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Abstract

The Event Horizon Telescope (EHT) is taking the first images of black holes resolved at horizon scales to measure
their shadows and probe accretion physics. A promising avenue for testing the hypothesis that astrophysical black
holes are described by the Kerr solution to Einstein’s equations is to compare the size and shape of the shadow a
black hole casts on the surrounding emission to the predictions of the Kerr metric. We develop here an efficient
parametric framework to perform this test. We carry out ray-tracing simulations for several parameterized non-Kerr
metrics to create a large data set of non-Kerr shadows that probe the allowed parameter space for the free
parameters of each metric. We then perform principal components analysis (PCA) on this set of shadows and show
that only a small number of components are needed to accurately reconstruct all shadows within the set. We further
show that the amplitude of the PCA components are smoothly related to the free parameters in the metrics and,
therefore, that these PCA components can be fit to EHT observations in order to place constraints on the free
parameters of these metrics that will help quantify any potential deviations from the Kerr solution.

Unified Astronomy Thesaurus concepts: Black hole physics (159); Black holes (162); Principal component
analysis (1944); Astronomical simulations (1857); General relativity (641); Spacetime metric (1550);

Geodesics (645)

1. Introduction

Much of our current understanding of black holes relies on
the assumption that they are described by the Kerr solution to
the Einstein equations. One possible avenue for conducting a
test of this assumption with observations in the electromagnetic
spectrum is by measuring the size and shape of the shadow a
black hole casts on the surrounding emission (Johannsen &
Psaltis 2010b; Psaltis 2018).

The black hole shadow depends only on the geometry of
the spacetime and not on the astrophysics of the accretion
process. For a Kerr black hole, the shadow has a radius of
5 4 0.2GMc 2 for all spins and observer inclinations (see,
e.g., de Vries 2000; Johannsen & Psaltis 2010b; Chan et al.
2013, see also Figure 1). Therefore, measuring the size of the
shadow of a black hole of known mass constitutes a null
hypothesis test of the Kerr metric (Psaltis et al. 2015). At the
same time, the shape of the shadow for a Kerr black hole is
nearly circular for all but the highest spins. For a general
spacetime, the shape of the shadow depends primarily on
the deviation of the spacetime quadrupole from its Kerr value
(Johannsen & Psaltis 2010b). As a result, measuring the
shadow shape leads to a test of the general relativistic no-hair
theorem (Psaltis et al. 2016).

The Event Horizon Telescope (EHT) is a millimeter very
long baseline interferometry experiment that has produced the
first ever image of the black hole in M87 resolved at horizon
scales and has measured the size and shape of its shadow
(Event Horizon Telescope Collaboration et al. 2019a). The
initial analysis of the EHT data has revealed no striking
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deviations from the predictions for the Kerr metric (Event
Horizon Telescope Collaboration et al. 2019b); improved
measurements with more interferometric stations and new
algorithms will tighten these constraints in the near future. The
second primary target of the EHT is the Galactic Center black
hole, Sgr A*. This has the largest angular size on the sky of any
currently known black hole (e.g., Johannsen et al. 2012) and
well constrained mass and distance (Ghez et al. 2008; Gillessen
et al. 2009; Gravity Collaboration et al. 2018); therefore,
measuring the shape and size of its shadow is expected to
provide a precise test of the Kerr metric.

In order to use the shape of the black hole shadow to test the
Kerr metric with both Sgr A* and the black hole in M87, we
need to explore the shapes and sizes of shadows in other
metrics. Significant progress has been made in simulating the
observational appearance of black holes and more exotic
compact objects with different spacetimes and in different
theories of gravity (see, e.g., Bambi & Freese 2009; Amarilla
et al. 2010; Bambi & Yoshida 2010; Papnoi et al. 2014;
Mizuno et al. 2018; Shaikh et al. 2019). Additionally, several
parameterized metrics have been developed that can be used to
explore the range of non-Kerr spacetimes in a way that is
agnostic to the underlying physical theory (for a few axisym-
metric examples, see Manko & Novikov 1992; Glampedakis &
Babak 2006; Vigeland & Hughes 2010; Johannsen & Psaltis
2011; Vigeland et al. 2011; Konoplya et al. 2016). The black
hole shadows that result from some of these parameterized
metrics have also been explored (see, e.g., Johannsen & Psaltis
2010b; Johannsen 2013a; Ghasemi-Nodehi et al. 2015; Younsi
et al. 2016; Wang et al. 2017, and Cunha & Herdeiro 2018 for a
review).

