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Abstract
This paper focuses on showing time-message trade-offs in distributed algorithms for fundamental
problems such as leader election, broadcast, spanning tree (ST), minimum spanning tree (MST),
minimum cut, and many graph verification problems. We consider the synchronous CONGEST
distributed computing model and assume that each node has initial knowledge of itself and
the identifiers of its neighbors — the so-called KT1 model — a well-studied model that also
naturally arises in many applications. Recently, it has been established that one can obtain
(almost) singularly optimal algorithms, i.e., algorithms that have simultaneously optimal time
and message complexity (up to polylogarithmic factors), for many fundamental problems in
the standard KT0 model (where nodes have only local knowledge of themselves and not their
neighbors). The situation is less clear in the KT1 model. In this paper, we present several new
distributed algorithms in the KT1 model that trade off between time and message complexity.

Our distributed algorithms are based on a uniform and general approach which involves
constructing a sparsified spanning subgraph of the original graph — called a danner — that
trades off the number of edges with the diameter of the sparsifier. In particular, a key ingredient
of our approach is a distributed randomized algorithm that, given a graph G and any δ ∈ [0, 1],
with high probability1 constructs a danner that has diameter Õ(D+n1−δ) and Õ(min{m,n1+δ})
edges in Õ(n1−δ) rounds while using Õ(min{m,n1+δ}) messages, where n, m, and D are the
number of nodes, edges, and the diameter of G, respectively.2 Using our danner construction,
we present a family of distributed randomized algorithms for various fundamental problems that
exhibit a trade-off between message and time complexity and that improve over previous results.
Specifically, we show the following results (all hold with high probability) in the KT1 model,
which subsume and improve over prior bounds in the KT1 model (King et al., PODC 2014 and
Awerbuch et al., JACM 1990) and the KT0 model (Kutten et al., JACM 2015, Pandurangan et
al., STOC 2017 and Elkin, PODC 2017):

1. Leader Election, Broadcast, and ST. These problems can be solved in Õ(D + n1−δ)
rounds using Õ(min{m,n1+δ}) messages for any δ ∈ [0, 1].

2. MST and Connectivity. These problems can be solved in Õ(D + n1−δ) rounds using
Õ(min{m,n1+δ}) messages for any δ ∈ [0, 0.5]. In particular, for δ = 0.5 we obtain a dis-
tributed MST algorithm that runs in optimal Õ(D +

√
n) rounds and uses Õ(min{m,n3/2})

messages. We note that this improves over the singularly optimal algorithm in the KT0 model
that uses Õ(D +

√
n) rounds and Õ(m) messages.

3. Minimum Cut. O(logn)-approximate minimum cut can be solved in Õ(D + n1−δ) rounds
using Õ(min{m,n1+δ}) messages for any δ ∈ [0, 0.5].

1 Throughout, by “with high probability (w.h.p.)” we mean with probability at least 1 − 1/nc where n is
the network size and c is some constant.

2 The notation Õ hides a polylog(n) factor.
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4. Graph Verification Problems such as Bipartiteness, Spanning Subgraph etc. These
can be solved in Õ(D + n1−δ) rounds using Õ(min{m,n1+δ}) messages for any δ ∈ [0, 0.5].
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1 Introduction

This paper focuses on a fundamental aspect of distributed algorithms: trade-offs for the two
basic complexity measures of time and messages. The efficiency of distributed algorithms
is traditionally measured by their time and message (or communication) complexities.
Both complexity measures crucially influence the performance of a distributed algorithm.
Time complexity measures the number of distributed “rounds” taken by the algorithm
and determines the running time of the algorithm. Obviously, it is of interest to keep the
running time as small as possible. Message complexity, on the other hand, measures the
total amount of messages sent and received by all the processors during the course of the
algorithm. In many applications, this is the dominant cost that also plays a major role in
determining the running time and additional costs (e.g., energy) expended by the algorithm.
For example, communication cost is one of the dominant costs in the distributed computation
of large-scale data [17]. In another example, in certain types of communication networks,
such as ad-hoc wireless networks, energy is a critical factor for measuring the efficiency
of a distributed algorithm [15, 4]. Transmitting a message between two nodes in such a
network has an associated energy cost and hence the total message complexity plays an
important role in determining the energy cost of an algorithm. At the same time, keeping the
number of rounds small also helps in reducing the energy cost. Thus, in various modern and
emerging applications such as resource-constrained communication networks and distributed
computation on large-scale data, it is crucial to design distributed algorithms that optimize
both measures simultaneously [13, 17, 24, 26].

Unfortunately, designing algorithms that are simultaneously time- and message-efficient
has proven to be a challenging task, which (for some problems) stubbornly defied all prior
attempts of attack. Consequently, research in the last three decades in the area of distributed
algorithms has focused mainly on optimizing either one of the two measures separately,
typically at the cost of neglecting the other. In this paper, we focus on studying the two cost
measures of time and messages jointly, and exploring ways to design distributed algorithms
that work well under both measures (to the extent possible). Towards this goal, it is important
to understand the relationship between these two measures. In particular, as defined in
[25], we should be able to determine, for specific problems, whether it is possible to devise a
distributed algorithm that is either singularly optimal or exhibits a time-message trade-off:

Singularly optimal: A distributed algorithm that is optimal with respect to both
measures simultaneously — in which case we say that the problem enjoys singular
optimality.

http://dx.doi.org/10.4230/LIPIcs.DISC.2018.32
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Time-message trade-off: Whether the problem inherently fails to admit a singularly
optimal solution, namely, algorithms of better time complexity for it will necessarily
incur higher message complexity and vice versa — in which case we say that the problem
exhibits a time-message trade-off.

We note that, more generally, finding a simultaneously optimal (or almost optimal) solution
may sometimes be difficult even for “singular optimality” problems and hence it might be
useful to first design algorithms that have trade-offs.

