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Abstract—Traditional symbol detection algorithms either per-
form poorly or are impractical to implement for Massive
Multiple-Input Multiple-Output (MIMO) systems. Recently, sev-
eral learning-based approaches have achieved promising results
on simple channel models (e.g., i.i.d. Gaussian channel coeffi-
cients), but as we show, their performance degrades on real-world
channels with spatial correlation. We propose MMNet, a deep
learning MIMO detection scheme that significantly outperforms
existing approaches on realistic channels with the same or lower
computational complexity. MMNet’s design builds on the theory
of iterative soft-thresholding algorithms, and uses a novel training
algorithm that leverages temporal and spectral correlation in
real channels to accelerate training. These innovations make
it practical to train MMNet online for every realization of
the channel. On i.i.d. Gaussian channels, MMNet requires two
orders of magnitude fewer operations than existing deep learning
schemes but achieves near-optimal performance. On spatially-
correlated channels, it achieves the same error rate as the next-
best learning scheme (OAMPNet) at 2.5dB lower signal-to-noise
ratio (SNR), and with at least 10× less computational complexity.
MMNet is also 4–8dB better overall than a classic linear scheme
like the minimum mean square error (MMSE) detector.

Index Terms—Massive MIMO, signal detection, deep learning,
online adaptation, spatial channel correlation

I. INTRODUCTION

The fifth generation of cellular communication systems
(5G) promises an order of magnitude higher spectral effi-
ciency (measured in bits/s/Hz) than legacy standards such as
Long Term Evolution (LTE) [1]. One of the key enablers
of this better efficiency is Massive Multiple-Input Multiple-
Output (MIMO) [2], in which a base station (BS) equipped
with a very large number of antennas (around 64–256) si-
multaneously serves multiple single-antenna user equipments
(UEs) on the same time-frequency resource.

Legacy systems already use MIMO [3], but this is the
first time it will be deployed on such a large scale, creating
significant challenges for signal detection. The goal of signal
detection is to infer the transmitted signal vector x from the
vector y = Hx + n received at the BS antennas, where H is
the channel matrix and n is Gaussian noise. Traditional MIMO
signal detection schemes with strong performance [4, 5, 6, 7]
are feasible only for small systems and have prohibitive
complexity for massive MIMO deployments. Thus, there is
a need for low-complexity signal detection schemes that can
both perform well and scale to large system dimensions.
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In recent work, researchers have proposed several learning
approaches for MIMO signal detection. Samuel et al. [8, 9]
achieved impressive results with a deep neural network ar-
chitecture called DetNet, e.g., matching the performance of
a semidefinite relaxation (SDR) baseline for independent and
identically distributed (i.i.d.) Gaussian channel matrices while
running 30× faster. He et al. [10] introduced OAMPNet,
a model inspired by the Orthogonal AMP algorithm [11],
and demonstrated strong performance on both i.i.d. Gaussian
and small-sized correlated channel matrices based on the
Kronecker model [12]. DetNet and OAMPNet are both trained
offline: they try to learn a single detector during training for
a family of channel matrices (e.g., i.i.d. Gaussian channels).

In this paper we show that neither approach is effective in
practice. We conduct extensive experiments using a dataset of
channel realizations from the 3GPP 3D MIMO channel [13],
as implemented in the QuaDRiGa channel simulator [14]. Our
results show that DetNet’s training is unstable for realistic
channels, while OAMPNet suffers a large performance gap
(4–7dB at symbol error rate of 10−3) compared to the optimal
Maximum-Likelihood detector on these channels. Both models
(as well as several classical baselines) perform well in simpler
settings used for evaluation in prior work (e.g., i.i.d. Gaus-
sian channels, low-order modulation schemes). Our results
demonstrate the difficulty of learning a single detector that
generalizes across a wide range of realistic channel matrices
(esp. poorly-conditioned channels that are difficult to invert).

Motivated by these findings, we revisit MIMO detection
from an online learning perspective. We ask: Can a receiver
optimize its detector for every realization of the channel
matrix? Intuitively, such an approach could perform better
than using a fixed detector for a wide variety of channel
matrices. However, conventional wisdom suggests that training
a MIMO detector online is impossible because of the stringent
performance requirements [8].

Our design, MMNet, overcomes this challenge with two key
ideas. First, it uses a neural network architecture that strikes
a balance between flexibility and complexity. Prior neural
network architectures for MIMO detection are poorly suited
to online training. DetNet is a large model with 1-10 million
parameters depending on the system size and modulation
scheme, making it prohibitively expensive to train online.
OAMPNet, on the other hand, is very restrictive, adding only
2 trainable parameters per iteration to the OAMP algorithm.
Since the OAMP algorithm requires strong assumptions about
channel matrices (unitarily-invariant channels [11]), OAMP-
Net, even with online training, performs poorly on channels
that deviate from the assumptions.

MMNet’s neural network is based on iterative soft-
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thresholding algorithms, a popular class of solutions to “linear-
inverse” problems [15, 16, 17] like MIMO detection. These
algorithms repeatedly refine an estimate of the signal by al-
ternating between a linear detector and a non-linear denoising
step. By preserving the core components of these algorithms
in MIMO detection, such as a simple denoiser that is optimal
for uncorrelated Gaussian noise, MMNet avoids the pitfalls
of overly general neural network architectures like DetNet. At
the same time, unlike OAMPNet, MMNet provides adequate
flexibility in the architecture through trainable parameters that
can be optimized for each channel realization.

MMNet’s second key idea is an online training algorithm
that exploits the locality of channel matrices at a receiver in
both the frequency and time domains. By leveraging spectral
and temporal locality, MMNet accelerates training by more
than two orders of magnitude compared to naively retraining
the neural network from scratch for each channel realization.

Taken together, these ideas enable MMNet to achieve per-
formance within ∼2dB of the optimal Maximum-Likelihood
detector with 10-15× less computational complexity than the
second-best scheme, OAMPNet. On random i.i.d. Gaussian
channels, an even simpler version of MMNet (MMNet-iid)
with 100× less complexity than OAMPNet and DetNet
achieves near-optimal performance without any retraining.

We empirically analyze the dynamics of errors across dif-
ferent layers of MMNet and OAMPNet to understand how
MMNet achieves higher detection accuracy. Our analysis re-
veals that MMNet “shapes” the distribution of noise at the
input of the denoisers to ensure they operate effectively. In
particular, as signals propagate through the MMNet neural
network, the noise distribution at the input of the denoiser
stages approaches a Gaussian distribution, create precisely
the conditions in which the denoisers can attenuate noise
maximally.

The rest of this paper is organized as follows. Section II
provides background on classical and learning-based detection
schemes, and introduces a general iterative framework that
can express many of these algorithms. Section IV introduces
the MMNet design in addition to a simple variant for i.i.d.
channels. Section V shows performance results of detection
algorithms on i.i.d. Gaussian and 3GPP MIMO channels for
different modulations. Section VI discusses the error dynamics
of MMNet and empirically studies why it performs better than
OAMPNet. Section VII introduces MMNet’s online training
algorithm.

