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a b s t r a c t 

High-dimensional data usually exhibit intrinsic low-rank structures. With tremendous amount of stream- 

ing data generated by ubiquitous sensors in the world of Internet-of-Things, fast detection of such low- 

rank pattern is of utmost importance to a wide range of applications. In this work, we present an L 1 - 

subspace tracking method to capture the low-rank structure of streaming data. The method is based on 

the L 1 -norm principal-component analysis ( L 1 -PCA) theory that offers outlier resistance in subspace cal- 

culation. The proposed method updates the L 1 -subspace as new data are acquired by sensors. In each 

time slot, the conformity of each datum is measured by the L 1 -subspace calculated in the previous time 

slot and used to weigh the datum. Iterative weighted L 1 -PCA is then executed through a refining func- 

tion. The superiority of the proposed L 1 -subspace tracking method compared to existing approaches is 

demonstrated through experimental studies in various application fields. 

© 2019 Elsevier Ltd. All rights reserved. 

1. Introduction 

Principal-component analysis (PCA) is a prevalent method for 

dimensionality reduction and subspace learning. Conventional L 2 - 

norm-based principal-component analysis ( L 2 -PCA), however, is 

easily affected by “outlier” values that are numerically distant from 

the nominal low-rank signal. To deal with the problem of outliers 

in subspace approximation, there are extensive studies in robust 

PCA methods. In the pioneer works [1–4] subspace learning is per- 

formed under an L 1 -error minimization criterion, or its variants. 

The robust PCA (RPCA), a.k.a. principal-component pursuit (PCP) 

developed in [5] performs low-rank and sparse decomposition by 

minimizing a weighted sum of the nuclear-norm of the low-rank 

component and the L 1 -norm of the sparse component. More re- 

cently, the robust PCA idea is adopted in DECOLOR [6] , which in 

addition uses Markov random-field (MRF) modeling to improve the 

accuracy of detecting contiguous outliers. The method in [7] recast 

the L 1 -error minimization problem into a weighted L 2 -error mini- 

mization problem. By properly choosing the weights of data sam- 

ples, the formulated L 2 -error minimization problem is equivalent 

to the robust L 1 -error minimization problem, and can be solved 

efficiently via singular-value decomposition (SVD). The method in 
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[8] learns the low-rank representation for data by utilizing locality 

and similarity information among data, using graph-based mani- 

fold analysis. In [9] a fast, iterative algorithm is proposed for out- 

lier resistant two-dimensional PCA based on the Frobenius-norm 

with respect to the spatial (attribute) dimensions and the 1-norm 

for the summation over different data points. Authors in [10] pro- 

pose to jointly select useful features and enhance the robustness 

of PCA by the relaxation of the orthogonality constraints on the 

transform matrix. 

Another line of research performs robust subspace learning by 

maximizing the L 1 -norm of the data projected onto the pursued 

subspace [11–15] . The pursued principal components are called 

L 1 principal components. The work in [11] presented a subopti- 

mal iterative algorithm for the computation of one L 1 principal 

component and [12] presented an iterative algorithm for subop- 

timal joint computation of d ≥1 L 1 principal components. In [13] , 

for the first time in the literature, algorithms for exact calculation 

of L 1 principal components are developed. Later, suboptimal algo- 

rithms were developed in [14] and [15] for fast computation of the 

L 1 principal components. This L 1 -PCA method has been success- 

fully applied to a wide range of research fields such as direction- 

of-arrival (DoA) estimation [16] and robust face recognition [17] . 

Besides, compressed-sensed-domain L 1 -PCA methods were devel- 

oped for low-rank background scene and sparse foreground mov- 

ing objects extraction from compressed-sensed surveillance video 

sequences [18] . In [19] , a reweighted L 1 -PCA algorithm ( L 1 -IRW) 
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was developed to refine the pursued L 1 -subspace in an iterative 

manner. 

Nevertheless, existing L 1 -PCA methods in [11–19] are batch al- 

gorithms designed for fixed data ensemble. As sensors keep acquir- 

ing streaming data, it is essential to update the calculated subspace 

with new information and track the potential gradual change of 

data’s low-rank pattern. Robust subspace tracking has been devel- 

oped to tackle this problem. A computationally efficient incremen- 

tal PCA algorithm is developed in [20] for adaptive background 

modeling and active object recognition. The authors in [21] pro- 

pose an incremental non-negative matrix factorization scheme for 

online processing of large data sets. The scheme incrementally up- 

dates its factors by appropriately reflecting the influence of each 

data sample on the factorization. In [22] , an online robust PCA 

method is proposed that alternates between standard L 2 -PCA for 

updating PCs and probabilistic selection of the new samples which 

alleviates the impact of outliers. The online robust PC (OR-PCA) 

method proposed in [23] reformulates the objective function of 

PCP [5] by decomposing the nuclear norm into an explicit prod- 

uct of two low-rank matrices, which can be solved by a stochas- 

tic optimization algorithm. The method in [24] adopted similar 

approach to that in [23] , and applied it to track the low-rank 

structure of traffic flow volume in backbone networks. An adaptive 

projected subgradient method based algorithm is proposed in [25] , 

introducing a cost function properly calculated for each time in- 

stance and searching for the set of points which score zero loss. 

Outlier detection and correction of corrupted data is employed to 

purify data. The Grassmann Averages method proposed in [26] for- 

mulates subspace estimation as the computation of the average 

of subspaces spanned by data samples, which is scalable to large 

datasets and robust to outliers. The Grassmannian robust adaptive 

subspace tracking algorithm (GRASTA) [27] is an efficient and ro- 

bust online algorithm for tracking subspaces from highly incom- 

plete information. It uses a robust � 1 -norm cost function to im- 

pose sparsity on the outliers which is formulated as an augmented 

Lagrangian function, then the subspace and the outlier are esti- 

mated by the alternating direction method of multiplier (ADMM). 

The method in [28] adopts a similar approach to [27] , and it also 

maintains the proximity of the updated subspace to the previ- 

ous subspace estimate. The recursive projected compressive sens- 

ing (ReProCS) algorithm was developed in [29] , [30] which per- 

forms online robust subspace estimation, and was further extended 

to a practically usable version (Prac-ReProCS) [31] . This series of 

studies addressed the problem of recursively recovering sparse 

and correlated signals in the presence of low-rank and correlated 

noise. The methods were successfully applied to the scenario of 

separating a slowly changing video background from correlated 

moving foreground objects/regions. In [32] , an online mixture of 

Gaussians (MoG) low-rank matrix factorization method (OMoGMF) 

is proposed for robust video background subtraction. It modeled 

the foreground as a MoG and the model is also regularized by 

the learned foreground/background in previous frames. The model 

can be formulated as a concise probabilistic maximum a poste- 

riori probability (MAP) model, and can be readily solved by the 

expectation-maximization (EM) algorithm. In [33] , a union of sub- 

spaces tracking algorithm is proposed for online anomaly detec- 

tion. The observed data samples are assumed to have a Gaus- 

sian mixture model whose covariance matrices each are dominated 

by a low-rank component. The online discriminative multi-task 

tracker [34] is proposed with structured and weighted low rank 

regularization. 

In this paper, we propose an L 1 -subspace tracking method. As 

new data are successively acquired over time, the procedure up- 

dates the L 1 -subspace to capture the underlying low-rank data 

structure. In each time slot, nominal compliance of each sample 

in the current processing window is inferred by its relative dis- 

tance to the L 1 -subspace calculated in the previous time slot and 

translated to a “weight”. Samples with larger weights tend to be 

nominal samples and samples with smaller weights are more likely 

to be the outliers. Iterative weighted L 1 -PCA is then carried out 

via a refining function. The function alternatively updates the bits 

associated with the pursued L 1 -subspace and the sample weights. 

Upon convergence, the function returns a refined L 1 -subspace for 

the current time slot. The whole procedure has the merits of out- 

lier suppression through sample weighting and processing acceler- 

ation through a warm-start bit-flipping technique. 

The remainder of this paper is organized as follows. In 

Section 2 , we introduce necessary background on L 1 -PCA. In Sec- 

tion 3, the proposed L 1 -subspace tracking algorithm is developed. 

In Section 4 , the effectiveness of the proposed algorithm is demon- 

strated through four experiments: (i) synthetic data example, (ii) 

moving objects detection from streaming surveillance videos, (iii) 

robust online cooperative spectrum sensing in a cognitive radio 

network, and (iv) DoA tracking in wireless communications. Com- 

putational complexity is analyzed in Section 5 . Finally, we draw 

conclusions and discuss future work in Section 6 . 

2. Background of L 1 principal-component analysis 

2.1. L 1 -PCA and its solvers 

Consider N real-valued samples x 1 , x 2 , . . . , x N of dimension D 

( N < D ) that form the D ×N data matrix 

X = [ x 1 x 2 . . . x N ] . (1) 

In conventional L 2 -PCA, one seeks to describe (approximate) data 

matrix X by a rank- r product PQ T where P ∈ R D ×r , Q ∈ R N×r , r ≤N . 

Given data matrix X , L 2 -PCA minimizes the sum of the element- 

wise squared error between the original matrix X and its rank- r 

representation PQ T in the form of Problem P 
L 2 
1 defined below, 

P 
L 2 
1 : (P L 2 , Q L 2 ) = arg min 

P ∈ R D ×r , P T P = I r 
Q ∈ R N×r 

‖ X − PQ 
T ‖ 2 , (2) 

where I r is an r × r identity matrix, and matrix P has r orthonormal 

columns. Problem P 
L 2 
1 is equivalent to the following two problems, 

P 
L 2 
2 : P L 2 = arg min 

P ∈ R D ×r 

P T P = I r 

‖ X − PP 
T X ‖ 2 , (3) 

and 

P 
L 2 
3 : P L 2 = arg max 

P ∈ R D ×r 

P T P = I r 

‖ X 
T P ‖ 2 , (4) 

for which the solution is given by the r dominant left singular vec- 

tors of the original data matrix X . 