This paper focuses on showing time-message trade-offs in distributed algorithms for
fundamental problems such as leader election, broadcast, spanning tree (ST), minimum
spanning tree (MST), minimum cut, and many graph verification problems. Throughout, we
consider the synchronous CONGEST model (see Section 2.2 for details), a standard model
in distributed computing where computation proceeds in discrete (synchronous) rounds
and in each round only O(logn) bits are allowed to be exchanged per edge (CONGEST)
where n is the number of nodes in the network. It turns out that message complexity of a
distributed algorithm depends crucially (as explained below) on the initial knowledge of the
nodes; in this respect, there are two well-studied models — the KT0 and the KT1 model.3
In the KT0 model (i.e., Knowledge Till radius 0), also called the clean network model
[27], where nodes have initial local knowledge of only themselves (and not their neighbors),
it has (only) been recently established that one can obtain (almost) singularly optimal
algorithms, i.e., algorithms that have simultaneously optimal time and message complexity
(up to polylogarithmic factors), for many fundamental problems such as leader election,
broadcast, ST, MST, minimum cut, and approximate shortest paths (under some conditions)
[18, 25, 7, 12]. More precisely, for problems such as leader election, broadcast, and ST, it
has been shown [18] that one can design a singularly optimal algorithm in the KT0 model,
that takes Õ(m) messages and O(D) rounds — both are tight (up to a polylog(n) factor);
this is because Ω(m) and Ω(D) are, respectively, lower bounds on the message and time
complexity for these problems in the KT0 model [18] — note that these lower bounds hold
even for randomized Monte Carlo algorithms. The work of [25] (also see [7]) showed that
MST is also (almost) singularly optimal, by giving a (randomized Las Vegas) algorithm that
takes Õ(m) messages and Õ(D +

√
n) rounds (both bounds are tight up to polylogarithmic

factors). It can be shown that the singular optimality of MST in the KT0 model also implies
the singular optimality of many other problems such as approximate minimum cut and graph
verification problems (see Section 1.2). Recently, it was shown that approximate shortest
paths and several other problems also admit singular optimality in the KT0 model [12].

On the other hand, in the KT1 model (i.e., Knowledge Till radius 1), in which each node
has initial knowledge of itself and the identifiers4 of its neighbors, the situation is less clear.
The KT1 model arises naturally in many settings, e.g., in networks where nodes know the
identifiers of their neighbors (as well as other nodes), e.g., in the Internet where a node knows
the IP addresses of other nodes [23]. Similarly in models such as the k-machine model (as well
as the congested clique), it is natural to assume that each processor knows the identifiers of
all other processors [17, 13, 24, 26]. For the KT1 model, King et al. [16] showed a surprising

3 On the other hand, for time complexity it does not really matter whether nodes have initial knowledge
of just themselves (KT0) or also of their neighbors (KT1); this is because this information (i.e., the
identifiers of the neighbors) can be exchanged in one round in the CONGEST model. Hence, when
focusing solely on optimizing time complexity, which is the typically the case in the literature, the
distinction between KT0 and KT1 is not important and the actual model is not even explicitly specified.

4 Note that only knowledge of the identifiers of neighbors is assumed, not other information such as the
degree of the neighbors.
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and elegant result: There is a randomized Monte Carlo algorithm to construct an MST in
Õ(n) messages (Ω(n) is a message lower bound) and in Õ(n) time (see Section 2.3). Thus it
is also possible to construct an ST, do leader election, and broadcast within these bounds.
This algorithm is randomized and not comparison-based.5 While this algorithm shows that
one can achieve o(m) message complexity (when m = ω(npolylogn)), it is not time-optimal
— it can take significantly more than Θ̃(D +

√
n) rounds, which is a time lower bound even

for Monte-Carlo randomized algorithms [5]. In subsequent work, Mashreghi and King [19]
presented a trade-off between messages and time for MST: a Monte-Carlo algorithm that
takes Õ(n1+εε) messages and runs in O(n/ε) time for any 1 > ε ≥ log logn/ logn. We note
that this algorithm takes at least O(n) time.

A central motivating theme underlying this work is understanding the status of various
fundamental problems in the KT1 model — whether they are singularly optimal or exhibit
trade-offs (and, if so, to quantify the trade-offs). In particular, it is an open question whether
one can design a randomized (non-comparison based) MST algorithm that takes Õ(D +

√
n)

time and Õ(n) messages in the KT1 model — this would show that MST is (almost) singularly
optimal in the KT1 model as well. In fact, King et al [16] ask whether it is possible to
construct (even) an ST in o(n) rounds with o(m) messages. Moreover, can we take advantage
of the KT1 model to get improved message bounds (while keeping time as small as possible)
in comparison to the KT0 model?

1.1 Our Contributions and Comparison with Related Work
In this paper, we present several results that show trade-offs between time and messages in
the KT1 model with respect to various problems. As a byproduct, we improve and subsume
the results of [16] (as well as of Awerbuch et al. [2]) and answer the question raised by King
et al. on ST/MST construction at the end of the previous paragraph in the affirmative. We
also show that our results give improved bounds compared to the results in the KT0 model,
including for the fundamental distributed MST problem.

Our time-message trade-off results are based on a uniform and general approach which
involves constructing a sparsified spanning subgraph of the original graph — called a danner
(i.e., “diameter-preserving spanner”) — that trades off the number of edges with the diameter
of the sparsifier (we refer to Section 2.1 for a precise definition). In particular, a key
ingredient of our approach is a distributed randomized algorithm that, given a graph G and
any δ ∈ [0, 1], with high probability6 constructs a danner that has diameter Õ(D + n1−δ) and
Õ(min{m,n1+δ}) edges in Õ(n1−δ) rounds while using Õ(min{m,n1+δ}) messages, where n,
m, and D are the number of nodes, edges, and the diameter of G, respectively.7 Using our
danner construction, we present a family of distributed randomized algorithms for various
fundamental problems that exhibit a trade-off between message and time complexity and
that improve over previous results. Specifically, we show the following results (all hold with
high probability) in the KT1 model (cf. Section 4):

5 Awerbuch et al. [2] show that Ω(m) is a message lower bound for MST even in the KT1 model, if one
allows only (possibly randomized Monte Carlo) comparison-based algorithms, i.e., algorithms that can
operate on identifiers only by comparing them. The result of King et al. [16] breaches the Ω(m) lower
bound by using non-comparison-based technique by using the identifiers as input to hash functions.
Our results also breach the Ω(m) lower bound, since we use the results of King et al. as subroutines in
our algorithms.

6 Throughout, by “with high probability (w.h.p.)” we mean with probability at least 1 − 1/nc where n is
the network size and c is some constant.

7 The notation Õ hides a polylog(n) factor.
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1. Leader Election, Broadcast, and ST. These problems can be solved in Õ(D+ n1−δ)
rounds using Õ(min{m,n1+δ}) messages for any δ ∈ [0, 1]. These results improve over
prior bounds in the KT1 model [16, 19, 2] as well the KT0 model [18] — discussed earlier
in Section 1. In particular, while the time bounds in [16, 19] are always at least linear,
our bounds can be sublinear and the desired time-message trade-off can be obtained by
choosing an appropriate δ. It is worth noting that the early work of Awerbuch et al. [2]
showed that broadcast can be solved by a deterministic algorithm in the KTρ model using
O(min{m,n1+c/ρ}) messages for some fixed constant c > 0 in a model where each node
has knowledge of the topology (not just identifiers) up to radius ρ. Clearly, our results
improve over this (for the KT1 model), since δ can be made arbitrarily small.

