.

Algorithm 1 Rank-1 L;-subspace tracking.

Input: X;_; € RDN p¢ e RD, WC | e RV*N ¢
0<B<1lexl

€ {(£1}Nx e RD,

1: pt(o) =Pf_;-

2: Remove x;_;; from X;_; to obtain X, ;, € RPx(N-1),
30 Xe < [Xen =Xe_1/i Xen =X].

4: Wt(?l\)l < Wi 1/’ bt?l\)l < bf 1/i°

5:d%) < %y~ pOP® Xl

6: ;‘1} @

7 Wf?.,) <—w(0)/ Z w}?ﬁ, n=1,....N.

8: W(O) «~ dlag{w(o) \/T/t(% .
9: (p¢, b, W¢) < RANK1-L;REFINE(X;,
Output: pf, bf, Wf.

p®, WO, WO, b, 6. ).

To avoid processing an enlarging data matrix, we adopt a fixed
processing window of N data samples. Before appending the new
datum X to data matrix X;_;, one old datum is removed from
X;_1. Assume that the ith datum is removed, 1<i<N, and X;_q; £
{xt,l’n}z 1€ RP*(N-1) denotes the sub-matrix of X;_; that ex-

n;éi
cludes the ith sample (column). Specifically, the index of the da-
tum to remove is selected by the following criterion:

i=arg min w¢_, . 16
& 1<n<N t=1n ( )
In this way, we discard the datum with the minimum weight. Such

a datum is more likely to be the outlier than other samples, there-
fore its removal purifies the current data matrix. Then, we append

2 Initially at t = 1, these quantities p¢ (P), b (BS), and WY are obtained by L;-
IRW in (15) with the initial data matrix Xj.

the new datum x to X;_;, and form the new data matrix at time
t, Xt 2 [Xgn Xen] € RP*N in which the first N1 columns are
X;/n = X;_1,;» and the last column is the new datum x; y = Xx.

With the new data matrix X¢, we re-formulate the kth iteration
of L1-IRW in (15) as

(k)

p¥ =arg max_ [|[(X:W*)Tp|;, (17)
peRP

pll2 =1

where VNVt(k) is the normalized weight matrix for X; at iteration
k. Instead of solving (17) from scratch as the original L;-IRW
[19] does, we aim at intelligently running the iterations and up-
dating pt(") till it converges to pf. The key issue is to utilize the
available information: p{_,, bf_ 1 and Wy _,

First, with similar derivation in (7), the problem in (17) is equiv-

alent to finding the binary vector

b® = arg max BTWH XTX,W®'b, (18)
be{+1}N

or equivalently,

() YAT() T 5T (k) 15 (k)
b(,})n{ax} {bt/N Wt/N Xt/NXf/NWt/th/N
€

k) 1~ (k) T k) 1 (K K)\2 (750 N2 T
+ 2T X WWED, + 0 WM ). (19)
where the objective function in (18) is decomposed into three
terms, and the pursued binary vector bk) [b(k) ..... bEk,\),]Te

{£1}N is decomposed into two parts: bg% [bE’? ..... bgkl\)F1 T e

{£1}N-1 associated with the old data Xy, and the last bit bik,\),
associated with the new datum X;y. The normalized weight ma-
trix \TV(k) dlag{w(k) (k)} is also decomposed into two parts:
\T\Ig‘) dlag{w(k) ;’2 1
ated with x;y.

Second, initialize the rank-1 subspace in (17) by p(o) =p;_;
Since the partial data X,y of the current time-slot ¢ are indeed
the partial data X;_q, from time-slot t —1, for which the con-
vergent weights and binary bits associated with p; , are avail-
able, we can then initialize the weights and binary bits for Xy

0) (0)
as Wy =W¢ ;; and by, =bg , ;.

tum X, its distance to p(o) and its weight are initialized by d

tN =
|Xe.n — p< )p( )" X nll2 and wg% = (d(o))*1 Subsequently, the nor-
malized Welghts of all samples and the normalized weight ma-

trix are initialized as w( ) = (0)/Zn 1W(O) 1<n<N, and W

diag{w; (0) ..... (0)} The above initialization is followed by a rank-
1 Ly- subspace reﬁnmg function RANK1-L{REFINE described in
Algorithm 2.

In Algorithm 2, the inputs of the function RANK1-L;REFINE are
X:, p(o), (0), \TV[(O), bg),\),, parameters 0 < 8 <1 and € « 1. The out-
puts of the function are the solutions at convergence p{, bf, W{ for
time-slot t.

It first initializes the single bit b associated with the new da-

tum by maximizing the objective functlon in (19)

} associated with Xy and w(k,\), associ-

respectively. For the new da-
0)

b{ = arg max (b W X[ X, w Wb

t/N YVt/N t/NPt/N

(0)(0)
[/th/N

(0 0
= sgl‘l{W[ lsxtTNxf/Nwi/l\)lb(/N}

+ 2bW X X W + D2 (W) X! yXen}

(20)

Then the initial full binary vector can be formed as b<°) =
[bg%, b(o)] e {£1}N. Subsequently, the L;-subspace is iteratively re-
fined. In the kth iteration, BF is first executed to solve (18) for bt(k)
where the initial normalized weight matrix and binary vector are
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Algorithm 2 Function (pf,bf, WS) <« RANK1-L;REFINE(X;, p{°,

w? W b B, €).