Nevertheless, by minimizing the sum of squared errors, L 2 prin- 

cipal component calculation becomes sensitive to extreme error 

value occurrences caused by the presence of outlying samples in 

the data matrix (samples that are numerically distant from the 

nominal data, appear only few times in the data matrix, and are 

not to appear under normal system operation upon design). Moti- 

vated by this observed drawback of L 2 subspace signal processing, 

subspace-decomposition based on L 1 -norm maximization was pro- 

posed for robustness. Replacing the L 2 -norm in P 
L 2 
3 by L 1 -norm, 

the so-called L 1 -PCA calculates principal components in the form 

of 

P 
L 1 : P L 1 = arg max 

P ∈ R D ×r 

P T P = I r 

‖ X 
T P ‖ 1 . (5) 
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Since the L 1 -norm metric is less likely to exaggerate the contri- 

bution of outliers on the data projection, P L 1 in (5) is likely to 

be closer to the true nominal rank- r subspace than L 2 -PCA. The r 

columns of P L 1 in (5) are the so-called r L 1 principal components 

that describe the rank- r subspace in which X lies. As shown in [13] , 

exact calculation of the L 1 principal components in P L 1 can be re- 

cast as a combinatorial problem. In short, when the rank of the 

nominal signal is r = 1 , P L 1 reduces to 

p L 1 = arg max 
p ∈ R D 

‖ p ‖ 2 = 1 

‖ X 
T p ‖ 1 , (6) 

which can be reformulated as 

max 
p ∈ R D 

‖ p ‖ 2 = 1 

‖ X 
T p ‖ 1 = max 

p ∈ R D 

‖ p ‖ 2 = 1 

max 
b ∈{±1 } N 

b T X 
T p = max 

b ∈{±1 } N 
max 

p ∈ R D 

‖ p ‖ 2 = 1 

p T Xb 

= max 
b ∈{±1 } N 

‖ Xb ‖ 2 = max 
b ∈{±1 } N 

(b T X 
T Xb ) 1 / 2 . (7) 

The optimal solution for (7) can be obtained by exhaustive search 

in the N -dimensional space of the binary antipodal vector b with 

complexity O(2 N−1 ) . Denote this optimal solution as b opt , then the 

pursued principal component is given by 

p L 1 = 
Xb opt 

‖ Xb opt ‖ 2 
. (8) 

When the rank of the nominal data is r > 1, problem P L 1 can be 

recast into [13] 

max 
P ∈ R D ×r 

P T P = I r 

‖ X 
T P ‖ 1 = max 

P ∈ R D ×r 

P T P = I r 

max 
B ∈{±1 } N×r 

tr (P 
T XB ) 

= max 
P ∈ R D ×r 

P T P = I r 

max 
B ∈{±1 } N×r 

tr (BP 
T X ) = max 

B ∈{±1 } N×r 
‖ XB ‖ ∗ (9) 

where ‖ ·‖ ∗ stands for nuclear norm. By Proposition 4 of 

Markopoulos et al. [13] , to find exactly the optimal L 1 -norm pro- 

jection operator P L 1 in (9) we can perform the following steps: 

1) Solve (9) to obtain the optimal binary matrix B opt ∈ { ±1} N × r . 

2) Perform singular value decomposition (SVD) on XB opt , such that 

XB opt = U�V T . 

3) Return P L 1 = [ U ] : , 1: r V T . 1 

2.2. Sub-optimal bit-flipping algorithm for L 1 -PCA 

From (7) , we know that finding the optimal rank-1 L 1 -subspace 

for a data matrix X ∈ R D ×N is equivalent to finding the optimal bi- 

nary antipodal vector b opt ∈ { ±1} N . In [14] , a fast bit-flipping (BF) 

algorithm was proposed to solve (7) . The BF algorithm for rank 

r = 1 starts with an initial binary vector b (0) ∈ { ±1} N , and itera- 

tively produces a sequence of new binary vectors b ( k ) (iteration in- 

dex k = 1 , 2 , . . . ), in which b (k +1) differs from b ( k ) only in a single 

bit position, selected so as to achieve the highest increase of the 

quadratic value b T X T Xb in (7) . Upon convergence, the BF algorithm 

generates a suboptimal binary vector b c (superscript c stands for 

“at convergence”), then a suboptimal solution for the L 1 principal 

component p L 1 is obtained by 

p L 1 = 
Xb 

c 

∥∥Xb c 
∥∥
2 

. (10) 

The above BF algorithm is extended in [15] for the calculation of 

r > 1 L 1 principal components. From (9) , we know that the problem 

1 [ U ] :,1: r stands for the first r columns of matrix U . 

of finding r principal components is equivalent to finding a binary 

matrix B ∈ { ±1} N × r that maximizes ‖ XB ‖ ∗ . The corresponding BF 
algorithm starts with an initial binary matrix B (0) ∈ { ±1} N × r and 

iteratively produces a sequence of new binary matrices B ( k ) (itera- 

tion index k = 1 , 2 , . . . ), in which B (k +1) differs from B ( k ) only in a 

single bit position, selected so as to achieve the highest increase of 

‖ XB ‖ ∗ in (9) . The associated suboptimal solution for the rank- r L 1 - 

subspace P L 1 can be obtained by performing the following steps: 

1) Run BF with input B (0) to obtain a suboptimal binary matrix 

B c ∈ { ±1} N × r ; 2) Perform SVD on XB c such that XB c = U�V T ; and 

3) Return P L 1 = [ U ] : , 1: r V T . 

2.3. Iterative re-weighted L 1 -PCA 

Our preliminary study [19] proposed the iterative re-weighted 

L 1 -PCA ( L 1 -IRW) that generates a sequence of improved rank- r L 1 - 

subspaces P (k ) 
L 1 

∈ R D ×r , with iteration index k = 0 , 1 , . . . for a fixed 

data matrix X = [ x 1 , . . . , x N ] ∈ R D ×N . Initially, the batch L 1 -subspace 

of (5) is obtained with the BF algorithm and denoted as P (0) 
L 1 

. Then, 

P (0) 
L 1 

is iteratively updated. In the k th iteration, the L 1 -subspace cal- 

culated in the (k − 1) th iteration P (k −1) 
L 1 

is available. The conformity 

of the n th data sample x n is measured by the L 2 error between x n 
and its rank- r surrogate 

d (k ) n = ‖ x n − P 
(k −1) 
L 1 

P 
(k −1) T 

L 1 
x n ‖ 2 , n = 1 , . . . , N. (11) 

We expect large d (k ) n if x n is an “outlier” and small d (k ) n if x n is a 

nominal sample. Then the sample weight is defined as the inverse 

of the distance 

w 
(k ) 
n � (d (k ) n ) −1 , n = 1 , . . . , N, (12) 

followed by normalization, 

˜ w 
(k ) 
n = 

w 
(k ) 
n 

N ∑ 

n =1 

w 
(k ) 
n 

, n = 1 , . . . , N. (13) 

When computing the L 1 -subspace, data samples with larger weight 

should contribute more and samples with smaller weight should 

be suppressed such that the resulting calculated L 1 -subspace is 

more accurate. Hence, in [19] we proposed that each data sample 

x n is weighed by ˜ w 
(k ) 
n . We form a weight matrix 

˜ W 
(k ) � 

⎡ 

⎢ ⎢ ⎢ ⎣ 

˜ w 
(k ) 
1 0 0 . . . 

0 ˜ w 
(k ) 
2 0 . . . 

. . . 

0 0 . . . ˜ w 
(k ) 
N 

⎤ 

⎥ ⎥ ⎥ ⎦ 
(14) 

and update the L 1 -subspace by solving 

P 
(k ) 
L 1 

= arg max 
P ∈ R D ×r 

P T P = I r 

‖ (X ̃  W 
(k ) ) T P ‖ 1 (15) 

with the BF algorithm. The approach automatically suppresses 

outliers in each iteration, resulting in a sequence of re- 

fined L 1 -subspaces. When ‖ w (k ) − w (k −1) ‖ 2 < ε, where w (k ) � 

[ w 
(k ) 
1 , w 

(k ) 
2 , . . . , w 

(k ) 
N ] 

T and ε > 0 is a predefined threshold, the al- 

gorithm converges at a suboptimal rank- r subspace. It was demon- 

strated that this iterative sample re-weighting technique leads to 

more robust subspace estimation [19] than the original one-time 

L 1 -subspace calculation. 

3. Proposed L 1 -subspace tracking 

In this work, we propose an L 1 -subspace tracking algorithm for 

streaming data. The proposed scheme is based on the BF technique 

[14] , [15] and the preliminary study on L 1 -IRW [19] . 
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The problem statement is the following. At time slot t − 1 , the 

data matrix is X t−1 = { x t−1 ,n } 
N 
n =1 ∈ R D ×N , where x t−1 ,n ∈ R D repre- 

sents the n th sample (column) of the data matrix at time-slot t − 1 . 

Hereafter we use the same notation. Assume we obtained the fol- 

lowing quantities at time-slot t − 1 : rank-1 subspace p c 
t−1 ∈ R D (or 

rank- r subspace P c 
t−1 ∈ R D ×r ), the suboptimal binary vector b c 

t−1 ∈ 

{±1 } N (or binary matrix B c 
t−1 ∈ {±1 } N×r ), and the weight matrix 

W c 
t−1 = diag { w c 

t−1 , 1 , . . . , w c 
t−1 ,N } , where w c 

t−1 ,n stands for the un- 

normalized weight at convergence for x t−1 ,n , n = 1 , 2 , . . . , N. 2 At 

time-slot t, t ≥2, a new datum x ∈ R D is acquired, and we aim at 

updating p c 
t−1 ( P 

c 
t−1 ) to obtain p 

c 
t ( P 

c 
t ). A straight-forward method 

is to incorporate the new datum in the old data matrix X t−1 and 

re-run L 1 -IRW. Nevertheless, as more data are acquired, the size of 

the data matrix keeps increasing. Moreover, L 1 -IRW with BF starts 

from an arbitrarily initialized binary vector (or matrix), resulting in 

slow convergence speed. 

Instead, our task is to find p c t ( P 
c 
t ) without solving L 1 -IRW in 

(15) from scratch but by exploiting the results p c 
t−1 ( P 

c 
t−1 ), b 

c 
t−1 

( B c 
t−1 ), and W c 

t−1 obtained in the previous time slot. In the follow- 

ing subsections, we elaborate the rank-1 and rank- r ( r > 1) cases in 

detail. 

3.1. Rank-1 L 1 -subspace tracking 

The proposed rank-1 L 1 -subspace tracking is outlined in 

Algorithm 1 . The inputs are X t−1 , p 
c 
t−1 , W c 

t−1 , b 
c 
t−1 , the new da- 

tum x , and two positive parameters 0 < β < 1 and ε �1. The out- 

puts are the solutions at convergence for time-slot t : p c t , b 
c 
t , and 

W c t . Algorithm 1 is executed every time a new datum is acquired, 

updating the rank-1 L 1 -subspace on-the-fly. 

Algorithm 1 Rank-1 L 1 -subspace tracking. 

Input: X t−1 ∈ R D ×N , p c 
t−1 ∈ R D , W c 

t−1 ∈ R N×N , b c 
t−1 ∈ {±1 } N , x ∈ R D , 

0 < β < 1 , ε � 1 . 

1: p (0) 
t = p c 

t−1 . 

2: Remove x t−1 ,i from X t−1 to obtain X t−1 /i ∈ R D ×(N−1) . 

3: X t ← [ X t/N = X t−1 /i x t,N = x ] . 