The code to reproduce our results is available at
https://github.com/mehrdadkhani/MMNet.

II. BACKGROUND

A. Notation

We will use lowercase symbols for scalars, bold lowercase
symbols for column vectors and bold uppercase symbols
to denote matrices. Symbols {θ,θ,Θ} are used to repre-
sent the parameters of trainable models. The transpose and
pseudo-inverse of matrix A are denoted by AH and A+ =
(AHA)−1AH respectively. In stands for identity matrix of
size n.

linear

(At,bt, y−Hx̂t)

denoiser
x̂t zt x̂t+1

Fig. 1: A block of an iterative detector in our general framework.
Each block contains a linear transformation followed by a denoising
stage.

B. The MIMO Signal Detection Problem

We consider a communication channel from Nt single-
antenna transmitters to a receiver equipped with Nr antennas.
The received vector y ∈ CNr is given as

y = Hx + n, (1)

where H ∈ CNr×Nt is the channel matrix, n ∼ CN (0, σ2INr
)

is complex Gaussian noise, and x ∈ XNt is the vector of
transmitted symbols. X denotes the finite set of constellation
points. We assume that each transmitter chooses a symbol
from X uniformly at random, and all transmitters use the same
constellation set. Further, as is standard practice, we assume
that the constellation set X is given by a quadrature amplitude
modulation (QAM) scheme [18]. All constellations are nor-
malized to unit average power (e.g., the QAM4 constellation
is {± 1√

2
± j 1√

2
}).

The channel matrix H is assumed to be known at the
receiver. The goal of the receiver is to compute the maximum
likelihood (ML) estimate x̂ of x:

x̂ = arg min
x∈XNt

||y−Hx||2. (2)

The optimization problem in (2) is NP-hard due to the
finite-alphabet constraint x ∈ XNt [19]. Therefore, over the
last three decades, researchers have proposed a variety of
detectors with differing levels of complexity. We refer the
interested reader to [5, 6] for a comprehensive overview of
MIMO detection schemes.

C. An iterative framework for MIMO detection

We focus on a class of iterative estimation algorithms for
solving (2) shown in Fig. 1. Each iteration of these algorithms
comprises the following two steps:

General Iteration:
zt = x̂t + At(y−Hx̂t) + bt

x̂t+1 = ηt (zt) .
(3)

The first step takes as input x̂t, a current estimate of x, and the
residual error y−Hx̂t, and applies a linear transformation to
obtain an intermediate signal zt. In the second step, a non-
linear “denoiser” is applied to zt to produce x̂t+1, a new
estimate of x that is used as the input for the next iteration.
Together, the linear and denoising steps aim to improve the
quality of the estimate x̂t from one iteration to the next.
In this paper we use the terms iteration, layer, and block
interchangeably to refer to one complete iteration (the linear
step followed by the non-linear denoiser). All algorithms
discussed assume x̂0 = 0.

The denoiser is a non-linear function ηt : CNt → CNt in
general, however, most algorithms apply the same denoising
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function βt : C → C to each element of zt. A natural choice
for the denoising function is the minimizer of E[‖x̂− x‖2|zt],
which is given by:

ηt(zt) = E[x|zt]. (4)

Optimal denoiser for Gaussian noise: Several existing MIMO
detection schemes assume that the noise at the input of the
denoiser zt−x has an i.i.d. Gaussian distribution with diagonal
covariance matrix σ2

t INt
. In this case, the optimal element-

wise denoising function derived from (4) has the form

βt(z;σ
2
t ) =

1

Z

∑
xi∈X

xi exp

(
−‖z − xi‖

2

σ2
t

)
, (5)

where Z =
∑
xj∈X exp

(
−‖z−xj‖2

σ2
t

)
. The standard deviation

of input noise at the denoisers, σt, generally varies from
iteration to iteration, and depends on the linear steps in
each iteration. Different algorithms use different methods to
estimate σt. In the rest of this paper, ηt(·;σt) refers to a
denoiser which applies (5) to each element of its input vector.

III. RELATED WORK

In this section we briefly describe several algorithms for
MIMO detection. We begin with traditional, non-learning
approaches (Section III-A) and then discuss recent deep
learning proposals (Section III-B). We show how many of
these algorithms can be expressed in the iterative framework
discussed above.

A. Classical MIMO detection algorithms

1) Linear: The simplest method to approximately solve
(2) is to relax the constraint of x ∈ XNt to x ∈ CNt and
then round the relaxed solution to the closest point on the
constellation:

Linear:
z = arg min

x∈CNt

‖y−Hx‖2 = H+y

x̂ = arg min
x∈XNt

‖x− z‖2.
(6)

Rounding each component of z to the closest point in the
constellation set x̂ leads to the well-known zero-forcing (ZF)
detector, which is equivalent to a single step of (3) with initial
condition of x̂0 = 0, A0 = H+, b0 = 0, and a hard-decision
denoiser with respect to the points in the constellation. Other
widely-used single-step linear detectors include the matched
filter and the minimum mean square error (MMSE) detec-
tors [2] with A0 = HH and A0 = (HHH + σ2INt)

−1HH ,
respectively. Linear detectors are attractive for practical imple-
mentation because of their low complexity, but they perform
substantially worse than the optimal detector.

We can also perform the optimization in (6) in multiple
iterations using gradient descent. The gradient of the objective
function in the first equation of (6) with respect to x is
−2HH(y − Hx). Hence, if we set At to 2αHH and bt = 0,
the linear step of (3) is equivalent to minimizing ||y − Hx||2
using gradient descent with step size α. This is followed by
a projection onto the constellation set in the denoising step.
If we had a compact convex constellation set, this projected

gradient descent procedure is guaranteed to converge to the
global optimum. Discrete constellation sets, however, are not
compact convex. Nonetheless, solving the linear least squares
problem in (6) iteratively may be desirable to avoid the cost
of computing the pseudo-inverse of the channel matrix.

2) Approximate Message Passing (AMP): MIMO detection
can, in principle, be solved through belief propagation (BP)
if we consider a bipartite graph representation of the model
in (1) [20]. BP on this graph requires O(NrNt) update
messages in each iteration, which would be prohibitive for
large system dimensions. In the large system limit, Jeon
et al. [17] introduce approximate message passing (AMP) as a
lower complexity inference algorithm for solving (2) for i.i.d.
Gaussian channels. AMP reduces the number of messages in
each iteration to O(Nr + Nt). The algorithm performs the
following sequence of updates:

AMP:

zt = x̂t + HH(y−Hx̂t) + bt

bt = αt

(
HH(y−Hx̂t−1) + bt−1

)
x̂t+1 = ηt (zt;σt) .

(7)

To express AMP in our iterative framework, use At = HH

as the linear operator. The vector bt is known as the Onsager
term. The scalar sequences σt and αt are computed analyt-
ically given the signal-to-noise ratio (SNR) and system pa-
rameters (constellation, number of transmitters and receivers);
see [21] for details. The denoising function ηt(·;σt) applies the
optimal denoiser for Gaussian noise in (5) to each element of
the vector zt. Jeon et al. [17] prove that AMP is asymptotically
optimal for large i.i.d. Gaussian channel matrices.