2. MST and Connectivity. These problems can be solved in Õ(D + n1−δ) rounds using
Õ(min{m,n1+δ}) messages for any δ ∈ [0, 0.5]. In addition to getting any desired trade-off
(by plugging in an appropriate δ), we can get a time optimal algorithm by choosing
δ = 0.5, which results in a distributed MST algorithm that runs in Õ(D +

√
n) rounds

and uses Õ(min{m,n3/2}) messages. We note that when m = ω̃(n3/2), this improves
over the recently proposed singularly optimal algorithms of [25, 7] in the KT0 model that
use Õ(m) messages and Õ(D +

√
n) rounds. It also subsumes and improves over the

prior results of [19, 16] in the KT1 model that take (essentially) Õ(n) messages and Õ(n)
time.8

3. Minimum Cut. An O(logn)-approximation to the minimum cut value (i.e., edge
connectivity of the graph) can be obtained in Õ(D+n1−δ) rounds using Õ(min{m,n1+δ})
messages for any δ ∈ [0, 0.5]. Our result improves over the works of [11, 21] that are
(almost) time-optimal (i.e., take Õ(D +

√
n) rounds), but not message optimal. In

addition to getting any desired trade-off (by plugging in an appropriate δ), in particular,
if δ = 0.5, we obtain a Õ(min{m,n3/2}) messages approximate minimum cut algorithm
that runs in (near) optimal Õ(D +

√
n) rounds. This improves the best possible bounds

(for m = ω̃(n3/2)) that can be obtained in the KT0 model (cf. Section 1.2).
4. Graph Verification Problems such as Bipartiteness, s− t Cut, Spanning Sub-

graph. These can be solved in Õ(D + n1−δ) rounds using Õ(min{m,n1+δ}) messages
for any δ ∈ [0, 0.5].

1.2 High-Level Overview of Approach
Danner. A main technical contribution of this work is the notion of a danner and its
efficient distributed construction that jointly focuses on both time and messages. As defined
in Section 2.1, a danner of a graph G is a spanning subgraph H of G whose diameter, i.e.,
diam(H), is at most α(diam(G)) + β, where α ≥ 1 and β ≥ 0 are some parameters. The
goal is to construct a danner H with as few edges as possible and with α and β as small as
possible. It is clear that very sparse danners exist: the BFS (breadth-first spanning) tree has
only n− 1 edges and its diameter is at most twice the diameter of the graph. However, it
is not clear how to construct such a danner in a way that is efficient with respect to both
messages and time, in particular in Õ(n) messages and Õ(D) time, or even o(m) messages and
O(D) time, where D = diam(G). Note that in the KT0 model, there is a tight lower bound
(with almost matching upper bound) for constructing a danner: any distributed danner
construction algorithm needs Ω(m) messages and Ω(D) time (this follows by reduction from

8 Mashreghi and King [19] also give an algorithm with round complexity Õ(diam(MST)) and with message
complexity Õ(n), where diam(MST) is the diameter of the output MST which can be as large as Θ(n).
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leader election which has these lower bounds [18] — see Section 1). However, in the KT1
model, the status for danner construction is not known. We give (a family of) distributed
algorithms for constructing a danner that trade off messages for time (Section 3).
Danner Construction. We present an algorithm (see Algorithm 1) that, given a graph G
and any δ ∈ [0, 1], constructs a danner H of G that has Õ(min{m,n1+δ}) edges and diameter
Õ(D + n1−δ) (i.e., an Õ(n1−δ) additive danner) using Õ(min{m,n1+δ}) messages and in
Õ(n1−δ) time (note that the time does not depend onD). The main idea behind the algorithm
is as follows. While vertices with low degree (i.e., less than nδ) and their incident edges can
be included in the danner H, to handle high-degree vertices we construct a dominating set
that dominates the high-degree nodes by sampling roughly n1−δ nodes (among all nodes);
these are called “center” nodes.9 Each node v adds the edges leading to its min{deg(v), nδ}
neighbors with the lowest identifiers (required for maintaining independence from random
sampling) to H. It is not difficult to argue that each high-degree node is connected to a
center in H and we use a relationship between the number of nodes in any dominating set
and the diameter (cf. Lemma 5) to argue that the diameter of each connected component (or
fragment) of H is at most Õ(n1−δ). We then use the FindAny algorithm of King et al. [16]
to efficiently implement a distributed Boruvka-style merging (which is essentially the GHS
algorithm [9]) of fragments in the subgraph induced by the high-degree nodes and the centers.
The FindAny algorithm does not rely on identifier comparisons but instead uses random
hash-functions to find an edge leaving a set of nodes very efficiently, which is crucial for our
algorithm. In each merging phase, each fragment uses FindAny to efficiently find an outgoing
edge; discovered outgoing edges are added to H. Only O(logn) iterations are needed to
merge all fragments into a connected graph and only Õ(min{m,n1+δ}) messages are needed
overall for merging. At any time the set of centers in a fragment forms a dominating set
of that fragment. Thereby, the above-mentioned relationship between dominating sets and
diameters guarantees that the diameters of the fragments stay within Õ(n1−δ). We argue
(Lemma 12) that the constructed subgraph H is an additive Õ(n1−δ)-danner of G.
Danner Applications. What is the motivation for defining a danner and why is it useful?
The answer to both of these questions is that a danner gives a uniform way to design
distributed algorithms that are both time and message efficient for various applications as
demonstrated in Section 4. Results for leader election, broadcast, and ST construction follow
quite directly (cf. Section 4.1): Simply construct a danner and run the singularly optimal
algorithm of [18] for the KT0 model on the danner subgraph. Since the danner has Õ(n1+δ)
edges and has diameter Õ(D + n1−δ), this gives the required bounds.

A danner can be used to construct a MST of a graph G (which also gives checking
connectivity of a subgraph H of G) using Õ(min{m,n1+δ}) messages in Õ(D + n1−δ) time,
for any δ ∈ [0, 0.5]. Note that this subsumes the bounds of the singularly optimal algorithms
in the KT0 model [25, 7]. The distributed MST construction (cf. Section 4.2) proceeds in
three steps; two of these crucially use the danner. In the first step, we construct a danner and
use it as a communication backbone to aggregate the degrees of all nodes and thus determine
m, the number of edges. If m ≤ n1+δ, then we simply proceed to use the singularly optimal
algorithm of [25]. Otherwise, we proceed to Step 2, where we do Controlled-GHS which is
a well-known ingredient in prior MST algorithms [22, 10, 25]. Controlled-GHS is simply
Boruvka-style MST algorithm, where the diameter of all the fragments grow at a controlled
rate. We use the graph sketches technique of King et al. (in particular the FindMin algorithm