Deriving a shadow from a given metric is relatively
straightforward. However, using a shadow to place constraints
on the metrics that could have created it presents a significant
challenge as the mapping between the two is highly nonlinear.
Abdujabbarov et al. (2015) proposed an algorithm that
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Figure 1. Several black hole shadows that result from the Kerr metric as a function of the black hole spin, a, (right), and the inclination of the observer, i (left). In this
and all of the following figures, we assume that the spin vector points upwards. For all but the most rapidly spinning black holes viewed by equatorial observers, the

shadow has a nearly circular shape.

represents the shadow shapes empirically as a sum of Legendre
polynomials, with no reference to the underlying metrics. Here,
we use Principal Component Analysis to show that the shapes
of all black hole shadows generated by several of the
parameterized metrics mentioned above can be represented
by a small set of functions. This allows us to generate a general
parametric model for shadow shapes that is largely agnostic of
the underlying spacetime metric, is more compact than a
general polynomial expansion, and can be used to derive metric
constraints from the EHT data.

The paper is organized as follows. In Section 2, we introduce
the parameterized metrics we consider; we outline our ray-
tracing simulations in Section 3. In Section 4, we introduce
principal components analysis and apply it to the simulated set
of shadows. In Section 5, we assess the accuracy of the PCA
reconstructions and explore the relationship between the
amplitude of PCA components and the metric parameters.
Finally, we discuss the implications of our work in Section 6.

2. Parametrically Perturbed Metrics

In this section, we introduce a number of parameterized
metrics and write them explicitly in the form we use in the
simulations. We select a few metrics from those that have been
published, while prioritizing metrics that differ significantly
from each other. For example, since the metric of Vigeland
et al. (2011) builds upon the metric of Collins & Hughes (2004)
and the metric of Cardoso et al. (2014) builds upon the metric
of Johannsen & Psaltis (2011), we choose to only include one
metric from each of these pairs. We note that many of the
proposed parameterized metrics have pathologies such as
naked singularities, closed timelike loops, or non-Lorentzian
geometries, that can significantly complicate our numerical
calculations. Resolving such pathologies is outside the scope of
the present work, so we restrict ourselves to three representa-
tive metrics that have been investigated in detail for pathologies
in Johannsen (2013a; in particular, see Table 1 in this reference
for a summary of such pathologies).

Our starting point is the Kerr metric, which in Boyer—
Lindquist coordinates takes the form (see, e.g., Bardeen et al.

1972)
2Mr
K
8t :—(1 - T),
b))
K K
grr = K’ gt%’ = E’
2, 2
gf(b = (r2 +a® + Marsin”6 e)sinz 0,
2Mar sin* 0
K - —
& = 5 , (D
where
A=a>—-2Mr+r? ¥ =r?+ a’cos?b, )

M is the black hole mass, and a is the dimensional spin
parameter, a = J/M. We will also make use of the dimension-
less spin parameter a,, = J/ M?. Here and throughout the paper,
we use gravitational units and set G = ¢ = 1. In Figure 1, we
show, as a point of comparison to the following figures, the
effect of changing the black hole spin and the inclination of the
observer on the black hole shadow of the Kerr metric. As
discussed earlier, the size and shape of a black hole shadow
depends very weakly on spin; Kerr shadows are approximately
circular, except for extremely high values of spin.

2.1. The Quasi-Kerr Metric

The quasi-Kerr (QK) metric is based on the work of Hartle
and Thorne (Hartle 1967; Hartle & Thorne 1968) for slowly
spinning neutron stars and was adapted to describe general
vacuum spacetimes by Glampedakis & Babak (2006). This
metric has all but the quadrupole moments equal to those of the
Kerr metric; the quadrupole moment is set to

Ok = —M (@ + eqxM?), 3)
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where egk measures the strength of the deviation from the Kerr
quadrupole. The metric is perturbed in contravariant form such
that

gy = g + cqxhy. @)

v

where g/ are the metric components for the Kerr metric in
contravariant form and h¢y are the metric perturbations for the
QK metric. In Boyer-Lindquist-like coordinates, the elements
of the perturbed metric are given by (Glampedakis & Babak
2006; Johannsen 2013b)

hix = ———(1 — 3cos? O) F(r),
QK . 2M( cos” ) Fi(r)
no=""M 0 3cos20)F(),

hll = ,Lz(] — 3cos?0) F(r),
r

, 1
P _ 2
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The QK metric is a solution to the vacuum Einstein equations
for small spins, a, < 1, and reduces to the Kerr metric when
egx = 0. The validity of the QK metric is limited to regions
where r 2 2M since the logarithm in Equation (6) diverges at
r = 2M. In general, this metric describes a naked singularity
(Johannsen 2013a).