4: W 
(0) 
t/N ← W c 

t−1 /i 
, b (0) 

t/N ← b c 
t−1 /i 

. 

5: d (0) 
t,N ← ‖ x t,N − p (0) 

t p (0) 
t 

T 
x t,N ‖ 2 . 

6: w 
(0) 
t,N ← (d (0) 

t,N ) 
−1 . 

7: ˜ w 
(0) 
t,n ← w 

(0) 
t,n / 

N ∑ 

n =1 
w 

(0) 
t,n , n = 1 , . . . , N. 

8: ˜ W 
(0) 
t ← diag { ̃  w 

(0) 
t, 1 , . . . , ̃

 w 
(0) 
t,N } . 

9: (p c t , b 
c 
t , W c t ) ← RANK1- L 1 REFINE (X t , p 

(0) 
t , W 

(0) 
t , ̃  W 

(0) 
t , b (0) 

t/N , β, ε) . 

Output: p c t , b 
c 
t , W c t . 

To avoid processing an enlarging data matrix, we adopt a fixed 

processing window of N data samples. Before appending the new 

datum x to data matrix X t−1 , one old datum is removed from 

X t−1 . Assume that the i th datum is removed, 1 ≤ i ≤N , and X t−1 /i � 

{ x t−1 ,n } 
N 

n = 1 
n 	 = i 

∈ R D ×(N−1) denotes the sub-matrix of X t−1 that ex- 

cludes the i th sample (column). Specifically, the index of the da- 

tum to remove is selected by the following criterion: 

i = arg min 
1 ≤n ≤N 

w 
c 
t−1 ,n . (16) 

In this way, we discard the datum with the minimum weight. Such 

a datum is more likely to be the outlier than other samples, there- 

fore its removal purifies the current data matrix. Then, we append 

2 Initially at t = 1 , these quantities p c 1 ( P 
c 
1 ), b 

c 
1 ( B 

c 
1 ), and W c 1 are obtained by L 1 - 

IRW in (15) with the initial data matrix X 1 . 

the new datum x to X t−1 /i and form the new data matrix at time 

t , X t � [ X t/N x t,N ] ∈ R D ×N , in which the first N − 1 columns are 

X t/N = X t−1 /i , and the last column is the new datum x t,N = x . 

With the new data matrix X t , we re-formulate the k th iteration 

of L 1 -IRW in (15) as 

p (k ) t = arg max 
p ∈ R D 

‖ p ‖ 2 = 1 

‖ (X t ̃
 W 
(k ) 
t ) T p ‖ 1 , (17) 

where ˜ W 
(k ) 
t is the normalized weight matrix for X t at iteration 

k . Instead of solving (17) from scratch as the original L 1 -IRW 

[19] does, we aim at intelligently running the iterations and up- 

dating p (k ) t till it converges to p c t . The key issue is to utilize the 

available information: p c 
t−1 , b 

c 
t−1 , and W c 

t−1 . 

First, with similar derivation in (7) , the problem in (17) is equiv- 

alent to finding the binary vector 

b (k ) t = arg max 
b ∈{±1 } N 

b T ˜ W 
(k ) T 

t X 
T 
t X t ̃

 W 
(k ) 
t b , (18) 

or equivalently, 

max 
b (k ) t ∈ { ±1 } N 

{ 

b (k ) 
T 

t/N 
˜ W 

(k ) T 

t/N X 
T 
t/N X t/N ̃

 W 
(k ) 
t/N b 

(k ) 
t/N 

+ 2 b (k ) 
t,N ̃

 w 
(k ) 
t,N x 

T 
t,N X t/N ̃

 W 
(k ) 
t/N b 

(k ) 
t/N + (b (k ) 

t,N ) 
2 ( ̃  w 

(k ) 
t,N ) 

2 x T t,N x t,N 

} 

, (19) 

where the objective function in (18) is decomposed into three 

terms, and the pursued binary vector b (k ) t = [ b (k ) 
t, 1 , . . . , b 

(k ) 
t,N ] 

T ∈ 

{±1 } N is decomposed into two parts: b (k ) 
t/N = [ b (k ) 

t, 1 , . . . , b 
(k ) 
t,N−1 ] 

T ∈ 

{±1 } N−1 associated with the old data X t / N , and the last bit b (k ) 
t,N 

associated with the new datum x t,N . The normalized weight ma- 

trix ˜ W 
(k ) 
t = diag { ̃  w 

(k ) 
t, 1 , . . . , ̃

 w 
(k ) 
t,N } is also decomposed into two parts: 

˜ W 
(k ) 
t/N = diag { ̃  w 

(k ) 
t, 1 , . . . , ̃

 w 
(k ) 
t,N−1 } associated with X t / N and ˜ w 

(k ) 
t,N associ- 

ated with x t,N . 

Second, initialize the rank-1 subspace in (17) by p (0) 
t = p c 

t−1 . 

Since the partial data X t / N of the current time-slot t are indeed 

the partial data X t−1 /i from time-slot t − 1 , for which the con- 

vergent weights and binary bits associated with p c 
t−1 are avail- 

able, we can then initialize the weights and binary bits for X t / N 

as W 
(0) 
t/N = W c 

t−1 /i 
and b (0) 

t/N = b c 
t−1 /i 

, respectively. For the new da- 

tum x t,N , its distance to p 
(0) 
t and its weight are initialized by d (0) 

t,N = 

‖ x t,N − p (0) 
t p (0) 

t 

T 
x t,N ‖ 2 and w 

(0) 
t,N = (d (0) 

t,N ) 
−1 . Subsequently, the nor- 

malized weights of all samples and the normalized weight ma- 

trix are initialized as ˜ w 
(0) 
t,n = w 

(0) 
t,n / 

∑ N 
n =1 w 

(0) 
t,n , 1 ≤n ≤N , and ˜ W 

(0) 
t = 

diag { ̃  w 
(0) 
t, 1 , . . . , ̃

 w 
(0) 
t,N } . The above initialization is followed by a rank- 

1 L 1 -subspace refining function RANK1- L 1 REFINE described in 

Algorithm 2 . 

In Algorithm 2 , the inputs of the function RANK1- L 1 REFINE are 

X t , p 
(0) 
t , W 

(0) 
t , ˜ W 

(0) 
t , b (0) 

t/N , parameters 0 < β < 1 and ε �1. The out- 

puts of the function are the solutions at convergence p c t , b 
c 
t , W c t for 

time-slot t . 

It first initializes the single bit b (k ) 
t,N associated with the new da- 

tum by maximizing the objective function in (19) 

b (0) 
t,N = arg max 

b∈{±1 } 
{ b (0) T 

t/N 
˜ W 

(0) T 

t/N X 
T 
t/N X t/N ̃

 W 
(0) 
t/N b 

(0) 
t/N 

+ 2 b ̃  w 
(0) 
t,N x 

T 
t,N X t/N ̃

 W 
(0) 
t/N b 

(0) 
t/N + b 2 ( ̃  w 

(0) 
t,N ) 

2 x T t,N x t,N } 

= sgn { ̃  w 
(0) 
t,N x 

T 
t,N X t/N ̃

 W 
(0) 
t/N b 

(0) 
t/N } . (20) 

Then the initial full binary vector can be formed as b (0) 
t = 

[ b (0) 
t/N ; b 

(0) 
t,N ] ∈ {±1 } N . Subsequently, the L 1 -subspace is iteratively re- 

fined. In the k th iteration, BF is first executed to solve (18) for b (k ) t 
where the initial normalized weight matrix and binary vector are 
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Algorithm 2 Function (p c t , b 
c 
t , W c t ) ← RANK1- L 1 REFINE (X t , p 

(0) 
t , 

W 
(0) 
t , ̃  W 

(0) 
t , b (0) 

t/N , β, ε) . 

Input: X t ∈ R D ×N , p (0) 
t ∈ R D , W 

(0) 
t ∈ R N×N , ˜ W 

(0) 
t ∈ R N×N , b (0) 

t/N ∈ 

{±1 } N−1 , β , ε. 

1: Initialize b (0) 
t,N by (20). 

2: b (0) 
t ← [ b (0) 

t/N ; b 
(0) 
t,N ] . 

for k = 1 , 2 , . . . , do 

3: b (k ) t ← BF (b (k −1) 
t , X t , ̃

 W 
(k −1) 
t ) . 

4: p (k ) t ← X t ̃
 W 
(k −1) 
t b (k ) t / ‖ X t ̃

 W 
(k −1) 
t b (k ) t ‖ 2 . 

5: d (k ) t,n ← ‖ x t,n − p (k ) t p (k ) 
T 

t x t,n ‖ 2 , 1 ≤ n ≤ N. 

6: u (k ) t,n ← (d (k ) t,n ) 
−1 , update w 

(k ) 
t,n by (22), 1 ≤ n ≤ N. 

7: Check stopping criterion: if ‖ w 
(k ) 
t − w 

(k −1) 
t ‖ 2 < ε, then p c t ← 

p (k ) t , b c t ← b (k ) t , w c t ← w 
(k ) 
t , W c t ← W 

(k ) 
t . 

Exit. 

8: ˜ w 
(k ) 
t,n ← w 

(k ) 
t,n / 

N ∑ 

n =1 
w 

(k ) 
t,n , ̃

 W 
(k ) 
t ← diag { ̃  w 

(k ) 
t, 1 , . . . , ̃

 w 
(k ) 
t,N } . 

end for 

Output: p c t , b 
c 
t , W c t . 

˜ W 
(k −1) 
t and b (k −1) 

t , respectively. Then the updated b (k ) t is utilized 

to update p (k ) t in a similar way as in (10) , followed by sample dis- 

tance update as in (11) and sample weight update. Specifically, we 

modify the weight update formula (12) as follows to guarantee a 

convergent weight sequence. Once the distance d (k ) t,n is obtained, we 

define 

u (k ) t,n � (d (k ) t,n ) 
−1 (21) 

and update the weight w 
(k ) 
t,n by 

w 
(k ) 
t,n = 

⎧ 

⎪ ⎨ 

⎪ ⎩ 

w 
(k −1) 
t,n (1 − βk ) , if u (k ) t,n < w 

(k −1) 
t,n (1 − βk ) , 

u (k ) t,n , if w 
(k −1) 
t,n (1 − βk ) ≤ u (k ) t,n ≤ w 

(k −1) 
t,n (1 + βk ) , 

w 
(k −1) 
t,n (1 + βk ) , if u (k ) t,n > w 

(k −1) 
t,n (1 + βk ) 

(22) 

where 0 < β < 1 is a pre-defined parameter, and βk is the k th 

power of β . Intuitively, we avoid updating the weights too ag- 

gressively by restricting the new weight w 
(k ) 
t,n to be within a small 

neighborhood of the weight in the previous iteration w 
(k −1) 
t,n . The 

size of the neighborhood depends on β . The convergence of the 

weight sequence can be verified by 

lim 
k →∞ 

βk = 0 , (23) 

lim 
k →∞ 

(w 
(k ) 
t,n − w 

(k −1) 
t,n ) = 0 . (24) 

Then we check the stopping criterion: if the L 2 -distance between 

the updated weight vector w 
(k ) 
t � [ w 

(k ) 
t, 1 , w 

(k ) 
t, 2 , . . . , w 

(k ) 
t,N ] 

T and the 

previous one w 
(k −1) 
t � [ w 

(k −1) 
t, 1 , w 

(k −1) 
t, 2 , . . . , w 

(k −1) 
t,N ] T is less than ε, 

we exit the RANK1- L 1 REFINE function and returns the convergent 

quantities p c t = p (k ) t , b c t = b (k ) t , w c t = w 
(k ) 
t , W c t = W 

(k ) 
t . Otherwise, 

we update the normalized weights and weight matrix in step 8 

and continue with the iterations. 