9 The idea of establishing a set of nodes that dominates all high-degree nodes has also been used by
Aingworth et al. [1] and Dor et al. [6].
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— cf. Section 2.3) for finding outgoing edges to keep the message complexity to Õ(n). Crucially
we run Controlled-GHS to only d(1− δ) logne iterations so that the number of fragments
remaining at the end of Controlled-GHS is O(nδ) with each having diameter Õ(n1−δ); all
these take only Õ(n1−δ) time, since the running time of Controlled-GHS is asymptotically
bounded (up to a logn factor) by the (largest) diameter of any fragment. In Step 3, we merge
the remaining O(nδ) fragments; this is done in a way that is somewhat different to prior
MST algorithms, especially those of [25, 10]. We simply continue the Boruvka-merging (not
necessarily in a controlled way), but instead of using each fragment as the communication
backbone, we do the merging “globally” using a BFS tree of the danner subgraph. The
BFS tree of the danner has O(n) edges and has diameter Õ(D + n1−δ). In each merging
phase, each node forwards at most O(nδ) messages (sketches corresponding to so many
distinct fragments) to the root of the BFS tree which finds the outgoing edge corresponding
to each fragment (and broadcasts it to all the nodes). The total message cost is Õ(n1+δ)
and, since the messages are pipelined, the total time is Õ(D + n1−δ + nδ) = Õ(D + n1−δ)
(for δ = [0, 0.5]). Building upon this algorithm, we give time and message efficient algorithms
for O(logn)-approximate minimum cut and graph connectivity problems (cf. Section 4.3).

1.3 Other Related Work
There has been extensive research on the distributed MST problem in the KT0 model,
culminating in the singularly optimal (randomized) algorithm of [25] (see also [7]); see [25]
for a survey of results in this area. The work of [25] also defined the notions of singular
optimality versus time-message trade-offs. Kutten et al. [18] show the singular optimality of
leader election (which implies the same for broadcast and ST) by giving tight lower bounds
for both messages and time as well as giving algorithms that simultaneously achieve the tight
bounds (see Section 1).

Compared to the KT0 model, results in the KT1 are somewhat less studied. The early
work of Awerbuch et al. [2] studied time-message trade-offs for broadcast in the KT1 model.
In 2015, King et al. [16] showed surprisingly that the basic Ω(m) message lower bound
that holds in the KT0 model for various problems such as leader election, broadcast, MST,
etc. [18] can be breached in the KT1 model by giving a randomized Monte Carlo algorithm
to construct an MST in Õ(n) messages and in Õ(n) time. The algorithm of King et al. uses
a powerful randomized technique of graph sketches which helps in identifying edges going out
of a cut efficiently without probing all the edges in the cut; this crucially helps in reducing
the message complexity. We heavily use this technique (as a black box) in our algorithms
as well. However, note that we could have also used other types of graph sketches (see e.g.,
[24]) which will yield similar results.

The KT1 model has been assumed in other distributed computing models such as the
k-machine model [17, 24, 26] and the congested clique [13]. In [13] it was shown that the
MST problem has a message lower bound of Ω(n2) which can be breached in the KT1 model
by using graph sketches.

Distributed minimum cut has been studied by [11, 21], and the graph verification problems
considered in this paper have been studied in [5]. However, the focus of these results has
been on the time complexity (where KT0 or KT1 does not matter). We study these problems
in the KT1 model focusing on both time and messages and present trade-off algorithms that
also improve over the KT0 algorithms (in terms of messages) — cf. Section 1.1. We note that
Ω̃(D +

√
n) is a time lower bound for minimum cut (for any non-trivial approximation) and

for the considered graph verification problems [5]. It can be also shown (by using techniques
from [18]) that Ω(m) is a message lower bound in the KT0 model for minimum cut.

DISC 2018



32:8 Time-Message Trade-Offs in Distributed Algorithms

2 Preliminaries

Before we come to the main technical part of the paper, we introduce some notation and
basic definitions, present our network model, and give an overview of some of the algorithms
from the literature that we use for our results.

2.1 Notation and Definitions
For a graph G we denote its node set as V (G) and its edge set as E(G). For a node u ∈ V (G)
the set NG(u) = {v ∈ V (G) | {u, v} ∈ E(G)} is the open neighborhood of u in G and
ΓG(u) = NG(u) ∪ {u} is its closed neighborhood. For a set of nodes S ⊆ V (G) we define
ΓG(S) =

⋃
u∈S ΓG(u). The degree of a node u in G is degG(u) = |NG(u)|. For a path

P = (u0, . . . , u`) we define V (P ) to be the set of nodes in P and we define |P | = ` to be the
length of P . A set S ⊆ V (G) is a dominating set of G if ΓG(S) = V (G). The domination
number γ(G) of a graph G is the size of a smallest dominating set of G. The distance dG(u, v)
between two nodes u, v ∈ V (G) is the length of a shortest path between u and v in G. We
define the diameter (or the hop diameter) of G as diam(G) = maxu,v∈V (G) d(u, v), where
the distances are taken in the graph by ignoring edge weights (i.e., each edge has weight 1).
For all of this notation, we omit G when it is apparent from context. For S ⊆ V (G) the
induced subgraph G[S] is defined by V (G[S]) = S and E(G[S]) = {{u, v} ∈ E(G) | u, v ∈ S}.
A subgraph H ⊆ G is an (α, β)-spanner of G if V (H) = V (G) and dH(u, v) ≤ α ·dG(u, v)+β

for all u, v ∈ V (G). In this work we make use of the weaker concept of a diameter-preserving
spanner, or in short, danner : A subgraph H ⊆ G is a (α, β)-danner of G if V (H) = V (G)
and diam(H) ≤ α · diam(G) + β. We say H is an additive β-danner if it is a (1, β)-danner.
An (α, β)-spanner is also an (α, β)-danner but the reverse is not generally true. Hence, the
notion of a danner is weaker than that of a spanner.

2.2 Model
We briefly describe the distributed computing model used. This is the synchronous CONGEST
model (see, e.g., [22, 27]), which is now standard in the distributed computing literature.

A point-to-point communication network is modeled as an undirected weighted graph
G = (V,E,w), where the vertices of V represent the processors, the edges of E represent the
communication links between them, and w(e) is the weight of edge e ∈ E. Let n = |V (G)|
and m = |E(G)|. Without loss of generality, we assume that G is connected. D denotes
the hop-diameter (that is, the unweighted diameter) of G, and, in this paper, by diameter
we always mean hop-diameter. Each node hosts a processor with limited initial knowledge.
Specifically, we make the common assumption that each node has a unique identifier (from
{1, . . . ,poly(n)}), and at the beginning of computation each vertex v accepts as input its own
identifier and the weights (if any) of the edges incident to it as well as the identifiers of all its
neighbors. Thus, a node has local knowledge of only itself and its neighbor’s identifiers; this
is called the KT1 model. Since each node knows the identifier of the node on the other side
of an incident edge, both endpoints can define a common edge identifier as the concatenation
of identifiers of its endpoints, lowest identifier first.