Input: X; € RP*N, pt(o) e RD, W;O) € RNxN, VNVio) € RNxN, bf% €

{£1}N-1.8, €.

1: Initialize b{) by (20).

N (Y 0). 1,(0)

2: b <_[b§/N bl.

fork=1,2,.., do

3: b — BF(* D, X, WD),

4: p < X W Dp® /X, WHE DO .

5: d% (%0 - pXp® Xealla 1=n < N.

6: u}kn) (dt(k)) 1 update w(k) by (22), 1<n<N.

7. Check stopping criterion: if ||w§k) W;’H)Hz <€, then pf <
p®, b « b®, we « w®, W « Wb,
Exit.

8: wt(kn) «~ w(k)/ Z w(k) W(k) «~ dlag{w(k) szik,\), .

end for

Output: pf, bf, W,

\TV("‘” and b("‘l), respectively. Then the updated bt(k) is utilized
to update p(k) in a similar way as in (10), followed by sample dis-
tance update as in (11) and sample weight update. Specifically, we
modify the weight update formula (12) as follows to guarantee a
convergent weight sequence. Once the distance d[(’fl) is obtained, we
define

uh) & @)~ (21)

and update the weight w(") by

(k—l)(l _ ‘Bk)’ if u(k) < Wt(k 1) _ ﬂk)’
k _
wi = fu®if w1 - Ry <u® < wi"n DA +pY,  (22)

w4 B9, i u®) > wik D (14 ph)

t,n

where 0<fB <1 is a pre-defined parameter, and g* is the kth
power of B. Intuitively, we avoid updating the weights too ag-

gressively by restricting the new weight w(k) to be within a small
neighborhood of the weight in the previous iteration W(k D The
size of the neighborhood depends on B. The convergence of the
weight sequence can be verified by

lllm gk =0, (23)
K— 00
lim (wif) —wit™) = 0. (24)

Then we check the stopping criterion: if the L,-distance between

the updated weight vector w(") = [wt(k]),wgkz),... (k)]T and the

previous one w(k Da [W(k D t(k2 Dow (k 1)]T is less than e,
we exit the RANK] -L,REFINE functlon and returns the convergent
quantities pf _pt(k) bf _bt(k), wf = (k) Wr = W“‘) Otherwise,
we update the normalized weights and welght matrlx in step 8
and continue with the iterations.

3.2. Rank-r (r> 1) L;-subspace tracking

We extend the rank-1 L;-subspace tracking to rank-r (r>1)
Ly-subspace tracking in Algorithm 3. In contrast to Algorithm 1,
the inputs of Algorithm 3 are: the rank-r subspace P{_; e RDxT,

and the binary matrix Bf , € {£1}N<T obtained at time-slot t — 1.
The outputs are: the rank-r subspace Pf € RP*T | the binary matrix

Algorithm 3 Rank-r (r> 1) L;-subspace tracking.
Input: X;_; € RD*N, P{ e RD>T, W, e RNxN Bf |
RP,0<B <1, ex.

RO

: Remove X, _;; from X;_; to obtainX, ;, e RP*N-1,
D Xe < [Xen =Xe—1/i Xen =X]
:w%«wuw%«wm

L d) < Ixn — POPO x, vl

<0> @

e {(£1}V T x e

.C.hU‘I AW N =

7w (0) <—w§9n)/2w(0) n=1,....N.

t n t,n’
8: Wﬁo) «~ dlag{w(o) ~(0)}
9: (P¢, B, W) « RANI(r—L1REFINE(Xt,P(0) w W B9 B ).

tN
Output: P¢ e RP*7, BE € {£1}N<7, W e RNV,

B¢ € {£1}V<", and the weight matrix W¢ e RN*N at convergence at
time-slot t. Steps 1 to 3 initialize P(O) and construct X; in a similar
way as in Algorithm 1. While Algorlthm 1 iteratively solves (17),
Algorithm 3 iteratively solves the following problem

P =arg max [|(X:W)P[|;. (25)
Pe RDXT

PP =1,

Following the derivation in (9), the above maximization problem is
equivalent to

PY —arg max max tr(BP"X,W"), (26)
P ¢ PPxr Be{1}Nxr

PTP=1,
which is equivalent to solving
BY = arg p X X, W®B]|,. (27)

In (26), the optimal nth row of binary matrix B is given by b%" =
sgn{PTxt,an/Ef‘,q)} e {£1}", that is, projecting the weighted nth data
sample onto the rank-r subspace P, followed by a sign operation,
which means that the nth row of B (b, e {+1}") is associated with
the nth data sample X;,. Hence, in rank-r L;-subspace tracking, the
partial data matrix Xy are associated with the partial binary ma-
trix Byy, which represents an (N —1) x r binary matrix formed
by removing the Nth row of B:. In step 4 of Algorithm 3, Byy
is initialized by Bf_ 100 the convergent binary matrix from time-
slot t — 1 excluding the ith row. Steps 5-8 are similar to those
in Algorithm 1, which initialize the weights and weight matrix
for data samples. In step 9, the rank-r L-subspace refining func-
tion RANKr-L{REFINE is called to generate the rank-r subspace
P¢ € RP*7, the binary matrix B¢ e {£1}¥*", and the weight matrix
W¢ e RV<N at convergence.