Orthogonal AMP (OAMP) [11] is another scheme proposed
to relax the i.i.d. Gaussian channel assumption in the original
AMP algorithm. OAMP assumes unitarily-invariant channel
matrices [22] and operates as follows:

OAMP:
zt = x̂t + γtHH

(
v2
tHHH + σ2I

)−1

(y−Hx̂t)

x̂t+1 = ηt
(
zt;σ2

t

)
(8)

where γt = Nt/trace
(
v2
tHH

(
v2
tHHH + σ2I

)−1

H
)

is a

normalizing factor and v2
t is proportional to the average noise

power at the denoiser output at iteration t and can be computed
given the SNR and system dimensions [11]. Notice that OAMP
requires a matrix inverse operation in each iteration, making
it more expensive computationally than AMP.

3) Other techniques: Several detection schemes relax the
lattice constraint (x ∈ XNt ) in (2). For example, Semi-
Definite Relaxation (SDR) [7] formulates the problem as a
semi-definite program. Sphere decoding [4] conducts a search
over solutions x̂ such that ||y−Hx̂||2 ≤ r. Increasing r covers
a larger set of possible solutions, but this comes at the cost of
increased complexity, approaching that of brute-force search.
There is a large body of work on improvements to this idea
which can be found in [5, 6]. While these approaches can
perform well, their computational complexity is prohibitive for
Massive MIMO systems with currently available hardware.
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Another class of detector applies several stages of linear
detection followed by interference subtraction from the obser-
vation y. The V-BLAST scheme [23] does this by detecting
the strongest symbols, which are then successively removed
from y. The drawbacks of this approach are error propagation
of early symbol decisions and high complexity due to the Nt
required stages, as well as the necessary reordering of trans-
mitters after each step. Parallel interference cancellation (PIC)
has been proposed to circumvent these problems. PIC jointly
detects all transmitted symbols and then attempts to create
an interference-free channel for each transmitter through the
cancellation of all other transmitted symbols [24, 25]. A large
system approximation of this approach was recently developed
in [26] based on [27]. However, it is currently limited to
binary phase shift keying (BPSK) modulation and leads to
unsatisfactory performance for realistic system dimensions.

In summary, most existing techniques are too complex to be
implemented at the scale required by next-generation Massive
MIMO systems. On the other hand, light-weight techniques
like AMP cannot handle correlated channel matrices. These
limitations have motivated a number of learning-based pro-
posals for MIMO detection, which we discuss next.

B. Learning-based MIMO detection schemes

1) DetNet: Inspired by iterative projected gradient descent
optimization, Samuel et al. [8, 9] propose DetNet, a deep
neural network architecture for MIMO detection. This archi-
tecture performs very well in case of i.i.d. complex Gaussian
channel matrices and achieves the performance of state-of-
the-art algorithms for lower-order modulation schemes, such
as BPSK and QAM4. However, it is far more complex. The
neural network is described by the following equations:

DetNet:

qt = x̂t−1 − θ(1)
t HHy + θ

(2)
t HHHx̂t−1

ut =
[
Θ

(3)
t qt + Θ

(4)
t vt−1 + θ

(5)
t

]
+

vt = Θ
(6)
t ut + θ

(7)
t

x̂t = Θ
(8)
t ut + θ

(9)
t

(9)

where [x]+ = max(x, 0), which is also known as ReLU
activation function [28], is applied element-wise [8].

Although DetNet’s performance is promising, it has two
main limitations. First, its heuristic nature makes it difficult
to reason about how the neural network works, and how
to extend its architecture, for example, to support spatially
correlated channel matrices. Second, DetNet’s architecture
does not incorporate known properties of iterative methods and
is thus unnecessarily complex. For example, similar to other
iterative schemes, DetNet’s neural network can be viewed to
be performing a linear transformation followed by a non-linear
projection in each iteration. DetNet’s linear step computes
qt, and the non-linear projection computes x̂t from qt.

1

However, unlike other iterative schemes that use the simple
non-linear denoiser in (5), DetNet’s non-linear projection is
a fully-connected 2-layer neural network that operates on an
Nt-dimensional input vector. In fact, DetNet uses parameter

1The role of vt in DetNet is unclear, and is not explained in [8].

matrices Θ
(3)
t and Θ

(4)
t to map the input of the projection to an

even larger space before mapping it back to a Nt-dimensional
vector.2.

2) OAMPNet: He et al. [10] designed a learning-based iter-
ative scheme based on the OAMP algorithm. OAMPNet adds
two tuning parameters per iteration to the OAMP algorithm,
as follows:

OAMPNet:
zt = x̂t + θ

(1)
t HH

(
v2
tHHH + σ2I

)−1

(y−Hx̂t)

x̂t+1 = ηt
(
zt;σ2

t

)
.

(10)

In the above equations, OAMPNet uses the second trainable
parameter , θ(2)

t , in order to balance the estimate of denoisers
input noise variance σ2

t . OAMPNet uses the same denoisers
used by AMP.

OAMPNet shows very good performance in the case of
i.i.d. Gaussian channels, but it does not generalize to real-
istic channels with spatial correlations, as our experiments
in Section V show. The reason is that OAMPNet bases its
architecture on OAMP, which requires a strict assumption
about the system: unitarily-invariant channel matrices. There-
fore, its performance degrades on realistic channel matrices
that do not conform to this assumption. Further, like OAMP,
OAMPNet must compute a matrix pseudo-inverse in each
iteration and, therefore, its complexity is still quite high
compared to schemes like AMP.

IV. MMNET DESIGN

MMNet is a neural-network-based signal detection scheme
inspired by the iterative framework described in Section II-C.
Unlike prior approaches that use a single model for all channel
matrices, MMNet is designed to be trained online for each
realization of H. In this approach, the receiver continually
adapts its parameters as it observes new channel matrices. We
demonstrate that online training is feasible in practice with a
suitable neural network architecture by exploiting the fact that
realistic channels exhibit locality in both the frequency and
time domains. We introduce the neural network architecture in
this section and discuss the training algorithm in Section VII.

The main idea behind MMNet’s architecture is to strike a
balance between flexibility and complexity in the linear and
denoising components of each layer of the neural network.
In the following, we present two different neural network
architectures for (1) i.i.d. Gaussian and (2) arbitrary channels.

i.i.d. Gaussian channels: In the i.i.d. Gaussian case, the model
is extremely simple:

MMNet-iid:
zt = x̂t + θ

(1)
t HH(y−Hx̂t)

x̂t+1 = ηt
(
zt;σ2

t

)
.