The vertices are allowed to communicate through the edges of the graph G. It is assumed
that communication is synchronous and occurs in discrete rounds (time steps). In each
time step, each node v can send an arbitrary message of O(logn) bits through each edge
e = {v, u} incident to v, and each message arrives at u by the end of this time step. The
weights of the edges are at most polynomial in the number of vertices n, and therefore the
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weight of a single edge can be communicated in one time step. This model of distributed
computation is called the CONGEST(logn) model or simply the CONGEST model [22, 27].
We also assume that each vertex has access to the outcome of unbiased private coin flips.
We assume that all nodes know n.

2.3 Underlying Algorithms
We use an algorithm called TestOut that was introduced by King et al. [16] in the context of
computing MSTs in the KT1 model. Consider a tree T that is a subgraph of a graph G. The
algorithm TestOut allows the nodes in T to determine whether there exists an outgoing edge,
i.e., an edge that connects a node in V (T ) with a node in V (G) \ V (T ). We also refer to
an outgoing edge as an edge leaving T . Let u be a node in T that initiates an execution of
TestOut. On a high level, TestOut simply performs a single broadcast-and-echo operation:
First, the node u broadcasts a random hash function along T . Each node in T computes a
single bit of information based on the hash function and the identifiers of the incident edges.
The parity of these bits is then aggregated using an echo (or convergecast) along T . The
parity is 1 with constant probability if there is an edge in G leaving T , and it is 0 otherwise.
The algorithm is always correct if the parity is 1. The running time of the algorithm is
O(diam(T )) and it uses O(|V (T )|) messages.

The correctness probability of TestOut can be amplified to high probability by executing
the algorithm O(logn) times. Furthermore, TestOut can be combined with a binary search
on the edge identifiers to find the identifier of an outgoing edge if it exists, which adds
another multiplicative factor of O(logn) to the running time and the number of messages
used by the algorithm. Finally, the procedure can also be used to find the identifier of an
outgoing edge with minimum weight in a weighted graph by again using binary search on the
edge weights at the cost of another multiplicative O(logn) factor. All of these algorithms
can be generalized to work on a connected subgraph H that is not necessarily a tree: A node
u ∈ V (H) first constructs a breadth-first search tree T in H and then executes one of the
algorithms described above on T . We have the following theorems.

I Theorem 1. Consider a connected subgraph H of a graph G. There is an algorithm
FindAny that outputs the identifier of an arbitrary edge in G leaving H if there is such an
edge and that outputs ∅ otherwise, w.h.p. The running time of the algorithm is Õ(diam(H))
and it uses Õ(|E(H)|) messages.

I Theorem 2. Consider a connected subgraph H of a weighted graph G with edge weights
from {1, . . . ,poly(n)}. There is an algorithm FindMin that outputs the identifier of a lightest
edge in G leaving H if there is such an edge and that outputs ∅ otherwise, w.h.p. The running
time of the algorithm is Õ(diam(H)) and it uses Õ(|E(H)|) messages.

We also require an efficient leader election algorithm. The following theorem is a
reformulation of Corollary 4.2 in [18].

I Theorem 3. There is an algorithm that for any graph G elects a leader in O(diam(G))
rounds while using Õ(|E(G)|) messages, w.h.p.

3 Distributed Danner Construction

The distributed danner construction presented in Algorithm 1 uses a parameter δ that
controls a trade-off between the time and message complexity of the algorithm. At the same
time the parameter controls a trade-off between the diameter and the size (i.e., the number of
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edges) of the resulting danner. For Algorithm 1 we assume that δ ∈ [0, 1). We explicitly treat
the case δ = 1 later on. We say a node u has high degree if deg(u) ≥ nδ. Otherwise, it has
low degree. Let Vhigh and Vlow be the set of high-degree and low-degree nodes, respectively.

Algorithm 1 Distributed Danner Construction
The algorithm constructs a danner H. Initially, we set V (H)← V (G) and E(H)← ∅.

1. Each node becomes a center with probability p = min{(c logn)/nδ, 1}, where c ≥ 1 is a
constant determined in the analysis. Let C be the set of centers.

2. Each node v adds the edges leading to its min{deg(v), nδ} neighbors with the lowest
identifiers to H.

3. Each low-degree node sends a message to all its neighbors to inform them about its low
degree and whether it is a center. The remaining steps operate on the induced subgraphs
Ĝ← G[Vhigh ∪ C] and Ĥ ← H[Vhigh ∪ C]. Note that every node can deduce which of its
neighbors lie in Vhigh ∪ C from the messages sent by the low-degree nodes.

4. For i = 1 to logn do the following in parallel in each connected component K of Ĥ.
a. Elect a leader using the algorithm from Theorem 3.
b. Use the algorithm FindAny from Theorem 1 to find an edge in Ĝ leaving K. If such

an edge exists, add it to H and Ĥ.
c. Wait until T rounds have passed in this iteration before starting the next iteration in

order to synchronize the execution between the connected components. The value of
T is determined in the analysis.

We now turn to the analysis of Algorithm 1. We assume that the probability p defined in
Step 1 is such that p < 1 since for p = 1 the analysis becomes trivial. Our first goal is to
bound the diameter of any connected component K of Ĥ (defined in Step 3 of Algorithm 1)
during any iteration of the loop in Step 4. To achieve this goal, we first show two fundamental
lemmas that allow us to bound the diameter of K in terms of its domination number γ(K)
(see Section 2.1). The main observation behind Lemma 4 was also used by Feige et al. in [8].

I Lemma 4. Let P be a shortest path in a graph G. For each node v ∈ V (G) it holds
|Γ(v) ∩ V (P )| ≤ 3.

Proof. We show the lemma by contradiction. Let P = (u0, . . . , u`) be a shortest path in
G. Suppose there is a node v ∈ V (G) such that |Γ(v) ∩ V (P )| ≥ 4. Let ui be the node
in Γ(v) ∩ V (P ) with the lowest index in P and let uj be the node in Γ(v) ∩ V (P ) with
the highest index in P . Since |Γ(v) ∩ V (P )| ≥ 4 at least two nodes lie between ui and
uj in P . We distinguish two cases. If ui = v or uj = v then P ′ = (u0, . . . , ui, uj , . . . , u`)
is a path in G such that |P ′| ≤ |P | − 2, which is a contradiction. Otherwise, the path
P ′ = (u0, . . . , ui, v, uj . . . , u`) is a path in G such that |P ′| ≤ |P | − 1, which is again a
contradiction. J

I Lemma 5. For a connected graph G it holds diam(G) < 3γ(G).

