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ABSTRACT

A function f: {0,1}" — {0,1} is called an approximate AND-
homomorphism if choosing x,y € {0,1}" uniformly at random,
we have that f(x Ay) = f(x) A f(y) with probability at least
1—¢ where x Ay = (x1 A y1,...,%n A yp). We prove that if
f:{0,1}" — {0, 1} is an approximate AND-homomorphism, then
f is 8-close to either a constant function or an AND function, where
d(¢) — 0 as ¢ — 0. This improves on a result of Nehama, who
proved a similar statement in which § depends on n.

Our theorem implies a strong result on judgement aggregation
in computational social choice. In the language of social choice, our
result shows that if f is e-close to satisfying judgement aggregation,
then it is 5(¢)-close to an oligarchy (the name for the AND function
in social choice theory). This improves on Nehama’s result, in which
é decays polynomially with n.

Our result follows from a more general one, in which we charac-
terize approximate solutions to the eigenvalue equation Tf = Ag,
where T is the downwards noise operator Tf(x) = Ey[f(x Ay)],
f is [0, 1]-valued, and g is {0, 1}-valued. We identify all exact solu-
tions to this equation, and show that any approximate solution in
which Tf and Ag are close is close to an exact solution.
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1 INTRODUCTION
Which functions f: {0,1}" — {0, 1} satisfy

J&AY) = fOOA fly) wp. 1 -,
where x, y are chosen uniformly at random?

If ¢ = 0, it is not hard to check that f is either constant or an
AND of a subset of the coordinates. Nehama [40] showed that when
& > 0, f must be O((ne)'/3)-close to a constant function or to an
AND (in other words, Pr[f # g] = O((ne)!/?), where g is constant
or an AND). The main result in this paper implies, as a corollary,
a similar statement, in which the distance between f, g vanishes
with ¢, without any dependence on n.

THEOREM 1.1. For each § > 0 there is ¢ > 0 such that if a function
f:{0,1}" — {0, 1} satisfies

Prifcay) = fGOAfy =1~
then f is §-close to a constant or an AND.

Our technique is in fact more general, and allows us to study the
multi-function version of this problem, in which we are interested in
triples of functions f, g, h: {0,1}" — {0, 1} that satisfy f(x Ay) =
g(x) A h(y) with probability at least 1 — ¢. Quantitatively, we get a
quasi-polynomial relationship between ¢ and §, and more precisely
¢ = exp(—O(log?(1/6))), but we expect the correct dependency to
be a polynomial.

Theorem 1.1 gives shows that the natural test above is a one-
sided error tester for the property of being an AND function. This
question was first considered in [43], wherein the authors propose
this test; being unable to analyze it the authors consider a more
complicated tester and analyze it, but it comes at the cost of being
less natural and having more queries as well as two sided error.

If we replace A with @ in the above problem, then the result
corresponding to Theorem 1.1 is the well-known soundness of the
Blum-Luby-Rubinfeld linearity test [7], that plays an important
role in the construction of PCPs [1, 2, 24]. By now, many proofs for
the soundness of this test are known: self-correction [7], Fourier
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analysis [6, 24], induction [12]. Unfortunately, all of these proofs
rely on @ being a group operation (either directly or via Fourier
analysis), and hence do not extend to our setting.

Our approach recasts the problem as determining the approxi-
mate eigenfunctions of a one-sided noise operator. Define the op-
erator T acting on functions f: {0,1}" — {0, 1} in the following
way:

(TH)x) = J}E,i[f (x Ayl

Using this operator, the premise of Theorem 1.1 implies that f
is an approximate eigenfunction of this operator, i.e. Tf ~ Af,
where A = E[ f] is the average of f. Here, by approximate solution
we mean that the Ly distance between the two functions is small:
Ex[ITf(x) - Af®)|] < e

If we replace T with the usual two-sided noise operator Ty,
then a short spectral argument shows that if f is an approximate
eigenfunction then it must be close to an exact eigenfunction of
T,. Unfortunately, the spectral argument relies on orthogonal-
ity of eigenspaces of T,, a property which T doesn’t satisfy (its
eigenspaces are spanned by ANDs, which aren’t orthogonal). In-
deed, T has approximate eigenfunctions beyond ANDs, and below
we give two examples fi and f.

if x| > n/3,
if |x| < n/3

1 if |x] > n/3,
Ber(A) if |x| < n/3

x1V x2

X1 © x2

filx) = { fa(x) = {
In f2, we stress that the function is defined probabilistically: for
each x such that |x| < n/3 independently, we take f>(x) = 1 with
probability A < 1. It is easy to verify by case analysis that we have
that Tf] ~ % fi, Tfa = Afa. Note however, that these functions are
not counter-examples to the AND-test above, since both of them
pass the test with some constant probability bounded away from 1.

Note that each one of the functions fi, f2 is essentially composed
of two, completely different “sub-functions”: one defined on high
Hamming-weight inputs, and another defined on low Hamming-
weight inputs. This suggests decoupling the two functions, and
considering the generalized eigenvalue problem

Tf = Ag, where f: {0,1}" — [0,1] and g: {0, 1}" — {0, 1}.

Here f represents the low-weight part, and g represents the high-
weight part. We represent the probabilistic aspect of the low-weight
part by allowing f to take on values in the interval [0, 1].

The two examples above corresponds to exact solutions of this
generalized problem: T(x; ® x2) = %(xl V x2) and TA = A - 1. There-
fore, as a prerequisite to characterizing approximate eigenfunctions
of T, we must first study exact solutions to the more general two-
function version. We show:

THEOREM 1.2. If f: {0,1}" — [0,1] and g: {0,1}" — {0,1}
satisfy Tf = Ag then either f = g = 0 or there exist disjoint subsets
S1,...,Sm C [n], where m < log,(1/4), such that

m

fe = )\ P

i=1jeS;

m

g =\ '\ %

i=1jeS;
Moreover, if f is monotone then g is an AND and f = g.
Thus if Tf = Ag then g is an “AND-OR” and f is the correspond-

ing “AND-XOR” (or f = g = 0). When f is monotone, g must be an
AND, and so f = g. Using Theorem 1.2, we can then actually solve
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the more general problem of characterizing approximate solutions
to the equation Tf = Ag.

TaEOREM 1.3. If f: {0,1}" — [0,1] and g: {0,1}" — {0,1}
satisfy Tf ~ Ag then either f ~ g = 0 or g is close to an AND-OR
and f is close to an AND-XOR.

Moreover, if f is monotone then f, g are both close to a constant or
to an AND.

We also show how to deduce Theorem 1.1 from Theorem 1.3.
We remark that Theorem 1.3 is stated in a somewhat informal way:
the closeness of the function f to an AND-XOR function has to be
stated in a more subtle way (since otherwise it is false), and we defer
this point to the formal statement of the theorems in Section 2.

1.1 Other Variants

Other noise rates. Nehama [40] also considers the more general
equation

fa A Axm)~ f(x1) A- A f(Xm),

where each one of x1, . . ., X is sampled uniformly and indepen-
dently from {0, 1}". We can reduce this problem, in a similar man-
ner, to an eigenfunction of an appropriate operator T(m)_ defined
by

fxXAYy1IA .. AYm-1).

Ym-1

.....

Our techniques also apply to such operators (and in fact to a slightly
richer family of noise operators), and we prove variants of Theo-
rem 1.2 and Theorem 1.3 in this case as well:

THEOREM 1.4. Letm > 2.If f: {0,1}" — [0,1] and g: {0,1}"* —
{0, 1} satisfy T f = Ag then either f = g = 0 or f = ¢ is an AND.

Furthermore, if TU™ f ~ Ag then either f ~ g ~ 0 or f, g are close
to an AND.

