QPipe: Quantiles Sketch Fully in the Data Plane

Nikita Ivkin**

Amazon

Vladimir Braverman
Johns Hopkins University

ABSTRACT

Efficient network management requires collecting a variety of sta-
tistics over the packet flows. Monitoring the flows directly in the
data plane allows the system to detect anomalies faster. However,
monitoring algorithms have to handle a throughput of 10° packets
per second and to maintain a very low memory footprint. Widely
adopted sampling-based approaches suffer from low accuracy in
estimations. Thus, it is natural to ask: "Is it possible to maintain
important statistics in the data plane using small memory footprint?".
In this paper, we answer this question in affirmative for an important
case of quantiles. We introduce QPipe, the first quantiles sketching
algorithm that can be implemented entirely in the data plane. Our
main technical contribution is an on-the-plane implementation of a
variant of SweepKLL [27] algorithm. Specifically, we give novel im-
plementations of argmin(), the major building block of SweepKLL
which are usually not supported in the data plane of the commodity
switch. We prototype QPipe in P4 and compare its performance
with a sampling-based baseline. Our evaluations demonstrate 10X
memory reduction for a fixed approximation error and 90X error im-
provement for a fixed amount of memory. We conclude that QPipe
can be an attractive alternative to sampling-based methods.

CCS CONCEPTS

* Networks — Programmable networks; Network monitoring.

KEYWORDS

Quantile, Sketch, Data plane, Programmable networks, Network
monitoring

ACM Reference Format:

Nikita Ivkin, Zhuolong Yu, Vladimir Braverman, and Xin Jin. 2019. QPipe:
Quantiles Sketch Fully in the Data Plane. In The 15th International Con-
ference on emerging Networking EXperiments and Technologies (CONEXT
’19), December 9-12, 2019, Orlando, FL, USA. ACM, New York, NY, USA,
7 pages. https://doi.org/10.1145/3359989.3365433

*Equal contribution.
This work was done when the author was at Johns Hopkins University.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions @acm.org.

CoNEXT ’19, December 9—12, 2019, Orlando, FL, USA

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6998-5/19/12. .. $15.00
https://doi.org/10.1145/3359989.3365433

Zhuolong Yu*
Johns Hopkins University

Xin Jin
Johns Hopkins University
1 INTRODUCTION

Collecting and monitoring essential statistics of network traffic
drives the efficiency of the traffic management and adaptive con-
trol. Catching heavy flows [17], evaluating cardinality[21, 24], en-
tropy [41] and other problems are at the core of dynamic flow sched-
uling [2, 30], attack detection [32], link congestion resolving [3] and
a variety of other applications. Aggregating and processing these
statistics directly in the data plane of the switch is an ultimate goal,
that leads to a shorter response time and as a consequence more
efficient use of limited networking infrastructure. However, widely
adopted sampling-based solutions, though simple in implementa-
tion and logically straightforward, suffer from unacceptably low
accuracy. Therefore in search of better memory/precision trade-offs
networking community adopted a variety of sketching techniques
from the field of streaming algorithms [25, 34]. However, due to the
switch hardware limitations, sketch-based solutions stayed outside
of the data plane for a while.

The recent introduction of programmable switches [4, 7, 14]
paved a path to a new generation of algorithms standing beyond
“hash and count” framework. Multistage architecture with each
packet pipe-lined through all stages operates at the line rate of bil-
lions of packets per second. Such a throughput unavoidably enforces
a constraint of limited operations on each stage per packet [45],
in addition with a few megabytes of memory per stage is avail-
able [45], which is also shared with other infrastructural needs. In
announced constraints, out-of-the-box use of sketching algorithms on
programmable switches is not feasible. To the best of our knowledge,
only a few sketches were adopted to the programmable switch archi-
tecture, among them HashPipe [47] designed to find "heavy hitters”
flows. OpenSketch [49] provides a three-stage pipeline (hashing,
filtering, and counting), which can support several measurement
tasks is feasible to be implemented in the switch.

In the current manuscript, we challenge the problem of finding
order statistics of the traffic in the programmable switch. Quantiles
(median, 99th percentile, and others) and cumulative distribution
function (CDF) help to understand the underlying structure of the
traffic and detect both sharp short-term anomalies and long term
change in the distribution. We target quantiles computation over a
fixed number of updates, i.e. epoch, and adopt SweepKLL sketch
[27] (close to optimal in both memory and update time). We imple-
ment our algorithm QPipe in P4, show in practice that it works at
the line rate. In addition, we benchmark our solution with packet-
sampling approach in terms of memory vs precision tradeoff and
show how QPipe can be utilized to find heavy hitters with a signif-
icantly lower rate of false positives, compared to widely adopted
Count Min Sketch algorithm [18]. We emphasize the challenge of
implementing SweepKLL on the commodity switch, as it heavily

CoNEXT ’19, December 9-12, 2019, Orlando, FL, USA

utilizes such basic routines as sort() and argmin() which are not
supported by the hardware of the switch. To overcome this challenge
we utilize the design specifics of both switch and sketch. Sweep-
KLL subsamples the stream before feeding it into the data structure,
and only performs one memory access per packet. We take the best
of both worlds by “employing” the unsampled packets to do the
infrastructural work of maintaining the data structure.