The function RANKr-L{REFINE is outlined in Algorithm 4. The
inputs and outputs are similar to those in Algorithm 3. It first ini-
tializes the Nth row of B; (denoted as a column vector by y e { £1},
the r binary bits associated with the new datum) as

BO®
[Xen X, N]|: %Ni|

b(o) = arg max ||XtB(0)||* = (28)

Then the initial full binary matrix can be formed as B(O)—

[Bt(?,\),,b(o) ]. Subsequently, the L;-subspace P(k) is iteratively re-
fined. In the kth iteration, BF is first executed (step 3) to solve
(27) for B where the initial binary matrix is B*~. Then the up-

dated B;k) is utilized to update Pt(k) (steps 4 and 5). Steps 6-9 are
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Algorithm 4  Function (P¢,Bf, WS) < RANKr-L;REFINE(X;, P,

w? W BS. B €).

Input: X; e RDxN, Pt(o) e RD, Wt(o) e RNxN, VNVt(O) e RNxN, B;% IS
{:H}(N—l)xr,ﬁ’ €.

1: Initialize b<0) by (28).

2: B < [BO): b<0>’].

fork=1,2,...,do

3: B® < BFBF ), x,, wk),

4: (U, s® vhy  svpx,wkBk),
K T
5: P — [u®]. 1, v,
T
6: d(k) [1%¢.n P(")P(") Xenllo, 1<n<N.
7: ui"n) (d(k)) 1, update W(k) by (22), 1<n<N.
8: Check stopping criterion: if ||w§") wt(k‘”||2 <€, then Pf «
P, B « BV, we « w, we — WP,
Exit.
9: (’2 «~ w(k)/ Z w(k) W(k) <« diag{w, (k) ..... vT/t(';\),}
. = ,
end for

Output: P, Bf, W¢.

the same as steps 5-8 in Algorithm 2, with Pg"),PC,Bt("), and Bf
replacing p("), ;. b“‘) and b{.

4. Applications and experimental studies

In this section, we assess the effectiveness of the proposed
L{-subspace tracking algorithm through four experimental stud-
ies: (i) synthetic data example, (ii) moving objects detection from
streaming surveillance videos, (iii) robust online cooperative spec-
trum sensing in a cognitive radio network, and (iv) DoA tracking.
We compare the proposed method (named “L;-Tracking”) with the
batch L{-PCA [13] (named “L;-Batch”), the L;-IRW [19], the batch
L,-PCA (named “L,-Batch”), the GRASTA [27], the PracReProCS [31],
and the OMoGMF [32] schemes, in terms of performance and ex-
ecution time. All the experiments in this work were implemented
on a personal computer with i7 CPU and 16G RAM.

4.1. Synthetic data example

We create a synthetic data example to evaluate the perfor-
mance of the proposed online L;{-subspace tracking algorithm in
controlled conditions and to assess the impact of design parame-
ters N and B.

We generate random streaming measurements of x;, t =1,2, ...
from a rank-4 subspace in R!90, spanned by the columns of a
random matrix Pgye € R100%4 that has orthonormal columns. The
measurement X; is corrupted by outliers with probability 0.3, that
is, X; = Pyuedr + S¢, Where a; are Gaussian random vectors in R4,
and s; € R190 are outlier vectors with nonzero Gaussian random
coefficients in 50% of their entries. We apply the proposed L;-
Tracking to estimate the underlying rank-4 subspace Pgye, and
evaluate the performance in terms of the subspace estimation er-
ror between the updated subspace P}") and the true subspace Pyye,
which is defined as [28]

(k’)l)(k’)T P....P
ron, _ IP Pl 09)

” Ptruep

where T and || - || stands for the pseudo-inverse and the Frobenius-
norm of a matrix.

true ”

Fig. 1 (a) shows the subspace estimation error versus the num-
ber of new data samples, for different processing-window size
N =20, 30, and 40. The subspace is initialized with N data sam-
ples, and is updated as P¢ € R190%4 at the arrival of every new da-
tum X;, t =1,2,...,200. The weight update parameter is fixed at
B =0.5. It is observed that for all N values, the subspace estima-
tion error decreases as the subspace is being updated with new
data samples. In particular, a smaller N value leads to faster con-
vergence rate.