Johannsen & Psaltis (2010a) and Johannsen (2013b) found
that, to first order in the deviation parameter, the conditions
ay 5S04 and —05 S egk S 0.5are necessary but not
sufficient to ensure that Lorentz violations and closed timelike
loops are contained within the circular photon orbit. In this
work, we solve the geodesics for the full metric shown in
Equations (4) and (5) without any additional approximations or
expansions. For this reason, the range of allowed values for egk
is significantly smaller than the range explored in Johannsen &
Psaltis (2010b), who expanded the geodesic equations to first
order in the perturbation parameter. In order to avoid
pathologies in our work, we require, e.g., gk S 0.2 for a
black hole with i = 90° and a, = 0.4 and eqx < 0.35 for a
black hole with i = 90° and a,, = 0.1.*

2.2. The Modified Kerr Metric

This metric proposed by Johannsen & Psaltis (2011)
introduces polynomial perturbations to both the rr- and
00-components of the Schwarzschild metric and, following
Vigeland et al. (2011), uses the Newman-Janis algorithm

4 The ranges used for gk for various spins can be inferred from the length of
the curves in Figure 6.
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Figure 2. Shadows that result from the QK metric as a function of the non-Kerr
quadrupole egk. Here, we have set the black hole spin to a, = 0.1 and the
observer’s inclination to i = 90°.

(Newman & Janis 1965; Drake & Szekeres 2000) to transform
this into that of a rotating compact object. The resulting metric
is not Ricci flat. Here we will follow the expansions of
Johannsen (2013a) and refer to this metric as JP (note that
Johannsen 2013a refers to this metric as the modified Kerr
metric or MK).

In Boyer-Lindquist-like coordinates, the components for the
JP metric are

w_ S(A — a?Ay(r)?sin® 0)
& [A(r)(a® + r?) — a?Ay (r)sin? 01
&y = > HED

T A S
w Ssin? 0[A(r)* (@ + r?)? — a*Asin® 0]
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8o [4;(r)(a® + r?) — a?A, (r)sin? ]2 ™
where, to lowest order,
3
A(r) = M7 1,
3
2
Ar(r) = nM” 1,
2
2
Asry=282M° 4y,
2
- M3
S=x 63r . (8)

In this form, the metric has four free parameters, €3, a3, aao,
and as,. The Kerr metric is recovered when all free parameters
are set to zero. Johannsen (2013a) showed that the shape of the
black hole shadow only depends on the parameters ;3 and
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ay. Therefore, here, we will only vary those two parameters
and set €3 and as», to zero.

This metric describes a rotating vacuum spacetime that
deviates from the Kerr metric but does not have pathologies
outside of the event horizon for all spins below unity as long as

Medeiros, Psaltis, & Ozel
MGBK metric is defined perturbatively in covariant form such that

g;}gGBK _ ;(V + h}l\gGBK, (11)

where the perturbations to each metric component are
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the perturbation parameters satisfy (see also Figure 2 in and
Johannsen 2013a)
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For simplicity, in the present work we will only consider ’ r# '
a3 = —1.0and ay, > —1.0 since these are the lower limits that - muaM 2 (14)
correspond to a maximally spinning black hole. Even though = 2

there is no upper limit on the values of these parameters, we
simulate here shadows with a3 < 5 and as, < 5. The event
horizon for the JP metric does not depend on the perturbation
parameters and coincides with the Kerr horizon,

re=M+ VM? — a2, (10)

for all allowed values of the perturbation parameters.

2.3. The Modified Gravity Bumpy Kerr Metric

The metric proposed by Vigeland et al. (2011) uses bump
functions to perturb the Kerr metric while still ensuring that the
metric has three constants of motion. Here, we employ the metric
in the form used by Gair & Yunes (2011) and Johannsen (2013b),
which makes some simplifications to the original metric to ensure
certain properties (see Gair & Yunes 2011 for details). We will
employ the terminology in Johannsen (2013b) and refer to this
metric as the modified gravity bumpy Kerr metric or MGBK. The

In the equations above, Y and A are the same as in the Kerr
metric (see Equation (2)). Here we have resolved a typogra-
phical error present in the definition of P; in Vigeland et al.
(2011), which was also corrected in Vigeland (2012) but not
utilized in subsequent literature. The resolution of this error
allows us to explore a wider range of values for the free
parameters of this metric, 731, 33, V1.3, and 745, than was
done in Johannsen (2013b). We allow all free parameters to
vary between 0.0 and 2.0. In this form, the event horizon of this
metric coincides with the Kerr horizon. This metric is also not
Ricci flat.