2 STREAMING QUANTILES

Finding order statistics such as median, 95-th percentile, full CDF
and others is crucial in many big data applications[15, 19, 42—44].
No surprise that finding quantiles in the streaming model is a well-
studied problem with more than two decades of research since the
pioneering work by Munro and Paterson [40]. In formal terms, the
problem of streaming quantiles can be stated as follows. Algorithm
observes a stream of n updates sy, ..., s, one at a time, then upon
observance of value q at the end of the stream, it returns the rank r(q)
among items s;, i.e. number of items s; smaller than g. Similarly, if
queried with the rank r, it returns r-th smallest item. However, any
exact algorithm would require memory poly(n) [40], therefore the
main interest is in approximate version of the problem, that allows
to return the rank r(q) with additive error of en.

The uniform sample preserves all the ranks with approxima-
tion +en given the memory budget of O(ﬁ log %). Widely adopted
sketches, such as GK [22], KLL [31] and Q-digest [46], showed a
significant improvement in this trade-off, pushing space complexity
down to the optimal O(% loglog %) While many of them advantage
from constant amortized update time, all suffer from poor worst case
update time of O(% log %), which made it impossible to neither run
at the line rate nor implement it fully in the data plane of the switch.
Recently Ivkin et al. [27] presented a series of improvements to
KLL sketch [31], among them is sweeping technique, that pushed
the worst case update time for KLL down to O(log %). In the current
manuscript we refer to this modification as SweepKLL and address
the challenges of implementing it fully in the data plane of the switch.
But first, we cover the concept of the compactor, a building block
behind a series of sketches [1, 31, 35, 48]. For more details on the
broader topic of streaming quantiles we refer reader to [23, 27, 48].

Consider a set of k numbers, rank function r(x) is a step function
making a step of 1 at every number in the set. Figure 1 depicts the
example of the rank function r(x) for the set of k = 6 numbers:
{1,2,4,6,7,9}. Note that one can compress k numbers into k/2 by:
1) sorting all numbers; 2) deleting all odd (or all even) positions in
the sorted order; 3) assigning weight 2 to the rest. Given that every
item left has weight 2, rank function r’(x) makes a step size 2 at
every number left in the set. On Figure 1, dashed line shows the
rank function r’(x) in case if all even positions deleted. Note that
Vx : |r(x) — r’(x)| < 1, i.e. the compression procedure introduced
the rank error at most 1. The building block that inputs k items and
outputs k/2 introducing the rank error of at most 1, called compactor.
Note that if all input items have weight w, the compactor will output
items of weight 2w and introduce rank error at most w.

The compactor can also be considered as a stream processor: it
inputs a stream length n with item’s weight w !, and outputs a stream
length n/2 with item’s weight 2w. It is basically a buffer that collects

lin the original stream all updates have weight 1

Nikita Ivkin, Zhuolong Yu, Vladimir Braverman, and Xin Jin

—— rix) - rank function of coriginal data: {1,2,4,6,7,9}

rank function, r(x)
o - L] w Fy w [=)]

=== r'(x) - rank function of compressed data: {1.4, 7}

i 2 3 6 7)
X

Figure 1: Example of the compaction procedure on the set

{1,2,4,6,7,9}: solid line shows the rank function for original set,

dashed line shows the rank function after compression (deleting

all even positions).

k items from the stream, sort them, delete every other, outputs k/2 of
those which left with a double weight, then collects new k items from
the stream and repeats. Manku ez al. [35] suggested to use a stack of
O(log %) compactors each of size k: i-th compactor inputs the stream
of length J; with items weight 2! from the output of (i — 1)-th com-
pactor (or from the original stream if i — 1 = 0) and outputs the the
stream of length 2,”7 with items weight 2°*1 into the (i + 1)-th com-
pactor. Note, that i-th compactor of size k while processing a stream
of length 2% performs % compressions (or compactions), each com-
paction introduces rank error of at most w = 2, therefore total rank
error introduced by i-th compactor is at most % And total rank error
introduced by all compactors is O(% log %) Setting k = % logen
brings the desired approximation of +en with the space needed to
store all the compactors O(k log %) = 0(! log2 en). Agarwal et
al. [1] showed how method can be combined with sampling and sug-
gested to flip a coin when choosing which (odd or even) positions to
delete in the compactor. New algorithm required only O(% log3/ 2 %)
of space. Karnin et al. [31] pointed out the higher importance of the
top compactors, and suggested the size of compactor to decrease
exponentially: for the top compactor kry = O(% logl/ 2 %) and for
the compactor i : k; = ¢cf kg, where ¢ € (0.5, 1). All compactors
of the size less than 2 can be dropped and replaced with a sampler.
Karnin et al.[31] show that this approach (KLL sketch) drops the
space complexity down to O(% logl/2 %)2,

All aforementioned sketches inherit a poor worst-case update
time of O(% log %), caused by: 1) necessity to sort the content of
the compactor prior compressing; 2) updating weight for the half
and deleting the other half of the items in the compactor, all at once.
Recently, Ivkin et al.[27] suggested a series of improvements to
KLL, among which is a sweeping technique, that de-amortizes the
running time of KLL, pushing the worst-case update time down to
O(log %). To explain the idea behind it, we recall that a compactor
of size k can be considered as k/2 pairs in sorted order, such that
in each pair only one item survives the compaction procedure. It is
crucial that pairs do not intersect, i.e. given set {1, 2,4, 6} we need
to break down into pairs as {(1, 2), (4, 6)} rather than {(1,4),(2,6)},
as former case introduces rank error 1 and latter case rank 2. That
is the sole reason, why sorting and compressing all k at once is
required, however [27] suggested the way around it: compress one

2 : 1 1 L .
[31] also prAesent slronger resul‘t w1th O(+ loglog), however, it is theory driven and
more complicated implementation-wise

QPipe: Quantiles Sketch Fully in the Data Plane

2 .
12 4 67 9
T 0' L] T L] L] T >
0 4T e a0
T T 9' L] L] T T >
B 7859 10
T T T 0] T T >
0 25 5 910
o,
01238 5 1

Figure 2: High level idea behind SweepKLL: dashed box indi-
cates the pair chosen for the compression at current moment,
underlining indicates the new items just appeared in the com-
pactor.