3.2. Rank- r ( r > 1) L 1 -subspace tracking 

We extend the rank-1 L 1 -subspace tracking to rank- r ( r > 1) 

L 1 -subspace tracking in Algorithm 3 . In contrast to Algorithm 1 , 

the inputs of Algorithm 3 are: the rank- r subspace P c 
t−1 ∈ R D ×r , 

and the binary matrix B c 
t−1 ∈ {±1 } N×r obtained at time-slot t − 1 . 

The outputs are: the rank- r subspace P c t ∈ R D ×r , the binary matrix 

Algorithm 3 Rank- r ( r > 1) L 1 -subspace tracking. 

Input: X t−1 ∈ R D ×N , P c 
t−1 ∈ R D ×r , W c 

t−1 ∈ R N×N , B c 
t−1 ∈ {±1 } N×r , x ∈ 

R D , 0 < β < 1 , ε � 1 . 

1: P (0) 
t = P c 

t−1 . 

2: Remove x t−1 ,i from X t−1 to obtain X t−1 /i ∈ R D ×(N−1) . 

3: X t ← [ X t/N = X t−1 /i x t,N = x ] . 

4: W 
(0) 
t/N ← W c 

t−1 /i 
, B (0) 

t/N ← B c 
t−1 /i 

. 

5: d (0) 
t,N ← ‖ x t,N − P (0) 

t P (0) 
t 

T 
x t,N ‖ 2 . 

6: w 
(0) 
t,N ← (d (0) 

t,N ) 
−1 . 

7: ˜ w 
(0) 
t,n ← w 

(0) 
t,n / 

N ∑ 

n =1 
w 

(0) 
t,n , n = 1 , . . . , N. 

8: ˜ W 
(0) 
t ← diag { ̃  w 

(0) 
t, 1 , . . . , ̃

 w 
(0) 
t,N } . 

9: (P c t , B 
c 
t , W c t ) ← RANK r - L 1 REFINE (X t , P 

(0) 
t , W 

(0) 
t , ̃  W 

(0) 
t , B (0) 

t/N , β, ε) . 

Output: P c t ∈ R D ×r , B c t ∈ {±1 } N×r , W c t ∈ R N×N . 

B c t ∈ {±1 } N×r , and the weight matrix W c t ∈ R N×N at convergence at 

time-slot t . Steps 1 to 3 initialize P (0) 
t and construct X t in a similar 

way as in Algorithm 1 . While Algorithm 1 iteratively solves (17) , 

Algorithm 3 iteratively solves the following problem 

P 
(k ) 
t = arg max 

P ∈ R D ×r 

P T P = I r 

‖ (X t ̃
 W 
(k ) 
t ) T P ‖ 1 . (25) 

Following the derivation in (9) , the above maximization problem is 

equivalent to 

P 
(k ) 
t = arg max 

P ∈ P D ×r 

P T P = I r 

max 
B ∈{±1 } N×r 

tr (BP 
T X t ̃

 W 
(k ) 
t ) , (26) 

which is equivalent to solving 

B 
(k ) 
t = arg max 

B ∈{±1 } N×r 
‖ X t ̃

 W 
(k ) 
t B ‖ ∗. (27) 

In (26) , the optimal n th row of binary matrix B is given by b opt n = 

sgn { P T x t,n ̃  w 
(k ) 
t,n } ∈ {±1 } r , that is, projecting the weighted n th data 

sample onto the rank- r subspace P , followed by a sign operation, 

which means that the n th row of B ( b n ∈ { ±1} r ) is associated with 

the n th data sample x t,n . Hence, in rank- r L 1 -subspace tracking, the 

partial data matrix X t / N are associated with the partial binary ma- 

trix B t / N , which represents an (N − 1) × r binary matrix formed 

by removing the N th row of B t . In step 4 of Algorithm 3 , B t / N 
is initialized by B c 

t−1 /i 
, the convergent binary matrix from time- 

slot t − 1 excluding the i th row. Steps 5–8 are similar to those 

in Algorithm 1 , which initialize the weights and weight matrix 

for data samples. In step 9, the rank- r L 1 -subspace refining func- 

tion RANK r - L 1 R EFINE is called to generate the rank- r subspace 

P c t ∈ R D ×r , the binary matrix B c t ∈ {±1 } N×r , and the weight matrix 

W c t ∈ R N×N at convergence. 

The function RANK r - L 1 REFINE is outlined in Algorithm 4 . The 

inputs and outputs are similar to those in Algorithm 3 . It first ini- 

tializes the N th row of B t (denoted as a column vector b t,N ∈ { ±1} r , 

the r binary bits associated with the new datum) as 

b (0) 
t,N = arg max 

b ∈{±1 } r 
‖ X t B 

(0) 
t ‖ ∗ = 

∥∥∥∥[ X t/N x t,N ] 

[
B 

(0) 
t/N 

b T 

]∥∥∥∥
∗

. (28) 

Then the initial full binary matrix can be formed as B (0) 
t = 

[ B (0) 
t/N ;b 

(0) T 

t,N ] . Subsequently, the L 1 -subspace P 
(k ) 
t is iteratively re- 

fined. In the k th iteration, BF is first executed (step 3) to solve 

(27) for B (k ) t where the initial binary matrix is B (k −1) 
t . Then the up- 

dated B (k ) t is utilized to update P (k ) t (steps 4 and 5). Steps 6–9 are 
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Algorithm 4 Function (P c t , B 
c 
t , W c t ) ← RANK r - L 1 REFINE (X t , P 

(0) 
t , 

W 
(0) 
t , ̃  W 

(0) 
t , B (0) 

t/N , β, ε) . 

Input: X t ∈ R D ×N , P (0) 
t ∈ R D , W 

(0) 
t ∈ R N×N , ˜ W 

(0) 
t ∈ R N×N , B (0) 

t/N ∈ 

{±1 } (N−1) ×r , β , ε. 

1: Initialize b (0) 
t,N by (28). 

2: B (0) 
t ← [ B (0) 

t/N ;b 
(0) T 

t,N ] . 

for k = 1 , 2 , . . . , do 

3: B (k ) t ← BF (B (k −1) 
t , X t , ̃

 W 
(k −1) 
t ) . 

4: (U 
(k ) 
t , S (k ) t , V 

(k ) 
t ) ← SVD (X t ̃

 W 
(k −1) 
t B (k ) t ) . 

5: P (k ) t ← [ U 
(k ) 
t ] : , 1: r V 

(k ) T 

t . 

6: d (k ) t,n ← ‖ x t,n − P (k ) t P (k ) 
T 

t x t,n ‖ 2 , 1 ≤ n ≤ N. 

7: u (k ) t,n ← (d (k ) t,n ) 
−1 , update w 

(k ) 
t,n by (22), 1 ≤ n ≤ N. 

8: Check stopping criterion: if ‖ w 
(k ) 
t − w 

(k −1) 
t ‖ 2 < ε, then P c t ← 

P (k ) t , B c t ← B (k ) t , w c t ← w 
(k ) 
t , W c t ← W 

(k ) 
t . 

Exit. 

9: ˜ w 
(k ) 
t,n ← w 

(k ) 
t,n / 

N ∑ 

n =1 
w 

(k ) 
t,n , 

˜ W 
(k ) 
t ← diag { ̃  w 

(k ) 
t, 1 , . . . , ̃

 w 
(k ) 
t,N } . 

end for 

Output: P c t , B 
c 
t , W c t . 

the same as steps 5–8 in Algorithm 2 , with P (k ) t , P c t , B 
(k ) 
t , and B c t 

replacing p (k ) t , p c t , b 
(k ) 
t , and b c t . 

4. Applications and experimental studies 

In this section, we assess the effectiveness of the proposed 

L 1 -subspace tracking algorithm through four experimental stud- 

ies: (i) synthetic data example, (ii) moving objects detection from 

streaming surveillance videos, (iii) robust online cooperative spec- 

trum sensing in a cognitive radio network, and (iv) DoA tracking. 

We compare the proposed method (named “L 1 -Tracking”) with the 

batch L 1 -PCA [13] (named “L 1 -Batch”), the L 1 -IRW [19] , the batch 

L 2 -PCA (named “L 2 -Batch”), the GRASTA [27] , the PracReProCS [31] , 

and the OMoGMF [32] schemes, in terms of performance and ex- 

ecution time. All the experiments in this work were implemented 

on a personal computer with i7 CPU and 16G RAM. 

4.1. Synthetic data example 

We create a synthetic data example to evaluate the perfor- 

mance of the proposed online L 1 -subspace tracking algorithm in 

controlled conditions and to assess the impact of design parame- 

ters N and β . 

We generate random streaming measurements of x t , t = 1 , 2 , . . . 

from a rank-4 subspace in R 100 , spanned by the columns of a 

random matrix P true ∈ R 100 ×4 that has orthonormal columns. The 

measurement x t is corrupted by outliers with probability 0.3, that 

is, x t = P true a t + s t , where a t are Gaussian random vectors in R 4 , 

and s t ∈ R 100 are outlier vectors with nonzero Gaussian random 

coefficients in 50% of their entries. We apply the proposed L 1 - 

Tracking to estimate the underlying rank-4 subspace P true , and 

evaluate the performance in terms of the subspace estimation er- 

ror between the updated subspace P (k ) t and the true subspace P true , 

which is defined as [28] 

Error t = 
‖ P 

(k ) 
t P 

(k ) † 

t − P true P 
† 
true ‖ F 

‖ P true P 
† 
true ‖ F 

, (29) 

where † and ‖ ·‖ F stands for the pseudo-inverse and the Frobenius- 
norm of a matrix. 

