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Abstract

This work investigates the elasticity imaging inverse problem of tumor identifi-

cation in a fully incompressiblemedium through a family of inverse problems in

a nearly incompressiblemedium.We develop an inversion framework for saddle

point problems that goes far beyond the elasticity imaging inverse problem and

applies to a wide variety of inverse problems. We introduce a family of convex

optimization problems with regularized saddle point problems as the constraint

and prove its convergence.We discretize the inverse problem by using the finite

element approach and prove the convergence of the discrete problems.We offer

formulas for the gradient and the Hessian computation. The outcome of detailed

numerical computations, carried out using the tissue phantom data, shows the

efficacy of the developed framework.
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1. Introduction

LetV andQ be real Hilbert spaceswith V∗ andQ∗ as their dual spaces,B be a real Banach space,

and A be a nonempty, closed, convex, and bounded subset of B. In the applications that we have

in mind, the typical choices areB := L∞(Ω) andA := {ℓ ∈ B|0 < a0 6 ℓ(x) 6 a1 < ∞}, where
a0 and a1 are constants. Let a : B× V × V → R be a trilinear form which is symmetric in

the last two arguments, that is, a(·, u, v) = a(·, v, u), for every u, v ∈ V, b : V × Q→ R

be a bilinear form, and f ∈ V∗, and g ∈ Q∗ be given. For a fixed ℓ ∈ B, the trilinear

form a and the bilinear form b are associated to linear maps Aℓ ∈ L(V ,V∗) and B ∈
L(V ,Q∗) by the relationships 〈Aℓu, v〉 = a(ℓ, u, v) for all v ∈ V, and 〈Bu, q〉 = b(u, q) for all

q ∈ Q.

We consider the saddle point problem: given ℓ ∈ A, find (u(ℓ), p(ℓ)) := (u, p) ∈ V× Q such

that

a(ℓ, u, v)+ b(v, p) = f (v), for every v ∈ V , (1.1a)

b(u, q) = g(q), for every q ∈ Q. (1.1b)

Saddle point problem (1.1), which constitutes the direct problem in this work, provides a con-

venient mathematical framework for studying numerous applied models and has been studied

in great detail, from a theoretical as well as a numerical viewpoint. Our focus, however, is

on the inverse problem of identifying the parameter ℓ from a measurement of the solution of

(1.1). To discuss the solvability of (1.1), we set L := {u ∈ V|b(u, q) = 0, for all q ∈ Q}, and
formulate the conditions:

|a(ℓ, u, v)| 6 ς0‖ℓ‖B‖u‖V‖v‖V , for all ℓ ∈ B, u, v ∈ V , ς0 > 0, (1.2a)

a(ℓ, v, v) > ς1‖v‖2V , for all ℓ ∈ A, v ∈ L, ς1 > 0, (1.2b)

|b(v, q)| 6 κ0‖v‖V‖q‖Q, for all v ∈ V , q ∈ Q, κ0 > 0, (1.2c)

inf
p∈Q

sup
u∈V

b(u, q)

‖u‖V‖q‖Q
> κ1, κ1 > 0. (1.2d)

It is known that under conditions (1.2c) and (1.2d), for a fixed ℓ ∈ A, saddle point

problem (1.1) has a unique solution (u, p) which depends continuously on the data (f, g),

see [1].

We note that for saddle point problems emerging from applied models, continuity condi-

tions (1.2a) and (1.2c) are often easy to verify and the coercivity condition (1.2b) also holds

in many applications. Condition (1.2d), commonly termed as the Babuska–Brezzi or the inf-

sup condition, is a natural substitute for the coercivity condition and plays an essential role in

the theoretical as well as the numerical treatment of saddle point problems. In finite element

discretization of (1.1), a discrete analog of (1.2d), which is obtained by replacing V and Q,

by finite-dimensional subspaces Vh and Qh, is used. The discrete inf-sup condition imposes

compatibility restrictions on the choices of finite-dimensional subspaces of V and Q. Fur-

thermore, there are situations when either the inf-sup condition cannot be verified or is not

completely satisfactory from an analysis viewpoint. Interesting works on the use of (1.2d), its

variants, limitations, and extensions can be found in [2–6], and the cited references. We also

refer to the recent work [7] where a saddle point framework was employed to solve an inverse

problem.
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System (1.1) is related to the following linearly constrained optimization problem:

min
u∈V

J(u) :=
1

2
a(ℓ, u, u)− f (u), subject to b(u, q) = g(q), for everyq ∈ Q.

(1.3)

Indeed, if we define the Lagrangian L : V × Q 7→ R by

L(u, p) :=
1

2
a(ℓ, u, u)− f (u)+ b(u, p)− g(p),

then under (1.2a)–(1.2d), L(u, p) has a unique saddle point which solves (1.1); see Braess ([8],

p 132).

The use of Lagrange multipliers, although it avoids the explicit constraints, poses addi-

tional challenges. In particular, increases the dimension from u to (u, p), and the discrete

optimality system is not positive definite, and hence, one has to resort to specialized numerical

techniques.

A commonly used technique in optimization is to consider the regularized Lagrangian

given by

Lε(u, p) :=
1

2
a(ℓ, u, u)− f (u)+ b(u, p)− g(p)− ε

2
‖p‖2, ε > 0,

which is also an unconstrained optimization problem, however, quadratic in both u and p.

Another commonly adopted viewpoint is to consider the following penalized version

of (1.3):

min
u∈V

Pε(u) :=
1

2
a(ℓ, u, u)− f (u)− 1

2ε
‖Bu− g‖2, ε > 0.

These perturbation techniques have led to investigating the regularized saddle point

problem: given ε > 0 and a coercive and continuous bilinear form c : Q× Q→ R, find

(uε, pε) ∈ V× Q such that

a(ℓ, uε, v)+ b(v, pε) = f (v), for every v ∈ V , (1.4a)

b(uε, q)− εc(pε, q) = g(q), for every q ∈ Q. (1.4b)

Regularized saddle point problem (1.4) system has some advantages in comparison to (1.1)

and has been explored extensively, see [1, 3, 9]. A typical result is that under conditions

(1.2a)–(1.2d), the sequence of the regularized solutions {(uε, pε)} converges to the solution

of (1.1), as ε→ 0. Variants of these conditions have been used to give error estimates for

the regularized solutions and to gauge their impact on the finite-dimensional discretization.

The regularized saddle point problem has also been studied to mitigate the role of the inf-sup

condition; see [5].