Algorithm 1 SweepKLL

1: function SWEEPKLL.UPDATE(key)

2 if Sampler() then A[0].append(key)

3 forh=0...H-2do

4 if len(A[h]) > k¢ =" then Al h].compact()
5: function A[h].COMPACT()

6: Alh].sort(); i = argmin;(A[h][i] > A[h].0);
7

8

9

if i == None then
i = 0; random_bit = random([0, 1]);
: Alh].0 = A[h][i +1]
0: pair = A[h].pop([i, i + 1])
1: Alh + 1].append(pair[random_bit])

— =

pair at a time, at the same time keep track that every new pair does
not intersect with already compressed ones. SweepKLL maintains
the compactor’s content in a sorted heap, i.e. adding new item costs
at most O(log %) To avoid intersection problem, it keeps track of
the largest element in all compressed pairs so far (call it 6), and
chooses the smallest pair above that threshold. Figure 2 depicts the
idea on the set {1, 2, 4, 6,7, 9}, pair compression is called only when
compactor is full, newly arrived items are underlined. 6 is initialized
with —co and first pair to compact is (1, 2), which updates 0 = 2.
New items 0 and 10 arrived, but note that SweepKLL chooses (4, 6)
rather than (0, 4) because of 0 < 6 = 2. This procedure repeats
until no items larger than 0 left, then current sweep is finalized
and 6 is reset to —co. See Algorithm 1 for detailed pseudocode for
sweepKLL. As mentioned earlier, SweepKLL maintains the content
of the compactor in the heap, therefore finding the next pair to
compress takes at most O(log %) time.

3 QUANTILES IN DATA PLANE
3.1 Switch Architecture

Networking switch typically consists of two logical parts: data plane
and control plane. Packets stream and get processed entirely in the
data plane at the line rate of 10° packets per second. To maintain
the line rate data plane has very restrictive architecture, limiting the
number of memory accesses per packet and the number of arithmetic
operations. On the contrary, the control plane can be considered
as a regular server, most streaming solutions can be implemented
out of the box there. However, the communication channel between
the control plane and the data plane is very limited and ranges at

CoNEXT ’19, December 9—12, 2019, Orlando, FL, USA

delete()

worker

recirculate()

sampled findMin()
packet (pkt.val=4)
S1 S2 S3
3 1
0 |2
3
4

insert item

Figure 3: QPipe samples packets and insert sampled packets
into the array qg (stored in stage S;). Unsampled packets will
work as “workers” to do certain operations.

10° packets per second. As a consequence, all monitoring software
implemented on the control plane is forced to operate with heavily
subsampled data, which leads to poor accuracy and delayed reaction
in case of attack or anomaly in the traffic flow. This drives the main
motivation for implementing monitoring tasks entirely on the data
plane. Further, we go over the high-level architecture and main
restrictions in the data plane of the networking switch.

In recent years, the emergence of programmable switches [4, 14,
26] enables programmability and enriches the operations on the
data plane. Based on the Protocol Independent Switch Architec-
ture (PISA), most commodity programmable switches (Barefoot
Tofino [4], Cavium XPliant [14], Intel Flexpipe [26]) inherit a sim-
ilar pipeline, with the packet going via a certain number of stages
(match-action tables, memory, arithmetic logic units). Each stage
has independent memory and due to the necessity of maintaining
the line rate, it restricts each packet to access (read/update) only a
limited number of memory registers. On the brighter side, a stage
can attach some values to the packet metadata, and any following
stages in the pipeline can access it. In other terms, a stage can send
signals down the pipeline in the metadata of the packet. In addition,
any stage can request to recirculate the packet, i.e. send it to the first
stage again. This operation is the only way to send signals to earlier
stages, however, it creates an additional traffic load and its usage
should be minimized.

3.2 Data Plane Design

Vanilla version SweepKLL maintains the content of each compactor
in a sorted heap. There are two natural ways to implement the heap
entirely in the data plane: store the binary heap on the same stage
or store one level of the binary heap per stage. The former method
is infeasible, as swapping the items requires access to two memory
registers at the same time, while the latter method is prohibitively
expensive due to the high number of recirculations involved for
each swap. The alternative route of sorting compactor’s content
on-demand follows the same issues. Without sorted order finding
a new pair to compress is challenging. In the current section, we
address these challenges and implement QPipe, algorithm finding
order statistics in the data plane of the switch.

CoNEXT ’19, December 9-12, 2019, Orlando, FL, USA

Round 1. Delete the minimal item:

Stos2 s Stos s Stos2 s
6=|3 1|b= 0=3 1]b=|3 6=|3 1|b=[3
M=|0 2 M={0 2 M={0 2 i
Switch M to 1
3 S 3 R — 4 _—
4 6 packets 4 6 packets 5
5 later 5 later 6
L) &) L] L) 18] L] I
Round 2. Delete the second minimal item:
sios2 o os S1os2 s S1os2 Se
=3 11b=[3 0=(3 1|b=|4 0={3 1|b=
- - _ Insert b=4 into
=11 |2 M=1] |2 M=i1] |2 the next layer
4 _— 4 _— 5 — >
5 5 packets 5 5 packets 6 Update 6=b,
6 later 6 later M=rand(0,1)

Figure 4: An example of QPipe deleting and moving items. The
first round uses 12 “worker” packets to delete the minimal item.
The second round uses 10 packets to delete the second minimal
item and insert the deleted item into the next layer.