One-sided error version. Finally, we consider the one-sided error ver-
sion of the equation Tf = Ag. That is, suppose we have a bounded
function f: {0,1}" — [0, 1], and a Boolean function g, such that
with probability 1 — ¢ over x: (a) if g(x) = 1, then f(x Ay) > A with
constant probability over y, and (b) if g(x) = 0 then f(x Ay) < ¢
with probability 1 — ¢ over y.

We note that this condition is a relaxation of the approximate
eigenvalue condition. In this case, we prove a weaker structural
result than in Theorem 1.3, namely that g is close to a monotone
junta.

THEOREM 1.5. Suppose that the functions f: {0,1}"* — [0, 1] and
g: {0,1}" — {0, 1} satisfy the following condition: wheng = 0, Tf
is typically small; and when g = 1, Tf is typically at least 1." Then g
is close to a monotone Boolean junta.’

We remark that while the structural result in this case is weaker,
it is for a good reason: for any monotone junta f, choosing g = f
yields an approximate, one-sided error solution.

In contrast, in Theorem 1.3 we ask that Tf be typically close to A.
2A junta is a function depending on a constant number of coordinates.
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1.2 Social Choice Interpretations of
Approximate Eigenfunctions

The seminal work of Kornhauser and Sager [32] discusses a situa-
tion where three cases A, B, C are considered in court, and by law,
one should rule against C if and only if there is a ruling against
both A and B. When several judges are involved, their opinions
should be aggregated using a function f that preserves this law,
that is, satisfies f(x A y) = f(x) A f(y); we say that f is an AND-
homomorphism. List and Pettit [34, 35] showed that the only non-
constant aggregation functions that are AND-homomorphisms are
the AND functions, known in the social choice literature as oli-
garchies.

Let the individual opinions of the judges be x1,...,x, on A,
Y1,--.,Yn on B, and x1 A y1,x2 Ay2,...,xXn A yp on C. The char-
acterization of robust judgement aggregation that we prove in this
paper (Theorem 1.1) states that if typically f(x A y) = f(x) A f(y),
then f is close to an oligarchy.

The characterization in terms of approximate eigenfunctions
(Theorem 1.3) actually shows more. Suppose that opinions are
aggregated according to a monotone function f which satisfies the
following two conditions:

e There is rarely a ruling against C unless there is a ruling
against A and a ruling against B.
e Suppose that there is a ruling against A. If there is also a
ruling against B, then with probability roughly g, there is a
ruling against C.
(Formally, for typical x such that f(x) = 1, we have Pr[f(x A
y=11f=1~q)
Then f must be close to an oligarchy or to a constant function, and
q=1
In fact, the second condition can be weakened significantly:
o Suppose that there is a ruling against A. Then with probabil-
ity roughly A, there is a ruling against C.
Theorem 1.3 implies that f must be close to an oligarchy or to a
constant function, and A = E[ f].
Similarly, Theorem 1.5 shows that f has to be close to a monotone
junta if the second condition above is replaced with either of the
following two conditions:

e Suppose that there is a ruling against A. If there is also a
ruling against B, then with probability at least g, there is a
ruling against C.

o Suppose that there is a ruling against A. Then with probabil-
ity at least A, there is a ruling against C.

Thus our results do not only strengthen robust judgement ag-
gregation in a quantitative way, but also in a qualitative way.

1.3 Our Techniques

Our main result, Theorem 1.1, easily follows from Theorem 1.3,
which is our main technical result. Below we sketch the proof idea
of Theorem 1.3 (the proofs of Theorem 1.4 and Theorem 1.5 follow
similar lines).

Suppose f, g are functions as in Theorem 1.3 that satisfy Tf ~ Ag.
The first step of the proof is to show that the function g is close
to a junta A, i.e. to a function depending only on constantly many
variables. To get some intuition for that, note that if T was the

224

STOC 20, June 22-26, 2020, Chicago, IL, USA

standard noise operator, then the function Tf has exponentially
decreasing tail and hence it is very concentrated on its low Fourier
levels. When the operator T is the one-sided noise operator, one
can actually use similar reasoning to claim that g again has an
exponentially decaying tail (as observed by Lifshitz [33]). Since g
is Boolean and g ~ %T f, this observation would then allow us to
use structure theorems on Boolean functions (more specifically, a
result of Bourgain [8] or of Kindler and Safra [31]) to conclude that
g is (close to) a junta.

Thus, ignoring some (important) technical details, one can think
of g as a function of a constant number of variables, and since the
proximity parameter between Tf and g can be taken to be very
small (even in comparison to the number of variables g depends
on), one may as well think of it as being 0. In other words, the
problem essentially boils down to studying exact solutions to the
equation Tf = g when n is constant, which is where Theorem 1.2
enters the picture. Using it, we prove the structural result on g;
getting the structural result on f then amounts to averaging f over
coordinates that g does not depend on (since those could be thought
of as a “source of randomness” as in the example of f2(x) above),
and then inverting the operator T acting on functions of a constant
number of variables.

This ends the informal description of our techniques. We re-
mark that actually composing the two components, namely the
approximation by junta and the solution to the exact equation, is
more subtle and requires some care. We also remark that in the
case of one-sided error (Theorem 1.5), the Fourier-analytic argu-
ment alluded to above, which implies that g is close to a junta, does
not seem to be applicable. We thus present an alternative, more
combinatorial argument that captures this case as well.

1.4 Related Work

1.4.1  Quantitative social choice theory. Social choice theory studies
how to aggregate the opinion of a number of agents. Already in the
18th century, Condorcet [11] noted that natural aggregation rules
often result in paradoxes. A large body of work has been developed
in economics since the middle of the 20th century, in which it was
shown that natural aggregation tasks have no good aggregation
functions. The two most famous results in this area are Arrow’s
impossibility theorem [3, 4] and the Gibbard—Satterthwaite (GS)
manipulation theorem [21, 45]. The questions of aggregation re-
emerged in the context of multi-agent systems in computer science,
where the hope was that either the probability of paradoxical out-
come is small, or there is computational difficulty in arriving at a
paradoxical outcome, see e.g. [5] and the survey [18]. A sequence of
results showed that this is not the case by proving strong and gen-
eral quantitative versions of both Arrow’s Theorem [28, 29, 37, 38]
and the GS Theorem [19, 20, 27, 39], as well as results interpolating
the two theorems [17].

The main motivation for the problem discussed in this paper is
Judgement Aggregation. This problem is considered in a fascinating
paper in the Yale Law Review by Kornhauser and Sager [32]. In
particular, toward the end of the paper, the authors considered legal
cases, where the judgement aggregation function f should satisfy
f(x Ay) = f(x) A f(y). They observe that this does not hold when
f is the majority vote on three opinions.
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The failure of Majority, which mirrors the failure of Majority in
ranking that was observed by Condorcet, led to work by List and
Pettit [34, 35], who characterized exactly the functions f that are
AND-homomorphisms, i.e., oligarchies. The question of judgement
aggregation has attracted much attention in philosophy, social
epistemology, and artificial intelligence [44]. In the context of multi-
agent systems, when the number of agents is large, it makes sense
to ask if it is possible to achieve approximate judgment aggregation.
Our results show that this can only be achieved in the obvious way,
i.e., by almost-oligarchies.

We note that the study of judgement aggregation extends well
beyond AND-homomorphisms, to other types of homomorphisms,
and indeed such a theory of polymorphisms is well-developed [13—
16, 41, 46]. We leave if for future work to investigate robust versions
of these results.

1.4.2  Property testing. The work of Blum, Luby and Rubinfeld [7]
has been extended to more general settings by various authors.
For example, Moore and Russell [36] and Gowers and Hatami [23]
considered approximate representations of finite groups. Other
authors had considered infinite groups, see for example the survey
of Hyers and Rassias [26]. Theorem 1.1 generalizes Blum-Luby-
Rubinfeld in a different direction, to approximate polymorphisms,
where there is no group structure.