3. Simulating Shadows

We simulate a large set of black hole shadows that probe the
allowed parameter space of the metrics described in the
previous section. We perform ray-tracing simulations using the
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Figure 3. Shadows that result from the JP metric as a function of the parameters «y; (left) and «;5 (right). Here, we have set the black hole spin to a, = 0.9 and the
observer’s inclination to i = 90°. Additionally, we have set ;3 = 0 for the left panel and v, = 0 for the right panel.

algorithm of Psaltis & Johannsen (2012), where we solve the
geodesic equations in each metric to derive the black hole
shadows.

All of the metrics are axisymmetric, which allows us to use
the two associated killing vectors to simplify the geodesic
equations. We solve the simplified geodesic equations with a
fourth-order Runge—Kutta integration scheme, with adaptive
step size. We integrate the photon trajectories backwards
starting at the observer’s image plane and ending when the
photon either comes within 10% of the event horizon, or
escapes to infinity. We denote by x’ and y’ the coordinates on
the image plane (see Figure 1 in Johannsen & Psaltis 2010b for
the geometry used for these simulations). For the QK metric we
exclude the region inside r = 2.48 M to avoid encountering
any pathologies.

We describe the shape of a black hole shadow in terms of its
image-plane radius R = /x’? 4+ y’? at different orientation
angles ) = cos~'(x'/R). We place 200 evenly spaced resolu-
tion elements along v, for 0 < ¥ < 2, and, for each value of
this orientation angle, use the bisection method to find the
boundary between photon trajectories that trace back into the
black hole horizon and those that escape to infinity, i.e., the
black hole shadow; we terminate the bisection at an interval
<107°M. Since we use Boyer—Lindquist-like coordinates for
all metrics, there is a pole that coincides with the spin axis of
the black hole that often introduces numerical errors in the
calculations. For this reason, we exclude orientations that are
within 0.001 rad of ¢ = w/2 or 1 = 37/2 and interpolate
between the nearby data points within these intervals.

In Figure 2, we show how the shadow that results from the
QK metric depends on the quadrupole deviation parameter ek,
while keeping the spin and the inclination angle of the observer
constant. As discussed in Johannsen & Psaltis (2010b), the
quadrupole deviation parameter in this metric introduces
asymmetry to the shape of the shadow. However, because we
opted here not to expand the geodesic equations in this metric
to first order in gk, we can only consider small values for this

parameter before encountering metric pathologies. This results
in shadow shapes that show only small deviations from the
Kerr shadows.

In Figure 3, we show how the shadows that result from the
JP metric depend on the deviation parameters a3 and a,,. The
effect of changing the parameter a,; on the shadow is similar
to increasing the spin. For a Kerr metric, the shadow is
approximately circular up to a, ~ 0.9, after which a perturba-
tion on the left side of the shadow appears (see Figure 1). For
the JP metric, increasing a,, increases the perturbation to the
left side of the shadow far beyond the maximum for a Kerr
black hole.

On the other hand, the effect of changing the parameter a3
on the shadow is similar to increasing the black hole mass. Kerr
black hole shadows have radii between 4.8M and 5.2M for all
spins. For the JP metric, increasing the parameter o3 tends to
increase the size of the shadow, while making it more circular.
Within the set of shadows we explored, the radius range for the
JP metric is SM < R < 6M, indicating that a JP black hole with
a3 = 5 can have a black hole shadow that is ~20% larger than
a Kerr black hole of equivalent mass.

In Figure 4 we show how the shadows that result from the
MGBK metric depend on the perturbation parameters s 1, V3.3
Y12, and ~4,. The perturbations created by the four free
parameters of the MGBK metric have some similarities.
However, unlike the case of the other metrics, the shadows
can look qualitatively different at low versus high a,. For all
parameters, the shadows seem to have “dimples” along the
x" =0 line.

When a, is small, as is shown in the top right panel of
Figure 4, the shadows are relatively left-right symmetric and
can become significantly elongated in the horizontal direction.
The parameter ;3 creates the most extreme shadows of this
kind, as shown in the figure. In contrast, v; ; has a negligible
effect when a,, is small.

When a, is large, as is shown in the top left and bottom
panels, the shadows become asymmetric with the right side
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Figure 4. Shadows that result from the MGBK metric as a function of the parameters 7 ; (top left), 3 5 (top right), v, » (bottom left), and 4 , (bottom right). Here, we
have set the black hole spin to a, = 0.1 in the top right panel and to a, = 0.9 in all other panels and the observer’s inclination to i = 90° in all panels. Additionally,
we have set all perturbation parameters to zero except for the parameter that is varied in each panel.

becoming larger than the left due to the effect of frame
dragging, as in the Kerr shadows in Figure 1. The parameters
v3.1 and 733 do not affect the overall size of the shadow for
large a,, while the parameters -y, , and 74, can create larger
shadows for large a, as shown. For high a, and high v,
shadows can become flat on the left side, similar to the
behavior of Kerr shadows for very high spin.