As already mentioned above SweepKLL requires either sorting
a register array or getting the minimal value of a register array.
Although both operations are not supported in commodity switches,
we circumvent the need of these primitives with a pragmatic choice:
employing “worker” packets to help to maintain the data structure.

QPipe repeats the logic of SweepKLL and subsample the packets
before adding them to the first compactor. However, it also employs
the unsampled packets (or “workers”) to maintain the data structure
properties. As shown in Figure 3, QPipe samples the packets, and
feeds the value of the sampled packets into the data structure. Since
the packets that are not sampled will still go through all the stages in
a pipeline to be routed, we use these unsampled packets as “workers”
to carry some values and finish certain operations. With the help of
these “workers”, we are able to implement QPipe in the data plane
in a suitable manner.

Programmable switches allow users to develop custom data plane
modules, which can parse custom packet headers, perform user-
defined actions, and access the switch on-chip memory for stateful
operations. Based on PISA pipeline of Barefoot Tofino Switch [4],
we use a number of stages to store values and perform certain opera-
tions. We leverage a primitive action modify_field_rng_uniform in
P4 to generate a random number as a sampling indicator to sample
packets. The sampled items are inserted into the array in the first
layer (ap). When the array (a;) of layer i becomes full, QPipe will
select two minimal items larger than a predefined value 8. Among
the two items, QPipe randomly deletes one item and moves the other
item to the next layer (a;+1). We denote the process of deleting one
item or moving one item as one round. QPipe leverages a set of
successive “worker” packets to finish one round.

Figure 4 shows a concrete example of deleting and moving items.
Note that, we only show the three main stages here for simplicity,
but the real QPipe system requires more stages (12 stages used in our
implementation) due to the constraints of the switch pipeline. Stage
Sy stores the value of 6 and M. M is an indicator indicating whether
an item will be inserted into the next layer. After the removal of
the minimal item in the current layer (a;), the removed item will

Nikita Ivkin, Zhuolong Yu, Vladimir Braverman, and Xin Jin

Algorithm 2 QPipe ()

1: Sample the packet with probability 1/K.
2: if Packet is sampled then

3 ap.insert(pkt.v)

4: else

5: if a; is full then
6

7

8

findMin(), delete().
findMin(), delete().
Randomly pick one deleted item v’, a;1.insert(v’).

Algorithm 3 findMin()

: //* Find the minimal value larger than 0
: pkt.6 — 6

. if a[i] > pkt.6 then

: pkt.v « ali]

1

2 > Stage 1
3

4:

5: if pkt.v < b then

6

7

8

> Stage 2

> Stage 3
b «— pkt.v

. if finish then
recirculate(pkt.b « b)

be inserted into the next layer (a;4+1) if and only if M equals 1.
M will switch from 1 to 0 or from O to 1 upon the completion
of each round. § and M are updated every two rounds: 6 is set as
the second minimal item (which is just deleted or moved) and M
is reset randomly from {0, 1}. Stage Sy stores the arrays. Stage S3
maintains the minimal value of the current array which is larger than
0, i.e.min{a;[j] | a;i[j] < 0,j € [0, a;.len)}.

In the example, the value 0 is set as 3, and the random indicator
M is set as 0. We are going to find two minimal items larger than 3,
delete the first (smallest) one (M = 0 in the first round) and move
the second one to the next layer (M = 1 in the second round). The
array of the current layer becomes full because of the insertion of
the six items: (1, 2, 3, 4, 5, 6). QPipe uses a set of “worker” packets
to maintain the data structure. In the first round, QPipe deletes the
minimal item larger than € of the array. Firstly, 6 “worker” packets
are used to scan every item in the array and compare it with 6 and b.
The minimal value (b = 3) larger than 6 is stored in stage S3. Then,
QPipe uses another 6 packets to check every item and delete the one
which matches value b. Note that: (1) In our real implementation,
we use one resubmit action to carry the final value of b to the first
stage and store it there; (2) To delete one item, QPipe swap it with
the item at the head of the array and move the head pointer forward.
For simplicity, we omit these details in this example.

Upon the deletion of the item, indicator M is switched to 1 and
the second round begins. In the second round, QPipe deletes the next
minimal item larger than 6 from the current layer and insert it into
the next layer. Similar to the procedure of the first round, QPipe uses
5 “worker” packets to get the minimal value larger than 0 (b = 4).
QPipe uses the next 5 “worker” packets to delete the corresponding
item. As M equals to 1 here, QPipe will insert the deleted item to the
next layer (The same deletion process will be triggered if the next
layer gets full). At last, QPipe will update 6 to value b and set M as
0 or 1 randomly. Note that, if b reaches the maximum of the array,
value 6 will be reset to the initial value (i.e.lower bound) instead
of b. More details are provided in Algorithm 2-5.

QPipe: Quantiles Sketch Fully in the Data Plane

CoNEXT ’19, December 9—12, 2019, Orlando, FL, USA

Algorithm 4 delete() Algorithm 6
1: pkt.b b > Stage 1 1: class stage_x:
2: if a[i] == pkt.b then > Stage 2 2 def __init__(self, len):
3: pkt.i —i 3 self.a_register = [0 for i in range(len)]
4: if finish then > Stage 3 4 return
5 remove(pkt.i) 5: def _get_head_value(self):
6: return self.a_register[meta.head]
7 def _push_value(self):
- n 8: self.a_register[meta.tail] = meta.value
Algorithm 5 recirculate() 9: return
B . 10: def _set_value_beta(self):
1: b kt.b Stage 1
2 0 : ;)Dkt b > Stage 11: self.a_register[recirculate_hdr.index_beta_ing] = meta.value
) . 12: return
13: def _set_value_gamma(self):
14: self.a_register[recirculate_hdr.index_gamma_ing] = meta.value
15: return
4 EVALUATION 16: def _fetch_item(self):
In this section, we evaluate QPipe. We compare the performance of 17: if (self.a_register[meta filter_index] > meta.theta):
18: return self.a_register[meta.filter_index]

QPipe with a sampling based baseline solution. In addition, we show
how QPipe can be used to identify "heavy hitters" flows, and bench-
mark its performance with sampling and widely adopted Count-Min
sketch [18].