This work is partly motivated by the elasticity imaging inverse problem of identifying the

cancerous tumor, which generalizes the practice of palpation by making use of varying elastic

properties of healthy and cancerous tissue to locate tumors. The idea is to apply a relatively

small external quasi-static compression force to the tissue, and then measure the tissue’s axial

displacement field either directly or indirectly through the comparison of the undeformed

and deformed images (see [10–22]). A tumor is then located by the inverse problem of deter-

mining the tissue’s elastic features from this measurement. The following system of partial
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differential equations which describes the response of an isotropic elastic object to known

body forces and boundary traction is central to the elasticity imaging inverse problem:

−∇ · σ = f inΩ, (1.5a)

σ = 2µǫ(u)+ λ div u I, (1.5b)

u = 0 onΓ1, (1.5c)

σn = h onΓ2. (1.5d)

Here the domain Ω is a subset of R2 with ∂Ω = Γ1 ∪ Γ2 as its boundary, the vector-valued

function u = u(x) is the displacement of the elastic body, f is the applied body force, n is the

unit outward normal, and ǫ(u) = 1
2
(∇u+∇uT) is the linearized strain tensor. The resulting

stress tensor σ in the stress-strain law (1.5b) is obtained under the condition that the elas-

tic body is isotropic, and the displacement is sufficiently small so that a linear relationship

remains valid. Here µ and λ are the Lamé parameters that quantify the elastic properties of the

object.

In this study, we will treat the elastic object as incompressible. The incompressibility can

be understood from the relationship λ := 2νµ
1−2ν

, where ν is the Poisson’s ratio. If ν ≈ 0.5, λ is

large, and the elastic object is called nearly incompressible. If ν → 1
2
, the elastic object is called

fully incompressible. In this case, the relationship (1.5a) is no more defined, and an alternative,

the Lagrangian formulation, is obtained using the explicit incompressibility constraint, see

Hughes [23].

TakingQ = L2(Ω), and V = {v = (v1, v2) ∈ H1(Ω)× H1(Ω) : v = 0 onΓ1}, the variational
formulation of (1.5) in the incompressible case reads: find (u, p) ∈ V× Q such that

∫

Ω

2µǫ(u) · ǫ(v)+
∫

Ω

p(div v) =

∫

Ω

fv +

∫

Γ2

vh, for every v ∈ V , (1.6a)

∫

Ω

(div u)q = 0, for every q ∈ Q, (1.6b)

which corresponds to the saddle point problem (1.1) by taking

a(µ, u, v) =

∫

Ω

2µǫ(u) · ǫ(v), b(u, q) =

∫

Ω

pdiv u,

where µ = µ(x) is the sought parameter. We note that inhomogeneous boundary conditions

can be incorporated by using the natural data shifting technique.

Note that if the body is nearly incompressible (λ ≫ µ), then the mixed formulation reads

∫

Ω

2µǫ(u) · ǫ(v)+
∫

Ω

p(div v) =

∫

Ω

fv +

∫

Γ2

vh, for every v ∈ V , (1.7a)

∫

Ω

(div u)q−
∫

Ω

1

λ
pq = 0, for every q ∈ Q, (1.7b)

which corresponds to the regularized saddle point problem (1.4) with ε := 1
λ

and

c(p, q) :=
∫

Ωpq.

We study the inverse problem by formulating an identification problem in an abstract sad-

dle point problem. This generality significantly enhances the reachability of the results beyond

the elasticity imaging inverse problem. We explore the inverse problem as an optimization
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problem by using a new modified output least-squares functional (MOLS). The key idea is to

consider a family of optimization problems given through convex MOLS functionals with a

regularized saddle point problem as the constraint.We prove that under suitable conditions, the

optimization problems with the regularized constraints converge to the optimization problem

with the original saddle point problem as the constraint. We also study the differentiabil-

ity properties of the regularized parameter-to-solution map and give necessary and sufficient

optimality conditions. It turns out that the derivative of the MOLS objective only includes

the trilinear form a. Consequently, as a byproduct of regularizing the saddle point problem,

one can eliminate the variable p from the system, which significantly reduces the computa-

tional cost. This feature of the developed framework is particularly relevant for the elasticity

imaging inverse problems as there as the clinical/experimental data is only available for u but

not for p. We also discretize the direct problem and the inverse problem by using the finite

element approach and provide the convergence of the discrete optimization problems to the

continuous one. We provide discrete formulas for the gradient and the Hessian computation.

We offer detailed numerical examples to show the efficacy of the developed framework. To

fully understand the usefulness of the developed regularization framework, we consider an

analytic example and observe the role of the diminishing regularization parameter. Obtained

numerical results are in full compliance with the theoretical results on the regularized

solutions. We also give detailed numerical experimentation on a phantom data mimick-

ing the behavior of the tissue closely. The numerical results on the real data are quite

encouraging, and the inclusion in the phantom is identified satisfactorily. We note that the

regularized saddle point problem corresponds to the mixed variational formulation corre-

sponding to the nearly incompressible elasticity system. Therefore, the developed frame-

work has an appealing physical interpretation of identifying the tumor in the incompress-

ible medium as a limit of a family of identification problems in a nearly incompressible

medium.

The contents of this paper are organized into six sections. Section 2 contains the

problem formulation, regularization process, convergence analysis, and optimality conditions.

Section 3 presents the discretization framework and the convergence of the discrete prob-

lems to the continuous one. Section 4 gives the discrete formulas, and the numerical

results are provided in section 5. The paper concludes with some remarks on future

work.

2. Identification by the modified output least squares

The nonlinear inverse problem of parameter identification is ill-posed in most usual spaces,

and some regularization is necessary for a stable identification process, see [24–37]. For reg-

ularization, we assume that the set A of feasible coefficients also belongs to a Hilbert space

H that is compactly embedded in the space B. An example is B = L∞(Ω) and H = H2(Ω),

for Ω ⊂ R2. The compactness assumption is to facilitate the abstract framework; however, for

specific problems, it is often sufficient for the identification of smooth coefficients to regularize

via the H1(Ω)-norm.

For any ℓ ∈ A, denoting by (u(ℓ), p(ℓ)), a solution of saddle point problem (1.1) and

by (̄z, ẑ) ∈ V × Q, the measured data, we define the modified output least-squares (MOLS)

functional by

J(ℓ) :=
1

2
a(ℓ, u(ℓ)− z̄, u(ℓ)− z̄)+ b(u(ℓ)− z̄, p(ℓ)− ẑ),

and consider the following regularized MOLS-based constrained optimization problem:
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min
ℓ∈A

Jκ(ℓ) :=
1

2
a(ℓ, u(ℓ)− z̄, u(ℓ)− z̄)+ b(u(ℓ)− z̄, p(ℓ)− ẑ)+ κ‖ℓ‖2H, (2.1)

where κ > 0 is the regularization parameter and ‖ · ‖2H is the quadratic regularizer.

To highlight some of the features of the MOLS functional, we recall the commonly used

output least-squares functional

Ĵ(ℓ) :=
1

2
‖u(ℓ)− z̄‖2V +

1

2
‖p(ℓ)− ẑ‖2Q, (2.2)

where (u(ℓ), p(ℓ)) is a solution of (1.1) for ℓ ∈ A and (̄z, ẑ) ∈ V×Q is the given data where

V and Q are the suitable data spaces. The key idea behind the above OLS approach is to

minimize the gap between the computed solutions (u(ℓ), p(ℓ)) of (1.1) and the measured data

(̄z, ẑ) ∈ V×Q. Even for simpler identification problems, the OLS functional in nonconvex, in

general.