4. Centering and Rescaling Black Hole Shadows

Frame-dragging effects cause a significant fraction of the
shadows we have calculated to be displaced from the image
origin that is centered on the black hole. Moreover, the effect of
some perturbation parameters is simply to rescale the shadow
sizes. Because our goal is to treat the set of shadows as an
ensemble and compactly represent their shapes, we will first
remove all trivial transformations. A simple translation or
rescaling can be easily accounted for after the fact and does not
need to be included as part of the PCA. By rescaling and
recentering the shadows before analyzing their shapes, we can
significantly reduce the number of parameters that will later be
needed to fit to data. We emphasize that we do not wish to

discard the information about the original size and displace-
ment of the shadows but rather choose to consider it separately.

There are many possible ways of defining the center of a
perturbed circle, each resulting in a different set of parameter-
izations for the shadow shapes. For this work, we experimented
with various methods and chose the method that resulted in the
least number of PCA components (see Section 5) necessary for
accurate reconstructions. We also preferred a procedure for
standardizing shadows that could be easily applied to the data
as well as the simulations. We chose to recenter and rescale
each shadow such that it is as large as possible while still being
contained within a circle centered at the origin with a radius
equal to J27M, ie., the radius of the shadow of a Schwarzs-
child black hole.

We denote the amount by which each shadow is displaced in
the x’ direction, i.e., perpendicular to the spin axis, by xq, such
that a shadow that is displaced to the right will have a positive
Xo. Almost all of our shadows have negligible displacement in
the y’ direction, i.e., along the spin axis, so we do not include a
vertical displacement in this discussion.

Before recording the shape of each shadow in terms of the
image-plane radius R along different orientation angles 1 (see
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Section 3), we first recenter it by subtracting (xy, yo) from all
coordinate pairs. We then define the scale of the shadow Ry,
as the largest radius along the perimeter of the shadow and then
rescale the shadows such that the largest radius becomes equal
to 27M.

We further define the asymmetry (A,qym) of a shadow as

OR
Aasym = E9 (15)

where o is the standard deviation and R is the mean of the
radius of each shadow along different orientation angles ).

In Figures 5-8 we show the dependence of the displacement
(x0), the scaling factor (Rycaie), and the asymmetry (A,sym) of
the shadows on the perturbation parameters of the various

metrics and the black hole spin; for comparison, we also show
the same parameters for the Kerr metric. As expected, for all
metrics, the shadows are displaced to the right with increasing
black hole spin, with the perturbation parameters having only a
secondary effect. At the same time, changing most of the
perturbation parameters introduces changes in the overall scale
R.q1e Of the shadows to amounts larger than the 4% range
obtained for the Kerr metric. Both the JP and the MGBK
metrics can create asymmetries, A,qym, that are much larger
than what is seen for the Kerr metric.

Before performing PCA on the recentered and rescaled set of
shadows, we interpolate each shadow so that they are all
evaluated on evenly spaced values of ¢ and aligned with all
other shadows. In Figure 9 we show the full set of shadows
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Figure 10. All recentered and rescaled shadows in the ensemble after they have
been unwrapped into curves of radius R as a function of the orientation angle .
The first six PCA components are also shown as colored curves, each
multiplied by the largest magnitude amplitude (a,;) for each component.

after they have been rescaled and recentered. A total of 23,887
shadows are included in the set: 15,625 for the MGBK metric,
7605 for the JP metric, 522 for the QK metric, and 135 for the
Kerr metric. For the QK metric, we allowed the spin of the
black hole to vary between 0.0 and 0.4 in intervals of 0.05 and
the perturbation parameter egk to vary between 0.0 and 0.35 in
intervals of 0.05. (As previously noted, the limit of allowed
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Figure 11. Spectrum of the PCA eigenvalues (blue) and the cumulative sum of
the eigenvalues (magenta). The PCA eigenvalues quantify the percentage of the
overall variance in the data set that each PCA component accounts for. The
rapid decline in eigenvalue for the higher components indicates that PCA can
be used for efficient dimensionality reduction. The first component accounts for
81.6% of the variance and only five PCA components can account for 99.6% of
the variance.