Experiment setup. We evaluate QPipe’s performance using three
sets of traces. The first trace, denoted by (a), comes from a large-
scale traceroute-based measurement on the Archipelago (Ark) mea-
surement infrastructure [12]. We use the second trace [11] as an
application study, which contains DNS round-trip time (RTT) in-
formation, and is denoted by (b). The third trace, denoted by (c),
is from a monitoring work on high-speed Internet backbone links
[13]. While we implement QPipe in P4 on a Barefoot Tofino switch
(code for BMV2 available at https://github.com/netx-repo/QPipe),
the experiments are conducted as simulations in python on a server
with 8-core CPU (Intel Xeon E5-2620 2.1GHz) for ease of com-
parison. QPipe maintains a memory-efficient data structure in the
data-plane. The switch is able to run QPipe at line rate as long as
QPipe can be compiled and fit the switch resources. We wrap the reg-
isters and operations of each stage from P4 into a class in our python
simulation ensuring that each register is accessed only at its own
stage. Metadatas (e.g. meta and recirculate_hdr in Algorithm. 6) in
P4 are treated as variables visible to all the classes in the simulation.
We conduct the simulation strictly follow the constraint of switch’s
pipeline. A simple example of a class of setting and getting the value
of the register is shown in Algorithm. 6. We focus on evaluating the
accuracy of QPipe.

We investigate the accuracy of QPipe by calculating the average
and maximum approximation error 3 by using trace (a) in Section.
4.1 and trace (b) in Section. 4.2. We also show the performance of
QPipe on finding the heavy hitters in Section. 4.3 by using trace (c).

4.1 Accuracy of QPipe

We show the performance improvement of QPipe over sampling-
based baseline solution. We use source IP address as the key and iden-
tify the quantiles. Figure 5 shows the space versus approximation
error trade-off, for both average absolute error (Figure 5(a)) and max-
imum absolute error (Figure 5(b)). Since the programmable switch
can provide approximately a few MB memory size per stage [45],
we evaluate the solutions with the array size from 100 to 100K. Both
the vanilla sampling solution and QPipe can take advantage of larger

3 approximation error is defined as the absolute difference between the estimated quantile
and the real quantile

4 —&— Sampling 10 § —4&— Sampling|
1072 —=— QPipe b —=— QPipe
Can2
5 4 5 10
@ 10 » O ,
g . g10°
<40 =
-4
- 10
10° 2 3 1 5 2 3 4 ls
10 10 10 10 10 10 10 10

Memory (# of items) Memory (# of items)

(a) Avg. error. (b) Max. error.

Figure 5: Performance comparison of QPipe and Sampling un-
der different memory size in trace (a) with source IP address as
the key.

memory size to reduce the approximation error. However, from the
figure, we can observe that the approximation error of QPipe fol-
lows more favorable asymptotics and provide up to 91.09x better
approximation compared to the sampling-based solution under the
same memory constraints. When the memory is able to store 100
(100K) items, QPipe outperforms basic sampling by 3.47X (91.09%)
and 2.15X (36.15%) on average approximation error and maximum
approximation error respectively. Meanwhile, to achieve the same
level of approximation error, QPipe can save about 90% of memory
compared with sampling. Current evaluation aims to compare QPipe
with the only available alternative implementable fully in the data
plane, i.e. sampling. Though there exist other quantiles sketches,
their efficient implementation in the data plane is a subject of future
research. For a detailed evaluation of those sketches on a regular
server, we refer reader to [27, 48]. In addition, we emphasize that the
sampling rate within QPipe (as well as KLL) is driven by memory
constraints: increasing sampling rate under fixed memory would not
influence theoretical guarantees.

4.2 Application Study: Round-trip time

End-to-end delay captures network service degradations caused by
various reasons. Therefore it is crucial to efficiently monitor this vital
network performance factor [16, 20]. Here, we present the QPipe’s
performance on analyzing round-trip time (RTT) as an application

CoNEXT ’19, December 9-12, 2019, Orlando, FL, USA

10‘2< —4— Sampling 10 4 —4— Sampling
—#— QPipe -2 —#— QPipe
5. 510
510 5 \
=) > X, -3
z 10_4 g 10
-4
- 10
5 '
10 2 3 4 5 2 3 4 5
10 10 10 10 10 10 10 10

Memory (# of items) Memory (# of items)

(a) Avg. error. (b) Max. error.

Figure 6: Performance comparison of QPipe and Sampling un-
der different memory size in trace (b) with RTT as the key.