Remark 2.1. Note that the OLS functional is defined using the norm of the data spaces V

and Q which are typically larger than the spaces of the computed solutions V and Q. On the

other hand, the MOLS functional requires that the data belongs to the spaces V and Q. In

other words, the MOLS functional imposes regularity restrictions on the data than the OLS

objective.

As a prelude to the forthcoming discussion, we begin with the following existence result:

Theorem 2.1. Assume that for each ℓ ∈ A, saddle point problem (1.1) is uniquely solvable

and the set of all solutions {(u(ℓ), p(ℓ)), ℓ ∈ A} is a bounded set, the trilinear form a satisfies

the continuity condition (1.2a), and the bilinear form b satisfies the continuity condition (1.2c).

Furthermore, either κ > 0 or the set A is bounded in H. Then optimization problem (2.1) has

a solution.

Proof. Since for each ℓ ∈ A, saddle point problem (1.1) has the solution (u(ℓ), p(ℓ)), opti-
mization problem (2.1) is well-defined. Note that for each ℓ ∈ A, Jκ(ℓ) is bounded from below,

and hence there is a minimizing sequence {ℓn} in A such that Jκ(ℓn)→ inf{Jκ(ℓ), ℓ ∈ A}, as
n→∞. If κ = 0, then the minimizing sequence {ℓn} is bounded in H by the assumption.

On the other hand, if κ > 0, then the minimizing sequence {ℓn} is bounded by the definition

of the MOLS objective. Therefore, by the compact embedding of H into B, there is a sub-

sequence converging in ‖ · ‖B. By keeping the same notations for subsequences as well,

let {ℓn} be the subsequence converging to some ℓ̄ ∈ A. Let {(un, pn)} be the corresponding

sequence of solutions of (1.1), which by assumption remains bounded, and hence possesses a

weakly convergent subsequence. Let {(un, pn)} be the subsequence which converges weakly

to some (ū, p̄) ∈ V × Q. We claim that (ū, p̄) = (u(ℓ̄), p(ℓ̄)). By the definition of (ℓn, un, pn), we
have

a(ℓn, un, v)+ b(v, pn) = f (v), for every v ∈ V ,

b(un, q) = g(q), for every q ∈ Q,

and after a rearrangement, we obtain

a(ℓn − ℓ̄, un, v)+ a(ℓ̄, un − ū, v)+ a(ℓ̄, ū, v)+ b(v, pn) = f (v), for every v ∈ V ,

b(un, q) = g(q), for every q ∈ Q,

which, due to (1.2c) and (1.2a), when passed to the limit n→∞, yields
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a(ℓ̄, ū, v)+ b(v, p̄) = f (v), for every v ∈ V ,

b(ū, q) = g(q), for every q ∈ Q,

proving that (ū, p̄) = (u(ℓ̄), p(ℓ̄)).
We now claim that for ℓn → ℓ̄, un := un(ℓn) ⇀ u(ℓ̄), and pn := pn(ℓn) ⇀ p(ℓ̄), we have

1

2
a(ℓn, un − z̄, un − z̄)+ b(un − z̄, pn − ẑ) 7→ 1

2
a(ℓ̄, ū(ℓ̄)− z̄, ū(ℓ̄)− z̄)+ b(ū(ℓ̄)− z̄, p(ℓ̄)− ẑ).

(2.3)

We set v = un − z̄ and q = pn − ẑ in the saddle point problem defining (ℓn, un, pn) and obtain

a(ℓn, un − z̄, un − z̄)+ 2b(un − z̄, pn − ẑ) = −a(ℓn, z̄, un − z̄)+ f (un − z̄)

+ g(pn − ẑ)− b(un − z̄, ẑ)− b(̄z, pn − ẑ),

and since the right-hand side of the above identity converges to a(ℓ, ū− z̄, ū− z̄)+ 2b(ū−
z̄, p̄− ẑ), we obtain (2.3). Using (2.3) and the weak lower semicontinuity of any norm, we

conclude that ℓ̄ ∈ A is a minimizer. The proof is complete. �

Remark 2.2. We note that the commonly used functionals, such as the output least-squares

or the equation error functional (see [17]) are bounded below by zero because they are defined

by using a norm. The MOLS objective for the scalar PDEs is also bounded below by zero

because the energy norm defines it, see [32]. On the other hand, the MOLS objective for

saddle point problem (1.1) emerges from adding the two equations (1.1a) and (1.1b) and is not

necessarily bounded below by zero. However, due to the continuity assumption (2.8), which

involves ‖ℓ‖B, and the boundedness of the set A of feasible parameters in B, the MOLS func-

tional remains bounded below, but in general not by zero. We also note that if we subtract the

two equations (1.1a) and (1.1b), and then define an objective functional, the resulting function

would be bounded below by zero.

We have the following corollary:

Corollary 2.3. Assume that the conditions given in (1.2) hold. Furthermore, either κ > 0

or the set A is bounded in H. Then optimization problem (2.1) has a solution.

Proof. Since under (1.2), for each ℓ ∈ A, saddle point problem (1.1) is uniquely solvable and

the set of all solutions is a bounded set, the proof follows from theorem 2.1. �

We will approximate a solution of (2.1) by a family of regularized MOLS-based optimiza-

tion problems where the constraint is a regularized saddle point problem. The regularization

of the saddle point problem allows us to consider data that is contaminated by some noise

in the sense described below. Let ε, δ, and ν be positive reals and fν ∈ V∗, gν ∈ Q∗, and
(̄zδ , ẑδ) ∈ V × Q be the noisy data satisfying the following conditions:

max {‖ fν − f‖V∗ , ‖gν − g‖Q∗} 6 ν, (2.4)

max {‖z̄δ − z̄‖V , ‖̂zδ − ẑ‖Q} 6 δ. (2.5)
{
ε, ν, δ,

δ

ε
,
ν

ε

}
→ 0. (2.6)

7
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We consider the following family of regularized saddle point problems: given the regular-

ization parameter ε > 0 and ℓ ∈ A, find (uσ , pσ) ≡ (uσ(ℓ), pσ(ℓ)) ∈ V× Q such that

a(ℓ, uσ, v)+ εs(uσ, v)+ b(v, pσ) = fν (v), for every v ∈ V , (2.7a)

b(uσ, q)− εc(pσ , q) = gν(q), for every q ∈ Q, (2.7b)

where s : V × V 7→ R and c :Q× Q 7→ R are continuous and coercive bilinear forms and

σ ≡ (ε, ν) represents the dependence on the noise in the data and the regularization

parameter.