values of the perturbation parameter eqk is smaller for certain
combinations of a, and i.) For the JP metric, we allowed the
spin of the black hole to vary between 0.1 and 0.9 in intervals
of 0.2, and both of the perturbation parameters, o3 and a»,, to
vary between —1 and 5 in intervals of 0.5. For the MGBK
metric we allowed a, to vary from 0.1 to 0.9 in intervals of 0.2
and allowed the perturbation parameters, ¥31, Y33, V12, and
Va2, to vary between 0.0 and 2.0 in intervals of 0.5. For the
Kerr metric we allowed a, to vary between 0.1 and 0.9 in
intervals of 0.1 and also included the values 0.95, 0.99, 0.9999,
0.99999, 0.999999, and 0.99999999. For all metrics except
MGBK, we allowed the inclination angle i to vary between 10°
and 90° in intervals of 10°; for MGBK we used intervals
of 20°.

5. Principal Components Analysis

In order to compare the shadow shapes we have simulated to
observations, we would like to express their shapes using a
small number of parameters that can be directly inferred from
the data. Abdujabbarov et al. (2015) followed a similar
approach by representing the shadows as a sum of Legendre
polynomials. Here we explore the use of PCA to compactly
represent the space spanned by Kerr and non-Kerr shadows.

The PCA algorithm diagonalizes the covariance matrix of
the data to find a set of orthogonal basis vectors (principal
components) that are ordered such that the first principal
component accounts for the largest possible percentage of the
variance in the data set, the second principal component
accounts for the second largest percentage of the variance, and
so on (see, e.g., Boroson & Lauer 2010). For data sets that are
correlated, this can result in significant dimensionality reduc-
tion since it may be possible to reconstruct the original data set
using only a handful of PCA components.
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We represent each shadow as a column vector S, = S,
which corresponds to the radius of the ith orientation point of
the nth shadow. In addition to rescaling and recentering as was
discussed above, we also subtract from each shadow shape the
constant 27 M, such that all circular shadows would have a
radius of zero after rescaling, recentering, and subtraction.

We define the covariance matrix C as

c=Lys, - vmme, - Imyr. ae
m,_i

and find a basis of eigenvectors, or ‘“eigenshadows,” by
diagonalizing C such that

Cuk = )\kuk, (17)

where uy is the kth eigenshadow, ) is the kth eigenvalue, and
k= 1,2, ..., m. Although PCA returns m eigenshadows, they
are ordered such that only the first few eigenshadows are
needed to reconstruct the majority of the variance within the
data set. The associated eigenvalue of an eigenshadow
indicates the percentage of the variance within the data set
that this particular eigenshadow accounts for. Because of this,
we normalize each eigenshadow such that

Wl = A, (18)
and normalize the eigenvalues such that
S =1 (19)
k=1

Once we have derived a basis of eigenshadows, we can
reconstruct each shadow as a linear combination of the
eigenshadows. Specifically, we write

Sy =2TM + Y auu, (20)

k=1

where the amplitude a,, is the coefficient multiplying the kth
eigenshadow in the linear combination of the nth shadow. The
overall sign of each eigenshadow is arbitrary and any
eigenshadow can have both positive and negative coefficients
(a,x)- For simplicity, we choose the sign of each eigenshadow
such that the amplitude with the largest magnitude is positive.

Aasym (%)

Figure 12. (Blue points) The maximum fractional difference between the shape of a shadow in our ensemble and its reconstruction using three to six (panels left to
right) PCA components plotted against the degree of asymmetry of each shadow. (Red points) The maximum fractional difference between the shape of a shadow and
its reconstruction using three to six Legendre polynomials. The PCA components provide a representation of shadow shapes that is more compact and efficient than
using Legendre polynomials, with a maximum error of <5% for reconstructions with five PCA components.

10

In the next section we will also discuss the relative contribution
of eigenshadow k to a shadow n, which we define as

Cln = .
NG DY,

where o, is the standard deviation of the kth eigenshadow
defined as

21

|
Ou, = \/_Z(uik — (u))?. (22)
NS

Here, u; is the ith element of the u; eigenshadow, and (1) is
the average of the elements of the u; eigenshadow. We will
also refer to a,, as the rescaled amplitude.

In principle, to reconstruct a shadow to high accuracy, we
would need all m eigenshadows. However, because PCA
components are ordered by their relative importance, the first
few eigenshadows can already reconstruct the large scale
features of each shadow, as long as the eigenvalues decline
reasonably fast. This allows for significant dimensionality
reduction as only a handful of eigenshadows may be needed
depending on the desired accuracy. In the following sections,
we will explore how many eigenshadows are needed for
accurate reconstructions.