(11)

Here, the denoiser is the optimal denoiser for Gaussian noise
given in (5). MMNet-iid assumes the same distribution of

2In the specific networks evaluated in [8], the ut vector has up to 6Nt

dimensions depending on the constellation.
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noise at the input of the denoiser for all transmitted symbols
and estimates its variance σ2

t according to

σ2
t =

θ
(2)
t

Nt

(
‖I− AtH‖2F
‖H‖2F

[
‖y−Hx̂t‖22 −Nrσ2

]
+

+
‖At‖2F
‖H‖2F

σ2

)
,

(12)

where At = θ
(1)
t HH . The intuition behind (12) is that the

noise at the input of the denoiser at step t is comprised of two
parts: (i) the residual error caused by deviation of x̂t from the
true value of x, and (ii) the contribution of the channel noise n.
The first component is amplified by the linear transformation
(I − AtH), and the second component is amplified by At.
See [11, 17] for further details on this method for estimating
noise variance.

This model has only two parameters per layer: θ(1)
t and θ(2)

t .
We discuss this model merely to illustrate that, for the i.i.d.
Gaussian channel matrix case (which most prior work focused
on for evaluation), a simple model that adds a small amount of
flexibility to existing algorithms like AMP can perform very
well. In fact, our results will show that, in this case, we do not
even need to train the parameters of the model online for each
channel realization; training offline over randomly sampled
i.i.d. Gaussian channel suffices.

Arbitrary channels: The MMNet neural network for arbitrary
channel matrices is as follows:

MMNet:
zt = x̂t + Θ

(1)
t (y−Hx̂t)

x̂t+1 = ηt
(
zt;σ2

t

) (13)

where At = Θ
(1)
t is an Nt × Nr complex-valued trainable

matrix. In order to enable the model to handle cases in which
different transmitted symbols have different levels of noise,
we estimate the noise variance at the input of the denoiser
corresponding to each transmitted signal as:

σ2
t =

θ
(2)
t

Nt

(
‖I− AtH‖2F
‖H‖2F

[
‖y−Hx̂t‖22 −Nrσ2

]
+

+
‖At‖2F
‖H‖2F

σ2

)
,

(14)

where the parameter vector θ(2)
t of size Nt×1 scales the noise

variance by different amounts for each symbol.
MMNet concatenates T layers of the above form. We use

the average L2-loss over all T layers in order to train the
model, which is given by

L =
1

T

T∑
t=1

‖x̂t − x‖22. (15)

MMNet’s architecture provides many more degrees of free-
dom than the highly-constrained OAMPNet, but it is also much
simpler than DetNet. In particular, MMNet uses a flexible
linear transformation (which does not need to be linear in
H) to construct the intermediate signal zt, but it applies the
standard optimal denoiser for Gaussian noise in (5). Further,
unlike OAMPNet, MMNet does not require any matrix inverse
operations.

V. EXPERIMENTS

In this section, we evaluate and compare the performance of
MMNet with state-of-the-art schemes for both i.i.d. Gaussian
and realistic channel matrices. These are our main findings:

1) On i.i.d. Gaussian channels, most schemes perform very
well. MMSE, SDR, V-BLAST and DetNet are 1–3dB
worse than the Maximum-Likelihood solution. AMP per-
formance degrades for higher-order modulations in high
SNRs. MMNet-iid and OAMPNet are both very close to
Maximum-Likelihood in all experiment on these chan-
nels. MMNet-iid, however, has two orders of magnitude
lower complexity than other learning-based schemes,
OAMPNet and DetNet.

2) On realistic, spatially-correlated channel matrices, the
performance of all existing learning-based approaches
degrades significantly. MMNet consistently achieves the
smallest gap with Maximum-Likelihood. MMSE has a
8–10dB gap with Maximum-Likelihood on 64×16 chan-
nels. OAMPNet reduces this gap to 5dB, and MMNet
closes the gap further to less than 2.2dB. DetNet and
AMP perform poorly on realistic channels; with QAM4,
for example, AMP achieves an SER of only 0.36 at 7dB
while MMSE can bring down the SER to 0.033 in the
same setting. The best SER that we achieve in this setting
with DetNet before running into stability problems is
0.045, which is worse than MMSE. Finally, MMNet’s
performance is robust and degrades more gracefully to
channel estimation errors than OAMPNet and MMSE

A. Methodology

We first briefly discuss the details of detection schemes
used for comparison. Since some of these schemes (including
MMNet) require training, we then discuss the process of
generating data and training/testing on this data.

1) Compared Schemes: In our experiments, we compare
the following schemes on QAM modulation:
• MMSE: Linear decoder that applies the SNR-regularized

channel’s pseudo inverse and rounds the output to the
closest point on the constellation.

• SDR: Semidefinite programming using a rank-1 relax-
ation interior point method [29].

• V-BLAST: Multi-stage interference cancellation BLAST
algorithm using Zero-Forcing as the detection stage in-
troduced in [25].

• AMP: AMP algorithm for MIMO detection from Jeon
et al. [17]. AMP runs 50 iterations of the updates de-
scribed in (7). We verified that adding more iterations
does not improve the results.

• DetNet: The deep learning approach introduced in [8].
The DetNet paper describes instantiations of the archi-
tecture for BPSK, QAM4 and QAM16; these neural net-
works have, on the order of 1–10M, trainable parameters
depending on the size of the system and constellation set.

• OAMPNet: The OAMP-based architecture [10] imple-
mented in 10 layers with 2 trainable parameters per layer
and an inverse matrix computation at each layer.
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• MMNet-iid: The simple mode described in (11). This
scheme has only 2 scalar parameters per layer and does
not require any matrix inversions. We implement this
neural network with 10 layers.

• MMNet: Our design described in (13). It has 10 lay-
ers, and the total number of trainable parameters is
2Nt(Nr + 1) per layer, independent of constellation
size. In the systems evaluated, this results in 20K-41K
trainable parameters.

• Maximum-Likelihood: The optimal solver for (2) using
a highly-optimized Mixed Integer Programming package
Gurobi [30].

2) Dataset: Training and test data are generated through
the model described in (1). In this model, there are three
sources of randomness: the signal x, the channel noise n and
the channel matrix H. Each transmitted signal x is generated
randomly and uniformly over the corresponding constellation
set. All transmitters are assumed to use the same modulation.
The channel noise n is sampled from a zero-mean i.i.d. normal
distribution with a variance that is set according to the operat-
ing SNR, defined as SNR(dB) = 10 log

(
E[‖Hx‖22]/E[‖n‖22]

)
.

For every training batch, the SNR(dB) is chosen uniformly at
random in the desired operating SNR interval. This interval
depends on the modulation scheme. For each modulation in
each experiment, the SNR regime is chosen such that the best
scheme other than Maximum-Likelihood can achieve a symbol
error rate (SER) of 10−3–10−2.

The channel matrices H are either sampled from an i.i.d.
Gaussian distribution (i.e., each column of H is a complex-
normal CN (0, (1/Nr)INr

)), or they are generated via the
realistic channel simulation described below.