10— 1.0 CMSketch, e=0.01
v CMSketch, e=0.1
% 0.8 g 0.8 —— Sampl?ng e=0.01
[4 @ L Sarvnpllngj.e—oﬁ
=06 CMSketch, e=0.1 =06 —4— Qpipe e=0.01
§ (- CMSketch, e=0.01 g -4+ Qpipe, e=0.1
004 —&— Qpipe, e=0.1 204
E -9+ Qpipe, e=0.01 E
0.2 —=— Sampling, €=0.1 0.2
... Sampling, e=0.01
0.0 0.0 4
10° 10° 10 10° 10° 10*

Memory (# of items) Memory (# of items)

(a) true positive rate (b) false positive rate

Figure 7: Performance comparison of QPipe, Sampling and
Count-Min Sketch under different memory size for finding
heavy hitters in trace (c) with source IP address as the key.

study, and compare it with sampling. Figure 6 shows approxima-
tion error vs. memory size. Figure 6(a) and Figure 6(b) present the
average approximation error and maximum approximation error
respectively. With the help of the efficient data structure, QPipe re-
duces the average approximation error and maximum approximation
error by 2.89%-19.33% and 1.65%-43.89% respectively compared to
sampling. We can see that in practice the approximation error of
QPipe follows theoretical guarantees and significantly outperforms
sampling on the given range and asymptotically.

4.3 Finding Heavy Hitters

We evaluate the performance of QPipe on finding the heavy hitters.
QPipe finds heavy hitters by calculating each item’s approximate
proportion. More specifically, QPipe queries items at x% and (x%+¢€)
respectively. If the two items are equal, denoted as v, then v is a
e-heavy hitter.

We compare QPipe with sampling and Count-Min sketch on trace
(c) using source IP address as the key, and show the true positive rate
(TPR) and false positive rate (FPR). Figure 7(a) shows that QPipe
is more accurate at finding heavy hitters than sampling, especially
when the memory size is small. When the memory can store 100
items, the TPR of QPipe is about 66.67% (100.0%) for 0.01-heavy
hitter (0.1-heavy hitter) while the TPR of sampling is about 43.75%
(50.0%). When given enough memory (100K items), QPipe will
successfully find all the 0.01-heavy hitters and 0.1-heavy hitters,
while sampling will still miss items for 0.01-heavy hitters.

Nikita Ivkin, Zhuolong Yu, Vladimir Braverman, and Xin Jin

Among the three methods, Count-Min sketch has the highest TPR
as it won’t miss heavy items (The yellow lines <CMSketch, e=0.1>
and <CMSketch, e=0.01> are both at line <TPR = 1.0>, hidden by
the blue solid line <QPipe, e=0.1>). However, Count-Min sketch
allows a high false positive rate. As figure 7(b) shows, Count-Min
sketch has the false positive rate up to 69.8%, while the FPR of QPipe
is only up t0 0.11%.

5 RELATED WORK

Network measurement has been a crucial area in network research
for a long time [5, 36, 37]. With the emergence of software-defined
networking and programmable data-plane [4, 7, 14], there has been
a lot of work about monitoring jobs [25, 47, 49] and other appli-
cations [28, 29, 33, 38] in the data plane. OpenSketch [49] defines
several APIs for general sketch-based measurement tasks running in
commodity switches. Liu ef al.[34] proposed a “one-big switch” ab-
straction for monitoring UnivMon for the management applications
to run atop of. UnivMon was based on the concept of “universal
sketches” [6, 8-10] and was presented with a proof-of-concept using
P4. SCREAM [39] dynamically allocates resources to many sketch-
based measurement tasks and ensures a user-specified minimum
accuracy. Huang et al.[25] designed and implemented SketchVisor
on top of Open vSwitch. SketchVisor augments sketch-based mea-
surement in the data plane with a fast path and recovers accurate
network-wide measurement results via compressive sensing. Hash-
pipe [47] was a prototype in P4 to detect heavy hitters entirely in
data plane. To the best of our knowledge, QPipe is the first prototype
that can efficiently report quantiles in data plane.

6 CONCLUSION

In this paper, we present QPipe, to the best of our knowledge, the first
quantiles sketching algorithm implemented entirely in the data plane.
‘We properly address the challenge of implementing sophisticated
operations in data plane by using “worker” packets. We show 90x
improvement in precision under a fixed memory budget, compared
with sampling-based baseline.

ACKNOWLEDGMENTS

We thank our shepherd Ramakrishnan Durairajan and the anony-
mous reviewers for their valuable feedback. This work is supported
in part by NSF grants CRII-1755646, CNS-1813487 , CCF-1918757
and CAREER-1652257, ONR Award N00014-18-1-2364, Lifelong
Learning Machines program from DARPA/MTO, Facebook Com-
munications Networking Research Award, and Amazon AWS Cloud
Credits for Research Program.

REFERENCES

[1] Pankaj K Agarwal, Graham Cormode, Zengfeng Huang, Jeff M Phillips, Zhewei
Wei, and Ke Yi. 2013. Mergeable summaries. ACM Transactions on Database
Systems (TODS) 38, 4 (2013), 26.

[2] Mohammad Al-Fares, Sivasankar Radhakrishnan, Barath Raghavan, Nelson
Huang, Amin Vahdat, et al. 2010. Hedera: dynamic flow scheduling for data
center networks.. In Nsdi, Vol. 10.

[3] Mohammad Alizadeh, Tom Edsall, Sarang Dharmapurikar, Ramanan
Vaidyanathan, Kevin Chu, Andy Fingerhut, Francis Matus, Rong Pan, Navindra
Yadav, George Varghese, et al. 2014. CONGA: Distributed congestion-aware load
balancing for datacenters. In ACM SIGCOMM Computer Communication Review,
Vol. 44. ACM, 503-514.

QPipe: Quantiles Sketch Fully in the Data Plane

[4]
[5]

[6

[7

[8

[9

[10]

(1]
[12]
[13]
[14]
[15]

(16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

Barefoot. 2019. Barefoot Tofino. (2019). https://www.barefootnetworks.com/
technology/#tofino.