In Fig. 1(b), for a fixed processing-window size N = 20, the sub-
space estimation error when updating the subspace at time-slot
t =15 using the 15th new datum is evaluated versus the number
of iterations k for weight update for various values of design pa-
rameter § =0.1,0.3,0.5, and 0.7. As specified in Algorithms 2 and
4,0 < B <1 is an input parameter in the L;-subspace refining func-
tions RANK1-L;REFINE and RANKr - L{REFINE. As described in the
weight update Eq. (22), the new weight Wt(kn) is confined to a
small neighborhood centered at the weight in the previous itera-
tion w k D and ,Bkw k=1 is the radius of the neighborhood. Since
0<pB <l the weight update procedure is guaranteed to converge
by Egs. (23) and (24). When $ — 0, the neighborhood is infinitely
small and the weight update terminates after one iteration. In ad-
dition, a larger B leads to slow convergence while a smaller 8
leads to fast convergence, which is demonstrated in Fig. 1(b). In
Fig. 1(b), as expected, B = 0.1 leads to fast convergence and the
resulting Pf is still far away from Ptye, while 8 =0.5 and 8 =0.7
lead to slower convergence rate but they achieve lower subspace
estimation error. The estimation error Error; at convergence for dif-
ferent B values are labeled on the curves.

4.2. Moving objects detection from streaming surveillance videos

Consider a sequence of surveillance video frames X; ¢ R™x"
with frame resolution of m x n pixels and time index t =1,2,....
A typical surveillance video sequence is consisted of a background
scene that can be modeled as a low-rank component, and sparse
foreground moving objects superimposed on the background scene
that are regarded as the outliers. For security monitoring, the ob-
jective is to extract the moving objects.

Each video frame X; is vectorized as x; € R, D = m x n via col-
umn concatenation. We model the background scene as a low-rank
component z; € RP and the foreground moving objects as a sparse
component s; € RP. Hence,

X =2Z+S, t=1,2,.... (30)
Consider a group of N frames, the matrix-form representation is
X=Z+S, (31)

where X =[Xq,...,Xy] e RPN, Z=1z;,...,2y] e RP*N and S=
[s1..... sy] € RPN, To extract the low-rank background, a simple
method is to run rank-1 L{-Batch on X and obtain the L;-subspace
Py, € RP, or to run L;-IRW and obtain the L;-subspace D < RP at
convergence. Afterwards, the background can be approximated by
7= pL, p{lx (or Z = pil pE:X) and the foreground can be extracted

as S = X — Z. For our proposed L;-Tracking, we initialize the rank-
1 subspace p§ with the initial N =8 frames using L;-IRW. Sub-
sequently, we update the subspace p¢ e RP at the arrival of ev-
ery new frame X;, t =1, 2,.... We keep the processing window at
N=8.

We first test the proposed L;-Tracking, the L;-IRW, and the L{-
Batch algorithms on a subset of 80 frames from the Lobby video
sequence. Each frame is of 128 x 160 pixels. This is a challeng-
ing video sequence since there is illumination change in the back-
ground. The processing window is N =8 for all schemes in com-
parison. Fig. 2 displays the background and foreground extracted
at multiple distinct time slots t = 10, 13, 30, 51, 54 by the proposed
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Fig. 1. (a) Subspace estimation error with different processing-window size N = 20,30, and 40. The sample-weight update parameter is fixed at 8 = 0.5. (b) Subspace
estimation error with different sample-weight update parameter 8 = 0.1 to 0.7. The processing-window size is fixed at N = 20.

Ly-Tracking, the L;-IRW [19], and the regular L{-Batch [13] meth-
ods. Fig. 2.(a) shows the original frames, where the background is
bright for t = 10, 13, and is dark for the remaining three frames.
In frames t = 10, 30, 51,54, a person appears in the scene as a
moving object. From Fig. 2.(b1), we observe that the proposed L;-
Tracking successfully recovers the background and adapts to the
illumination change. The corresponding extracted foreground in
grayscale is displayed in Fig. 2.(c1), and the binary masks for the
detected moving objects are displayed in Fig. 2.(d1). In contrast,
the L{-IRW and L;-Batch cannot accurately recover the background
scenes (Fig. 2.(b2)(b3)), which cause “ghost” phenomenon in the
extracted grayscale foreground scenes (Fig. 2.(c2)(c3)), and the bi-
nary masks (Fig. 2.(d3)).

Besides, we run the proposed L;-Tracking algorithm on the
complete Lobby video sequence of 1546 frames, and compare its
receiver operating characteristic (ROC) curve with those generated
by the GRASTA [27], PracReProCS [31], and OMoGMF [32] algo-
rithms. For a fair comparison, for all four schemes we use the
first N =8 frames for subspace initialization, and the remaining
1538 frames for online subspace update. For fast convergence, the
sample weight update parameter is set as 8 = 0.5 for the pro-
posed L;-Tracking. For OMoGMF, a mixture of 2 Gaussians is used
to model the foreground. As shown in Fig. 3(a), our proposed
L,-Tracking achieves the highest true positive rate (TPR) under
the same false positive rate (FPR) compared to the other three
schemes. Fig. 3(b) shows the accumulated execution time for all
four subspace tracking methods as the new frame index increases.
Compared to PracReProCS, the proposed L;-Tracking, the GRASTA,
and the OMoGMF methods have significant saving in execution
time.