In the following, we only assume that the bilinear form b is continuous and the trilinear

form a is continuous and positive, that is,

a(ℓ, v, v) > 0, for all ℓ ∈ A, v ∈ V. (2.8)

Then, by the Lax–Milgram lemma, for a fixed σ, and for an arbitrary but fixed ℓ ∈ A,

regularized saddle point problem (2.7) has a unique solution (uσ(ℓ), pσ(ℓ)).
Our objective is to approximate (2.1) by the following family of regularized MOLS-based

optimization problems: given τ ≡ (κ, ε, ν, δ), find ℓτ ∈ A by solving

min
ℓ∈A

Jτ (ℓ) :=
1

2
a(ℓ, uσ(ℓ)− z̄δ, uσ(ℓ)− z̄δ)+ b(uσ(ℓ)− z̄δ , pσ(ℓ)− ẑδ)

+
ε

2
s(uσ(ℓ)− z̄δ , uσ(ℓ)− z̄δ)−

ε

2
c(pσ(ℓ)− ẑδ, pσ(ℓ)− ẑδ)+ κ‖ℓ‖2H, (2.9)

where (uσ(ℓ), pσ(ℓ)) is the unique solution of the regularized saddle point problem (2.7).

The following is the main convergence result:

Theorem 2.2. Assume that for each ℓ ∈ A, saddle point problem (1.1) is uniquely solvable,

the set of all solutions {(u(ℓ), p(ℓ)), ℓ ∈ A} is a bounded set, the trilinear form a satisfies the

continuity condition (1.2a) and the positivity (2.8), the bilinear form b satisfies the continu-

ity condition (1.2c), and the set A is bounded in H. Then, for each parameter τ , regularized
optimization problem (2.9) has a solution ℓτ . Moreover, there is a subsequence {ℓτ} converg-
ing in ‖ · ‖B to a solution of (2.1) (with κ = 0), as τ → 0 in the sense of (2.6), that is, as{
ε, ν, δ, δ

ε
, ν
ε

}
→ 0.

Proof. By the arguments used in the proof of theorem 2.1, it follows that for a fixed τ
≡ (κ, ε, ν, δ), (2.9) has a solution. In fact, it suffices to notice that for any fixed τ , for all ℓ ∈ A,

the regularized saddle point problem (2.7) is uniquely solvable and the solutions are bounded

(dependent on τ ).
We claim that the sequence {ℓτ} of solutions of (2.9) and the regularized solutions

{(uσ(ℓτ ), pσ(ℓτ ))} of (2.7) are uniformly bounded. Indeed the sequence {ℓτ} is bounded since
A is bounded in H.

For the boundedness of the sequences of regularized solutions {(uσ , pσ)}, we note that

a(ℓτ , uσ , v)+ εs(uσ , v)+ b(v, pσ) = fν(v), for every v ∈ V ,

b(uσ, q)− εc(pσ, q) = gν(q), for every q ∈ Q.

We will use the assumption that for every ℓ ∈ A, saddle point problem (1.1) is uniquely solv-

able. For ℓτ ∈ A, let (ũτ , p̃τ ) be the solution of (1.1). Since the set of solutions is bounded by

assumption, the sequence {(ũτ , p̃τ )} is bounded. Moreover, we have

8
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a(ℓτ , ũτ , v)+ b(v, p̃τ ) = f (v), for every v ∈ V ,

b(ũτ , q) = g(q), for every q ∈ Q.

We combine the above two saddle point problems and rearrange them to obtain

a(ℓτ , uσ − ũτ , v)+ εs(uσ, v)+ b(v, pσ − p̃τ ) = ( fν − f )(v), for every v ∈ V ,

b(uσ − ũτ , q)− εc(pσ, q) = (gν − g)(q), for every q ∈ Q.

We set v = uσ − ũτ , q = pσ − p̃τ in the above system, combine the resulting equations,

and using a(ℓτ , ũτ − uσ, ũτ − uσ) > 0, obtain (with m1,m2, L1, L2 as modulus of coercivity,

continuity of s, c)

εm1‖uσ‖2V + εm2‖pσ‖2Q 6 εs(uσ, ũτ )+ εc(pσ, p̃τ )+ ( fν − f )(uσ − ũτ )+ (g− gν)(pσ − p̃τ )

6 εL1‖uσ‖V‖ũτ‖V+ εL2‖pσ‖Q‖ p̃τ‖Q+ν
[
‖pσ− p̃τ‖Q+ ‖ũτ− uσ‖V

]
,

which, by taking m = min(m1,m2), further results in

‖uσ‖2V + ‖pσ‖2Q 6 ‖uσ‖V
[
L1

m
‖ũτ‖V +

ν

ε

]
+ ‖pσ‖Q

[
L2

m
‖ p̃τ‖Q +

ν

ε

]
+

ν

ε
‖ũτ‖V +

ν

ε
‖ p̃τ‖Q,

(2.10)

and consequently, we have

‖uσ‖2V + ‖pσ‖2Q 6 K1‖uσ‖V + K2‖pσ‖Q + K3,

where

K1 :=max
σ

{
L1

m
‖ũτ‖V +

ν

ε

}
,

K2 :=max
σ

{
L2

m
‖ p̃τ‖Q +

ν

ε

}
,

K3 :=max
σ

{ν

ε
‖ũτ‖V +

ν

ε
‖ p̃τ‖Q

}
,

are positive constants. We therefore conclude that the sequence {(uσ , pσ)} is bounded.
Since the regularized solutions are bounded, we can extract a subsequence {(uσ , pσ)}

converging weakly to some (ū, p̄). Recalling that ℓτ → ℓ̄, we claim that (ū, p̄) = (u(ℓ̄), p(ℓ̄)).
Since ℓτ is a solution of (2.9), we have

a(ℓτ , uσ , v)+ εs(uσ , v)+ b(v, pσ) = fν(v), for every v ∈ V ,

b(uσ, q)− εc(pσ, q) = gν(q), for every q ∈ Q,

or equivalently,

a(ℓτ − ℓ̄, uσ, v)+ a(ℓ̄, uσ − ū, v)+ a(ℓ̄, ū, v)+ εs(uσ, v)+ b(v, pσ) = fν (v), for every v ∈ V ,

b(uσ, q)− εc(pσ, q) = gν(q), for every q ∈ Q,

which due to the imposed conditions, when passed to the limit σ → 0, implies that

9
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a(ℓ̄, ū, v)+ b(v, p̄) = f (v), for every v ∈ V ,

b(ū, q) = g(q), for every q ∈ Q,

confirming that (ū, p̄) = (u(ℓ̄), p(ℓ̄)).
We will next show that for ℓτ → ℓ̄, uσ := uσ(ℓτ ) ⇀ u(ℓ̄), and pσ := pσ(ℓτ ) ⇀ p(ℓ̄), we have

1

2
a(ℓτ , uσ(ℓτ )− z̄δ , uσ(ℓτ )− z̄δ)+ b(uσ(ℓτ )− z̄δ , pσ(ℓτ )− ẑδ)+

1

2
εs(uσ(ℓτ )− z̄δ, uσ(ℓτ )− z̄δ)

− ε

2
c(pσ(ℓτ )− ẑδ, pσ(ℓτ )− ẑδ)