Fig. 1 (a) shows the subspace estimation error versus the num- 

ber of new data samples, for different processing-window size 

N = 20 , 30 , and 40. The subspace is initialized with N data sam- 

ples, and is updated as P c t ∈ R 100 ×4 at the arrival of every new da- 

tum x t , t = 1 , 2 , . . . , 200 . The weight update parameter is fixed at 

β = 0 . 5 . It is observed that for all N values, the subspace estima- 

tion error decreases as the subspace is being updated with new 

data samples. In particular, a smaller N value leads to faster con- 

vergence rate. 

In Fig. 1 (b), for a fixed processing-window size N = 20 , the sub- 

space estimation error when updating the subspace at time-slot 

t = 15 using the 15th new datum is evaluated versus the number 

of iterations k for weight update for various values of design pa- 

rameter β = 0 . 1 , 0 . 3 , 0 . 5 , and 0.7. As specified in Algorithms 2 and 

4 , 0 < β < 1 is an input parameter in the L 1 -subspace refining func- 

tions RANK1- L 1 REFINE and RANK r - L 1 REFINE. As described in the 

weight update Eq. (22) , the new weight w 
(k ) 
t,n is confined to a 

small neighborhood centered at the weight in the previous itera- 

tion w 
(k −1) 
t,n , and βk w 

(k −1) 
t,n is the radius of the neighborhood. Since 

0 < β < 1, the weight update procedure is guaranteed to converge 

by Eqs. (23) and (24) . When β → 0, the neighborhood is infinitely 

small and the weight update terminates after one iteration. In ad- 

dition, a larger β leads to slow convergence while a smaller β
leads to fast convergence, which is demonstrated in Fig. 1 (b). In 

Fig. 1 (b), as expected, β = 0 . 1 leads to fast convergence and the 

resulting P c t is still far away from P true , while β = 0 . 5 and β = 0 . 7 

lead to slower convergence rate but they achieve lower subspace 

estimation error. The estimation error Error t at convergence for dif- 

ferent β values are labeled on the curves. 

4.2. Moving objects detection from streaming surveillance videos 

Consider a sequence of surveillance video frames X t ∈ R m ×n 

with frame resolution of m ×n pixels and time index t = 1 , 2 , . . . . 

A typical surveillance video sequence is consisted of a background 

scene that can be modeled as a low-rank component, and sparse 

foreground moving objects superimposed on the background scene 

that are regarded as the outliers. For security monitoring, the ob- 

jective is to extract the moving objects. 

Each video frame X t is vectorized as x t ∈ R D , D = m × n via col- 

umn concatenation. We model the background scene as a low-rank 

component z t ∈ R D and the foreground moving objects as a sparse 

component s t ∈ R D . Hence, 

x t = z t + s t , t = 1 , 2 , . . . . (30) 

Consider a group of N frames, the matrix-form representation is 

X = Z + S , (31) 

where X = [ x 1 , . . . , x N ] ∈ R D ×N , Z = [ z 1 , . . . , z N ] ∈ R D ×N , and S = 

[ s 1 , . . . , s N ] ∈ R D ×N . To extract the low-rank background, a simple 

method is to run rank-1 L 1 -Batch on X and obtain the L 1 -subspace 

p L 1 ∈ R D , or to run L 1 -IRW and obtain the L 1 -subspace p 
c 
L 1 

∈ R D at 

convergence. Afterwards, the background can be approximated by 
̂ Z = p L 1 p 

T 
L 1 
X (or ̂  Z = p c 

L 1 
p c 

T 

L 1 
X ) and the foreground can be extracted 

as ̂  S = X −̂ Z . For our proposed L 1 -Tracking, we initialize the rank- 

1 subspace p c 0 with the initial N = 8 frames using L 1 -IRW. Sub- 

sequently, we update the subspace p c t ∈ R D at the arrival of ev- 

ery new frame x t , t = 1 , 2 , . . . . We keep the processing window at 

N = 8 . 

We first test the proposed L 1 -Tracking, the L 1 -IRW, and the L 1 - 

Batch algorithms on a subset of 80 frames from the Lobby video 

sequence. Each frame is of 128 ×160 pixels. This is a challeng- 

ing video sequence since there is illumination change in the back- 

ground. The processing window is N = 8 for all schemes in com- 

parison. Fig. 2 displays the background and foreground extracted 

at multiple distinct time slots t = 10 , 13 , 30 , 51 , 54 by the proposed 
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Fig. 1. (a) Subspace estimation error with different processing-window size N = 20 , 30 , and 40. The sample-weight update parameter is fixed at β = 0 . 5 . (b) Subspace 

estimation error with different sample-weight update parameter β = 0 . 1 to 0.7. The processing-window size is fixed at N = 20 . 

L 1 -Tracking, the L 1 -IRW [19] , and the regular L 1 -Batch [13] meth- 

ods. Fig. 2 .(a) shows the original frames, where the background is 

bright for t = 10 , 13 , and is dark for the remaining three frames. 

In frames t = 10 , 30 , 51 , 54 , a person appears in the scene as a 

moving object. From Fig. 2 .(b1), we observe that the proposed L 1 - 

Tracking successfully recovers the background and adapts to the 

illumination change. The corresponding extracted foreground in 

grayscale is displayed in Fig. 2 .(c1), and the binary masks for the 

detected moving objects are displayed in Fig. 2 .(d1). In contrast, 

the L 1 -IRW and L 1 -Batch cannot accurately recover the background 

scenes ( Fig. 2 .(b2)(b3)), which cause “ghost” phenomenon in the 

extracted grayscale foreground scenes ( Fig. 2 .(c2)(c3)), and the bi- 

nary masks ( Fig. 2 .(d3)). 

Besides, we run the proposed L 1 -Tracking algorithm on the 

complete Lobby video sequence of 1546 frames, and compare its 

receiver operating characteristic (ROC) curve with those generated 

by the GRASTA [27] , PracReProCS [31] , and OMoGMF [32] algo- 

rithms. For a fair comparison, for all four schemes we use the 

first N = 8 frames for subspace initialization, and the remaining 

1538 frames for online subspace update. For fast convergence, the 

sample weight update parameter is set as β = 0 . 5 for the pro- 

posed L 1 -Tracking. For OMoGMF, a mixture of 2 Gaussians is used 

to model the foreground. As shown in Fig. 3 (a), our proposed 

L 1 -Tracking achieves the highest true positive rate (TPR) under 

the same false positive rate (FPR) compared to the other three 

schemes. Fig. 3 (b) shows the accumulated execution time for all 

four subspace tracking methods as the new frame index increases. 

Compared to PracReProCS, the proposed L 1 -Tracking, the GRASTA, 

and the OMoGMF methods have significant saving in execution 

time. 

4.3. Robust cooperative spectrum sensing in cognitive radio networks 

Radio frequency spectrum is a scarce resource in wireless com- 

munications due to the ever-increasing wireless channel users. 

Spectrum-sensing cognitive radio is a technique that allows sec- 

ondary users to detect the idle spectrum and share the wire- 

less channel with primary users in an opportunistic manner [35] . 

We consider the robust cooperative spectrum sensing problem 

in a cognitive radio network (CRN) when malicious attacks exist 

[36,37] . The CRN in Fig. 4 consists of a primary user (PU), multiple 

secondary users (SUs) and a fusion center. The PU transmits sig- 

nals on the wireless channel and the SUs monitor the PU’s status 

(presence or absence). At time-slot t , the received PU signal power 

(dB) at the m th SU can be expressed as 

y m,t = �t + α10 log 10 (d 0 /d m ) + o m,t dB , (32) 

where �t is the PU transmission power (in dB) at time-slot t, α is 

the path-loss exponent, d 0 is the reference distance, and d m is the 

distance between the PU and the m th SU which is measured prior 

via geo-location database. The parameters �t and α are unknown 

at the fusion center and need to be estimated. When attackers at- 

tack the m th SU at time t , the received signal y m,t has an extra 

additive component o m,t (dB), which is considered as the outlier. 

All SUs send their sensed signal y m,t to the fusion center. The ob- 

jective of the fusion center is to recover the transmission power 

�t , t = 1 , 2 , . . . reported by the SUs, compare it with a threshold 

and determine whether the PU exists or not. 

Consider M SUs and sensing time slots t = 1 , 2 , . . . , N, 

define matrices H M×2 � [ 1 1 . . . 1 
β1 β2 . . . βM 

] T and X 2 ×N � 

[ �1 �2 ... �N 
α α α α

] , in which βm � 10log 10 ( d 0 / d m ), then the data 

at the fusion center collected in the period of N time slots can 

be modeled as Y = HX + O ∈ R M×N , where the ( m, t )th entry of 

the outlier matrix O is o m,t . Define L � HX , then Y = L + O . Since 

rank( H ) ≤2 and rank( X ) ≤2, we have rank( L ) ≤2. 

To solve the power estimation problem in the presence of out- 

lier O , we can apply L 1 -Batch to data matrix Y and estimate the 

rank-2 subspace P L 1 ∈ R M×2 in which the low-rank matrix L lies, 

that is, 

P L 1 = arg max 
P ∈ R M×2 

P T P = I 

‖ Y 
T P ‖ 1 . (33) 

Then L and X can be recovered by ̂  L = P L 1 P 
T 
L 1 
Y and ̂ X = H † ̂  L 3 , re- 

spectively. In the sequel, the PU transmission power (in dB) can be 

obtained from the first row of ̂ X , which is ̂ � = [ ̂  �1 , ̂
 �2 , . . . , ̂

 �N ] 
T . 

In our study, we run 100 independent experiments, and each 

experiment has N total = 60 snapshots. The reference distance d 0 is 

20 m , pathloss coefficient is set to α = 4 , and M = 40 SUs are de- 

ployed. The PU transmission power is uniformly distributed be- 

tween 10 0 0 Watt and 110 0 Watt, such that 30dB ≤�t ≤30.4139dB, 

and the distance between the PU and the m th SU is uniformly 

distributed between 5km and 6km. We fix the attack amplitude 

from all attackers to be 20dB, and 8% of the sensed signals are 

3 H † is the pseudo-inverse of H . 
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Fig. 2. The subset of Lobby sequence (80 frames): (a) Original frame of time slot t = 10 , 13 , 30 , 51 , and 54; reconstructed background by (b1) proposed L 1 -Tracking, (b2) 

L 1 -IRW, and (b3) L 1 -Batch; gray-scale extracted moving objects by (c1) proposed L 1 -Tracking, (c2) L 1 -IRW, and (c3) L 1 -Batch; and binary mask by (d1) proposed L 1 -Tracking, 

(d2) L 1 -IRW, and (d3) L 1 -Batch. 

attacked randomly. We compare the performance of our proposed 

L 1 -Tracking with L 1 -Batch, L 1 -IRW, GRASTA [27] , PracReProCS [31] , 

and OMoGMF [32] . The weight update parameter of the proposed 

L 1 -Tracking is set as β = 0 . 5 . For L 1 -Batch and L 1 -IRW, the 60 snap- 

shots are divided into 6 groups of N = 10 snapshots, and an inde- 

pendent L 1 -Batch or L 1 -IRW subspace is computed for each group, 

followed by power estimation. For the proposed L 1 -Tracking, we 

initialize the L 1 -subspace and the associated binary bit matrix with 

the initial N = 10 snapshots. Then we keep the processing window 

size at N = 10 , with every collected new snapshot y t ∈ R M , we up- 

date the L 1 -subspace P 
c 
t ∈ R M×2 , t = N + 1 , N + 2 , . . . , N total . Corre- 

spondingly, ̂ � t = P c t P 
c T 
t y t , ̂ x t = H † ̂  � t = [ ̂  �t , ̂  αt ] 

T . The recovered PU 

transmission power at time-slot t is ̂ �t . 