4.3. Robust cooperative spectrum sensing in cognitive radio networks

Radio frequency spectrum is a scarce resource in wireless com-
munications due to the ever-increasing wireless channel users.
Spectrum-sensing cognitive radio is a technique that allows sec-
ondary users to detect the idle spectrum and share the wire-
less channel with primary users in an opportunistic manner [35].
We consider the robust cooperative spectrum sensing problem
in a cognitive radio network (CRN) when malicious attacks exist
[36,37]. The CRN in Fig. 4 consists of a primary user (PU), multiple
secondary users (SUs) and a fusion center. The PU transmits sig-
nals on the wireless channel and the SUs monitor the PU’s status
(presence or absence). At time-slot t, the received PU signal power

(dB) at the mth SU can be expressed as

ym,[ = F[ + alO]ng (do/dm) + Om’[ dB, (32)

where I'; is the PU transmission power (in dB) at time-slot t, « is
the path-loss exponent, d, is the reference distance, and dp, is the
distance between the PU and the mth SU which is measured prior
via geo-location database. The parameters I'; and « are unknown
at the fusion center and need to be estimated. When attackers at-
tack the mth SU at time t, the received signal y;: has an extra
additive component om, (dB), which is considered as the outlier.
All SUs send their sensed signal yn; to the fusion center. The ob-
jective of the fusion center is to recover the transmission power
'y, t=1,2,... reported by the SUs, compare it with a threshold
and determine whether the PU exists or not.
Consider M SUs and sensing time

define  matrices H,V,Xzé[}s1 22

IN], in which B 210logio(do/dm), then the data

at the fusion center collected in the period of N time slots can
be modeled as Y = HX + 0 € RM*N_ where the (m, t)th entry of
the outlier matrix O is op;. Define LAHX, then Y=L+ 0. Since
rank(H) <2 and rank(X) <2, we have rank(L) < 2.

To solve the power estimation problem in the presence of out-
lier O, we can apply L;-Batch to data matrix Y and estimate the
rank-2 subspace P, € RM*2 in which the low-rank matrix L lies,
that is,

slots t=1,2,..., N,

}SM]T and x2><N S

[Fl )
a a a

P, =arg max _|Y'P|;. (33)
Pe RMXZ

PP =1

Then L and X can be recovered by L= PLIP{]Y and X = H'L3, re-
spectively. In the sequel, the PU transmission power (in dB) can be
obtained from the first row of X, which is T = [f1, fz, . FN]T.
In our study, we run 100 independent experiments, and each
experiment has Ny, = 60 snapshots. The reference distance dy is
20m, pathloss coefficient is set to o« =4, and M =40 SUs are de-
ployed. The PU transmission power is uniformly distributed be-
tween 1000 Watt and 1100 Watt, such that 30dB <I'; <30.4139dB,
and the distance between the PU and the mth SU is uniformly
distributed between 5km and 6km. We fix the attack amplitude
from all attackers to be 20dB, and 8% of the sensed signals are

3 Hf is the pseudo-inverse of H.
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(d1)

(d2)

@3)

Fig. 2. The subset of Lobby sequence (80 frames): (a) Original frame of time slot t = 10, 13, 30, 51, and 54; reconstructed background by (b1) proposed L;-Tracking, (b2)
L;-IRW, and (b3) L;-Batch; gray-scale extracted moving objects by (c1) proposed L;-Tracking, (c2) L;-IRW, and (c3) L;-Batch; and binary mask by (d1) proposed L;-Tracking,

(d2) L1-IRW, and (d3) L;-Batch.

attacked randomly. We compare the performance of our proposed
L;-Tracking with L;-Batch, L;-IRW, GRASTA [27], PracReProCS [31],
and OMoGMF [32]. The weight update parameter of the proposed
Ly-Tracking is set as 8 = 0.5. For L;-Batch and L;-IRW, the 60 snap-
shots are divided into 6 groups of N = 10 snapshots, and an inde-
pendent L;-Batch or L;-IRW subspace is computed for each group,
followed by power estimation. For the proposed L;-Tracking, we
initialize the L{-subspace and the associated binary bit matrix with
the initial N = 10 snapshots. Then we keep the processing window
size at N = 10, with every collected new snapshot y; € RM, we up-
date the L;-subspace P§ e RM*2, t = N+ 1,N+2,..., Ny . Corre-
spondingly, & = P{P¢ Ty, X =Hl; = [T¢, @ 7. The recovered PU
transmission power at time-slot ¢ is I';.

The power estimation error over a period of N = 10 time slots
is calculated as the following:

oy = IT = Tll2/IT]l2, (34)

Table 1
The average power estimation error and accumulated subspace tracking time of six
algorithms in comparison.

Proposed L;-Tracking  L;-IRW L,-Batch
Accumulated Time (s) 0.376 26.719 0.174
(Nm[al = 60)
Average Power Estimation  0.372 0.335 0.793
Error (o3"¢)

OMoGMF PracReProCS GRASTA
Accumulated Time (s) 0.054 0.656 0.019
(Ntotal = 60)
Average Power Estimation 0.761 1.525 6.947

Error (o3"¢)

where T is the estimated PU transmission power (in dB). For all
schemes in comparison, we calculate the average oy (denoted as
of'®) with Nig, = 60 snapshots and 100 experiments.