We remark that Theorem 1.1 implies that the soundness of a
property testing algorithm of Parnas, Ron and Samorodnitsky [43],
whose goal is to test whether the input function is a dictatorship or
more generally an AND function. Le., the tester should accept with
high probability (preferably 1) if the function if an AND function,
and reject with probability at least % if the function is e-far from all
AND functions. The authors proposed the following natural tester,
which they were unable to analyze: test that f has expectation
1/2 and satisfies f(x A y) = f(x) A f(y). Instead, they proposed a
somewhat less natural tester. Our results imply that their original
tester also works.

We remark that can design a tester that only queries f on points
distributed according to y1;/, at the cost of introducing an additional
query. The tester samples x, y, z, W ~ i/, conditioned on xAy = zA
w, and checks that f(x)A f(y) = f(z) A f(w). The soundness of this
tester follows immediately from the soundness of the current tester
by redefining for a ~ p; /4 the value of f(a) to be the prominent
value of f(x) A f(y) where X,y ~ ji1/, are sampled so that x Ay = a.

It is interesting to explore if there is a relationship between our
results and different notions of approximate polymorphisms that
appear in the literature [9, 10], which were used to prove hardness
of approximation results.

Organization. We formally state our results in Section 2. After
some preliminaries in Section 3, we prove the various results in
Sections 4, deferring the proof of the rest of the results to the full
version of the paper. We close the paper by stating some open
questions in Section 5.

2 MAIN RESULTS

Let 1y denote the p-biased measure on {0, 1}". Let L2({0, 1}", p1p)
be the space of real-valued functions on {0, 1}" equipped with the

inner product (f, g) = Ex~p, [f(x)g(x)].
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DEFINITION 2.1. For q < p, the distribution (y,x) ~ D(q,p)
over {0,1}" x {0, 1}" is the distribution in which for each i € [n]
independently, we have Pr [y; = 1] = q and Pr [x; = 1] = p, and
alwaysy; < x;.

One way to generate inputs (y, x) ~ D(g, p) that will be useful
for us is as follows. Sample x ~ yip and z ~ pg/,, independently,
and output (x A z,x). (Here A refers to the coordinatewise AND
operation, i.e. for each i € [n] we have (x A z); = x; A z;.)

For p € (0,1), define the one-sided operator T},’ pp a8 follows.
For any function f: ({0, 1}", ypp) — {0, 1}, we define the function

Th o+ (0.1} ip) = (0.1} by
T ppf () = By 1) (pp.p) [F ) | v = x].

Equivalently, we have T}l,’ op f(x) = Bzp, [f(x A 2)].

Next, we shall discuss the spectrum (eigenvectors and eigenval-
ues) of the operator Tl’ . We remark that throughout this section,
the parameters p and p should be thought of as constants bounded
away from 0, 1.

For each S C [n], the function ANDg: {0,1}" — {0, 1} defined

by ANDgs(x) = Ajes xi is an eigenvector of Tzﬁ with eigenvalue

PP
p!S! (we omit the easy proof). Moreover, these are the only eigen-

vectors of Tll,’ op that are Boolean valued.> Our goal in this paper
is to find a robust version of this characterization of the Boolean
eigenvectors of TllJ op

We say that a function f is an n-approximate eigenvector with

eigenvalue A, if ||Tll,’ppf — Aflli < n (here and throughout the
paper we will consider the £ norm with respect to the y, measure).
What can be said about the structure of Boolean, approximate
eigenvectors of Tl’ ? A natural conjecture would be that any
such function has to be close to an exact eigenvector, which by
Booleanity would have to be an AND-function over = log,(4)
variables. However, this conjecture turns out to be false, as the
following example demonstrates.

Setp=p= %, and consider the function f defined by f(x) =
x1 V x3 for inputs whose hamming weight is n/2 + y/nlog n, and
by x1 @ x3 for the rest of the inputs. It is easy to see that f is far
from any AND function on the i1/, measure, and we argue that
||T‘1L/2’1/4f - %f” = 0(1). By definition, for each x, Tf/z’l/‘lf(x) is
the probability that picking z ~ /5, we have f(x A z) = 1. Except
with probability o(1), the hamming weight of x, x A z is roughly
n/2,n/4 respectively, and we focus only on this event. We now
consider two cases depending on the value f(x), and analyze each
one of them separately. In case f(x) = 0, we get by definition that
x1 = x2 = 0sothat (x Az); = (x Az)2 = 0 for any choice of z and in
particular f(x A z) = 0. Otherwise, if f(x) = 1 then (x1, x2) # (0, 0),
and by definition f(x A z) = x121 ® x222, so that for each fixed
x such that (x1, x2) # (0,0), this is a uniform unbiased bit, and in
particular E, [f(x A z)] = %

3To see that, note that any function f can be written as a linear combination of AND
functions, and if f is an eigenvector then all of these ANDs are of the same size, say
with coefficients a1, . . ., &,. Considering the value of f on the minterms of these
ANDs, one concludes that all of the o’s must be 1, and considering the value of f on
the all-1 string, one concludes that m = 1.
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REMARK 2.2. It is worth noting that for any constant A > 0, there

are approximate eigenvectors of T with eigenvalue A (not only

1/2,1/4
for A = 27%). Indeed, the function f that is constantly 1 on inputs
with Hamming weight n/2 + \/nlog n, and on each other point x in-
dependently, we take f(x) = 1 with probability A, is (with probability
1 —0(1)) an approximate eigenvector with eigenvalue A.

2.1 The Basic Two-Function Version

Since the previous example is essentially composed of two different
functions (one around the middle slice and the other around the n/4-
slice), it makes sense to consider the two-function version of the
approximate eigenvector problem. Namely, let f: ({0, 1}", ppp) —

{0.1}.9: ({0.1}", sp) — {0, 1},and A € (0,1) be such that [T}, f~

glli < n. What can we say about f and g? We note that in this case,
even the exact version of the problem, i.e. determining which func-
tions can satisfy T},’ pp f = g. is already unclear (and in fact, as it
turns out, understanding solutions to the exact problem is a key
step in solving the approximate problem).

The version of the problem we will consider is actually more
general and allows the function f to take values in [0, 1]. It turns
out that the structure of the solutions heavily depends on p, and we
consider three different regimes: 0 < p < % p= % and % <p<Ll
We remark that all of the results apply in particular for the original
approximate eigenvector problem, i.e. the case f = g.

The first range, 0 < p < %, is the simplest, and we have the
following result.

THEOREM 2.3. For any { > 0 there is ] € N such that for any
& > 0 there isn > 0 such that the following holds. Letp € [{,1 - (],
p € [{,% —{] and A € [{,1], and let f: {0,1}" — [0,1] and
g: {0,1}" — {0,1} satisfy ||T1l,’ppf —Aglli < n. Then either f,g
are e-close to the zero function, or there is a set T C [n] of size at most
J such that:
e g ise-close to ANDT.
o After averaging outside T, f is e-close to p_lTl/l -ANDT. More
precisely, the function f: {0,1}T — [0,1] given by f(x) =
Eng}]\T [f(y, x)] is e-close to p’|T|/1 -ANDT.

(This range corresponds to the operators T(m) mentioned in Theo-
rem 1.4.)

In the second range, p = 1/2, the structure of f and g may be
more complicated (we have already seen an example in this range
where g = ORT and f = XORT for T of size 2).