The power estimation error over a period of N = 10 time slots 

is calculated as the following: 

σN = ‖ ̂  � − �‖ 2 / ‖ �‖ 2 , (34) 

Table 1 

The average power estimation error and accumulated subspace tracking time of six 

algorithms in comparison. 

where ̂ � is the estimated PU transmission power (in dB). For all 

schemes in comparison, we calculate the average σN (denoted as 

σ ave 
N ) with N total = 60 snapshots and 100 experiments. 

Table 1 shows the accumulated subspace update time mea- 

sured in seconds and the average power estimation error for the 
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Fig. 3. Comparison studies of the proposed L 1 -Tracking, the GRASTA [27] , the PracReProCS [31] , and the OMoGMF [32] algorithms on the complete Lobby sequence (1546 

frames): (a) the ROC curves; (b) the accumulated subspace update time in seconds versus the new frame index t . 

Fig. 4. Cooperative cognitive radio network structure. 

six algorithms in comparison. The two lowest average power es- 

timation error are highlighted in red, which are offered by the 

proposed L 1 -Tracking and the L 1 -IRW methods. Although L 1 -IRW 

slightly outperforms L 1 -Tracking in power estimation error, its 

huge processing time is inappropriate for real-time scenarios. On 

the other hand, although the GRASTA and OMoGMF algorithms 

excel in subspace update speed, their power estimation error re- 

sulted from inaccurate subspace estimation is much higher than 

the proposed L 1 -Tracking scheme. 

4.4. Direction-of-arrival tracking 

A core technical problem in wireless communications and radar 

applications is the problem of estimating the direction-of-arrival 

(DoA) of incoming signals [38,39] . Our signal model is similar to 

those in [13] and [16] . We consider a receiver equipped with a 

uniform linear array (ULA) of M antenna elements, and d is the 

spacing between adjacent antenna elements. For an incoming far- 

field signal with angle-of-arrival θi ∈ (−π
2 , 

π
2 ] and wavelength λc , 

the complex-domain array response vector is defined as 

s θi � 

[ 
1 , e − j 

2 πd sin θi 
λc , . . . , e − j 

(M−1)2 πd sin θi 
λc 

] T 
∈ C 

M . (35) 

To satisfy the Nyquist spatial sampling theorem, d is chosen to be 

half the signal wavelength d = 
1 
2 λc . For simplicity, we define 

f i � 0 . 5 sin (−θi ) , (36) 

then the array response vector becomes 

s f i = [1 , e j1 ·2 π f i , e j2 ·2 π f i , . . . , e j(M−1) ·2 π f i ] T ∈ C 
M . (37) 

In our signal model, the ULA takes snapshots of two incoming 

signals (targets) with angles-of-arrival θ1 and θ2 , and the associ- 

ated f 1 and f 2 can be obtained by (36) . The number of antenna 

elements is M = 20 . The snapshot at time-slot t is expressed as 

x t = A 1 s f 1 + A 2 s f 2 + n t , t = 1 , 2 , . . . , (38) 

where A 1 , A 2 are the received-signal amplitudes, and n t ∼

CN (0 M , σ
2 I M ) is additive white complex Gaussian noise. Therefore, 

the nominal signal lies in a rank-2 subspace formed by s f 1 and s f 2 . 

We assume that the signal-to-noise ratio (SNR) of the two signals 

is SNR 1 = 10 log 10 
A 2 
1 

σ 2 dB = 4 dB and SNR 2 = 10 log 10 
A 2 
2 

σ 2 dB = 5 dB . For 

the first ten snapshots x t , t = 1 , . . . , 10 , f 1 and f 2 are fixed at 0.2 

and 0.3, respectively, and x 5 is corrupted by an interferer signal 

x J = A J s J with f J = 0 . 4 and amplitude A J = A 2 , that is, 

x 5 = A 1 s f 1 + A 2 s f 2 + x J + n 5 . (39) 

Then, starting from t = 11 , due to gradual change of θ1 and θ2 , 

f 1 and f 2 become linearly time varying [40] . They start at 0.2 and 

0.3, cross at 0.25, and finish at 0.3 and 0.2 over a span of 10 0 0 

snapshots. This causes the gradual change of the underlying rank-2 

signal subspace. Besides, the same interferer signal x J corrupts x t 
with probability p = 0 . 3 for t = 11 , 12 , . . . , 1010 . 
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Fig. 5. MUSIC spectra with rank-2 subspaces at time-slot (a) t = 141 , (b) t = 221 , and (c) t = 323 . 

Our objective is to track the slowly changing rank-2 subspace 

formed by the two incoming signals, that is, to track the varying 

angles-of-arrival θ1 and θ2 , or equivalently, to track the varying 

f 1 and f 2 . For each snapshot, we create a real-valued version ̃  x t = 

[ Re { x t }; Im { x t } ] ∈ R 2 M by Re{ · }, Im{ · } part concatenation. For our 

proposed L 1 -Tracking, we initialize the rank-2 L 1 -subspace by the 

initial N = 10 snapshots, using the L 1 -IRW scheme. Subsequently, 

we update the L 1 -subspace P 
c 
t ∈ R 2 M×2 at the arrival of every two 

new snapshots. 

We compared the proposed scheme with L 1 -Batch and L 2 -Batch. 

The processing window is fixed at N = 10 for all three schemes. 

For L 1 -Batch and L 2 -Batch, we re-calculate a new rank-2 subspace 

for every other time slot. At time slot t , a data matrix is formed 

by ˜ X t = [ ̃  x t−N+1 , ̃  x t−N+2 , . . . , ̃  x t ] ∈ R 2 M×N , on which the batch rank- 

2 L 1 -PCA (9) and L 2 -PCA (4) are performed to obtain P t,L 1 ∈ R 2 M×2 

and P t,L 2 ∈ R 2 M×2 , respectively. For performance evaluation, we 

plot for all three schemes the MUSIC spectrum [13] : 

P ( f ) � 
1 

˜ s T 
f 
(I 2 M − PP T ) ̃  s f 

, (40) 

where ̃  s f = [ Re { s f }; Im { s f } ] ∈ R 2 M , P ∈ R 2 M×2 is the learned rank- 

2 subspace, and P = P c t , P = P t,L 1 , P = P t,L 2 for the proposed L 1 - 

Tracking, L 1 -Batch, and L 2 -Batch, respectively. For successful DoA 

estimation schemes, the MUSIC spectrum shall show high peaks at 

nominal DoAs f 1 and f 2 , and suppresses other signals. 

In Fig. 5 , we plot the MUSIC spectra for all three schemes at 

time-slot t = 141 , 221 , and 323, respectively. The true f 1 , f 2 and 

f J are indicated by the vertical dotted lines in the figures. We 
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observe that as time elapses, L 1 -Batch and the proposed L 1 - 

Tracking algorithms are able to track the changing rank-2 sub- 

spaces and show peaks very close to the two nominal signals f 1 
and f 2 , while L 2 -Batch MUSIC spectrum is severely contaminated 

by the interferer signal at f J . Besides, the proposed L 1 -Tracking 

outperforms L 1 -Batch since it well suppresses the interferer at f J , 

while L 1 -Batch still shows a small peak at f J . Further, the proposed 

L 1 -Tracking accelerates the DoA tracking speed. In our experiment, 

the average subspace update time for the proposed L 1 -Tracking al- 

gorithm is 0.0313 s per snapshot, and that for the L 1 -Batch algo- 

rithm is 0.0514 s per snapshot. 

5. Complexity analysis 

In this section, we analyze the theoretical computational com- 

plexity in terms of multiplication operations for the proposed 

L 1 -Tracking algorithm, the GRASTA, OMoGMF, and PracReProCS. 

Our findings are in accordance with the experimental results in 

Sections 4.2 and 4.3 . 

We assume that the data sample dimension is D , and the 

processing window size is N for the proposed L 1 -Tracking. The 

complexity of the proposed rank-1 L 1 -Tracking is analyzed in 

Table 2 . At the arrival of the t th new datum x t ∈ R D , the major 

computational tasks to update the subspace p c t ∈ R D include: (1) 

Algorithm 1 Steps 5–7 that calculate the weight for the new da- 

tum, the complexity of which is O (D + N) ; (2) Algorithm 2 Step 3 

that executes bit flipping to update b (k ) t ∈ {±1 } N , the complexity of 

which is O ( DN 2 ×maxFlip), where maxFlip represents the number 

of bit flips for the BF procedure to converge; (3) Algorithm 2 Step 

4 that re-calculates the subspace; and (4) Algorithm 2 Step 5 that 

updates the distance for N data samples. Let maxIter represent the 

number of sample-weight update iterations, then the total com- 

plexity of rank-1 subspace update is O ( DN 2 ×maxFlip ×maxIter). 

The complexity of the proposed rank- r ( r > 1) L 1 -Tracking is 

analyzed in Table 3 . The major computational tasks include: (1) 

Algorithm 3 Steps 5–7 that calculate the weight for the new da- 

tum and normalize the weights for all N data samples in the 

current processing window, with complexity O (2 Dr + D + N) ; (2) 

Algorithm 4 Step 1 that initializes the r bits associated with 

Table 2 

The computational complexity of the proposed rank-1 

L 1 -Tracking described in Algorithms 1 and 2 . 

Computational tasks Complexity (Multiplications) 

Algo. 1 Steps 5–7 O (D + N) 

Algo. 2 Step 3 O ( DN 2 ×maxFlip) 

Algo. 2 Step 4 O ( DN ) 

Algo. 2 Step 5 O ( DN ) 

Algo. 2 Step 6 O ( N ) 

Algo. 2 Step 7 O ( N ) 

Algo. 2 Step 8 O ( N ) 

Total O ( DN 2 ×maxFlip ×maxIter) 

Table 3 

The computational complexity of the proposed rank- r ( r > 1) L 1 - 

Tracking described in Algorithms 3 and 4 . 