7→ 1

2
a(ℓ̄, ū(ℓ̄)− z̄, ū(ℓ̄)− z̄)+ b(ū(ℓ̄)− z̄, p(ℓ̄)− ẑ). (2.11)

For this, we note that for every (v, q) ∈ V× Q, we have

a(ℓτ , uσ , v)+ εs(uσ , v)+ b(v, pσ) = fν(v), for every v ∈ V ,

b(uσ, q)− εc(pσ, q) = gν(q), for every q ∈ Q,

which for the choice v = uσ − z̄δ , and q = pσ − ẑδ , leads to the following identity:

a(ℓτ , uσ − z̄δ , uσ − z̄δ)+ 2b(uσ − z̄δ, pσ − ẑδ)+ εs(uσ − z̄δ, uσ − z̄δ)− εc(pσ − ẑδ , pσ − ẑδ)

= −a(ℓτ , z̄δ , uσ − z̄δ)+ f (uσ − z̄δ)+ g(pσ − ẑδ)− b(uσ − z̄δ, ẑδ)+ fν(uσ − z̄δ)

− f (uσ − z̄δ)− b(̄zδ , pσ − ẑδ)+ gν(pσ − ẑδ)− g(pσ − ẑδ),

and because the right-hand side of the above identity converges to

a(ℓ,−z̄, ū− z̄)+ b(ū− z̄,−ẑ)+ b(−z̄, p̄− ẑ)+ f (ū− z̄)+ g( p̄− ẑ),

which, due to the fact that (ū, p̄) is a solution of (1.1) equals to a(ℓ, ū− z̄, ū− z̄)+ 2b(ū

− z̄, p̄− ẑ), results in the desired convergence (2.11).

Let ℓ̂ be a solution of (2.1) (with κ = 0), and (û(ℓ̂), p̂(ℓ̂)) be the corresponding solution

of saddle point problem (1.1). We consider the regularized solutions {(uσ(ℓ̂), pσ(ℓ̂))} for the

coefficient ℓ̂. That is,

a(ℓ̂, uσ(ℓ̂), v)+ εs(uσ(ℓ̂), v)+ b(v, pσ(ℓ̂)) = fν(v), for every v ∈ V , (2.12a)

b(uσ(ℓ̂), q)− εc(pσ(ℓ̂), q) = gν(q), for every q ∈ Q. (2.12b)

By the arguments used above, we can show that {(uσ(ℓ̂), pσ(ℓ̂))} converges weakly to (û, p̂).

In fact, the convergence is strong as we show next. We rearrange the above system as

follows:

εm1‖uσ(ℓ̂)− û(ℓ̂)‖2V + m2ε‖pσ(ℓ̂)− p̂(ℓ̂)‖2Q
= εs(uσ(ℓ̂)− û(ℓ̂), uσ(ℓ̂)− û(ℓ̂))+ εc(pσ(ℓ̂)− p̂(ℓ̂), pσ(ℓ̂)− p̂(ℓ̂))

6 ( fν − f )(uσ(ℓ̂)− û(ℓ̂))− (gν − g)(pσ(ℓ̂)− p̂(ℓ̂))

+ ε〈û(ℓ̂), uσ(ℓ̂)− û(ℓ̂)〉V + ε〈p̂(ℓ̂), pσ(ℓ̂)− p̂(ℓ̂)〉Q,

10
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which after a simple calculation implies that

lim
n→∞

‖uσ(ℓ̂)− û(ℓ̂)‖2V + lim
n→∞

‖pσ(ℓ̂)− p̂(ℓ̂)‖2Q 6 0,

and consequently the strong convergence of {(uσ(ℓ̂), pσ(ℓ̂))} to (û(ℓ̂), p̂(ℓ̂)) follows.
Summarizing the above observations, we have

J(ℓ̄) =
1

2
a(ℓ̄, ū(ℓ̄)− z̄, ū(ℓ̄)− z̄)+ b(ū(ℓ̄)− z̄, p̄(ℓ̄)− ẑ)

6 lim
n→∞

{
1

2
a(ℓτ , uσ(ℓτ )− z̄δ, uσ(ℓτ )− z̄δ)+ b(uσ(ℓτ )− z̄δ, pσ(ℓτ )− ẑδ)

+
1

2
εs(uσ(ℓτ )− z̄δ , uσ(ℓτ )− z̄δ)−

ε

2
c(pσ(ℓτ )− ẑδ , pσ(ℓτ )− ẑδ)

}
+ lim inf

n→∞
κ‖ℓτ‖2H

6 lim
n→∞

{
1

2
a(ℓ̂, uσ(ℓ̂)− z̄δ , uσ(ℓ̂)− z̄δ)+ b(uσ(ℓ̂)− z̄δ , pσ(ℓ̂)− ẑδ)

+
1

2
εs(uσ(ℓ̂)− z̄δ , uσ(ℓ̂)− z̄δ)−

ε

2
c(pσ(ℓ̂)− ẑδ , pσ(ℓ̂)− ẑδ)+ κ‖ℓ̂‖2H

}

6
1

2
a(ℓ̂, û(ℓ̂)− z̄, û(ℓ̂)− z̄)+ b(û(ℓ̂)− z̄, p̂(ℓ̂)− ẑ),

and since ℓ̂ ∈ A was chosen arbitrarily, we have established that ℓ̄ ∈ A is a minimizer

of (2.1). �

To derive optimality conditions for (2.1), the following result that sheds some light on the

smoothness of the regularized parameter-to-solution map will play a key role

Theorem 2.3. For a fixed σ, let ℓ be in the interior of A which we assume to be nonempty.
The first-order derivative (Duσ(ℓ)δℓ,Dpσ(ℓ)δℓ) of the regularized parameter-to-solution map
ℓ→ (uσ(ℓ), pσ(ℓ)) at ℓ in the direction δℓ ∈ B is the unique solution of the regularized saddle

point problem:

a(ℓ,Duσ(ℓ)δℓ, v)+ εs(Duσ(ℓ)δℓ, v)+ b(v,Dpσ(ℓ)δℓ) = −a(δℓ, uσ(ℓ), v), for every v ∈ V ,

(2.13a)

b(Duσ(ℓ)δℓ, q)− εc(Dpσ(ℓ)δℓ, q) = 0, for every q ∈ Q. (2.13b)

Moreover, the second-order derivative (D2uσ(ℓ)(δℓ1, δℓ2),D
2pσ(ℓ)(δℓ1, δℓ2)) of (uσ(ℓ), pσ(ℓ))

at ℓ in the direction (δℓ1, δℓ2) ∈ B× B is the unique solution of the regularized saddle point

problem:

a(ℓ,D2uσ(ℓ)(δℓ1, δℓ2), v)+ εs(D2uσ(ℓ)(δℓ1, δℓ2), v)+ b(v,D2pσ(ℓ)(δℓ1, δℓ2))

= −a(δℓ2,Duσ(ℓ)δℓ1, v)− a(δℓ1,Duσ(ℓ)δℓ2, v), for every v ∈ V ,

(2.14a)

b(D2uσ(ℓ)(δℓ1, δℓ2), q)− εc(D2pσ(ℓ)(δℓ1, δℓ2), q) = 0, for every q ∈ Q (2.14b)

Proof. The proof follows by similar arguments that were used in [32]. �
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We again consider the following MOLS objective with perturbed data:

Jε(ℓ) :=
1

2
a(ℓ, uσ(ℓ)− z̄δ , uσ(ℓ)− z̄δ)+ b(uσ(ℓ)− z̄δ , pσ(ℓ)− ẑδ)

+
ε

2
s(uσ(ℓ)− z̄δ, uσ − z̄δ)−

ε

2
c(pσ(ℓ)− ẑδ , pσ(ℓ)− ẑδ), (2.15)

where (uσ(ℓ), pσ(ℓ)) is the unique solution of regularized saddle point problem (2.7).