Steven Bauer, Robert Beverly, and Arthur Berger. 2011. Measuring the state of
ECN readiness in servers, clients, and routers. In Proceedings of the 2011 ACM
SIGCOMM conference on Internet measurement conference. ACM, 171-180.
Jaroslaw Blasiok, Vladimir Braverman, Stephen R. Chestnut, Robert Krauthgamer,
and Lin F. Yang. 2017. Streaming Symmetric Norms via Measure Concen-
tration. In Proceedings of the 49th Annual ACM SIGACT Symposium on The-
ory of Computing (STOC 2017). ACM, New York, NY, USA, 716-729. https:
//doi.org/10.1145/3055399.3055424

Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer
Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George Varghese, et al.
2014. P4: Programming protocol-independent packet processors. ACM SIGCOMM
Computer Communication Review 44, 3 (2014), 87-95.

Vladimir Braverman and Stephen R Chestnut. 2014. Universal sketches for the
frequency negative moments and other decreasing streaming sums. arXiv preprint
arXiv:1408.5096 (2014).

Vladimir Braverman, Stephen R Chestnut, David P Woodruff, and Lin F Yang.
2016. Streaming space complexity of nearly all functions of one variable on
frequency vectors. In Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI
Symposium on Principles of Database Systems. ACM, 261-276.

Vladimir Braverman, Rafail Ostrovsky, and Alan Roytman. 2015. Zero-One
Laws for Sliding Windows and Universal Sketches. In Approximation, Random-
ization, and Combinatorial Optimization. Algorithms and Techniques (APPROX-
/RANDOM 2015) (Leibniz International Proceedings in Informatics (LIPIcs)),
Naveen Garg, Klaus Jansen, Anup Rao, and José D. P. Rolim (Eds.), Vol. 40.
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 573-590.
https://doi.org/10.4230/LIPIcs. APPROX-RANDOM.2015.573

CAIDA. 2009. The CAIDA DNS root/gTLD RTT Dataset. (2009).
/Iwww.caida.org/data/passive/dns_root_gtld_rtt_dataset.xml.

CAIDA. 2014. IPv4 Routed /24 DNS Names Dataset. (2014). https://www.caida.
org/data/active/ipv4_dnsnames_dataset.xml.

CAIDA. 2016. The CAIDA Anonymized Internet Traces 2016 Dataset. (2016).
http://www.caida.org/data/passive/passive_2016_dataset.xml.

cavium. 2019. Cavium XPliant. (2019). https://www.cavium.com/.

Tianqgi Chen and Carlos Guestrin. 2016. Xgboost: A scalable tree boosting system.
In Proceedings of the 22nd acm sigkdd international conference on knowledge
discovery and data mining. ACM, 785-794.

Baek-Young Choi, Sue Moon, Rene Cruz, Zhi-Li Zhang, and Christophe Diot.
2007. Quantile sampling for practical delay monitoring in Internet backbone
networks. Computer Networks 51, 10 (2007), 2701-2716.

Graham Cormode and Marios Hadjieleftheriou. 2010. Methods for finding fre-
quent items in data streams. The VLDB Journal 19, 1 (2010), 3-20.

Graham Cormode and Shan Muthukrishnan. 2005. An improved data stream
summary: the count-min sketch and its applications. Journal of Algorithms 55, 1
(2005), 58-75.

David J DeWitt, Jeffrey F Naughton, and Donovan A Schneider. 1991. Parallel
sorting on a shared-nothing architecture using probabilistic splitting. In Parallel
and distributed information systems, 1991., proceedings of the first international
conference on. IEEE, 280-291.

Kelvin Ross Edmison, Hans Frederick Johnsen, and Walter Joseph Carpini. 2006.
Method and system of measuring latency and packet loss in a network by using
probe packets. (October 24 2006). US Patent 7,127,508.

Eric Fusy and Frécéric Giroire. 2007. Estimating the number of active flows in
a data stream over a sliding window. In Proceedings of the Meeting on Analytic
Algorithmics and Combinatorics. Society for Industrial and Applied Mathematics,
223-231.

Michael Greenwald and Sanjeev Khanna. 2001. Space-efficient online computa-
tion of quantile summaries. In ACM SIGMOD Record, Vol. 30. ACM, 58-66.
Michael B Greenwald and Sanjeev Khanna. 2016. Quantiles and equi-depth
histograms over streams. In Data Stream Management. Springer, 45-86.

Hazar Harmouch and Felix Naumann. 2017. Cardinality estimation: An experi-
mental survey. Proceedings of the VLDB Endowment 11, 4 (2017), 499-512.
Qun Huang, Xin Jin, Patrick PC Lee, Runhui Li, Lu Tang, Yi-Chao Chen, and
Gong Zhang. 2017. Sketchvisor: Robust network measurement for software packet
processing. In Proceedings of the Conference of the ACM Special Interest Group
on Data Communication. ACM, 113-126.

Intel. 2019. Intel Flexpipe. (2019). https://www.intel.com/content/dam/
www/public/us/en/documents/product- briefs/ethernet- switch-fm6000-series-
brief.pdf.

Liberty Edo Lang Kevin Karnin Zohar Ivkin, Nikita and Vladimir Braverman.
2019. Streaming Quantiles Algorithms with Small Space and Update Time. arXiv

https:

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]
[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

CoNEXT ’19, December 9—12, 2019, Orlando, FL, USA

preprint (2019).

Xin Jin, Xiaozhou Li, Haoyu Zhang, Nate Foster, Jeongkeun Lee, Robert Soulé,
Changhoon Kim, and Ion Stoica. 2018. NetChain: Scale-Free Sub-RTT Coordina-
tion. In USENIX NSDI.

Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soulé, Jeongkeun Lee, Nate Foster,
Changhoon Kim, and Ion Stoica. 2017. NetCache: Balancing Key-Value Stores
with Fast In-Network Caching. In ACM SOSP.

Xin Jin, Honggiang Harry Liu, Rohan Gandhi, Srikanth Kandula, Ratul Mahajan,
Ming Zhang, Jennifer Rexford, and Roger Wattenhofer. 2014. Dynamic schedul-
ing of network updates. In ACM SIGCOMM Computer Communication Review,
Vol. 44. ACM, 539-550.

Zohar Karnin, Kevin Lang, and Edo Liberty. 2016. Optimal quantile approximation
in streams. In Foundations of Computer Science (FOCS), 2016 IEEE 57th Annual
Symposium on. IEEE, 71-78.

Ramana Rao Kompella, Sumeet Singh, and George Varghese. 2004. On scalable
attack detection in the network. In Proceedings of the 4th ACM SIGCOMM
conference on Internet measurement. ACM, 187-200.

Zaoxing Liu, Zhihao Bai, Zhenming Liu, Xiaozhou Li, Changhoon Kim, Vladimir
Braverman, Xin Jin, and Ion Stoica. 2019. DistCache: Provable Load Balancing
for Large-Scale Storage Systems with Distributed Caching. In USENIX FAST.
Zaoxing Liu, Antonis Manousis, Gregory Vorsanger, Vyas Sekar, and Vladimir
Braverman. 2016. One sketch to rule them all: Rethinking network flow monitoring
with univmon. In Proceedings of the 2016 ACM SIGCOMM Conference. ACM,
101-114.

Gurmeet Singh Manku, Sridhar Rajagopalan, and Bruce G Lindsay. 1998. Ap-
proximate medians and other quantiles in one pass and with limited memory. In
ACM SIGMOD Record, Vol. 27. ACM, 426-435.

Peter V Marsden. 1990. Network data and measurement. Annual review of
sociology 16, 1 (1990), 435-463.

Peter V Marsden. 2005. Recent developments in network measurement. Models
and methods in social network analysis 8 (2005), 30.

Rui Miao, Hongyi Zeng, Changhoon Kim, Jeongkeun Lee, and Minlan Yu. 2017.
Silkroad: Making stateful layer-4 load balancing fast and cheap using switching
asics. In ACM SIGCOMM.

Masoud Moshref, Minlan Yu, Ramesh Govindan, and Amin Vahdat. 2015. Scream:
Sketch resource allocation for software-defined measurement. In Proceedings of
the 11th ACM Conference on Emerging Networking Experiments and Technologies.
ACM, 14.

J Ian Munro and Mike S Paterson. 1980. Selection and sorting with limited storage.
Theoretical computer science 12, 3 (1980), 315-323.

George Nychis, Vyas Sekar, David G Andersen, Hyong Kim, and Hui Zhang.
2008. An empirical evaluation of entropy-based traffic anomaly detection. In
Proceedings of the 8th ACM SIGCOMM conference on Internet measurement.
ACM, 151-156.

Rob Pike, Sean Dorward, Robert Griesemer, and Sean Quinlan. 2005. Interpreting
the data: Parallel analysis with Sawzall. Scientific Programming 13, 4 (2005),
277-298.

Viswanath Poosala, Peter J Haas, Yannis E Ioannidis, and Eugene J Shekita.
1996. Improved histograms for selectivity estimation of range predicates. In ACM
Sigmod Record, Vol. 25. ACM, 294-305.

P Griffiths Selinger, Morton M Astrahan, Donald D Chamberlin, Raymond A
Lorie, and Thomas G Price. 1979. Access path selection in a relational database
management system. In Proceedings of the 1979 ACM SIGMOD international
conference on Management of data. ACM, 23-34.

Naveen Kr Sharma, Antoine Kaufmann, Thomas Anderson, Arvind Krishna-
murthy, Jacob Nelson, and Simon Peter. 2017. Evaluating the power of flexible
packet processing for network resource allocation. In USENIX NSDI.

Nisheeth Shrivastava, Chiranjeeb Buragohain, Divyakant Agrawal, and Subhash
Suri. 2004. Medians and beyond: new aggregation techniques for sensor networks.
In Proceedings of the 2nd international conference on Embedded networked
sensor systems. ACM, 239-249.

Vibhaalakshmi Sivaraman, Srinivas Narayana, Ori Rottenstreich, S Muthukrishnan,
and Jennifer Rexford. 2016. Smoking out the heavy-hitter flows with hashpipe.
arXiv preprint arXiv:1611.04825 (2016).

Lu Wang, Ge Luo, Ke Yi, and Graham Cormode. 2013. Quantiles over data
streams: an experimental study. In Proceedings of the 2013 ACM SIGMOD Inter-
national Conference on Management of Data. ACM, 737-748.

Minlan Yu, Lavanya Jose, and Rui Miao. 2013. Software Defined Traffic Measure-
ment with OpenSketch. In Presented as part of the 10th {USENIX} Symposium
on Networked Systems Design and Implementation ({NSDI} 13). 29-42.

	Abstract
	1 Introduction
	2 Streaming Quantiles
	3 Quantiles in Data Plane
	3.1 Switch Architecture
	3.2 Data Plane Design

	4 Evaluation
	4.1 Accuracy of QPipe
	4.2 Application Study: Round-trip time
	4.3 Finding Heavy Hitters

	5 Related work
	6 Conclusion
	Acknowledgments
	References