Computational tasks Complexity (Multiplications) 

Algo. 3 Steps 5–7 O (2 Dr + D + N) 

Algo. 4 Step 1 O (2 r Dr 2 ) 

Algo. 4 Step 3 O ( DNr 3 ×maxFlip) 

Algo. 4 Step 4 O ( Dr 2 ) 

Algo. 4 Step 5 O ( Dr 2 ) 

Algo. 4 Step 6 O ( DNr ) 

Algo. 4 Step 7 O ( N ) 

Algo. 4 Step 8 O ( N ) 

Algo. 4 Step 9 O ( N ) 

Total O 

((
DNr 3 × maxFlip + 2 r Dr 2 

)
× maxIter 

)

the new datum by exhaustive search over the 2 r -dimensional bi- 

nary space, with complexity O (2 r Dr 2 ); (3) Algorithm 4 Step 3 

that executes BF to update the N × r bit matrix, with complexity 

O ( DNr 3 ×maxFlip). Again maxFlip is the number of bit flips re- 

quired for the BF to converge; (4) Algorithm 4 Step 4 that performs 

SVD with complexity O ( Dr 2 ); (5) Algorithm 4 Step 5 that updates 

the subspace with complexity O ( Dr 2 ); and (6) Algorithm 4 Step 6 

that updates the distances for N data samples in the current pro- 

cessing window with complexity O ( DNr ). Again, let maxIter be the 

number of iterations for sample weights to converge, then the total 

complexity for rank- r ( r > 1) case is O ((DNr 3 × maxFlip + 2 r Dr 2 ) ×

maxIter ) . 

Empirically, for both rank-1 and rank- r , maxFlip < 10 or even 

equals to 1 with large chances. This is because for rank-1, the 

BF in the k th iteration is initialized with b (k −1) 
t , the bit vector 

in the (k − 1) th weight-update iteration; while for rank- r , the BF 

in the k th iteration is initialized with the bit matrix B (k −1) 
t in 

the (k − 1) th weight-update iteration. Such “warm-start” technique 

significantly accelerates the convergence of the BF procedure. 

The GRASTA [27] minimizes a cost function that has an � 1 -norm 

penalty on the sparse outliers. Then the subspace tracking is for- 

mulated as minimizing an augmented Lagrangian function, which 

is solved by alternating between solving for four variables: the 

rank- r subspace coefficient of length r , the sparse outlier vector of 

length D , the Lagrange multiplier of length D , and the columns of 

a D × r matrix that span the rank- r subspace. The complexity is in 

the order of O (r 3 + Dr) , where O ( r 3 ) is the complexity of the inver- 

sion of an r × r matrix in solving for the subspace coefficients, and 

O ( Dr ) is the complexity of a matrix-vector multiplication involved 

in updating all four variables. 

In PracReProCS [31] , the subspace tracking includes four steps: 

1) perpendicular projection of the new datum onto the space or- 

thogonal to the previously estimated rank- r subspace, with com- 

plexity O ( D 2 ); 2) sparse outlier vector recovery by � 1 -norm mini- 

mization, with complexity O ( D 3 ); 3) low-rank component recovery 

with subtraction operations only; and 4) subspace update by the 

method of projection PCA, which involves an SVD of complexity 

O ( DN min { D, N }), in which the most recent N data samples are uti- 

lized. 

The OMoGMF [32] deals with the background subtraction prob- 

lem in video surveillance by modeling the video background as 

a low-rank component and performs low-rank matrix factoriza- 

tion. More importantly, it models the foreground as a mixture of 

Gaussians (MoG). The online low-rank subspace learning problem 

is then tackled by iteratively solving for the MoG parameters, the 

subspace coefficients, and the subspace. The MoG parameters are 

solved by the EM algorithm, in which the E-step is of complex- 

ity O (D (r + K)) where D is the dimension of the datum (a video 

frame in [32] ), r is the subspace rank, and K is the number of 

components in the MoG model, and the M-step is of complexity 

O ( DK ). The subspace coefficients are of size r ×1 for a datum and 

it is solved by a least squares problem with complexity O (Dr + r 3 ) . 

Finally, updating the subspace of dimension D × r has complexity 

O ( Dr 2 ). 

We compare the computational complexity in terms of multipli- 

cation operations for the proposed L 1 -Tracking, GRASTA, OMoGMF, 

and PracReProCS algorithms in Table 4 . For OMoGMF, “Iter” refers 

to the number of iterations for the EM algorithm to calcu- 

late the MoG parameters. In practice, the rank value is usually 

r �min { D, N }. Besides, for the proposed L 1 -Tracking, we adopt a 

small processing-window size N for lower complexity and faster 

convergence rate according to the synthetic data experiment in 

Section 4.1 , and we use a medium β value for sample-weight up- 

date to control maxIter. We also consider the fact that maxFlip < 10 

or equals to 1 most of the time. With these conditions, it is 

observed from Table 4 that GRASTA has the lowest complexity, 
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Table 4 

Computational complexity comparison among GRASTA, OMoGMF, the proposed L 1 -Tracking, and PracRe- 

ProCS. 

GRASTA OMoGMF Proposed L 1 -Tracking PracReProCS 

O (Dr + r 3 ) O 
(
(Dr + DK) × Iter r = 1 : O ( DN 2 ×maxFlip ×maxIter) O (D 3 + D 2 

+ Dr 2 + r 3 
)

r > 1: O 
(
(DNr 3 × maxFlip + 2 r Dr 2 ) × maxIter 

)
+ DN min { D, N} ) 

PracReProCS has the highest complexity due to the � 1 -norm min- 

imization adopted to solve for sparse outliers, while our proposed 

L 1 -Tracking and the OMoGMF algorithms have medium complexity. 

In our experimental studies in Sections 4.2 (video surveillance) and 

4.3 (cognitive radio network transmission power estimation), the 

measured execution time for subspace tracking is in accordance 

with the complexity analysis in Table 4 . 

6. Conclusion 

In this work, we propose a novel online robust subspace 

tracking algorithm “L 1 -Tracking” based on the L 1 -norm principal- 

component analysis theory. The algorithm effectively captures the 

intrinsic low-rank structure of streaming data in the presence of 

observation outliers. It updates the subspace at each time slot with 

new sensor datum, utilizing the subspace obtained at the previous 

time slot and a small batch of most recent data samples. It has the 

merits of data outlier suppression through sample weighting and 

speed acceleration through a warm-start bit-flipping technique. 

The experimental studies on various applications illustrated the 

superior performance of the proposed algorithm in subspace esti- 

mation accuracy. Besides, the theoretical analysis and experimen- 

tal results demonstrated that the computational complexity of the 

proposed algorithm is comparable to several state-of-the-art online 

subspace learning algorithms. Meanwhile, it significantly reduces 

the processing time compared to the existing iterative re-weighted 

L 1 -subspace ( L 1 -IRW) calculation. Hence, the proposed method is 

amenable to streaming and real-time applications. 

In terms of future work, it is of particular interest to further 

investigate the capability of the proposed L 1 -Tracking algorithm to 

process large data set online, such as real-time camera data that 

is of high dimensionality and has high frame rate. Our experimen- 

tal study on the Lobby video sequence already illustrates such po- 

tential, and it is possible to explore such potential in other fields 

such as large-scale IoT networks. Besides, to accelerate the sub- 

space tracking speed for high-dimensional streaming data, it is sig- 

nificant to investigate the sub-sampling technique. We will also de- 

velop schemes to automatically select proper model parameters, 

such as the rank value, processing-window size, and the weight- 

update parameter. Further, currently there is a lack of theoretical 

analysis on how close the estimated subspace in the proposed al- 

gorithm is to the true low-rank subspace of the data. In the future 

research, we will try to establish a theoretical bound for the sub- 

space estimation error defined in (29) . 

References 

[1] Q. Ke , T. Kanade , Robust Subspace Computation Using L 1 Norm, School of Com- 
puter Science, Carnegie Mellon University, Pittsburgh, PA, 2003 . 

[2] Q. Ke , T. Kanade , Robust L 1 norm factorization in the presence of outliers and 
missing data by alternative convex programming, in: Proc. IEEE Conf. Com- 
puter Vision and Pattern Recognition (CVPR), 2005, pp. 739–746 . 

[3] A . Eriksson , A . Van Den Hengel , Efficient computation of robust low-rank ma- 
trix approximations in the presence of missing data using the L 1 norm, in: 
Proc. IEEE Conf. Computer Vision and Pattern Recognition, 2010, pp. 771–778 . 

[4] L. Yu , M. Zhang , C. Ding , An efficient algorithm for L 1 -norm principal compo- 
nent analysis, in: Proc. IEEE Int. Conf. Acoustics, Speech and Signal Processing 
(ICASSP), 2012, pp. 1377–1380 . 

[5] E.J. Candès , X. Li , Y. Ma , J. Wright , Robust principal component analysis? J. ACM 

(JACM) 58 (3) (2011) Article 11 . 

[6] X. Zhou , C. Yang , W. Yu , Moving object detection by detecting contiguous out- 
liers in the low-rank representation, IEEE Trans. Pattern Anal. Mach. Intell. 
(PAMI) 35 (3) (2013) 597–610 . 

[7] Y.W. Park , D. Klabjan , Iteratively reweighted least squares algorithms for 
L 1 -norm principal component analysis, in: Proc. IEEE 16th Int. Conf. Data Min- 
ing (ICDM), 2016, pp. 430–438 . 

[8] M. Yin , J. Gao , Z. Lin , Laplacian regularized low-rank representation and its 
applications, IEEE Trans. Pattern Anal. Mach. Intell. (PAMI) 38 (3) (2016) 504–
517 . 

[9] Q. Wang , Q. Gao , X. Gao , F. Nie , Optimal mean two-dimensional principal 
component analysis with f-norm minimization, J. Pattern Recognit. 68 (2017) 
286–294 . 

[10] S. Yi , Z. Lai , Z. He , Y. Cheung , Y. Liu , Joint sparse principal component analysis, 
J. Pattern Recognit. 61 (2017) 524–536 . 

[11] N. Kwak , Principal component analysis based on L 1 -norm maximization, IEEE 
Trans. Pattern Anal. Mach. Intell. (PAMI) 30 (9) (2008) 1672–1680 . 

[12] F. Nie , H. Huang , C. Ding , D. Luo , H. Wang , Robust principal component analy- 
sis with non-greedy L 1 -norm maximization, in: Proc. Twenty-Second Int. Joint 
Conf. Artificial Intelligence, 2011, pp. 1433–1438 . 

[13] P.P. Markopoulos , G.N. Karystinos , D.A. Pados , Optimal algorithms for 
L 1 -subspace signal processing, IEEE Trans. Signal Process. 62 (19) (2014) 
5046–5058 . 