We have the following result: �

Theorem 2.4. For each fixed σ, the modified output least-squares functional (2.15) is

convex in A.

Proof. Let us first compute the derivatives of Jε. For any direction ℓ̂ ∈ B, we have

DJε(ℓ)(ℓ̂) =
1

2
a(ℓ̂, uσ(ℓ)− z̄δ , uσ(ℓ)− z̄δ)+ a(ℓ,Duσ(ℓ)(ℓ̂), uσ(ℓ)− z̄δ)

+ εs(Duσ(ℓ)(ℓ̂), uσ − z̄δ)− εc(Dpσ(ℓ)(ℓ̂), pσ(ℓ)− ẑδ)

+ b(Duσ(ℓ)(ℓ̂), pσ(ℓ)− ẑδ)+ b(uσ(ℓ)− z̄δ ,Dpσ(ℓ)(ℓ̂)). (2.16)

Moreover, by using (2.13), we obtain

a(ℓ,Duσ(ℓ)(ℓ̂), uσ(ℓ)− z̄δ)+ εs(Duσ(ℓ)(ℓ̂), uσ(ℓ)− z̄δ)+ b(uσ(ℓ)− z̄δ ,Dpσ(ℓ)(ℓ̂))

= −a(ℓ̂, uσ(ℓ), uσ(ℓ)− z̄δ),

b(Duσ(ℓ)(ℓ̂), pσ(ℓ)− ẑδ)− εc(Dpσ(ℓ)(ℓ̂), pσ(ℓ)− ẑδ) = 0,

which, when substituted in (2.16), yields

DJε(ℓ)(ℓ̂) =
1

2
a(ℓ̂, uσ(ℓ)− z̄δ , uσ(ℓ)− ẑδ)− a(ℓ̂, uσ(ℓ), uσ(ℓ)− z̄δ)

= −1

2
a(ℓ̂, uσ(ℓ)+ z̄δ, uσ(ℓ)− z̄δ).

Furthermore,

D2Jε(ℓ)(ℓ̂, ℓ̂) = −1

2
a(ℓ̂, uσ(ℓ)− z̄δ,Duσ(ℓ)(ℓ̂))−

1

2
a(ℓ̂, uσ(ℓ)+ z̄δ ,Duσ(ℓ)(ℓ̂))

= −a(ℓ̂, uσ(ℓ),Duσ(ℓ)(ℓ̂))

= a(ℓ,Duσ(ℓ)(ℓ̂),Duσ(ℓ)(ℓ̂))+ εs(Duσ(ℓ)(ℓ̂),Duσ(ℓ)(ℓ̂))

+ b(Dpσ(ℓ)(ℓ̂),Dpσ(ℓ)(ℓ̂))

= a(ℓ,Duσ(ℓ)(ℓ̂),Duσ(ℓ)(ℓ̂))+ εs(Duσ(ℓ)(ℓ̂),Duσ(ℓ)(ℓ̂))

+ εc(Dpσ(ℓ)(ℓ̂),Dpσ(ℓ)(ℓ̂)),

where we used the following consequence of (2.13):

12
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a(ℓ,Duσ(ℓ)(ℓ̂)),Duσ(ℓ)(ℓ̂))+ εs(Duσ(ℓ)(ℓ̂),Duσ(ℓ)(ℓ̂))+ b(Dpσ(ℓ)(ℓ̂),Dpσ(ℓ)(ℓ̂))

= −a(ℓ̂), uσ(ℓ),Duσ(ℓ)(ℓ̂)) ,

b(Duσ(ℓ)(ℓ̂),Dpσ(ℓ)(ℓ̂))− εs(Dpσ(ℓ)(ℓ̂),Dpσ(ℓ)(ℓ̂)) = 0.

We notice, in particular, that the following inequality holds for all ℓ in the interior of A:

D2Jε(ℓ)(ℓ̂, ℓ̂) > εm1‖Duσ(ℓ)(ℓ̂)‖2V + εm2‖Dpσ(ℓ)(ℓ̂)‖2Q, (2.17)

and consequently Jε is a smooth and convex functional. �

In the following optimality condition, for simplicity we assume that the parameter-to-

solution map is defined on a larger set that contains the closed and convex set A in its

interior.

Theorem 2.5. Under the setting of theorem 2.3, a necessary and sufficient optimality con-

dition for an element ℓτ ∈ A to be a solution of regularized optimization problem (2.9) is the

variational inequality

−1

2
a(ℓ− ℓτ , uσ + z̄δ , uσ − z̄δ)+ 2κ〈ℓτ , ℓ− ℓτ 〉H > 0, for every ℓ ∈ A,

(2.18)

where (uσ , pσ) = (uσ(ℓτ ), pσ(ℓτ )) is the solution of regularized saddle point problem (2.7). If

uσ(ℓτ )→ u(ℓ̄), then the following variational inequality holds:

−1

2
a(ℓ− ℓ̄, u(ℓ̄)+ z̄, u(ℓ̄)− z̄) > 0, for every ℓ ∈ A. (2.19)

Proof. We notice that due to the convexity of theMOLS functional, a necessary and sufficient

optimality condition for ℓτ to be a solution of (2.9) is the variational inequality

DJε(ℓτ )(ℓ− ℓτ )+ 2κ〈ℓτ , ℓ− ℓτ 〉H > 0, for every ℓ ∈ A, (2.20)

where Jε is given in (2.15), that is,

Jε(ℓ) :=
1

2
a(ℓ, uσ(ℓ)− z̄δ , uσ(ℓ)− z̄δ)+ b(uσ(ℓ)− z̄δ , pσ(ℓ)− ẑδ)

+
ε

2
〈uσ − z̄δ , uσ − z̄δ〉V − ε

2
〈pσ(ℓ)− ẑδ , pσ(ℓ)− ẑδ〉Q.

Since for any direction δℓ, we have

DJε(ℓ)(δℓ) = −1

2
a(δℓ, uσ + z̄δ , uσ − z̄δ).