DEFINITION 2.4. A functiong: {0,1}" — {0, 1} is called an AND-
OR function of width m if there are disjoint sets A1, . .., Am such that

g(x) = /\ie[m] \/jeA,- Xj-

DEFINITION 2.5. A functiong: {0,1}" — {0, 1} is called an AND-
XOR function of width m if there are disjoint sets Ay, ..., Ap such
that g(x) = /\ie[m] EB]'EAi Xj-

THEOREM 2.6. For any { > 0 there is m € N such that for any
e > 0 there aren > 0, ] € N such that the following holds for all

pell,1-{landA € [{,1].If f: {0,1}" — [0,1] and g: {0,1}" —
0.1} satisfy [T} | f = 2glls < 1. Then there is a set T < [n] of
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size at most J, and a partitionT = A1 U ---U A, forr < m such that
either f, g are e-close to the zero function, or:
e g ise-close to N\je[r] Vjea, xj (i.e. to an AND-OR function of
width at most m).
o After averaging, f is close to a multiple of \;e[r| @jeA,» Xj.
More precisely, the function f: {0,137 — [0,1] given by
f(x) = EYN”ZL\T [f(y,x)] ise-close to 2" A \je[r] @jeA,» Xj.

Both Theorem 2.3 and Theorem 2.6 can be shown to be quali-
tatively tight. For Theorem 2.6, for example, any pair of functions
f,g where g is an AND-OR function and f is the corresponding
AND-XOR function is an exact solution. To see that some averaging
is needed to get a structure for f, note that given a pair of approxi-
mate solutions f, g, one may sub-sample f, i.e. change the value
on each x such that f(x) = 1 with probability 1/2, to get a new
approximate solution with A/2, and f has no apparent structure
(other than being a multiple of AND-XOR after averaging).

Quantitatively, the dependence of 7 on ¢ in Theorem 2.3 is quasi-
polynomial n = exp(—@g(logz(l /€))). The dependence in Theo-
rem 2.6 is exponentially worse, i.e. n = exp(— exp(@)év(logz(l/e)))).
The source of this difference is that in the case of Theorem 2.3 (and
also in Theorem 2.7 and Theorem 2.8) we are able to prove stronger
approximation by junta results than in Theorem 2.6. Namely, we
show that there is J({') (independent of the proximity to junta pa-
rameter ¢), such that if 7 is a sufficiently small function of ¢, then
g is e-close to a J-junta. In the case of Theorem 2.6, we are forced
to allow the size of the junta J to also depend on ¢. As far as we
know, in both cases the dependence of 7 on ¢ could be much better,
perhaps even polynomial.

In the third range of parameters, % < p < 1, the solutions to the
problem have a richer structure. It can be shown, for example, that
there are p € (%, 1), A € (0,1) and a function f: {0,1}" — [0, 1]
such that f and g(x) = Maj(x1, x2, x3) are an exact solution to
Tf J2.p/2 f = Ag. In this case we only show a relatively weak struc-

ture, namely that g is close to a monotone junta (see Theorem 2.11).
We remark that in order to get a stronger structure, one would only

f = Ag for

need to classify all exact solutions to the equation Tll,’ op

p>1/2.

2.2 Special Cases

We next present our result for a few special cases of interest, in
which we are able to prove a stronger structure. The first result is
concerned with the case when the approximate eigenvalue is large:

THEOREM 2.7. Forevery{, e > 0 thereisn > 0 such that the follow-
ing holds forany p,p € [{,1={] andA > p+{ . If f: ({0, 1}", ppp) —
[0.1] andg: ({0, 1}" up) — {0.1} satisfy [T, f ~Aglli < 1. then
g is e-close to a constant function T’ € {0, 1}, and the average of f

according to j1,p is close to AT, i.e. |EX~ﬂpp [f(x)] - AF‘ <e

Next, we consider the case in which f is a monotone function. In
this case (and actually for a more relaxed case in which f is “almost
monotone”), we show that g must be an AND function and f must
be a multiple of that AND function after averaging. We also get
quantitatively stronger relation between ¢ and 7.
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THEOREM 2.8. For every { > 0, ¢ > 0 there exists p > 0 such
that the following holds for all p,p € [{,1 —{] and A € [{,1]. If
£+ ({0, 1}, ppp) — [0, 1] is monotone andg: ({0, 1}", pp) — {0, 1}
satisfles |5, f = Aglli < 1, then:

o There exists T C [n] of size at most [log(2/A)] and a function
h that is either constant (in which case T = 0) or ANDT, such
that||g - hlly <e.

o fi{0,1}T = [0,1] given by f(x) = Ey-p,, [f(x,y)] is e-
close in Loo-norm to p_m)t - h.

The monotonicity condition in Theorem 2.8 can be relaxed to
“almost monotonicity”, in the sense that flipping any coordinate
from 0 to 1 cannot decrease the value of the function too much. To
define this relaxation more precisely we need the notion of negative
influences:

DEFINITION 2.9. Let f: ({0,1}", yip) — [0,1] and let i € [n].
The negative influence of a variable i on f, denoted by I7[f], is
defined to be Bx~y, [max(0, f(x-, xi = 0) — f(x-i, xi = 1)], where
(x—i,x; = b) denoted the pointsy that agrees with x on all coordinates
J # i, and has value b on coordinate j.

(Note that whereas I;[ f] is the average of squared differences, I; [ f]
is an average of differences.)

With this definition, Theorem 2.8 also holds when we relax
the condition of monotonicity of f to the condition that all of its
individual negative influences are small, i.e. I7 [ f] < nforalli € [n]
(the proof of Theorem 2.8 in the full version achieves this stronger
statement). One benefit of this relaxation is that it is able to capture
the case of “judgement aggregation” as an immediate consequence.

THEOREM 2.10. For all {, ¢ > 0 there isn > 0 such that the follow-
ing holds for all p,p € [{,1 =] If f: ({0,1}", pupp) — {0,1},
g: ({0, 1}, pp) — {0,1} and h: ({0,1}",pp) — {0,1} satisfy
Pryyiy,y~p, [f(x Ay) = g(x) A h(y)] 2 1 —n, then one of the fol-
lowing cases must happen.

(1) f and at least one of the functions g or h are e-close to the

constant 0 function.

(2) ThereisasetT C [n] such that f, g, h are all e-close to ANDT

(each with respect to their input distribution).

2.3 One-Sided Error

Finally, we consider a more relaxed version of approximate solu-
tions to Tll,’ppf = g. We say functions f: {0,1}" — [0,1] and
g: {0,1}" — {0,1} are one-sided error solutions with A > 0 and

error 7 if the following two conditions occur:

(1) T#’ ppf is very small on typical inputs x such that g(x) = 0:

B |(1-900)- T, ,p 0] <.
x~fip [ g poonf ] n
2) le,’ ppf 1s bounded away from 0 on typical inputs x such

that g(x) = 1:

= L < <

xgﬁp [g(X) LTy ppf(¥) < /1] <.

THEOREM 2.11. For anye,{ > 0 there aren > 0 and J € N such
that the following holds for any p,p € [{,1 - {] and A € [{,1].
If f: {0,1}" — [0,1] and g: {0,1}" — {0, 1} are one-sided error
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solutions with A and error j, then g is e-close to a monotone, Boolean
J-junta.

We remark that any monotone junta g is a one-sided error approx-
imate solution (by taking f = g), so Theorem 2.11 is tight with
respect to the structure of g.

Organization. The proof of Theorem 2.6 is given in Section 4.
The proofs of the rest of the results are deferred to the full version
of the paper.

3 PRELIMINARIES

For any p € (0,1), we consider functions f: ({0,1}",p) — R
equipped with the inner product (f,g) = Ex~p, [f(X)g(x)]. We

, where

will use the Fourier—-Walsh orthonormal basis { )(g }SC[ :
Ein

for each S C [n] we define Xg: {0,1}" - R by

w26 =[] - e =]
ieS
Thus, we may write the Fourier expansion of a function f: {0,1}" —
R by

o= ) BN,

Sc[n]
Since )(P is an orthonormal basis, we have Parseval’s
Slscin)

identity || f ||§ = ]";,(5)2. We will need a few more notions and
SC[n]

results from Fourier analysis, such as the Junta Theorems of [8, 31]

and the Sensitivity Conjecture proved recently by [25], which we

present below.

where ]’;,(S) =(f, )(g).