Proof. We show the lemma by contradiction. Suppose there is a shortest path P in G such
that |P | ≥ 3γ(G). Let S be a dominating set in G with |S| = γ(G). By definition, for each
node u ∈ V (P ) there is a node v ∈ S such that u ∈ Γ(v). Since |V (P )| = |P |+ 1 > 3|S|, the
pigeonhole principle implies that there must be a node v ∈ S such that |Γ(v) ∩ V (P )| > 3.
By Lemma 4, this implies that P is not a shortest path, which is a contradiction. J
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With these lemmas in place, we can now turn to the problem of bounding the diameter of
a connected component K of Ĥ. We first bound the number of centers established in Step 1.

I Lemma 6. It holds |C| = Õ(n1−δ), w.h.p.

Proof. Let Xu be a binary random variable such that Xu = 1 if and only if u ∈ C.
We have E[Xu] = (c logn)/nδ. By definition it holds |C| =

∑
u∈V Xu. The linearity of

expectation implies E[ |C| ] =
∑
u∈V E[Xu] = cn1−δ logn. Since |C| is a sum of independent

binary random variables we can apply Chernoff bounds (see, e.g., [20]) to get Pr[ |C| ≥
2cn1−δ logn ] ≤ exp(−cn1−δ logn/3). The lemma follows by choosing c sufficiently large. J

The next two lemmas show that the set of centers in K forms a dominating set of K.

I Lemma 7. After Step 2 each high-degree node is adjacent to a center in Ĥ, w.h.p.

Proof. Consider a node u ∈ Vhigh. Let S be the set of the nδ neighbors of u with lowest
identifier. Each node in S is a center with probability p. Hence, the probability that no node
in S is a center is (1− p)|S| =

(
1− (c logn)/nδ

)nδ

≤ exp(−c logn). The lemma follows by
applying the union bound over all nodes and choosing the constant c sufficiently large. J

I Lemma 8. Let K be a connected component of Ĥ before any iteration of the loop in Step 4
or after the final iteration. The set of centers in K is a dominating set of K, w.h.p.

Proof. Recall that V (K) ⊆ Vhigh ∪ C by definition. Hence, each node u ∈ V (K) is a center
or has high degree. If u is a center, there is nothing to show. If u is not a center, it must be
of high degree. According to Lemma 7, u is connected to a center v in Ĥ. This implies that
v ∈ V (K) and {u, v} ∈ E(K). J

By combining the statements of Lemmas 5, 6 and 8, we get the following lemma.

I Lemma 9. Let K1, . . . ,Kr be the connected components of Ĥ before any iteration of the
loop in Step 4 or after the final iteration. It holds

∑r
i=1 diam(Ki) = Õ(n1−δ), w.h.p.

Proof. Let C(Ki) be the set of centers in Ki. According to Lemma 8, C(Ki) is a dominating
set of Ki. Therefore, Lemma 5 implies diam(Ki) < 3|C(Ki)|. This implies

∑r
i=1 diam(Ki) <

3
∑r
i=1 |C(Ki)| = 3|C| = Õ(n1−δ), where the last equality holds according to Lemma 6. J

The following simple corollary gives us the desired bound on the diameter of a connected
component K of Ĥ.

I Corollary 10. Let K be a connected component of Ĥ before any iteration of the loop in
Step 4 or after the final iteration. It holds diam(K) = Õ(n1−δ), w.h.p.

On the basis of Corollary 10, we can bound the value of T , the waiting time used in
Step 4c: Consider an iteration of the loop in Step 4. For each connected component K the
leader election in Step 4a can be achieved in Õ(n1−δ) rounds according to Theorem 3. The
algorithm FindAny in Step 4b requires Õ(n1−δ) rounds according to Theorem 1. Therefore,
we can choose T such that T = Õ(n1−δ).

Our next objective is to show that the computed subgraph H is an additive Õ(n1−δ)-
danner. To this end, we first take a closer look at the connected components of Ĥ after the
algorithm terminates.

I Lemma 11. After Algorithm 1 terminates, the set of connected components of Ĥ equals
the set of connected components of Ĝ.
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Proof. Consider a connected component KĜ of Ĝ. We show by induction that after it-
eration i of the loop in Step 4, each connected component of Ĥ[V (KĜ)] has size at least
min{2i, |V (KĜ)|}. Since |V (KĜ)| ≤ n and the loop runs for logn iterations, this implies
that after the algorithm terminates, only one connected components remains in Ĥ[V (KĜ)].

The statement clearly holds before the first iteration of the loop, i.e., for i = 0. Suppose
that the statement holds for iteration i ≥ 0. We show that it also holds for iteration i+ 1. If
there is only one connected component at the beginning of iteration i+ 1 then that connected
component must equal KĜ so the statement holds. If there is more than one connected
component at the beginning of iteration i+1 then by the induction hypothesis each connected
component has size at least 2i. Each connected component finds an edge leading to another
connected component in Step 4b and thereby merges with at least one other connected
component. The size of the newly formed component is at least min{2i+1, |KĜ|}. J

We are now ready to show that H is an additive Õ(n1−δ)-danner.

I Lemma 12. Algorithm 1 computes an additive Õ(n1−δ)-danner H of G, w.h.p.

Proof. Let PG = (u0, . . . , u`) be a shortest path in G. We construct a path PH from u0
to u` in H such that |PH | ≤ |PG| + Õ(n1−δ). Some of the edges in PG might be missing
in H. Let {ui, ui+1} be such an edge. Observe that if ui or ui+1 has low degree then the
edge {ui, ui+1} is contained in H since a low degree node adds all of its incident edges to H
in Step 2. Hence, ui and ui+1 must have high degree. Since the nodes share an edge in G,
they lie in the same connected component of Ĝ. According to Lemma 11 this means that
the nodes also lie in the same connected component of Ĥ. Therefore, there is a path in Ĥ
between ui and ui+1. We construct PH from PG by replacing each edge {ui, ui+1} that is
missing in H by a shortest path from ui to ui+1 in Ĥ.

While PH is a valid path from u0 to u` in H, its length does not necessarily adhere to
the required bound. To decrease the length of PH , we do the following for each connected
component K of Ĥ: If PH contains at most one node from K, we proceed to the next
connected component. Otherwise, let v be the first node in PH that lies in K and let w be
the last node in PH that lies in K. We replace the subpath from v to w in PH by a shortest
path from v to w in Ĥ. After iteratively applying this modification for each connected
component, the path PH enters and leaves each connected component of Ĥ at most once
and within each connected component PH only follows shortest paths. Hence, according
to Lemma 9, the number of edges in PH passing through Ĥ is bounded by Õ(n1−δ). The
remaining edges in PH stem from PG, so their number is bounded by |PG|. In summary, we
have |PH | ≤ |PG|+ Õ(n1−δ). J

To complete our investigation we analyze the time and message complexity of Algorithm 1
and bound the number of edges in the resulting danner H.

I Lemma 13. The running time of Algorithm 1 is Õ(n1−δ) and the number of messages
sent by the algorithm is Õ(min{m,n1+δ}). After the algorithm terminates it holds |E(H)| =
Õ(min{m,n1+δ}).