We study two system size ratios (Nt/Nr) of 0.25 and 0.5,
with the total number of receivers fixed at Nr = 64. These
are typical values for 4G/5G base stations in urban cellular
deployments. For the case of realistic channels, we generate
a dataset of channel realizations from the 3GPP 3D MIMO
channel model [13], as implemented in the QuaDRiGa channel
simulator [14].3 We consider a base station (BS) equipped
with a rectangular planar array consisting of 32 dual-polarized
antennas installed at a height of 25 m. The BS is assumed
to cover a 120◦-cell sector of radius 500 m within which
Nt ∈ {16, 32} single-antenna users are dropped randomly.
A guard distance of 10 m from the BS is kept. Each user is
then assumed to move along a linear trajectory with a speed of
1 m/s. Channels are sampled every λ/4 m at a center frequency
of 2.53 GHz to obtain sequences of length 100. Each channel
realization is then converted to the frequency domain assuming
a bandwidth of 20 MHz and using 1024 sub-carriers from
which only every fourth is kept, resulting in F = 256 effective
sub-carriers. We gather a total of 40 user drops, resulting
in 40 × 256 length 100 sequences of channel matrices (i.e.,
1M channel matrices in total). Since the path loss can vary
dramatically between different users, we assume perfect power
control, which normalizes the average received power across
antennas and sub-carriers to one. Denote H[f, k] as the kth

3The simulation results were generated using QuaDRiGa Version 2.0.0-664.

column of H on sub-carrier f . Our normalization ensures that

1

NrNtF

Nt∑
k=1

F∑
f=1

‖H[f, k]‖2 = 1.

3) Training: MMNet, DetNet, and OAMPNet require train-
ing and were implemented in TensorFlow [31]. We have
converted (2) to its equivalent real-valued representation for
TensorFlow implementations (cf. [32, Sec. II]). DetNet and
OAMPNet are both trained as described in the corresponding
publications (i.e., batch size of 5K samples). We trained each
of the latter two algorithms for 50K iterations.

To train MMNet, we use the Adam optimizer [33] with a
learning rate of 10−3. Each training batch has a size of 500
samples. We train MMNet for 1K iterations on each realization
of H in the naive implementation. In Section VII-B, we exploit
frequency and time domain correlations to reduce the training
requirement to 9 iterations per channel matrix.

In spatially correlated channels, we perform an additional
5K iterations of training with a batch size of 5K samples for
each realization of H on the pre-trained OAMPNet model,
in order to have a fair comparison against MMNet’s online
training. However, as we found that this extra training does
not meaningfully improve the performance of OAMPNet, we
do not count this re-training overhead in the complexity of
OAMPNet algorithm in Section VII.

For i.i.d. Gaussian channels, MMNet-iid is not trained per
channel realization H. Instead, we use 10K iterations with a
batch size of 500 samples to train a single MMNet-iid neural
network, which we then test on new channel samples.

B. Results

We compare different schemes along two axes: performance
and complexity. In this section, we focus on performance,
leaving a comparison of complexity to Section VII. We use
the SNR required to achieve an SER of 10−3 as the primary
performance metric. In practice, most error correcting schemes
operate around an SER of 10−3–10−2, so this is the relevant
regime for MIMO detection.

1) i.i.d. Gaussian channels: Fig. 2 shows the SER vs. SNR
of the state-of-the-art MIMO schemes on i.i.d. channels for
two system sizes: 32 and 16 transmitters (Fig. 2a and Fig. 2b,
respectively), and 64 receivers.

We make the following observations:
1) The SNR required to achieve a certain SER increases by

2–3dB as we double the number of transmitters (notice
the different range of x-axes). The reason is that there is
higher interference with more transmitters.

2) There is a 2–3dB performance gap between Maximum-
Likelihood and MMSE across all modulations for Nt =
32. However, this gap decreases to 1dB for Nt = 16,
because of the lower interference in this case.

3) Multiple schemes perform similarly to Maximum-
Likelihood, especially at lower-order modulations like
QAM4. As we move to QAM64, the performance
of several schemes degrades compared to Maximum-
Likelihood.
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Fig. 2: SER vs. SNR of different schemes for three modulations (QAM4, QAM16 and QAM64) and two system sizes (32 and 16 transmitters,
64 receivers) with i.i.d. Gaussian channels.

4) SDR performs better than MMSE, but its gap with
Maximum-Likelihood increases with modulation order.

5) V-BLAST achieves almost the optimal performance
across all modulations when we have 16 transmit an-
tennas. However, its performance is sensitive to system
size and degrades when we increase the number of
transmitters to 32.

6) AMP is near-optimal in many cases (recall that, theoret-
ically, AMP is asymptotically optimal for i.i.d. Gaussian
channels as the system size increases). However, it suffers
from robustness issues at higher SNR levels, especially
with higher-order modulations like QAM64.

7) DetNet has a good performance on QAM4, but its
gap with Maximum-Likelihood increases as we move to
QAM16 and QAM64. With QAM64, DetNet performs
even worse than MMSE for Nt = 16.

8) OAMPNet and the simple MMNet-iid approach are both
very close to Maximum-Likelihood across different mod-
ulations over a wide range of SNRs, even though these
models have only two parameters per layer.

In summary, these results show that for i.i.d. Gaussian channel
matrices, adding just a small amount of flexibility via tuning
parameters to existing iterative schemes like AMP can result in
equivalent or improved performance over much more complex
deep learning models like DetNet. Further, these models even
outperform classical algorithms like SDR.

2) Realistic channels: Fig. 3 shows the results for the
realistic channels derived using the 3GPP 3D MIMO channel

model. We consider only MMSE (as a baseline), OAMPNet,
MMNet and Maximum-Likelihood. As shown in the i.i.d.
Gaussian case, schemes like SDR, V-BLAST and DetNet do
not perform as well as the OAMPNet baseline.4 Also, AMP is
not designed for correlated channels and is known to perform
poorly on them (see discussion in Section VI).

We make the following observations:
1) There is a much larger gap with Maximum-Likelihood

for all detection schemes on these channels compared to
the i.i.d. case.

2) To achieve comparable SER, we require 4–7dB increase
in SNR relative to the i.i.d. case in Fig. 2. Also, doubling
the number of transmitters from 16 to 32 incurs about
a 5dB penalty in SNR for each scheme in this case
(compare with 2–3dB in i.i.d. case.)

3) MMSE exhibits a relatively flat SER vs. SNR curve. For
example, it requires 4dB SNR increase on QAM16 to go
from an SER of 20% to 10% on 64×32 channels.

4) OAMPNet’s performance improves faster than MMSE as
the SNR increases. Compared to MMSE, OAMPNet can
achieve a similar SER at 2–3dB lower SNR.

5) MMNet outperforms MMSE and OAMNet schemes for
both system sizes and in all modulations.