Table 1 shows the accumulated subspace update time mea-
sured in seconds and the average power estimation error for the
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Fig. 3. Comparison studies of the proposed L;-Tracking, the GRASTA [27], the PracReProCS [31], and the OMoGMF [32] algorithms on the complete Lobby sequence (1546
frames): (a) the ROC curves; (b) the accumulated subspace update time in seconds versus the new frame index t.

Attacker

Fig. 4. Cooperative cognitive radio network structure.

six algorithms in comparison. The two lowest average power es-
timation error are highlighted in red, which are offered by the
proposed L;-Tracking and the L;-IRW methods. Although L;-IRW
slightly outperforms L;-Tracking in power estimation error, its
huge processing time is inappropriate for real-time scenarios. On
the other hand, although the GRASTA and OMoGMF algorithms
excel in subspace update speed, their power estimation error re-
sulted from inaccurate subspace estimation is much higher than
the proposed L;-Tracking scheme.

4.4. Direction-of-arrival tracking

A core technical problem in wireless communications and radar
applications is the problem of estimating the direction-of-arrival
(DoA) of incoming signals [38,39]. Our signal model is similar to
those in [13] and [16]. We consider a receiver equipped with a
uniform linear array (ULA) of M antenna elements, and d is the
spacing between adjacent antenna elements. For an incoming far-
field signal with angle-of-arrival 6; € (%, %] and wavelength A,
the complex-domain array response vector is defined as

T
] eCM,

To satisfy the Nyquist spatial sampling theorem, d is chosen to be
half the signal wavelength d = %AC. For simplicity, we define

fi £ 0.5sin(-6;),

- 27dsing; jM-n2mdsing;

seié[l,e] o, ...,e %

(35)

(36)

then the array response vector becomes

s;, =1, elt2nfi  ei22nfi  eM-D2TfT o M, (37)
In our signal model, the ULA takes snapshots of two incoming
signals (targets) with angles-of-arrival 6; and 6,, and the associ-
ated f; and f, can be obtained by (36). The number of antenna
elements is M = 20. The snapshot at time-slot t is expressed as

Xt =A1Sy, +AxSp, +n, t=1,2,.., (38)

where A;, A, are the received-signal amplitudes, and n; ~
CN (0y, 021y is additive white complex Gaussian noise. Therefore,
the nominal signal lies in a rank-2 subspace formed by sy, and sg,.
We assume that the signal-to-noise ratio (SNR) of the two signals

is SNRy = 10logq :ide =4dB and SNR; = 1010g102—§d8 = 5dB. For
the first ten snapshots x;, t =1, ..., 10, f; and f, are fixed at 0.2
and 0.3, respectively, and X5 is corrupted by an interferer signal
X; = Ajs; with f; = 0.4 and amplitude A; = A, that is,

X5 =A1Sf1 +A2$f2+X]+n5. (39)

Then, starting from t = 11, due to gradual change of 6, and 65,
fi1 and f, become linearly time varying [40]. They start at 0.2 and
0.3, cross at 0.25, and finish at 0.3 and 0.2 over a span of 1000
snapshots. This causes the gradual change of the underlying rank-2
signal subspace. Besides, the same interferer signal x; corrupts x¢
with probability p = 0.3 for t = 11,12, ..., 1010.
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Fig. 5. MUSIC spectra with rank-2 subspaces at time-slot (a) t = 141, (b) t = 221, and (c) t = 323.

Our objective is to track the slowly changing rank-2 subspace
formed by the two incoming signals, that is, to track the varying
angles-of-arrival 61 and 65, or equivalently, to track the varying
fi and f,. For each snapshot, we create a real-valued version X; =
[Re{x}; Im{x;}] € R2M by Re{-}, Im{-} part concatenation. For our
proposed L;-Tracking, we initialize the rank-2 L;-subspace by the
initial N = 10 snapshots, using the L{-IRW scheme. Subsequently,
we update the L;-subspace Pf € R2Mx2 at the arrival of every two
new snapshots.

We compared the proposed scheme with L;-Batch and L,-Batch.
The processing window is fixed at N =10 for all three schemes.
For L-Batch and L,-Batch, we re-calculate a new rank-2 subspace
for every other time slot. At time slot t, a data matrix is formed
by X; = [Xi_ns1. Xe_Ns2. ... Xe] € RZM*N_on which the batch rank-

2 L1-PCA (9) and L,-PCA (4) are performed to obtain Py, e R2Mx2
and Py, € R2Mx2 respectively. For performance evaluation, we
plot for all three schemes the MUSIC spectrum [13]:

1
P(f) & si——res
~S’;(Izz\/l — PPT)s,

(40)
where 57 = [Re{s;}: Im{s/}] e R?2M, P e R?M*2 is the learned rank-
2 subspace, and P=Pf, P=P;; , P=P;;, for the proposed L;-
Tracking, Li-Batch, and L,-Batch, respectively. For successful DoA
estimation schemes, the MUSIC spectrum shall show high peaks at
nominal DoAs f; and f,, and suppresses other signals.