We at once obtain (2.18). The variational inequality (2.19) follows by passing the limit in

variational inequality (2.20). The proof is complete. �

13



Inverse Problems 36 (2020) 074003 B Jadamba et al

Remark 2.4. If a is coercive, then s is not needed, and uσ(ℓτ )→ u(ℓ̄).

3. Finite-dimensional approximation

We will now use a finite-element-based discretization scheme for the inverse problem. We

assume that there is a parameter h converging to 0, and families {Vh}, {Qh}, and {Bh}, of
finite-dimensional subspaces of V, Q, and B, respectively.We set Ah = Bh ∩ A and assume that

∩hAh 6= ∅. We define a projection operator Ph = (P̄h, P̂h) with

‖P̄hv − v‖V → 0, for every v ∈ V , (3.1a)

‖P̂hq− q‖Q → 0, for every q ∈ Q. (3.1b)

Furthermore, to have an analogous approximation property for the parameter space, we

assume that for any ℓ ∈ A, there exists a sequence {ℓ̂h} ⊂ Ah such that ℓ̂h → ℓ in B and

‖ℓ̂h‖H → ‖ℓ‖H.
For simplicity in presentation, we incorporate the data contamination by assuming that

κ, ε, δ, and ν are positive parameters with fν ∈ V∗
h , gν ∈ Q∗

h, and (̄zδ , ẑδ) ∈ Vh × Qh such

that

max {‖ fν − f‖V∗ , ‖gν − g‖Q∗} 6 ν, (3.2)

max {‖z̄δ − z̄‖V , ‖̂zδ − ẑ‖Q} 6 δ. (3.3)

Moreover, we assume that

{
κ, ε, ν, δ,

δ

ε
,
ν

ε

}
→ 0. (3.4)

Given ℓh ∈ Ah, the discrete saddle point problem seeks (uh, ph) ∈ Vh × Qh such that

a(ℓh, uh, vh)+ b(vh, ph) = f (vh), for every vh ∈ Vh, (3.5a)

b(uh, qh) = g(qh), for every qh ∈ Qh, (3.5b)

and the discrete regularized saddle point problem seeks (uhσ, p
h
σ) ∈ Vh × Qh with

a(ℓh, u
h
σ, vh)+ εs(uhσ, vh)+ b(vh, p

h
σ) = fν (vh), for every vh ∈ Vh, (3.6a)

b(uhσ, q)− εc(phσ, q) = gν(qh), for every qh ∈ Qh, (3.6b)

where σ ≡ (ε, ν) represents the influence of the involved parameters.

We also consider discrete MOLS-based minimization problem: find ℓhτ ∈ Ah by solving

min
ℓh∈Ah

Jhκ(ℓh) =
1

2
a(ℓh, u

h
σ − z̄δ , u

h
σ − z̄δ)+

ε

2
s(uhσ − z̄δ , u

h
σ − z̄δ)+ b(uhσ − z̄δ , p

h
σ − ẑδ)

− ε

2
c(phσ − ẑδ , p

h
σ − ẑδ)+ κ‖ℓh‖2H, (3.7)

where (uhσ , p
h
σ) is the unique solution of (3.6) and τ ≡ (κ, ε, ν, δ).

The following result ensures the convergence of the discrete optimization problem:

Theorem 3.1. Besides the hypotheses of theorem 2.2, assume that for each ℓh ∈ Ah, (3.5) is

uniquely solvable and the set of all solutions is a bounded set. Then, for each (h, τ ), (3.7) has
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a minimizer ℓhτ ∈ Ah. Moreover, there is a subsequence {ℓhτ} that converges to a solution ℓ̄ of
the optimization problem (2.1).

Proof. For fixed (h, σ), (3.6) is uniquely solvable, and the minimization problem (3.7) has

a solution ℓhτ ∈ Ah by arguments analogous to those given in theorem 2.2. Since Ah ⊂ A, and

since the set A is bounded in H by assumption, the sequences {ℓhτ} is bounded in ‖ · ‖H, and
by the compact embedding of H into B, there is a subsequence, still denoted by {ℓhτ}, that
converges to some ℓ̄ ∈ A. Let (uhσ, p

h
σ) be the unique solution of the discrete regularized sad-

dle point problem (3.6) that corresponds to coefficient ℓhτ . The boundedness of the sequence
{(uhσ, phσ)} ⊂ Vh × Qh can be proved exactly as in the previous section. Let

{
(uhσ, p

h
σ)
}
be

the subsequence converging weakly to some (ū, p̄) ∈ V × Q. We will show that (ū, p̄) =

(u(ℓ̄), p(ℓ̄)), the unique solution of (1.1).
Let (v, q) ∈ V× Q be arbitrary. We take (vh, qh) := (P̄hv, P̂hq) ∈ Vh × Qh in the dis-

crete regularized saddle point problem (3.6), and after rearranging the resulting equations,

obtain

a(ℓ̄, uhσ, v)+εns(un, vh)+b(v, phσ)+a(ℓhτ , u
h
σ, vh−v)+b(vh−v, phσ)+a(ℓhτ− ℓ̄, uhσ, v) = fν(vh),

b(uhσ, q)+b(uhσ, qh− q)−εc(phσ, qh) = gν(qh).

We pass the above system to the limit h→ 0, σ → 0, and using (3.1), deduce that

a(ℓ̄, ū, v)+ b(v, p̄) = f (v), for every v ∈ V ,

b(ū, q) = g(q), for every q ∈ Q,

and consequently (ū, p̄) = (u(ℓ̄), p(ℓ̄)) is the unique solution of saddle point problem

(1.1).

Furthermore, following the argument used in the proof of (2.11), we can show that if

{ℓh} ⊂ Ah converges to some ℓ ∈ A as h→ 0 in B, then

lim
h→0

[
1

2
a(ℓh, u

h
σ(ℓh)− z̄δ , u

h
σ(ℓh)− z̄δ)+

ε

2
s(uhσ(ℓh)− z̄δ , u

h
σ(ℓh)− z̄δ)

+ b(uhσ(ℓh)− z̄δ , p
h
σ(ℓh)− ẑδ)−

ε

2
c(phσ(ℓh)− ẑδ , p

h
σ(ℓh)− ẑδ)

]

=
1

2
a(ℓ, u(ℓ)− z̄, u(ℓ)− z̄)+ b(u(ℓ)− z̄, p(ℓ)− ẑ).