In Fig. 4, we plot the performance gap with Maximum-
Likelihood for these three detection schemes. For this purpose,

4We tried to train DetNet for realistic channels and ran into significant
difficulty with stability and convergence in training.
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Fig. 3: SER vs. SNR of different schemes for three modulations (QAM4, QAM16 and QAM64) and two system sizes (32 and 16 transmitters,
64 receivers) with 3GPP MIMO channels.
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Fig. 4: SNR requirement gap with Maximum-Likelihood at SER
of 10−3. The total bar height shows the 90th-percentile gap (over
different channels) while the hatched section depicts the average.

we measure the difference in the minimum SNR level that is
required to have SER of 10−3. In this figure, we also show
the 90th-percentile of the SNR gap for different channels. We
observe that MMNet reduce the SNR requirement by up to
5dB and 8dB, respectively, over OAMPNet and MMSE for
realistic channels.

3) Robustness to channel estimation errors: In order to
evaluate MMNet’s robustness against channel estimation er-
rors [34], we consider a least-squares channel estimator which
is equivalent to adding complex Gaussian noise to the channel

−34 −32 −30 −28 −26 −24 −22
10−3

10−2

10−1

Channel Estimation MSE (dB)

SE
R

MMSE OAMPNet MMNet

Fig. 5: SER for QAM16 versus channel estimation MSE.

matrix, i.e., : Ĥij = Hij + δij , where δij ∼ CN (0, σ2
c ). We

provide Ĥ to the signal detector instead of H. Fig. 5 compares
the impact of imperfect channel estimation on 3GPP MIMO
channels for QAM16 modulation at different values of σc.
Here we have 32 transmit and 64 receive antennas operating
at 23dB SNR. We observe that MMNet is able to achieve the
same SER as OAMPNet at 10dB higher channel estimation
error at a fixed SNR

VI. WHY MMNET WORKS

In this section, we examine why MMNet performs better
than the best previous learning-based scheme, OAMPNet. By
analyzing the dynamics of the error (x̂t − x), we find that
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MMNet’s denoisers are significantly more effective than those
in OAMPNet. We show that this occurs because the linear
stages learned by MMNet create favorable conditions for the
denoisers. Specifically, we find that the distribution of noise at
the input of MMNet’s denoisers is nearly Gaussian, whereas
the noise distribution for OAMPNet is far from Gaussian.
Since the denoisers in both architectures are optimized for
Gaussian noise, they perform much better in MMNet.

A. Error dynamics

Define the error at the outputs of the linear and denoiser
stages at iteration t as elint = zt − x and edent = x̂t+1 − x,
respectively. For algorithms such as MMNet and OAMPNet
with bt = 0, we can rewrite the update equations of (3) in
terms of these two errors in the form:

elint = (I− AtH)edent−1 + Atn (16a)

edent = ηt(x + elint )− x. (16b)

Eq. (16a) includes two terms, corresponding to two sources
of error that contribute to elint : (1) the error in the output
signal from the previous iteration, and (2) the channel noise.
Different choices of At impact these two terms differently. For
example, if we set At to H+ (the pseudo-inverse of the channel
matrix), we are only left with the term H+n in elint , thus
eliminating the first error term entirely. However, this comes
at a price: we are left with Gaussian noise with covariance
matrix σ2H+H+H . This presents two potential problems: (i)
if H is ill-conditioned, it might amplify the channel noise
(e.g., inversely proportional to the smallest singular value of
H in some directions); (ii) the resulting noise, elint , may have
correlated elements, and therefore applying an element-wise
denoising function to it as per Eq. (16b) may be suboptimal.

Another naive option is to eliminate the channel noise
term entirely by setting At to zero. This would effectively
remove the linear stages from the architecture, reducing it to
a cascade of denoising stages. However, applying a (well-
chosen) denoiser multiple times in a cascade should be no
better than applying it once.

It is also instructive to consider the error dynamics in the
special case of i.i.d. channels. In this case, if we set At =
HH , the factor I − AtH asymptotically goes to zero as we
increase Nr [21], and the auto-covariance of Atn, σ2HHH, is
approximately equal to σ2INt

. This means that the linear stage
does not amplify the channel noise or make it correlated. On
the other hand, the error from the previous iteration, edent−1, is
attenuated significantly via I−AtH. These calculations explain
why AMP has great performance on i.i.d. Gaussian channels.
However, in case of correlated channels, neither I −AtH is
close to zero, nor is Atn uncorrelated, and therefore AMP
does not perform well on realistic channels.

B. Analysis

Based on the above discussion of the error dynamics, we
identify two desirable properties for picking At:

1) Noise reduction property: At must reduce the magnitude
of elint . This requires striking a balance between the two
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Fig. 6: Noise power after the linear and denoiser stages at different
layers of OAMPNet and MMNet. The OAMPNet denoisers become
ineffective after the third layer on 3GPP MIMO channels.

terms in (16a), because attenuating one term may amplify
the other and vice-versa.

2) Uncorrelated Gaussian noise property: At must “shape”
the distribution of elint to make it suitable for the sub-
sequent denoising stage. In particular, the denoisers in
most iterative schemes (e.g., MMNet and OMAPNet)
are specifically designed for uncorrelated Gaussian noise.
Thus, ideally, the linear stage should avoid outputting
correlated or non-Gaussian noise.

Fig. 6 shows the average noise power at the output of the
linear and denoiser stages across different layers, for both
OAMPNet and MMNet on 64 × 16 3GPP MIMO channels.
We observe that for OAMPNet, the average noise power after
the linear stage (before the denoiser) and after the denoiser
is the same from the third layer (t = 2) onwards. In other
words, in OAMPNet, the denoisers are unable to reduce the
noise in their input signal after a few layers. However, with
MMNet, the noise power is significantly lower at the output
of the denoisers compared to their input at all layers.

We hypothesize that the reason OAMPNet’s denoisers be-
come ineffective is that the noise distribution for OAMPNet
is not Gaussian, whereas MMNet is able to provide near-
Gaussian noise to its denoisers. We evaluate how close the
noise distribution is to Gaussian for both schemes using the
Anderson test [35]. In order to measure this score, we generate
10,000 samples of x and y per channel realization H. We
run each sample through both MMNet and OAMPNet, and
we calculate the Anderson score for the noise distribution
at the output of the linear stages, for each transmitter and
channel matrix. If this score is below a threshold of 0.786,
it indicates that the noise comes from a Gaussian distribution
with a significance of 5%, i.e. the probability of false rejection
of a Gaussian distribution is less than 5%. In Fig. 7, we plot the
average fraction of transmitters that have Gaussian distributed
noise at the output of the linear stage according to this test.
Since in both schemes we start with x̂0 = 0, the output of the
linear stage at layer t = 0 is A0n, which is Gaussian. Thus,
the fraction of transmitters with Gaussian noise is 1 in layer
t = 0 for both schemes. However, both schemes deviate from
Gaussian noise in layer t = 1, while at the same time sharply
reducing the total noise power as seen in Fig. 6. However,
the noise for fewer transmitters in MMNet deviate from a
Gaussian distribution. Unlike OAMPNet, in which the noise
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Fig. 7: Fraction of transmitters that have Gaussian error distribution
after the linear block for each layer with significance level of 5%.
MMNet produces Gaussian distributed errors at the output of linear
blocks, while OAMPNet fails to achieve the Gaussian property.

for 95% of the transmitters is not Gaussian at layer t = 1,
for MMNet nearly 40% of the transmitters exhibit Gaussian
noise. On the other hand, MMNet reduces the noise power
slightly less than OAMPNet in layer t = 1.