In Fig. 5, we plot the MUSIC spectra for all three schemes at
time-slot t = 141,221, and 323, respectively. The true f;, f, and
f; are indicated by the vertical dotted lines in the figures. We
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observe that as time elapses, Li-Batch and the proposed L;-
Tracking algorithms are able to track the changing rank-2 sub-
spaces and show peaks very close to the two nominal signals f;
and f,, while L,-Batch MUSIC spectrum is severely contaminated
by the interferer signal at f;. Besides, the proposed L;-Tracking
outperforms L;-Batch since it well suppresses the interferer at f,
while L;-Batch still shows a small peak at fj. Further, the proposed
Ly-Tracking accelerates the DoA tracking speed. In our experiment,
the average subspace update time for the proposed L;-Tracking al-
gorithm is 0.0313 s per snapshot, and that for the L;-Batch algo-
rithm is 0.0514 s per snapshot.

5. Complexity analysis

In this section, we analyze the theoretical computational com-
plexity in terms of multiplication operations for the proposed
L;-Tracking algorithm, the GRASTA, OMoGMF, and PracReProCS.
Our findings are in accordance with the experimental results in
Sections 4.2 and 4.3.

We assume that the data sample dimension is D, and the
processing window size is N for the proposed L;-Tracking. The
complexity of the proposed rank-1 L;-Tracking is analyzed in
Table 2. At the arrival of the tth new datum x; € RP, the major
computational tasks to update the subspace p¢ e RP include: (1)
Algorithm 1 Steps 5-7 that calculate the weight for the new da-
tum, the complexity of which is O(D + N); (2) Algorithm 2 Step 3
that executes bit flipping to update bt”‘) e {1}V, the complexity of
which is O(DN? x maxFlip), where maxFlip represents the number
of bit flips for the BF procedure to converge; (3) Algorithm 2 Step
4 that re-calculates the subspace; and (4) Algorithm 2 Step 5 that
updates the distance for N data samples. Let maxlIter represent the
number of sample-weight update iterations, then the total com-
plexity of rank-1 subspace update is O(DN? x maxFlip x maxlter).

The complexity of the proposed rank-r (r>1) L;-Tracking is
analyzed in Table 3. The major computational tasks include: (1)
Algorithm 3 Steps 5-7 that calculate the weight for the new da-
tum and normalize the weights for all N data samples in the
current processing window, with complexity O(2Dr + D + N); (2)
Algorithm 4 Step 1 that initializes the r bits associated with

Table 2
The computational complexity of the proposed rank-1
Ly-Tracking described in Algorithms 1 and 2.

Computational tasks ~ Complexity (Multiplications)

Algo. 1 Steps 5-7 O(D+N)

Algo. 2 Step 3 O(DN? x maxFlip)

Algo. 2 Step 4 O(DN)

Algo. 2 Step 5 O(DN)

Algo. 2 Step 6 O(N)

Algo. 2 Step 7 O(N)

Algo. 2 Step 8 O(N)

Total O(DN? x maxFlip x maxIter)

Table 3
The computational complexity of the proposed rank-r (r>1) L;-
Tracking described in Algorithms 3 and 4.

Computational tasks ~ Complexity (Multiplications)

Algo. 3 Steps 5-7 O0(2Dr+D +N)

Algo. 4 Step 1 0(2'Dr?)

Algo. 4 Step 3 O(DNr? x maxFlip)

Algo. 4 Step 4 0o(Dr?)

Algo. 4 Step 5 0(Dr?)

Algo. 4 Step 6 O(DNr)

Algo. 4 Step 7 O(N)

Algo. 4 Step 8 O(N)

Algo. 4 Step 9 O(N)

Total O((DNr3 x maxFlip + 27Dr?) x maxlter)

the new datum by exhaustive search over the 2"-dimensional bi-
nary space, with complexity 0(2'Dr?); (3) Algorithm 4 Step 3
that executes BF to update the N x r bit matrix, with complexity
O(DN13 x maxFlip). Again maxFlip is the number of bit flips re-
quired for the BF to converge; (4) Algorithm 4 Step 4 that performs
SVD with complexity O(Dr?); (5) Algorithm 4 Step 5 that updates
the subspace with complexity O(Dr?); and (6) Algorithm 4 Step 6
that updates the distances for N data samples in the current pro-
cessing window with complexity O(DNr). Again, let maxIter be the
number of iterations for sample weights to converge, then the total
complexity for rank-r (r>1) case is O((DNr3 x maxFlip + 2"Dr?) x
maxlter).

Empirically, for both rank-1 and rank-r, maxFlip <10 or even
equals to 1 with large chances. This is because for rank-1, the
BF in the kth iteration is initialized with bt(k’”, the bit vector
in the (k — 1)th weight-update iteration; while for rank-r, the BF
in the kth iteration is initialized with the bit matrix BV in
the (k — 1)th weight-update iteration. Such “warm-start” technique
significantly accelerates the convergence of the BF procedure.