Proof. We begin with the running time. The first three steps of the algorithm can be
executed in a single round. The loop in Step 4 runs for logn iterations, each of which takes
T = Õ(n1−δ) rounds.

Next we bound the number of edges in the danner. Steps 1 and 3 do not add any edges
to H. Step 2 adds Õ(min{m,n1+δ}) edges to H. The loop in Step 4 runs for logn iterations,
and in every iteration each connected component of Ĥ adds at most one edge to H. Since
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the number of connected components is at most n at all times, the total number of edges
added in Step 4 is Õ(n).

Finally, we turn to the message complexity of the algorithm. In Step 1 the nodes send
no messages. The number of messages sent in Step 2 is Õ(min{m,n1+δ}). In Step 3 each
low-degree node sends a message to each of its neighbors. By definition a low-degree node
has at most nδ neighbors and there are at most n low-degree nodes. Therefore, at most
Õ(min{m,n1+δ}) messages are sent in this step. Each iteration of the loop in Step 4 operates
on a subgraph Ĥ of the final danner H. Consider a connected component K of Ĥ. Both the
leader election in Step 4a and the algorithm FindAny in Step 4b use Õ(|E(K)|) messages
according to Theorems 3 and 1, respectively. Hence, the overall number of messages used in
any iteration is Õ(|E(Ĥ)|) which is bounded by Õ(|E(H)|) = Õ(min{m,n1+δ}). J

Finally, we treat the special case δ = 1. In this case we do not use Algorithm 1 but
instead let each node add all its incident edges to H such that H = G. Combining the
statements of the previous two lemmas together with the special case of δ = 1 yields the
following theorem.

I Theorem 14. There is an algorithm that for a connected graph G and any δ ∈ [0, 1]
computes an additive Õ(n1−δ)-danner H consisting of Õ(min{m,n1+δ}) edges, w.h.p. The
algorithm takes Õ(n1−δ) rounds and requires Õ(min{m,n1+δ}) messages.

4 Applications

In this section we demonstrate that the danner construction presented in Section 3 can be
used to establish trade-off results for many fundamental problems in distributed computing.

4.1 Broadcast, Leader Election, and Spanning Tree
On the basis of the danner construction presented in Section 3 it is easy to obtain a set of
trade-off results for broadcast, leader election, and spanning tree construction. The number
of messages required for a broadcast can be limited by first computing a danner and then
broadcasting along the danner. For leader election we can run the algorithm of Kutten
et al. [18] mentioned in Theorem 3 on the computed danner. Finally, for spanning tree
construction we can elect a leader which then performs a distributed breadth-first search on
the danner to construct the spanning tree. We have the following theorem.

I Theorem 15. There are algorithms that for any connected graph G and any δ ∈ [0, 1]
solve the following problems in Õ(D + n1−δ) rounds while using Õ(min{m,n1+δ}) messages,
w.h.p.: broadcast, leader election, and spanning tree.

4.2 Minimum Spanning Tree and Connectivity
In this section we assume that we are given a weighted connected graph G with edge weights
from {1, . . . ,poly(n)}. Without loss of generality we assume that the edge weights are distinct
such that the MST is unique. We present a three step algorithm for computing the MST.

Step 1: We compute a spanning tree of G using the algorithm described in Section 4.1
while ignoring the edge weights. Recall that the algorithm computes the spanning tree by
having a leader node initiate a distributed breadth-first search along a danner of diameter
Õ(D + n1−δ). Therefore, the algorithm supplies us with a rooted spanning tree T of depth
Õ(D + n1−δ). We aggregate the number of edges m in G using a convergecast along T . If
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m ≤ n1+δ, we execute the singularly optimal algorithm of Pandurangan et al. [25] on the
original graph G to compute the MST, which takes Õ(D +

√
n) rounds and requires Õ(m)

messages. Otherwise, we proceed with the following steps.
Step 2: We execute the so-called Controlled-GHS procedure on G as described in [25].

This procedure is a modified version of the classical Gallager-Humblet-Spira (GHS) algorithm
for distributed MST [9]. It constructs a set of MST fragments (i.e., connected subgraphs of the
MST). However, in contrast to the original GHS, Controlled-GHS limits the diameter of the
fragments by controlling the way in which fragments are merged. By running Controlled-GHS
for d(1− δ) logne iterations we get a spanning forest consisting of at most nδ MST-fragments,
each having diameter O(n1−δ) in Õ(n1−δ) rounds. The Controlled-GHS described in [25]
requires Õ(m) messages. However, we can reduce the number of messages to Õ(n) without
increasing the running time by modifying the Controlled-GHS procedure to use the algorithm
FindMin described in Theorem 2 to find the lightest outgoing edge of a fragment.

Step 3: Our goal in the final step of the algorithm is to merge the remaining nδ MST
fragments quickly. This step executes the same procedure for logn iterations. Each iteration
reduces the number of fragments by at least a factor of two so that in the end only a single
fragment remains, which is the MST.

We use a modified version of the algorithm TestOut that only communicates along the
spanning tree T computed in Step 1 (i.e., it ignores the structure of the fragments) and that
operates on all remaining fragments in parallel. Recall that the original TestOut algorithm for
a single connected component consists of a broadcast-and-echo in which a leader broadcasts
a random hash function and the nodes use an echo (or convergecast) to aggregate the parity
of a set of bits. We can parallelize this behavior over all fragments as follows: Let vT be the
root of T . First, vT broadcasts a random hash function through T . The same hash function
is used for all fragments. Each node u uses the hash function to compute its individual bit as
before and prepares a message consisting of the identifier of the fragment containing u and
the bit of u. These messages are then aggregated up the tree in a pipelined fashion: In each
round, a node sends the message with the lowest fragment identifier to its parent. Whenever
a node holds multiple messages with the same fragment identifier, it combines them into a
single message consisting of the same fragment identifier and the combined parity of the bits
of the respective messages. Since T has depth Õ(D+n1−δ) and there are at most nδ different
fragment identifiers, vT learns the aggregated parity of the bits in each individual fragment
after Õ(D + n1−δ + nδ) rounds, which completes the parallelized execution of TestOut.

As explained in Section 2.3, a polylogarithmic number of executions of TestOut in
combination with binary search can be used to identify the lightest outgoing edge of a
fragment. The ranges for the binary search for each fragment can be broadcast by vT in a
pipelined fashion and the TestOut procedure can be executed in parallel for all fragments as
described above. Thereby, vT can learn the identifier of a lightest outgoing edge for each
fragment in parallel. To merge the fragments, vT does the following: First, it learns the
fragment identifiers of the nodes at the end of each outgoing edge. It then locally computes
the changes in the fragment identifiers that follow from the merges. Finally, it broadcasts
these changes along with the identifiers of the leaving edges to merge the fragments. This
completes one iteration of the procedure.