In Figure 10, we show the full set of shadows unwrapped
into curves of radius R as a function of the orientation angle 1.
We also show the first six PCA components that were derived
from the set of shadows. In this figure, we have multiplied each
PCA component by the largest amplitude needed to reconstruct
the shadows within the set, effectively showing the largest
possible contribution that each eigenshadow has to any shadow
within the set.

In Figure 11, we show the spectrum of PCA eigenvalues.
The rapid decrease in PCA eigenvalues indicates that only a
small number of PCA components are needed to reproduce the
majority of the variance in the data set. Specifically, the first
PCA component accounts for 81.6% of the variance in the data
set, the second component accounts for 13.9%, and only four
PCA components are needed to account for 98.6% of the
variance.
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Figure 13. Reconstructions of two highly asymmetric black hole shadows (black curves) with four PCA components (magenta curves) and four Legendre polynomials
(blue curves). The left panel shows a shadow created with the MGBK metric with an asymmetry of 23%. The right panel shows a shadow created with the JP metric
with an asymmetry of 12%. Using a small number of PCA components generates reconstructions of black hole shadows that are of higher fidelity compared to using

an equal number of Legendre polynomials.
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Figure 14. Relation between the rescaled amplitude (a,,;) of the PCA components of shadows calculated with the Kerr metric and the black hole spin (apy). Different

colors correspond to different observer inclinations (7).

6. PCA Reconstructions

In this section we quantify the accuracy of the PCA
reconstructions using only a small number of components
and contrast it to reconstructions using Legendre polynomials
(as done in, e.g., Abdujabbarov et al. 2015). Additionally, we
explore the relation between the amplitudes of the PCA
components needed to reconstruct a particular shadow and the
parameters of the underlying metrics.

We define the maximum fractional difference (£) for the
PCA reconstruction of each shadow as

max(|Sin — Spl)

$= J2TMm

(23)

11

where S;, denotes the complete shadow and S;, denotes the
reconstructed shadow. We apply this metric to reconstructions
with either PCA components or with Legendre polynomials.
For consistency with the PCA reconstructions we perform the
Legendre polynomial reconstructions on the recentered and
rescaled shadows.

In Figure 12 we plot the maximum fractional difference as a
function of the asymmetry of each shadow for reconstructions
using 3—-6 PCA components and 3—6 Legendre polynomials. As
expected, both methods have similar performance for shadows
with small asymmetry. However, the maximum fractional
difference in the Legendre polynomial reconstructions is
significantly higher than that of the PCA reconstruction for
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we have set the observer’s inclination to i = 90° and different colors correspond to different black hole spins.
0.20 F° ' = e — 50
component {}. component 2 ax.=0.9,7=90° ] :
0.15 - —— - ; 45
2 0.10 4.0
S 0.05 ] - 3.5
Fq;j e —— ] - 3.0
£ 00— ] =1 r2s
= : ' : ' ' . =1 r20 &
% 0.20 component. 3 {| - component. 4 JPJl F1s
ST S SRS S S ] : B S
S I S S S /)5 S S S S 18y 02
= 0.05 0.0
e S e S ¥ i — VSO SO SO S S - 05
OOO—W P { o __ﬁz = T ~1.0
0 2 4 0 2 4

Perturbation parameter aqg

Figure 16. Same as Figure 15 but for the shadows and perturbation parameters of the JP metric. The different colors correspond to different values of the perturbation

parameter ;.

shadows with higher asymmetry. A reconstruction with only
five Legendre polynomials for shadows with a ~20%
asymmetry will lead to a fractional difference as high as
25%. In contrast, only five PCA components are needed to
reconstruct all shadows within the ensemble with <5%
maximum fractional error. Adding a sixth PCA component
does not substantially improve the reconstruction.

The shadows that have the highest (25%) fractional
maximum error in reconstructions are MGBK shadows with
high perturbation parameters and high values of spin, such as
those shown in the bottom panels of Figure 4. Most of these
shadows have small “dimples” at x’ = 0 before they are
aligned, which are displaced to different x locations, depending
on spin, after alignment. These dimples make the shadows
particularly hard to reconstruct because their varying locations
cannot be captured by a small number of PCA components.

12

In Figure 13 we show two sample reconstructions for
shadows with high asymmetry using either four PCA
components or four Legendre polynomials. The left panel
corresponds to the MGBK metric with parameters a, = 0.1,
i = 900, V3.1 = 00, Y33 = 20, Y12 = 00, and Ya2 = 2.0 and
the right panel corresponds to the JP metric with parameters
ay, = 0.9, i =70° a3 =2.5, and az, = 5.0. Only a small
number of PCA components are needed to generate high
fidelity reconstructions. Reconstructions with the same number
of Legendre polynomials result in significantly higher errors.