In subsequent layers, the noise distribution for MMNet
becomes increasingly Gaussian, with nearly 90% of transmitter
passing the Anderson test by layer t = 9. By contrast, most
transmitters in OAMPNet continue to exhibit non-Gaussian
noise in subsequent layers, though the fraction of transmitter
with Gaussian noise marginally increases.

Next, we measure the effect of input noise power on the
distribution of noise at the output of the linear stages in both
schemes. In other words, we are interested to know how
‖edent−1‖ impacts the Gaussian distribution property of elint .
For this purpose, we choose the median of Anderson scores
as a measure of the linear stage’s ability to maintain the
Gaussian property at its output. In Fig. 8, we show the 2D
histogram of this median score for different values of ‖edent−1‖.
For reference, we also plot three thresholds corresponding to
1%, 5% and 15% significance for the normality test as dashed
horizontal lines. To be Normally distributed with 1%, 5%,
or 15% confidence, the Anderson scores must fall below the
respective line.

We notice that the median score in both schemes increases
with the norm of the error from the previous iteration. In
other words, the linear stages that have a higher input noise
power produce outputs that deviate more significantly from
a Gaussian. However, MMNet is 100× better in terms of
the median Andersen score for large values of ‖edent−1‖. This
figure also suggests that OAMPNet’s inability to achieve the
Gaussian property is not limited to the first couple of layers,
in which it aggressively reduces the noise power. The later
linear stages, for which ‖edent−1‖ is fairly small, are also not
very good at achieving the Gaussian property.

C. Impact of channel condition number

Finally, we evaluate the impact of the channel condition
number on MMNet and OAMPNet. A channel’s condition
number is defined as the ratio of its largest singular value to
the smallest. It is well-known that symbol detection is difficult
for channel matrices with higher condition number.
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Fig. 8: Median of Anderson score for the noise at the output of
linear stage vs. the power of noise at the input of the stage. MMNet
achieves the Gaussian property much more effectively for all noise
power levels. Dashed horizontal lines show the thresholds for 1%,
5% and 15 significance level.

In Fig. 9a, we show a scatterplot depicting the fraction
of transmitters with the Gaussian noise property at output of
the linear stage in layer t = 4 vs. channel condition number
for the 3GPP MIMO dataset. We show the behavior at layer
t = 4 as an example of what occurs in the first few iterations
of the detection process. We see that, for OAMPNet, the
fraction of transmitters satisfying the Gaussian noise property
decreases sharply for channels with higher condition number.
By contrast, MMNet maintains the Gaussian noise property
for a much broader range of channels. The consequence of
the failure to achieve the Gaussian property on SER is shown
in Fig. 9b. Although the performance of all schemes degrades
as the channel condition number increases, MMNet is able to
achieve an SER of less than 10−3 for a wider range of channel
conditions.

VII. ONLINE TRAINING ALGORITHM

Training deep learning models is a computationally inten-
sive task, often requiring hours or even days for large models.
The computation overhead depends on two factors: (i) the total
number of required training samples, and (ii) the size of the
model. For example, to train a model like DetNet with about
1M parameters, we need 50K iterations with a batch size of
5K samples, i.e., 250M training samples. If we assume each
parameter of the model shows up in at least one floating-
point operation per training sample, we require a minimum
of 2.5 × 1014 floating-point operations for the entire training
process. This computational complexity makes training such
a large model online for each realization of H impossible.5

In comparison, MMNet has only ∼40K parameters, and
training it from scratch requires about 1000 iterations with
batch size of 500. Further, we show that by taking advantage of
locality of the channels observed at a receiver, we can further

5Of course, DetNet was specifically designed for offline training, where
computational complexity is less of a concern.
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Fig. 9: Effect of channel condition number on performance in the 3GPP MIMO dataset. (a) MMNet is more robust in maintaining the
Gaussian noise property for channels with large condition number. (b) SER is directly affected by the condition number.

reduce training cost to 9 iterations (with batch size 500) on
average per channel realization. All in all, training MMNet
has six orders of magnitude lower computational overhead
than DetNet, making online training for each realization of
H practical.

In this section, we first discuss the temporal and spectral
locality of realistic channels. Then, we show how we can
exploit these localities to accelerate online training.

A. Channel locality

The channel matrices measured at a base station exhibit two
forms of locality:
• Temporal: Channel matrices change gradually over time

as user devices move within a cell or the multipath
environment changes. The samples of H at nearby points
in time are thus correlated.

• Spectral: The base station needs to recover signals from
several frequency subcarriers (1024 in our 3GPP MIMO
model). The channels for subcarriers in nearby frequen-
cies are also strongly correlated. The frequency affects
the phase of the multipath signal components incident
on receiver antennas. For a path of length l, the phase
difference for two subcarriers ∆f apart in frequency
is ∆φ = 2πl∆f

c . Therefore the received signal and the
channels for adjacent subcarriers will be similar at each
receiver antenna.

Both forms of locality reduce the complexity of training
for each channel realization, because (i) the cost of channel-
specific computations can be amortized across multiple corre-
lated channel realizations across time and frequency, (ii) the
trained model for one channel realization can serve as strong
initialization for training for adjacent channel realizations in
the time-frequency plane.

Fig. 10 shows both forms of locality by plotting the corre-
lation among the 3GPP MIMO channel samples across time
and frequency (subcarriers). To compute these correlations, we
take the average of the inner-product of each channel matrix
with its neighboring channel matrices separated in time or
frequency by different number of steps. A shift of one step
in the time domain corresponds to two channel matrices at
the same subcarrier frequency that are 118ms apart in time.
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Fig. 10: Correlation of channel samples across time and frequency
dimensions. The correlation decays relatively quickly in the time
dimension, but the channel matrices show strong locality across sub-
carriers in frequency dimension.

A shift of 1 step in the frequency domain corresponds to two
channel matrices at adjacent subcarriers (78.1KHz apart) at
the same time. We normalize the inner-product by the norm
of the matrices, such that the correlation of a channel matrix
with itself is 1. As the figure show, we observe a stronger
locality in the frequency domain than in the time domain in
the 3GPP MIMO channels.