Overall, the operations of the final step can be achieved a using polylogarithmic number
of pipelined broadcast-and-echo operations. Therefore, the running time of this step is
Õ(D + n1−δ + nδ) rounds. In each pipelined broadcast-and-echo each node sends at most nδ
messages, so the overall number of messages is Õ(n1+δ). This gives us the following theorem.

I Theorem 16. There is an algorithm that for any connected graph G with edge weights
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from {1, . . . ,poly(n)} and any δ ∈ [0, 0.5] computes an MST of G in Õ(D + n1−δ) rounds
while using Õ(min{m,n1+δ}) messages, w.h.p.

For δ = 0.5 we get an algorithm with optimal running time up to polylogarithmic factors.

I Corollary 17. There is an algorithm that for any connected graph G with edge weights from
{1, . . . ,poly(n)} computes an MST of G in Õ(D+

√
n) rounds while using Õ(min{m,n3/2})

messages, w.h.p.

Using this result on MST, it is not hard to devise an algorithm that computes the
connected components of a subgraph H of G (and thus also test connectivity): We assign the
weight 0 to each edge in E(H) and the weight 1 to each edge in E(G) \E(H). We then run a
modified version of the above MST algorithm in which a fragment stops participating as soon
as it discovers that its lightest outgoing edge has weight 1. Thereby, fragments only merge
along edges in H. Once the algorithm terminates, any two nodes in the same connected
component of H have the same fragment identifier while any two nodes in distinct connected
components have distinct fragment identifiers.

I Corollary 18. There is an algorithm that for any graph G, any subgraph H of G, and any
δ ∈ [0, 0.5] identifies the connected components of H in Õ(D + n1−δ) rounds while using
Õ(min{m,n1+δ}) messages, w.h.p.

4.3 O(log n)-Approximate Minimum Cut
We describe an algorithm that finds an O(logn)-approximation to the edge connectivity of
the graph (i.e., the minimum cut value).

I Theorem 19. There is a distributed algorithm for finding an O(logn)-approximation to
the edge connectivity of the graph (i.e., the minimum cut value) that uses Õ(min{m,n1+δ})
messages and runs in Õ(D + n1−δ) rounds for any δ ∈ [0, 0.5], w.h.p.

The main idea behind the algorithm is based on the following sampling theorem.

I Theorem 20 ([14, 11]). Consider an arbitrary unweighted multigraph10 G = (V,E) with
edge connectivity λ and choose subset S ⊆ E by including each edge e ∈ E in set S
independently with probability p. If p ≥ c logn/λ, for a sufficiently large (but fixed) constant
c, then the sampled subgraph G′ = (V, S) is connected, w.h.p.

We next sketch the distributed algorithm that is claimed in Theorem 19. The distributed
algorithm implements the above sampling theorem which provides a simple approach for
finding an O(logn)-approximation of the edge connectivity of G by sampling subgraphs with
exponentially growing sampling probabilities (e.g., start with an estimate of λ = m, the total
number of (multi-)edges, and keep decreasing the estimate by a factor of 2) and checking the
connectivity of each sampled subgraph. We take the first value of the estimate where the
sampled graph is connected as the O(logn)-approximate value. This algorithm can be easily
implemented in the KT0 distributed model using Õ(m) messages and Õ(D +

√
n) rounds by

using the singularly optimal MST algorithm of [25] or [7] (which can be directly used to test
connectivity — cf. Section 4.2). However, implementing the algorithm in the KT1 model
in the prescribed time and message bounds of Theorem 19 requires some care, because of

10Note that a weighted graph with polynomially large edge weights can be represented as an unweighted
graph with polynomial number of multiedges.
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implementing the sampling step; each endpoint has to agree on the sampled edge without
actually communicating through that edge.

The sampling step can be accomplished by sampling with a strongly O(logn)-universal
hash function. Such a hash function can be created by using only O(logn) independent
shared random bits (see, e.g., [3]). The main insight is that a danner allows sharing of random
bits efficiently. This can be done by constructing a danner11 and letting the leader (which
can be elected using the danner — cf. Section 4.1) generate O(logn) independent random
bits and broadcast them to all the nodes via the danner. The nodes can then construct
and use the hash function to sample the edges. However, since the hash function is only
O(logn)-universal it is only O(logn)-wise independent. But still one can show that the
guarantees of Theorem 20 hold if the edges are sampled by a O(logn)-wise independent hash
function. This can be seen by using Karger’s proof [14] and checking that Chernoff bounds
for O(logn)-wise independent random variables (as used in [28]) are (almost) as good as that
as (fully) independent random variables. Hence edge sampling can be accomplished using
time Õ(D + n1−δ) (the diameter of the danner) and messages Õ(min{m,n1+δ) (number of
edges of the danner). Once the sampling step is done, checking connectivity can be done by
using the algorithm of Section 4.2.

4.4 Algorithms for Graph Verification Problems
It is well known that graph connectivity is an important building block for several graph
verification problems (see, e.g., [5]). Thus, using the connectivity algorithm of Section 4.2 as
a subroutine, we can show that the problems stated in the theorem below (these are formally
defined, e.g., in Section 2.4 of [5]) can be solved in the KT1 model (see, e.g., [5, 24]).

I Theorem 21. There exist distributed algorithms in the KT1 model that solve the following
verification problems in Õ(min{m,n1+δ}) messages and Õ(D + n1−δ) rounds, w.h.p, for any
δ ∈ [0, 0.5] : spanning connected subgraph, cycle containment, e-cycle containment, cut, s-t
connectivity, edge on all paths, s-t cut, bipartiteness.

5 Conclusion

This work is a step towards understanding time-message trade-offs for distributed algorithms
in the KT1 model. Using our danner construction, we obtained algorithms that exhibit
time-message trade-offs across the spectrum by choosing the parameter δ as desired. There
are many key open questions raised by our work. First, it is not clear whether one can
do better than the algorithms we obtained here for various fundamental problems in the
KT1 model. In particular, it would be interesting to know whether there are singularly
optimal algorithms in the KT1 model — e.g., for leader election, can we show an Õ(n)
messages algorithm that runs in Õ(D) (these are respective lower bounds for messages
and time in KT1); and, for MST, can we show an Õ(n) messages algorithm that runs in
Õ(D +

√
n). A related question is whether one can construct an (α, β)-danner with Õ(n)

edges and α, β = Õ(1) in a distributed manner using Õ(n) messages and in Õ(D) time. Such
a construction could be used to obtain singularly optimal algorithms for other problems.
Finally, our danner construction is randomized; a deterministic construction with similar
guarantees will yield deterministic algorithms.

11Note that the danner of a multigraph is constructed by treating multi-edges as a single edge.
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