3.1 Influences

For a function f: ({0,1}", p) — R and a coordinate i € [n], we
define the p-biased influence of variable i to be
Fifl= E [(fx) - fxee)’].
X~p
When the bias parameter is clear from context, we often write I;[ f].

We will also use the notion of negative influences as given in
Definition 2.9. We have the following simple fact, stating that aver-
aging may only decrease negative influences. The proof is deferred
to the full version of the paper.

Fact 3.1. Let f: ({0,1}", up) — R be a function, and let i € [n].
Consider the function g: ({0, l}”_l,,up) — R defined by g(z) =
Ex~p, [f(x) | X[n)\{i} = z] (i.e. averaging f over the coordinate i).
Then I [g] < I [f] for any, € [n] \ {i}.

We also need the following fact that relates negative influences
and distance from monotonicity.

Fact 3.2. Forallp € (0,1), n € N and t > 0, if the function
f:({0,1}", pp) — R satisfies I7[f] < 7 for alli € [n], then there
is a monotone function h: ({0,1}", p) — R such that || f — hl|; <
(1 =p)p)~"nz.

We remark that the above fact is inspired by [22], wherein a
similar statement was proved for Boolean functions for p = 1/2,

with a better bound (n7). The proof is deferred to the full version
of the paper.
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3.2 Junta Theorems

We will use Bourgain’s Theorem [8]; the sharp version below is
proved in [30]. For k € N, the Fourier tail W, ;[ f] is defined to be
S fp(8)
[SI=k
THEOREM 3.3. Forany{ > 0 there is a constant C({) > 0 such that
foranyk € N, e > 0 therearet = (k/e)"C*, J = (k/e)C* such that
the following holds for allp € [{,1 =] If f: ({0,1}", pp) — {0,1}
; c__ e s . .
satisfies Ws i [ f] < TR then f is e-close to a J-junta h

Furthermore, h only depends on variables i such that I;[g] > 7.

We also need the following result of Kindler and Safra. While
being quantitatively weaker in some regards, it has an important
feature that will be important for us and is missing from Theo-
rem 3.3. The size of the junta in the result of Kindler and Safra only
depends on the parameter k, as opposed to also on the closeness
parameter ¢ as in Theorem 3.3.

THEOREM 3.4 ([31]). Forany{ > 0, m € N there exists J(m,{) €
N, C(m, {) > 0 such that the following holds for allp € [{,1—{]. For
any e > 0 there exists § = C(m, {) - € such that if f: ({0,1}", pp) —
{0,1} is a function such that W, [f] < 8, then f is e-close to a
Jjunta of size J(m, ().

3.3 Degree and Sensitivity

For any f: {0,1}" — {0,1} and x € {0, 1}", the sensitivity of f at
x is equal to the number of coordinates i € [n] such that f(x) #
f(x®e;). The max-sensitivity of a function f is s(f) = maxy s(f, x).
The degree of a function deg(f) is the maximal size of S such that
ﬁ,(S) # 0 (we remark that this is easily seen to be independent of
p)-

We will use the following recent result of Huang [25] (formerly
known as the sensitivity conjecture [42]) in our proof. We remark
that quantitatively weaker results that were known earlier (such as
the bound s(f) > Q(log(deg(f)))) would have been enough for us,
but yield to a loss in several parameters.

THEOREM 3.5 ([25]). For any f: {0,1}" — {0,1} we have that

s(f) = vdeg(f)
4 PROOF OF THEOREM 2.6

In this section, we prove Theorem 2.6. Since we will always consider

the downwards noise operator T}l7 we denote it succinctly by T.

P2

4.1 Main Lemma

LEmMMA 4.1. Forany{ > 0 andn € N there exists o > 0 such that
the following holds for allp € [{,1—-{], A € [{,1] andn € [0, no]. If

Ty 0f = 29lles < 1 then:

e g is an AND-OR function of width r, where r < [log(2/{)].
o Let ¢ be the corresponding AND-XOR function. Then || f —2" A-
Plleo < 3.

This section is devoted to the proof of this lemma, and the proof
is divided into several claims. It will be convenient for us to identify
vectors in {0, 1}" with subsets of [n] by identifying a vector with
its support, and consequently think of the inputs of functions as
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subsets of [n]. The definition of the operator T to these language is
immediate: Tf(B) = Eccp [f(C)] = 2718l 3 f(0).
CCB

Fix {, n, and choose 1 = {4_”2_4”_4. Let f, g be functions as in
the statement of the lemma.

CLAaIM 4.2. g is monotone.

PRrOOF. Suppose g is not monotone. Then there is an edge (A, B)
of the hypercube where A C B such that g(A) = 1, g(B) = 0. We
have that Tf(B) < Ag(B) + n = n, which by definition of T implies
that Eccp [f(C)] < 7. Denote {i} = B\ A, and note that with
probability 1/2 we have i ¢ C, in which case C C A. Thus, the non-
negativity of f implies that Ecca [f(C)] < 2Eccp [f(C)] < 27, i.e.
Tf(A) < 2n. This is in contradiction to Tf(A) > Ag(A) —n=21-1n
(by the choice of 7). O

Since g is monotone, one can discuss its minterms, i.e. sets M C
[n] such that g(M) = 1 but for all A C M, g(A) = 0. The following
lemma asserts that the value of f on any minterm of g is determined
(up to a small error).

Cramm 4.3. If M is a minterm of g, then ‘f(M) - AZ'M" < 4Mly

Proor. Since g(M) = 1, we have that |[Tf(M) — A| < #, and by
definition of T we have Tf(M) = 27 1M >, f(A), so by the trian-
ACM

gle inequality it follows that ‘f(M) - 2|M‘A‘ < 2|M‘r7 + AEM hi%Y)

, and to finish the proof, we upper bound the last sum. Note that

for every A C M, choosing B C M randomly of size |M| — 1, we

have that A C B with probability at least 1/|M|, hence by the non-

negativity of f there is B of size |M| — 1 such that }, f(A) <
ACM

M| 3 f(A), and we fix such B.* Since B C M and M is a minterm
ACB

of g, we have that g(B) = 0, and therefore Tf(B) < 5 or equiva-
lently Y f(A) < 2!Bly. Plugging that in we get that Y, f(A) <
ACB ACM

M| 2|M|_117 and the claim follows. O

We next wish to argue all minterms of g are of the same size,
and towards this end (and also in other places in the argument) the
following proposition will be useful.

PROPOSITION 4.4. Let B, Z C [n] be disjoint such that g(B) = 1.
Then

< 21B1312l,

Z f(AuZ)-2IBl)

ACB

Proor. Note that [Tf(BUW) - Ag(BUW)| < pforany W C Z.
Since g is monotone and g(B) = 1, we must have g(BU Y) = 1 and
we get that

FAUY) = 2BYWIRE < 2lBUWI,
ACB,YCW

4 Alternatively, note that Y 4 — s f(A4) < 2 Bl=m-1 2acB f (A), and take B maxi-
mizing ¥ 4cp f (A).
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Note that for any Y C Z, > (—l)'Z\W| =QunlessY = Z,
W:YCWCZ
in which case the sum is 1, and so we get that
D, favz = > nPWigauy)
ACB ACB,YCZ
wW:YCWCZ
= > AW fauy).
wcZz ACB,YCW

Therefore the triangle inequality implies that

3 fauvz) -1 Y (AW

ACB wcz
PN

WCZ|ACB,YCW

< Z 2|BUW|’7’
wcz

FAUY) - 2/BYWI)

which is equal to 2 Bl3|Z |17, To complete the proof, we observe that
by the binomial formula
Z (~1)IZ\WI|BUW] _ 5[B] Z 2IWl—p)l2l=Iwi
wcz wcz

= 21Bl(2 - 1)lZ1 = 2IBI, O

We now show two consequences of the above proposition. First,
we show that all minterms of g have the same size.