The GRASTA [27] minimizes a cost function that has an ¢;-norm
penalty on the sparse outliers. Then the subspace tracking is for-
mulated as minimizing an augmented Lagrangian function, which
is solved by alternating between solving for four variables: the
rank-r subspace coefficient of length r, the sparse outlier vector of
length D, the Lagrange multiplier of length D, and the columns of
a D x r matrix that span the rank-r subspace. The complexity is in
the order of O(r3 + Dr), where O(r3) is the complexity of the inver-
sion of an r x r matrix in solving for the subspace coefficients, and
O(Dr) is the complexity of a matrix-vector multiplication involved
in updating all four variables.

In PracReProCS [31], the subspace tracking includes four steps:
1) perpendicular projection of the new datum onto the space or-
thogonal to the previously estimated rank-r subspace, with com-
plexity O(D?); 2) sparse outlier vector recovery by ¢;-norm mini-
mization, with complexity O(D3); 3) low-rank component recovery
with subtraction operations only; and 4) subspace update by the
method of projection PCA, which involves an SVD of complexity
O(DNmin{D, N}), in which the most recent N data samples are uti-
lized.

The OMoGMF [32] deals with the background subtraction prob-
lem in video surveillance by modeling the video background as
a low-rank component and performs low-rank matrix factoriza-
tion. More importantly, it models the foreground as a mixture of
Gaussians (MoG). The online low-rank subspace learning problem
is then tackled by iteratively solving for the MoG parameters, the
subspace coefficients, and the subspace. The MoG parameters are
solved by the EM algorithm, in which the E-step is of complex-
ity O(D(r +K)) where D is the dimension of the datum (a video
frame in [32]), r is the subspace rank, and K is the number of
components in the MoG model, and the M-step is of complexity
O(DK). The subspace coefficients are of size rx 1 for a datum and
it is solved by a least squares problem with complexity O(Dr + r3).
Finally, updating the subspace of dimension D x r has complexity
o(Dr?).

We compare the computational complexity in terms of multipli-
cation operations for the proposed L;-Tracking, GRASTA, OMoGMF,
and PracReProCS algorithms in Table 4. For OMoGMEF, “Iter” refers
to the number of iterations for the EM algorithm to calcu-
late the MoG parameters. In practice, the rank value is usually
r«min{D, N}. Besides, for the proposed L;-Tracking, we adopt a
small processing-window size N for lower complexity and faster
convergence rate according to the synthetic data experiment in
Section 4.1, and we use a medium B value for sample-weight up-
date to control maxliter. We also consider the fact that maxFlip < 10
or equals to 1 most of the time. With these conditions, it is
observed from Table 4 that GRASTA has the lowest complexity,
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Table 4
Computational complexity comparison among GRASTA, OMoGMF, the proposed L;-Tracking, and PracRe-
ProCS.
GRASTA OMoGMF Proposed L;-Tracking PracReProCS
O(Dr+r®)  O((Dr+DK) xIter  r=1: O(DN? x maxFlip x maxiter) o(D? +D?

+Dr? +13)

r>1: O((DNr® x maxFlip +2'Dr?) x maxiter)

+DN min{D, N})

PracReProCS has the highest complexity due to the ¢;-norm min-
imization adopted to solve for sparse outliers, while our proposed
L;-Tracking and the OMoGMF algorithms have medium complexity.
In our experimental studies in Sections 4.2 (video surveillance) and
4.3 (cognitive radio network transmission power estimation), the
measured execution time for subspace tracking is in accordance
with the complexity analysis in Table 4.

6. Conclusion

In this work, we propose a novel online robust subspace
tracking algorithm “L;-Tracking” based on the L;-norm principal-
component analysis theory. The algorithm effectively captures the
intrinsic low-rank structure of streaming data in the presence of
observation outliers. It updates the subspace at each time slot with
new sensor datum, utilizing the subspace obtained at the previous
time slot and a small batch of most recent data samples. It has the
merits of data outlier suppression through sample weighting and
speed acceleration through a warm-start bit-flipping technique.

The experimental studies on various applications illustrated the
superior performance of the proposed algorithm in subspace esti-
mation accuracy. Besides, the theoretical analysis and experimen-
tal results demonstrated that the computational complexity of the
proposed algorithm is comparable to several state-of-the-art online
subspace learning algorithms. Meanwhile, it significantly reduces
the processing time compared to the existing iterative re-weighted
L{-subspace (L;-IRW) calculation. Hence, the proposed method is
amenable to streaming and real-time applications.

In terms of future work, it is of particular interest to further
investigate the capability of the proposed L;-Tracking algorithm to
process large data set online, such as real-time camera data that
is of high dimensionality and has high frame rate. Our experimen-
tal study on the Lobby video sequence already illustrates such po-
tential, and it is possible to explore such potential in other fields
such as large-scale IoT networks. Besides, to accelerate the sub-
space tracking speed for high-dimensional streaming data, it is sig-
nificant to investigate the sub-sampling technique. We will also de-
velop schemes to automatically select proper model parameters,
such as the rank value, processing-window size, and the weight-
update parameter. Further, currently there is a lack of theoretical
analysis on how close the estimated subspace in the proposed al-
gorithm is to the true low-rank subspace of the data. In the future
research, we will try to establish a theoretical bound for the sub-
space estimation error defined in (29).
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