B. Training algorithm and results

In this section, we show how channel locality can help
reduce the total number of operations MMNet needs to decode
each received signal y at the BS. The computational com-
plexity of MMNet is mostly dominated by the cost of online
training for each new realization of the channel H. This cost in
turn depends on the channel coherence time. In the case of a
quasi-static channel, as expected for instance in fixed-wireless
access or backhaul solutions such as 5G home wireless (see
Section 7.6.2 in [2]), the channel between the transmitter and
receiver does not change for extended periods of time. In
such cases, MMNet does not require frequent retraining and
can reuse the same model until the communication channel
changes significantly. However, MMNet can also operate at
reasonable computation cost when the channel is changing
fairly frequently. For example, our 3GPP MIMO channel
samples were generated assuming all devices constantly move
at a speed of 1 m/s, and after about 500ms, the channel
correlation is less than 0.5. However, even in this scenario,
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Algorithm 1 MMNet online training

1: M ← Construct MMNet with parameters ϑ = {Θ(1)
t ,θ

(2)
t }Tt=1

2: ϑ ← Initialize model parameters randomly
3: for n ∈ {1, 2, ...} do . n keeps the time step
4: for f ∈ {1, 2, ..., F} do
5: H[f ] ← Measured channel at time step n and frequency

f
6: #TrainIterations ← Set to Φ if f 6= 1 and Ψ otherwise
7: for it∈ {1, 2, ...,#TrainIterations} do
8: D← Generate random (x, y) batch on H[f ] using (1)
9: L ← Find the loss in (15) for M over the samples

in D
10: ϑ ← Compute the model updates using ∇ϑL
11: end for
12: Mn[f ]←M.copy( ) . Store the parameters ϑ
13: end for
14: end for

we require only 9 training iterations on average per channel
realization, as explained next.

To see how, note that a receiver at a BS must simultaneously
decode signals from different subcarriers. Since channels ex-
hibit strong correlations across sub-carriers (Fig. 10), training
the MMNet detector on H for one subcarrier produces a
detector that will achieve very similar performance on adjacent
subcarriers. The performance of this detector will however
decay for more distant subcarriers in the frequency domain.

Based on this observation, we propose the online training
scheme in Algorithm 1. We start from a random initialization
of the MMNet neural network model M. We define n as an
index for time intervals in which we can assume that channels
do not change substantially. For each interval n, we measure
a channel matrix H[f ] for each subcarrier frequency f . The
basic idea in the algorithm is to train the model for Ψ iterations
(with a batch size of 500) for the first subcarrier (f = 1), then
retrain the model using only Φ additional training iterations
per subcarrier for all subsequent subcarriers. Typical values
for the hyperparameters Ψ and Φ are respectively 1000 and
3–10 in our experiments. For each channel matrix H[f ], we
generate (x, y) training data pairs using (1). Once the model
has trained for subcarrier f , we save a copy of the model
as Mn[f ] for detecting all signals received in time interval
n on that subcarrier. We repeat the entire training algorithm
in each time interval. In Fig. 11, we show the result of our
online training method on 3GPP MIMO channels for the
QAM16 modulation with 16 transmit and 64 receive antennas
at 18dB SNR. In this experiment, we set Ψ = 1000 and
compare MMNet with other schemes on a range of Φ values.
We see that while MMSE and OAMPNet achieve a SER of
0.03 and 0.009 respectively, MMNet can bring the SER down
to 0.0007 (below the 10−3 threshold). With this approach,
MMNet performs 9.19K iterations of training with batch size
500 in order to learn a detector for all 1024 subcarriers in total
at each time interval n. Therefore the cost of online training
is less than 9 iterations on average per channel realization, yet
MMNet delivers better performance than other schemes, like
OAMPNet and MMSE.
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Fig. 11: SER vs. Φ using Algorithm 1 with Ψ = 103 for training
MMNet on QAM16 modulation. MMNet requires only 9 overall
iterations of batch size 500 per channel realization to train to a
reasonable performance with (Ψ,Φ) = (103, 8).

C. Computational complexity

One iteration of training MMNet on a batch of size of b has a
complexity of O(bN2

r ), as detection takes O(N2
r ) in MMNet.

To put this in perspective, a light-weight algorithm like AMP
has a complexity of O(N2

r ) dominated by the multiplication of
the channel matrix and residual vectors. The MMSE scheme
has a higher complexity of O(N3

r ) because it needs to invert
a matrix. OAMPNet similarly requires a matrix inversion,
resulting in a complexity of O(N3

r ).
Moving beyond O(·) analysis, Fig. 12 shows the average

number of multiplication operations required per signal detec-
tion on 3GPP MIMO channels for learning-based algorithms
in addition to two classic baselines, MMSE and AMP. For
these numbers, all algorithms reuse computations whenever
feasible. In particular, in every channel coherence interval in
the 3GPP MIMO model, each algorithm receives ∼100 signals
to detect [2, Definition 2.2 on page 220]. MMSE calculates the
required channel matrix inverse only once for all 100 received
signals in the coherence interval. This reduces computation
complexity for MMSE by a factor of 100×, resulting in 5–7×
fewer multiplications than AMP, which cannot reuse compu-
tation but has modest complexity. MMNet reuses the weights
it trains (with 9 iterations of batch size 500 on average) for
all 100 received signals in a coherence interval. MMNet, with
its online training and detection operations combined, places
after AMP with 2–5× fewer multiplications than pre-trained
DetNet. However, as we have seen, neither AMP nor DetNet
extend to realistic, spatially correlated channels. OAMPNet’s
computational complexity is higher than the other models,
because it has to calculate a new matrix inverse in each layer
for every received signal, as v2

t in (10) depends on x̂t.
Consequently, the cost of MMNet with its online training

algorithm is 10–15× less than OAMPNet depending on the
system size. MMNet has 41× higher computational complex-
ity than a light-weight iterative approach like AMP, which
only works for i.i.d. Gaussian channels.

VIII. CONCLUSION AND FUTURE WORK

This paper proposed a deep learning architecture for Mas-
sive MIMO detection, and an online training algorithm to
optimize it for every realization of the channel matrix at a
base station. MMNet outperforms state-of-the-art detection
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Fig. 12: Number of multiplication operations per signal detection
for different algorithms on QAM16 with Nr = 64 receive antennas
in 3GPP MIMO model. Detection with MMNet, including its on-
line training process, requires fewer multiplication operations than
detection with pre-trained DetNet and OAMPNet models.

algorithms on realistic channels with spatial correlation. We
designed MMNet as an iterative algorithm and showed that a
carefully chosen degree of flexibility in the model, in addition
to leveraging the channel’s spectral and temporal correlation,
can enable online training at a less or equal computation
complexity than other deep-learning based schemes. MMNet
is 4–8dB better overall than the classic MMSE detector and
it requires 2.5dB lower SNR at the same SER, relative to
the second-best detection scheme, OAMPNet, at 10–15×
less computational complexity. Many extensions of MMNet
are possible to support, for example, a varying number of
transmitters with possibly different modulation schemes.

From a hardware perspective, implementing MMNet has its
own challenges and requires an in-depth study. For example,
the sequential online training algorithm introduced in this
paper incurs latency, which may be traded off with parallel
training of multiple sub-carriers at the cost of more training
iterations and hence increased complexity. The optimal trade-
off depends on the channel coherence time.

Our results show that evaluations based on simple channel
models such as i.i.d. Gaussian channels can lead to misleading
conclusions for MIMO detection performance. Future work
should therefore evaluate on realistic channel models, from
either simulation, ray-tracing, or measurements. We have
released the simulated 3GPP MIMO channel dataset used in
this work in hope that it will serve as a useful benchmark for
the community.
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