Cram 4.5. For any two minterms M, M’ of g we have |M| = |[M’|.
Proor. Let Z = M’ \ M. By Proposition 4.4 we have
D fauz) <2aMips 2 MislZly,
ACM
By the non-negativity of f the left-hand side is at least the value of

fforA=MnM, ie onAUZ = M’; furthermore, by Claim 4.3
we have f(M’) > M 4‘M/|77, so combining we get

22M1 < 2IMI) 4 p@IMISIZI L 4IMly < 2IMI) 4 3/,

where the last inequality is by the choice of 5. This implies that
[M’| < |M|. The second inequality is proved analogously. O

Denote the size of a minterm of g by m, and note that m <
[log(2/A)]. Indeed, letting M be any minterm of g, by Claim 4.3 we
get that 12" < f(M) +4™n < 2.

We next show that the value of f in a point B must be either
close to 0 or close to 2™ A.

CLAIM 4.6. For any B € {0,1}", it holds that either f(B) < 4|B|277
or |f(B) - 2™A| < 4By,

Proor. If g(B) = 0, the claim is immediate since 2718l f(B) <
Tf(B) < Ag(B) + n = n, so we assume that g(B) = 1. We prove the
claim by induction on |B|. If |B| = m, then B is a minterm and the
claim follows from Claim 4.3. Assume the claim holds for all |B| < i,
and let B be of size i + 1. Since g(B) = 1 we get that there must be a
minterm M C B of g. Let Z = B\ M, then by Proposition 4.4,

<2mslely,

Z fAUZ) 2™

ACM
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For each A C M, by the induction hypothesis f(A U Z) is either
close to 0 (i.e. at most 4|AUZ|277) or close to 2™ A (more precisely, up
to i4|AUZ|q).
e If there is A*¥ C M that falls into the second case, then by
non-negativity of f we get that f(B) is equal to

fMUZ)< Y fAUZ) - f(A* U 2)

ACM

Z f(AUZ)—2m)

ACM

< +[f(A* v Z) - 2™

< 2m3lZly 4 glaruzl, < 4IBly,

where in the last inequality we used |A*| < m -1, and the
claim is proved for B.
o Otherwise, by the triangle inequality

lfMuz)-2ma<| > favz)|+

ACM

Z fAUZ) - 2™

ACM

2
< 4|AUZ| +2m3|Z\”

ACM

< (4(m+|Z|—1)2+m " 3m+|Z|) 7

which is at most 4<m+|Z|)Zq = 4|B‘2i7. Hence the claim is
proved for B (as B=MU Z). O

We are now able to restate Proposition 4.4 in a more convenient
form. For each pair of disjoint sets B, Z C [n] such that g(B) = 1,
denote X(B,Z) ={AUZ | AC B}.

COROLLARY 4.7. Suppose B,Z C [n] are disjoint and g(B) = 1.
Then there is a unique A* C B such that:
o |f(A* U Z)-2m)| < 4.
e For any other A C B we have that f(AU Z) < 4”2r7.
e g(A* U Z) =1 and forany A C A* we have g(AU Z) = 0.

Proor. For the first item, if for all A C B it holds that f(AUZ) <
4 n, then by Proposition 4.4 we have 21 < Y, f(AU Z)+6"n <
ACB

4"2+3"17, which contradicts the choice of 1. Therefore, by Claim 4.6
there is A* C B such that | f(A* Uy) - 2™A| < 4™.
For the second item, assume towards contradiction there are two

such Aj, A;. By Proposition 4.4 we have

2-@MA-4") < f(MUZ)+ f(AUZ) < ). f(AUZ)
ACB
<21+ 6",
and therefore 21 < 6”“77, which is a contradiction to the choice
of n.
For the third item, note that
JA*UZ) 2 TfA* UZ) -y = 27 W2l pa* v z) -y
>27"A-@d"+ 1> 0,

and since g is Boolean-valued it follows that g(A* U Z) = 1. Also,
for any A C A* we have

JAUZ) <K TFAUZ) +n<4®n+n<1,
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where in the second inequality we used the definition of T and the
second item. Since g is Boolean we get that g(AU Z) = 0. m]

To simplify notation, for the rest of the section we often say “the
value of f(S) is close to 2™A” to express that | f(S) — 2| < 4™y
and “the value of f(S) is close to 0” to express that f(S) < 4"217.

Consider the m-uniform hypergraph H = ([n], E) whose edges
are the minterms of g. In the remainder of this section we show
that H is a complete m-partite hypergraph, which is easily seen to
be equivalent to g being an ANR-OR function of width m. Towards
this end, we will define a coloring y: [n] — [m] and show that (a)
each edge e € E is rainbow colored (i.e. no two vertices in it are
colored in the same color), and (b) any rainbow colored set A C [n]
is an edge.

Fix a minterm B C [n], and write B = {by,..., by}, where
bi,...,bm € [n]. We define y(b;) = i. We now define y(v) for any
v € [n] \ B. Fix v € [n] \ B, and consider the set X(B, {v}); by
Corollary 4.7 there exists a unique A C B such that f(AU {v}) is
close to 2™, and its g-value is 1. Since g(A U {v}) = 1, we must
have |A U {v}| > m, and there are two options:

o If [AU{v}| =m+1,ie. A= B,define y(v) = L.
e Otherwise, there is i € [m] such that A = B\ {b;}, and we
define y(v) = y(b;) = i.

We first show that each minterm of g is colored using only

elements from [m] (as opposed to L).

Craim 4.8. Let M € E be a minterm of g. Then for eachv € M we
have y(v) # L.

Proor. Assume towards contradiction that this is not the case,
and let v € M be such that y(v) = L. Then by definition of y this
means that f(B U {v}) is close to 2™, and since B is a minterm
of g we also know, by Claim 4.3, that f(B) is close to 2™A. This
gives us two points in X(M, B\ M) whose f-value is close to 2™,
in contradiction to Corollary 4.7. O

Next, we show that each minterm of g is rainbow colored by y.

CLaIM 4.9. Let M € E be a minterm of g. Then M is rainbow
colored.

Proor. Write M = {v1,...,v;,m}, and assume towards contra-
diction the statement is false. Then there are v;, v; that are as-
signed the same color by y, and without loss of generality we
may assume y(v1) = y(vz2) = m. By definition of y it follows that
f{v1}UB\{bm})) and f({v2} U(B\{bm})) are both close to 2™ A.
However, note that these are two distinct points in X(M, B\ M), and
thus we get a contradiction to the second item in Corollary 4.7. O

Note that the definition of the coloring y may depend on the
minterm B chosen initially to define it. The following claim shows
that this is actually not the case — and more precisely that if we
use a different minterm B’ to define a coloring y’, then there is a
permutation 7 on [m] such that y’ = 7 o y.

Cramvi 4.10. Let B’ = {b,...,b},} be any minterm of g, and let
x’ be a coloring defined as above using B’ in place of B. Then there
exists T € Sy, such that y = wo y’.
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Proor. Since B is a minterm of g, it follows by Claim 4.9 that
it is rainbow colored by both y and y’, so we define = € S, by
x(x’(bi)) = x(bi). We define y = 7 o y” and show that y = 7.