[14] S. Kundu , P.P. Markopoulos , D.A. Pados , Fast computation of the L 1 -principal 
component of real-valued data, in: Proc. IEEE Int. Conf. Acoustics, Speech and 
Signal Process. (ICASSP), 2014, pp. 8028–8032 . 

[15] P.P. Markopoulos , S. Kundu , S. Chamadia , D.A. Pados , Efficient L 1 -norm prin- 
cipal-component analysis via bit flipping, IEEE Trans. Signal Process. 65 (16) 
(2017) 4252–4264 . 

[16] P.P. Markopoulos , N. Tsagkarakis , D.A. Pados , G.N. Karystinos , Direction find- 
ing with L 1 -norm subspaces, in: Proc. SPIE Sensing Technology + Applications, 
Compressive Sensing III, vol. 9109, 2014, p. 91090J . 

[17] F. Maritato , Y. Liu , S. Colonnese , D.A. Pados , Cloud-assisted individual L 1 -pca 
face recognition using wavelet-domain compressed images, in: Proc. The 6th 
European Workshop on Visual Information Processing (EUVIP), 2016, pp. 1–6 . 

[18] Y. Liu , D.A. Pados , Compressed-sensed-domain L 1 -pca video surveillance, IEEE 
Trans. Multimed. 18 (3) (2016) 351–363 . 

[19] Y. Liu , D.A. Pados , S.N. Batalama , M.J. Medley , Iterative re-weighted l 1 -norm 

principal-component analysis, in: The 51st Asilomar Conference on Signals, 
Systems, and Computers, 2017, pp. 425–429 . 

[20] Y. Li , On incremental and robust subspace learning, J. Pattern Recognit. 37 (7) 
(2004) 1509–1518 . 

[21] S. S. Bucak , B. Gunsel , Incremental subspace learning via non-negative matrix 
factorization, J. Pattern Recognit. 42 (5) (2009) 788–797 . 

[22] J. Feng , H. Xu , S. Yan , Online robust PCA via stochastic optimization, in: Proc. 
Advances in Neural Info. Process. Syst. (NIPS), 2013, pp. 404–412 . 

[23] J. Feng , H. Xu , S. Mannor , S. Yan , Online PCA for contaminated data, in: Proc. 
Advances in Neural Info. Process. Syst. (NIPS), 2013, pp. 404–412 . 

[24] M. Mardani , G. Mateos , G. B. Giannakis , Dynamic anomalography: tracking net- 
work anomalies via sparsity and low rank, IEEE J. Sel. Top. Signal Process. 7 (1) 
(2013) 50–66 . 

[25] S. Chouvardas , Y. Kopsinis , S. Theodoridis , An adaptive projected subgradient 
based algorithm for robust subspace tracking, in: Proc. IEEE Int. Conf. Acoust. 
Speech, Signal Process. (ICASSP), 2014, pp. 5497–5501 . 

[26] S. Hauberg , A. Feragen , R. Enficiaud , M.J. Black , Scalable robust principal com- 
ponent analysis using Grassmann averages, IEEE Trans. Pattern Anal. Mach. In- 
tell. (PAMI) 38 (11) (2016) 2298–2311 . 

[27] J. He , L. Balzano , A. Szlam , Incremental gradient on the Grassmannian for on- 
line foreground and background separation in subsampled video, in: IEEE Conf. 
on Comp. Vis. Pat. Rec. (CVPR), 2012, pp. 1568–1575 . 

[28] H. Mansour , X. Jiang , A robust online subspace estimation and tracking algo- 
rithm, in: Proc. IEEE Int. Conf. Acoustics, Speech and Signal Process. (ICASSP), 
2015, pp. 4065–4069 . 

[29] C. Qiu , N. Vaswani , Real-time robust principal components’ pursuit, in: Proc. 
The 48th Annual Allerton Conference on Communication, Control, and Com- 
puting (Allerton), 2010, pp. 591–598 . 

[30] C. Qiu , N. Vaswani , Recursive sparse recovery in large but correlated noise, in: 
Proc. The 49th Annual Allerton Conference on Communication, Control, and 
Computing (Allerton), 2011, pp. 752–759 . 

[31] H. Guo , C. Qiu , N. Vaswani , An online algorithm for separating sparse and 
low-dimensional signal sequences from their sum, IEEE Trans. Signal Process. 
62 (16) (2014) 4284–4297 . 

[32] H. Yong , D. Meng , W. Zuo , L. Zhang , Robust online matrix factorization for dy- 
namic background subtraction, IEEE Trans. Pattern Anal. Mach. Intell. (PAMI) 
40 (7) (2018) 1726–1740 . 



Y. Liu, K. Tountas and D.A. Pados et al. / Pattern Recognition 97 (2020) 106992 13 

[33] X.J. Hunt , R. Willett , Online data thinning via multi-subspace tracking, IEEE 
Trans. Pattern Anal. Mach. Intell. (PAMI) 41 (5) (2019) 1173–1187 . 

[34] B. Fan , X. Li , Y. Cong , Y. Tang , Structured and weighted multi-task low rank 
tracker, J. Pattern Recognit. 81 (2018) 528–544 . 

[35] I.F. Akyildiz , W. Lee , M.C. Vuran , S. Mohanty , A survey on spectrum manage- 
ment in cognitive radio networks, IEEE Commun. Mag. 46 (4) (2008) 40–48 . 

[36] A.W. Min , K. Kim , K.G. Shin , Robust cooperative sensing via state estimation in 
cognitive radio networks, in: Proc. IEEE Int. Symp. Dynamic Spectrum Access 
Networks (DySPAN), 2011, pp. 185–196 . 

[37] F. Lin , Z. Hu , S. Hou , J. Yu , C. Zhang , N. Guo , M. Wicks , R.C. Qiu , K. Currie , 
Cognitive radio network as wireless sensor network (ii): security considera- 
tion, in: Proc. IEEE National Aerospace and Electronics Conf. (NAECON), 2011, 
pp. 324–328 . 

[38] H. Krim , M. Viberg , Two decades of array signal processing research: the para- 
metric approach, IEEE Signal Process. Mag. 13 (4) (1996) 67–94 . 

[39] L.C. Godara , Application of antenna arrays to mobile communications. ii. 
beam-forming and direction-of-arrival considerations, Proc. IEEE 85 (8) (1997) 
1195–1245 . 

[40] B. Yang , Projection approximation subspace tracking, IEEE Trans. Signal Pro- 
cess. 43 (1) (1995) 95–107 . 

Ying Liu received the B.S. degree in communications engineering from Beijing Uni- 
versity of Posts and Telecommunications, Beijing, China, in 2006, the M.S. and Ph.D. 
degrees in Electrical Engineering from The State University of New York at Buffalo, 
Buffalo, NY, USA, in 2008 and 2012, respectively. She currently is an Assistant Pro- 
fessor in the Department of Computer and Science Engineering at Santa Clara Uni- 
versity, Santa Clara, CA , USA . Her general areas of expertise are computer vision, 
machine learning, and signal processing. 

Konstantinos Tountas received the Diploma and M.Sc. degrees in electronic and 
computer engineering from the Technical University of Crete, Chania, Greece, in 
2014 and 2016, respectively. He is currently pursuing the Ph.D. degree with the 
Department of Computer and Electrical Engineering and Computer Science, Florida 
Atlantic University, Boca Raton, FL, USA. He was with the Telecom Lab, Technical 
University of Crete. His research interests span the areas of signal processing and 
localization, software defined wireless communications, and underwater acoustic 
communications. 

Dimitris A. Pados received the Diploma degree in computer science and engineer- 
ing (five-year program) from the University of Patras, Greece, in 1989, and the Ph.D. 
degree in electrical engineering from the University of Virginia, Charlottesville, VA, 
in 1994. Dr. Pados is a Professor, the I-SENSE Fellow, and the Charles E. Schmidt 
Eminent Scholar in Engineering in the Department of Computer and Electrical En- 
gineering and Computer Science at Florida Atlantic University, Boca Raton, FL. He 
currently leads the University Initiative on Autonomous Systems and is the Direc- 
tor of the ExtremeComms Laboratory. His basic research interests are in the general 
areas of data and signal processing and communications theory. 

Stella N. Batalama serves as the Dean of the College of Engineering and Computer 
Science at Florida Atlantic University since August 2017. She served as the Chair of 
the Electrical Engineering Department, University at Buffalo, The State University of 
New York, from 2010 to 2017 and as the Associate Dean for Research of the School 
of Engineering and Applied Sciences from 2009 to 2011. From 2003 to 2004, she 
was the Acting Director of the AFRL Center for Integrated Transmission and Ex- 
ploitation, Rome NY, USA. Her research interests include cognitive and cooperative 
communications and networks, multimedia security and data hiding, underwater 
signal processing, communications and networks. She has published over 180 pa- 
pers in scientific journals and conference proceedings in her research field. She was 
a recipient of the 2015 SUNY Chancellor’s Award for Excellence in Research. She 
was an Associate Editor for the IEEE Communications Letters (20 0 0–20 05) and the 
IEEE Transactions on Communications (20 02–20 08). Dr. Batalama is a senior mem- 
ber of the Institute of Electrical and Electronics Engineering (IEEE), a member of 
the Society of Women Engineers, and a member of the American Society for En- 
gineering Education. Dr. Batalama received her Ph.D. in electrical engineering from 

the University of Virginia and her undergraduate and graduate degrees in computer 
science and engineering from the University of Patras in Greece. She also completed 
the Program for Leadership Development at Harvard Business School. 

Michael J. Medley received the B.S., M.S. and Ph.D. degrees in electrical engineer- 
ing from Rensselaer Polytechnic Institute, Troy, NY, in 1990, 1991 and 1995, respec- 
tively. He is a principal research engineer in airborne network communications with 
the United States Air Force Research Laboratory in Rome, NY, with research activi- 
ties related to adaptive interference suppression, spread spectrum waveform design, 
spectrum management, covert messaging, and terahertz network communications. 
He also serves as Associate Professor of Electrical and Computer Engineering at the 
State University of New York Polytechnic Institute in Utica, NY. 


	L1-Subspace Tracking for Streaming Data
	1 Introduction
	2 Background of L1 principal-component analysis
	2.1 L1-PCA and its solvers
	2.2 Sub-optimal bit-flipping algorithm for L1-PCA
	2.3 Iterative re-weighted L1-PCA

	3 Proposed L1-subspace tracking
	3.1 Rank-1 L1-subspace tracking
	3.2 Rank-r (r > 1) L1-subspace tracking

	4 Applications and experimental studies
	4.1 Synthetic data example
	4.2 Moving objects detection from streaming surveillance videos
	4.3 Robust cooperative spectrum sensing in cognitive radio networks
	4.4 Direction-of-arrival tracking

	5 Complexity analysis
	6 Conclusion
	References