7. Discussion

We have calculated an ensemble of over 20,000 simulated
black hole shadows that probe the allowed space of several
parameterized non-Kerr metrics. We applied PCA to our
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Figure 17. Same as Figures 15 and 16 but for the shadows and perturbation parameters of the MGBK metric. Here we have set the black hole spin to ap, = 0.1 and
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ensemble of shadows and derived an orthogonal basis for
shadow shapes. We then used this analysis to reduce the
dimensionality of the set of eigenshadows and showed that
only five PCA components are required to reproduce all
shadows within the ensemble, with a maximum fractional
difference (&) of <5%. We compared the accuracy of the PCA
reconstructions to reconstructions using Legendre polynomials
and found that, for shadows with high asymmetry, the PCA
reconstructions introduce errors that are nearly 10 times lower
than the Legendre polynomial reconstructions.

This approach allows us to measure or place constraints on
deviations from the Kerr metric using black hole images. Given
a set of measurements and choosing a particular metric, we can
convert the measured coefficients of the PCA components to
metric parameters. Figures 14—17 show sample mappings
between the rescaled amplitudes (a,;) of the PCA reconstruc-
tions of shadows and the parameters of the underlying metrics.
Such mapping will allow us to place metric-specific constraints
on deviations from the Kerr metric.

13

The accuracy with which metric-specific constraints can be
imposed and the ability to break degeneracies between different
deviation parameters will depend on both the availability of
prior information on the properties of the observed black hole
and on the interferometric coverage of the observations. For
example, as Figure 3 shows, in the JP metric, a nearly circular
black hole shadow can be obtained either for small spin and
minimal deviations from Kerr or large spin and a large value
for the deviation parameter ;5. The two cases, however, result
in substantially different shadow sizes, which will correspond
to different underlying black hole masses. Prior knowledge of
the mass of the black hole, e.g., from monitoring the orbits of
stars around it, as is the case for Sgr A, will help in breaking
such a degeneracy. Similarly, nearly circular shadows can also
be obtained by reducing the inclination of the observer with
respect to the spin axis of the black hole. Prior information
of this inclination, as is the case for M87, will be valuable in
breaking such degeneracies.



THE ASTROPHYSICAL JOURNAL, 896:7 (14pp), 2020 June 10

g . : , : .
-} : ]
= » Kerr
£ 015 g QI
§~ s
g . MGBK
)
z 0.10
(]
5'-4 L R -
8e] K
& R
< 0.05 A

I 8 |
= 0.00
=
2 ; ; i ; ; H
3 0.00 0.05 0.10 0.15

rescaled amplitudes for 15 component(a/,;)

Figure 18. Amplitude of the second PCA component for each shadow in our
ensemble as a function of the amplitude of the first PCA component. The
MGBK metric is shown in green, the JP metric in red, the QK metric in blue,
and the Kerr metric in purple. Different metrics probe different regions of the
parameter space spanned by the first two PCA components.

The current interferometric coverage available for EHT
observations allows for measuring only global properties of the
black hole shadows, such as their sizes and overall asymme-
tries, and not for tracing out their precise shapes (Event
Horizon Telescope Collaboration et al. 2019b). As Figures 7
and 8 show, such general measurements can be used primarily
to place correlated constraints on deviation parameters for
different metrics and not to measure these parameters
independently. The addition of more EHT baselines on Earth
and, in the future, a more complete interferometric coverage
using rapidly orbiting, space-based stations will allow
measurement of the precise shapes of black hole shadows
and reduce possible correlations between parameters that
describe deviations from the Kerr metric.

A set of measured PCA amplitudes of the shadow shape may
also allow us to distinguish between different metrics.
Figure 18 shows the distribution of amplitudes of the first
two PCA components for each metric we considered here.
Measuring a large positive ratio between the second and the
first PCA amplitudes will point toward the Kerr metric or
modifications similar to those described within the JP metric.
On the other hand, measuring a negative ratio between the
second and the first PCA amplitudes will point toward
modifications similar to those described in the MGBK metric.

The eigenshadows we derived can be directly applied to the
results of EHT observations (see, e.g., Event Horizon
Telescope Collaboration et al. 2019b) as they can be
incorporated into a Hough/Radon transform and utilized in
an edge detection algorithm (see Psaltis et al. 2015). The
location of the shadow in the image plane and the size of the
shadow (Rcq) can also be incorporated into the Hough/Radon
transform and compared to the Ry, and xy of the shadows in
our data set. The outcome of this application will be a
measurement of (or a constraint on) the coefficients of the
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various PCA components. This measurement will be agnostic
of the metric of the compact object.
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