Let v ¢ B, and assume without loss of generality y(v) = m. Then
by definition of y we must have that {by, ..., b;—1, v} is a minterm
of g, and hence by Claim 4.9 it must be rainbow colored by y. Since
X agrees with y on by, ..., b;y—1, we must have y(v) = m, and we
are done. O

Lastly, we show that each rainbow colored set of size m is a
minterm of g.

CraM 4.11. For any minterm B of g and a coloring y defined by
it, the following holds. If M C [n] of size m is rainbow colored by y,
then g(M) = 1. Consequently, M is a minterm of g.

Proor. We prove the statement for all B, y, M by induction on
|BN M.

Write M = {v1,...,um}, B={b1,...,bm}, and assume without
loss of generality that y(v;) = y(b;). The base case is |BN M| = m,
in which case M = B and the claim is obvious.

Let k < m—1, assume the statement is true whenever |B N M| >
k+1, and let M be such that |B N M| = k. Without loss of generality
we may assume that v; = b; forall 1 < i < k. Since y(vgyq1) =
X(bry1) we get that B’ = (B \ {bg41}) U {vg41} is a minterm of
g. Let y’ be the coloring defined by B’. By Claim 4.9 we get that
x' = 7o y for some n € Sy, and in particular as M is rainbow
colored by y it is also rainbow colored by y’. Since |[B’ " M| = k+1
we may apply the induction hypotehsis on B with the coloring y’
to conclude that M is a minterm of g, as required. O

It follows that the function g is the function Aje(m] Vjea, Xj

where A; = y~1(i). To complete the proof of Lemma 4.1 we must
establish the structural result for f, which we do by inverting f.

CramM 4.12. The operator T has an inverse T~ given by T~ h(B) =

T (-)B\AlzIAIp(),
ACB

PROOF. Let h be in the image of T, i.e. h(B) = Tfl(B) for some h.
We prove by induction on B that h(B) = }, (-1)IB\Al2lAlp(4).
ACB

The base case |B| = 0 is clear. Assume the statement holds for
all B such that |B| < k, and let B~be of si~ze k + 1. By definition of
h we have that 2|B|h(B) = 3 h(A) + h(B). Using the induction

ACB

hypothesis on each A C B we+get that

Z h(A) = Z Z(—l)'A\Clz‘lel(C)

ACB ACBCCA

:Zzlclfl(c) Z (—1)lA\C]
C A

chgB
= >, 2o nPe,
C

where in the last equality we used the fact that adding the summand
corresponding to A = B, the sum would be 0. Plugging that into the
previous equality and rearranging finishes the inductive step. O

Definey =1 (-1)1B\Al 2|A|g(B). By Claim 4.12 we have that
ACB
Ag =Ty.
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Cramm 4.13. ||f = ¢¥|leo < 3™n.

ProOF. Let h = Tf. Using the formula for h from Claim 4.12 and
the definition of i we have that for all B C [n],

FB) - B < Y. 24 |ha) - 2ga) < . 2Mly =318l o

ACB ACB

Let¢ = A2, (@jeA,— xj). We show that T¢p = 27™g. Since T is
invertible by Claim 4.12 and Ty = Ag, we get ¢ = 2™ ¢, and hence
Claim 4.13 implies that f is 3"5-close to 2™ A¢ in L, as required.

CrLamm 4.14. Let Ay, ..., Am be disjoint, non-empty sets, and let
¢ = NZ1Djea, %9 = N1 Vjea, xj- Then T = 27™g.

Proor. Fix B C [n], and let B; = BN A; for each i.

If g(B) = 0, then B; = 0 for some i, without loss of generality
i = 1. Thus, for any C € B we have that C N A; = 0, and hence
¢(C) =0, s0 TH(B) = 0.

If g(B) = 1, then B; # 0 for all i. Let C C B be chosen uniformly
at random, and denote C; = C N A;. Note that the distribution of
Cq,...,Cp is of independent uniform subsets of By, . . ., B, and as
such the parity of the size of each C; is a uniform and independent
bit. Thus,

Tg(B) = Pr [¢(C)=1]
B[|Ci| =1 (mod2)forallie [m]]=2"". O
This completes the proof of Lemma 4.1. o

4.2 Deducing Theorem 2.6

In this section we use Lemma 4.1 to deduce Theorem 2.6, and we
first sketch the argument. Given an approximate solution f, g, we
first observe that the function g is noise insensitive — that is, has
a small Fourier tail — and hence deduce from Theorem 3.3 that it
is close to a junta. We then show that for almost all restrictions f
outside the junta variables, we can associate a bounded function
fﬁ such that fﬁ gp are a solution to the equation in Lo, and we

may deduce some structure for gz and fﬁ. Using the fact that the
restricted variables barely affect the function g (since it is junta)
one can thus deduce the necessary AND-OR structure from g. To
get the structural result for the function f, slightly more work is
needed. We show that eliminating ORs that are too wide from the
gﬁ’s, almost all of them become the same function, and we show
that after averaging over the removed variables, f is close to a
multiple of the corresponding AND-XOR function.

We first give several statements that will be useful for us in
the proof. The following lemma from [33] shows the effect of the

! . . .
operator T}, ,, , on the Fourier expansion of a function.

Lemma 4.15. I f = S f(S)x P then
(1-pp) V2
T;l),ppf = ZS: (W) Fex?.

Using the previous lemma we may show that if f, g are approxi-
mate solutions, then g has an exponentially small tail.
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LEmMaA 4.16. Let f: ({0,1}", ppp) — [0,1], g: ({0, 1}, pp) —
{0, 1} be functions such that || T L ppf Agll < n. Then for anyk € N
we have that Wy [g] < 2/1_2(77 + pky.

Proor. Since f,g are bounded between 0 and 1, Tf — Ag is
bounded between —1, 1 at each point and therefore we get that
ITf - Ag||§ < |ITf = Aglli < n. Using Parseval’s inequality (and
Lemma 4.15 to get the Fourier coefficients of Tf on 1), we get that,

(-pp
1-pp

Z(p‘s'/ Fop($) = 1gp(9)* <

denoting py = < p, we have

Therefore, using (a + b)? < 2(a? + b?) we get that

2N G <z Y (0P p(9)?

[SI=k ISI=k

<2p+2:p5 D fpplS)

IS1=k
k
<2n+2-p7,

where in the last inequality we used Parseval to bound the sum of
Fourier coefficients of f by 1 and p2 < p. O

Second, the following will be useful for us in the pruning process
of the wide ORs.

LEMMA 4.17. Suppose that g1, g2 are AND-OR functions of width
at most d that are e-close with respect to ji, and let y = 2p~9¢. Let
Y1, Y2 be the truncations of g1, ga respectively resulting by removing
all ORs containing more thanlog, ,_,)(1/y) variables.

Then i1 = 2, and furthermore this function is dy-close to g1 .

Proor. We say an OR of g is small if the number of variables
in it is at most log; /;_,(1/y), and let A; be a small OR of g;. We
claim that there is a small OR of gz, which will be denoted by Az,
that contains Aj. Assume towards contradiction that this is not
the case. Thus, restricting Aj-variables to 0, the restricted function
(92)A,—0 does not become identically 0 and it is still an AND-OR
function of width at most d, and therefore it gets the value 1 with
probability at least pd. Since the probability that all of the variables
in A get the value 0 is at least (1 —p)l(’gl/(1 -»U/Y) = Y, we get that
Pry [O Ra, (%) = 0,g2(x) = 1] p However, note that on any
such x we have g1(x) = 0 and gg(x) = 1, and by assumption the
probability mass on such x’s is at most ¢, so we get that ¢ > yp?
and contradiction.

Therefore, for each small OR of g; there is a small OR in g
containing it and vice versa. As the ORs in each function are disjoint
in variables, it follows that each small OR of g; appears in g2 and
vice versa, so in other words 1 = V.

Finally, since ¢g; and ¢; may differ only when there is an OR
of size at least log; /(1—p)(1 /y) in g1 that evaluates to 0, and there
are at most d such clauses, it follows from the union bound that
Pry [g1(x) # Y1 (x)] < dy. o

We are now ready to prove Theorem 2.6.

ProOOF OF THEOREM 2.6. Fix {, ¢ > 0 from Theorem 2.6 (we as-
sume ¢ > 0 is small enough) and choose m [log(2/{)]. Let
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C = C({) be from Theorem 3.3, choose 1 = {2¢%/(4Clog(1/e)), and
pick 7, J from Theorem 3.3 for ¢ and k = [log(1/#n1)]. Later in the
proof we will also define 7, and subsequently take n = min(#1, n2).

Let f, g be functions as in the statement of Theorem 2.6, and
set k = [log(1/n1)]. From Lemma 4.16 we have that W5 [g] <
A2 + 27%) < ¢/(Ck), and Theorem 3.3 implies that there is
T C [n] of size J such that g is £2-close to a T-junta.

Take 174.1 from Lemma 4.1 for { andn = J,and setnz = 6’1174,152.
We write points x € {0, 1}" as (a, ) where a € {0, 1}7 and pe
{0,1}["]\T. For each f§ € {0,1}["]\T, define fﬂ: {0,137 = [0,1]
and gg: {0,1}7 — {0,1} by

E [f(a.p))].

E, 95(@) = g(a. B

fpla) = 5

and let B = {ﬁ € {o, 1}["]\T ’ ||fﬁ = Agpllee < 3_181744}. Since for
any a, f we have Tfﬁ(a) = Tf(a, p), it follows that

& [I1Tf ~ Agplh] = ITf = gl <z

Therefore Markov’s inequality implies that with probability at least
1-¢over B ~ yip we have || Tfg — Agglli < 6~/ eny.1, in which case
B € B.In particular, we conclude that

Pr

Bl >1-e¢.
L R

For each f € B, Lemma 4.1 implies that g4 is an AND-OR
function of width r(f) which is at most m({) = O(log(1/{)), and
that fﬁ is e-close to 2”1 - AND-XOR in L« for the corresponding
AND-XOR function; we will use that only later when we establish
the structure for f. Since g is 2-close to a T-junta, if we choose
B. B’ € B independently (according to i) then on average gp and

gpr are §-close, where § < 262 /Pr[B] < 2¢2. Thus there is f* € B
such that Egep [||gﬁ - gp* ||1] < 2¢2, so by Markov’s inequality,
defining B' C Bby B’ = { € B | lgg —gp~llh < ¢} we have that

Pr, (mr[BeB]>1- 5%
~ul

) — 557 > 1 — 4e. We may already argue

Pr[B]
that g is close to the AND-OR function g+, however that will not
be strong enough to establish the structural result for f and hence
we prove a stronger statement. Namely, we show that if we truncate
gp by removing the wide ORs, then almost all of them will produce
the same AND-OR function .

Proving the structural result for g. For each f € B’, let §/5 be
the AND-OR function gg where we remove from it all ORs whose
width exceeds logl/(l_P)(l/(Zp_ms)). From Lemma 4.17 we get that
there is an AND-OR function { (namely, yg«) such that 3 = ¢
and |lgg — ¥ll1 < 2mp~™e = Oy (e) for each f € B'. Therefore, it
follows that

Pr L9t ) # ()]
<Pr [¢B]+ P [9(e. B) # Y(e) | B € B']
= Oé/(é‘),
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i.e. g is close to the AND-OR function . Let T’ C T be the set of
variables that appear in ¢, and write a € {0, l}T as a = (a1, a2),
where ay € {0, l}T, and az € {0, l}T\T/.

Proving the structural result for f. We show that averaging out-
side T” makes f close to a multiple of ¢, where ¢ is the AND-XOR
function corresponding to . For each § € B’ we denote by ¢4 the
AND-XOR function corresponding to gg.

For each § € B’, define Ag(a1) = Ea'~pT\T’ [fﬂ((xl, az')] and
2~ Hpp

A: {o, l}T — [0,1] by A(e) = EﬁNHLn]\T [Aﬂ(al)]. For each f§ €

B’, Lemma 4.1 implies that fﬁ is e-close to 27 . ¢ﬁ in Leo, hence
by averaging over a; we conclude that Ag(ay) is e-close to 21y .
E__ nr [¢plar, @2)] = c(B) - $(a1), where c(f) < 2™.

®2~Hpp

Set K = Eﬂ I:C(ﬂ)lﬂEB/] Then
4= Kgll < 2"Ee[p e 5]+ 145 = (B) - 1 pess
< 2mI;3r [B¢B']+3n

<2™O0(e) + & = O (e).

Since A(ay) = Eay. B'~p1pp [f(a1, @z, B’)], this shows that after av-
eraging outside T’, the function f is Oy (¢)-close to K¢, and we
next show that one may replace K by 12", where r is the width of
¢, and retain this closeness.

If y = 0 then ¢ = 0 so the value of K does not matter, so
we assume henceforth that i/ # 0, in which case we clearly have
[[¥ll1 = p™. Since T is a contraction, || TA-K-T¢ll; < [|[A-K¢|1 =
O¢ (). Since by Claim 4.14 we have T¢ = 27", it follows that
lAg = K - 277¢|l1 = O (e). Since g is Oy (¢)-close to ¢, this gives
[A=K277||[¢lls = Og(e), and so |4 —K27"| = O(p™™e) = Oy (e),
implying that |[K — 2"A| = O (2"¢) = O (¢). Thus, K - ¢ is Oy (e)-
close to 2" - ¢, and by the triangle inequality we conclude that
IA=2"2- ¢ll1 < Oy (e), finishing the proof. O

5 OPEN QUESTIONS

Our work raises many open questions. Perhaps the most obvious is
the quantitative aspect of our results:

OPEN QUESTION 1. What is the optimal dependence between ¢
and & in Theorem 1.17

We can ask a similar question about the various results listed in
Section 2.

Nehama [40] showed that if we allow ¢ to depend on n, then we
can choose ¢ = ©(83/n). Theorem 1.1 eliminates the dependence
on n in return for an exponential dependence on §. We conjecture
that Theorem 1.5 holds for ¢ = §@0).

Nehama situates Theorem 1.1 in the larger context of approxi-
mate judgement aggregation, or equivalently, approximate poly-
morphisms. He considers not only functions satisfying

fGa A Axm)~ f(x1) A-- A f(Xm),
but also functions satisfying

f1@- ®xm) = f(x1)® -+ ® f(Xm),
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showing (using linearity testing) that the latter must be close to
XORs. More generally, we can replace A, @ with an arbitrary Boolean
function (or even a function on a larger domain):

OPEN QUESTION 2. Fix¢: {0, 1}'" — {0, 1}. Suppose f: {0,1}" —
{0, 1} satisfies
f@E1, .- xm)) = $(f(x1)s . -, f(xm))
for random x4, ..., xm € {0, 1}", where ¢(x1, . .
mentwise application.
What can we say about f?

., Xm) signifies ele-

Dokow and Holzman [13] showed (essentially) that when ¢ is a
non-trivial function which is not an AND or an XOR, then the only
exact solutions are dictatorships. We conjecture that when ¢ is such
that the only exact solutions are dictatorships, then approximate
solutions are approximate dictatorships.

Finally, let us mention the following tantalizing question:

OPEN QUESTION 3. What can be said about functions f : {0,1}" —
{0, 1} satisfying

PfAY) = FO)A F@)] > 5 +e7

We remark that the % bound on the right hand side is natural in light
of semi-random functions f: {0,1}" — {0, 1}, chosen by taking
f(x) to be a uniform bit when |x| ~ %n, and f(x) = 0 otherwise.
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