Let ℓ ∈ A be arbitrary. By the assumption, there exists a sequence {ℓ̂h} ⊂ Ah such that

ℓ̂h → ℓ in B and ‖ℓ̂h‖H → ‖ℓ‖H. This fact when combined with the above observations,

yields
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J(ℓ̄) =
1

2
a(ℓ̄, u(ℓ̄)− z̄, u(ℓ̄)− z̄)+ b(u(ℓ̄)− z̄, p(ℓ̄)− ẑ)

6 lim
h→0

{
1

2
a(ℓhτ , u

h
σ(ℓ

h
τ )− z̄δ , u

h
σ(ℓ

h
τ )− z̄δ)+

ε

2
s(uhσ(ℓ

h
τ )− ẑδ , u

h
σ(ℓ

h
τ )− ẑδ)

+ b(uhσ(ℓ
h
τ )− z̄δ , p

h
σ(ℓ

h
τ )− ẑδ)−

ε

2
c(phσ(ℓ

h
τ )− ẑδ , p

h
σ(ℓ

h
τ )− ẑδ)

}
+ lim inf

h→0
κ‖ℓhτ‖2H

6 lim inf
h→0

{
1

2
a(ℓhτ , u

h
σ(ℓ

h
τ )− z̄δ , u

h
σ(ℓ

h
τ )− z̄δ)+

ε

2
s(uhσ(ℓ

h
τ )− z̄δ, u

h
σ(ℓ

h
τ )− z̄δ)

+ b(uhσ(ℓ
h
τ )− z̄δ , p

h
σ(ℓ

h
τ )− ẑδ)−

ε

2
c(phσ(ℓ

h
τ )− ẑδ , p

h
σ(ℓ

h
τ )− ẑδ)+ κ‖ℓhτ‖2H

}

6 lim inf
h→0

{
1

2
a(ℓ̂h, u

h
σ(ℓ̂h)− z̄h, u

h
σ(ℓ̂h)− z̄h)+

ε

2
s(uhσ(ℓ̂h)− z̄h, u

h
σ(ℓ̂h)− z̄h)

+ b(uhσ(ℓ̂h)− z̄h, p
h
σ(ℓ̂h)− ẑh)−

ε

2
c(phσ(ℓ̂h)− ẑh, p

h
σ(ℓ̂h)− ẑh)+ κ‖ℓ̂h‖2H

}

=
1

2
a(ℓ, u(ℓ)− z̄, u(ℓ)− z̄)+ b(u(ℓ)− z̄, p(ℓ)− ẑ) = J(ℓ),

where we also used the fact that ℓhτ is a minimizer. Since the element ℓ ∈ A was chosen arbi-

trarily, we obtain that ℓ̄ is a solution of the continuous optimization problem. This completes

the proof. �

Remark 3.1. If a is coercive and b satisfies discrete inf-sup condition, then for each ℓ, dis-
crete saddle point problem (3.5) is uniquely solvable and the set of all solutions is bounded,

uniformly in h.

4. Computational framework

We shall now collect discrete formulas for the regularized saddle point problem and the inverse

problem. For this, we begin with a triangulation Th on the domain Ω. Assume that Lh is the

space of all continuous piecewise polynomials of degree dℓ relative to Th, Uh is the space

of all continuous piecewise polynomials of degree du relative to Th, and Qh is the space of

all continuous piecewise polynomials of degree dq relative to Th. We specify the bases for

Lh, Uh, and Qh by {ϕ1,ϕ2, . . . , ϕm}, {ψ1,ψ2, . . . , ψn}, and {χ1,χ2, . . . ,χk}, respectively.
The space Lh is then isomorphic toRm and for any ℓ ∈ Lh, we define L ∈ Rm by Li = ℓ(xi), i =
1, 2, . . . ,m, where the nodal basis {ϕ1,ϕ2, . . . ,ϕm} corresponds to the nodes {x1, x2, . . . , xm}.
Conversely, each L ∈ Rm corresponds to ℓ ∈ Lh defined by ℓ =

∑m
i=1 Liϕi. Analogously, u ∈

Uh will correspond to U ∈ Rn, where Ūi = u(yi), i = 1, 2, . . . , n, and u =
∑n

i=1 Ūiψi, where
y1, y2, . . . , yn are the nodes of the mesh definingUh. Finally, q ∈ Qh will correspond toQ ∈ Rk,

where Qi = q(zi), i = 1, 2, . . . , k, and q =
∑k

i=1Qiχi, where z1, z2, . . . , zk are the nodes of

the mesh defining Qh. The spaces Ah, Uh, and Qh are defined relative to the same elements,

however, the nodes will be different if dℓ 6= du 6= dq.

Let S :Rm → Rn+k be the finite element solution map that related to any ℓ ∈ Ah, the unique

solution (uhσ, p
h
σ) ∈ Uh × Qh of (3.6). Then Sςn(L) = Uh

σ, where U
h
σ is given by

Kh
σ(L)U

h
σ = Fhσ, (4.1)
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with the stiffness matrix Kh
σ(L) ∈ R(n+k)×(n+k) and the load vector Fhσ ∈ Rn+k are given by

Kσ(L) =

[
K̂(L)+ εS B⊤

B −εC

]

with

K̂(L)i, j = a(ℓ,ψ j,ψi), i, j = 1, 2, . . . , n,

S = s(ψ j,ψi), i, j = 1, 2, . . . , n,

Bi, j = b(ψ j,χi), i = 1, 2, . . . , k, j = 1, 2, . . . , n

Ci, j = c(χ j,χi), i, j = 1, 2, . . . , k,

(Fhσ)i = fν(ψi), i = 1, 2, . . . , n,

(Fhσ) j = gν(χi), j = n+ 1, n+ 2, . . . , n+ k.

In the following, for notational simplicity, in vectors and matrices, we drop the dependence

on the parameters. A straightforward calculation leads to the discrete MOLS:

J(L) =
1

2

[
U(L)− Z̄

P(L)− Ẑ

]⊤ [
K̂(L)+ εS B⊤

B −εC

] [
U(L)− Z̄

P(L)− Ẑ

]

=
1

2
(U(L)− Z̄)⊤

(
K̂(L)+ εS

)
(U(L)− Z̄)+ (U(L)− Z̄)⊤B⊤(P(L)Ẑ)

− ε

2
(P(L)− Ẑ)⊤C(P(L)− Ẑ).

Denoting by A an adjoint stiffness matrix defined by the condition that K̂(L)V = A(V)L,

for every L ∈ Rm, and for every V ∈ Rn, the gradient and the Hessian are given by

∇J(L) = −1

2
A(U(L))⊤U(L)+

1

2
A(Z̄)⊤Z̄,

∇2J(L) = ∇U(L)⊤A(∇U(L))+ ε∇U(L)⊤S∇U(L)+ ε∇P(L)⊤C∇P(L).

One of the main advantages of A is the computational flexibility that it provides by exploiting

the relationship between the bases of u and the bases for ℓ in the trilinear form a, which leads

to explicit formulas for the discrete MOLS functional and its gradient.

5. Computational experimentation for the elasticity imaging inverse problem

We now present numerical results for the incompressible system (1.6). Since, for this case,

a is elliptic, we do not regularize by using the bilinear form s. However, a natural choice

for s is s(u, v) = 〈u, v〉V, the inner product in the space V. For the bilinear form c, we use

c(p, q) :=
∫

Ωpq, the inner product in the spaceQ. In all the numerical experiments, we choose

compatible elements for which the inf-sup condition holds.

5.1. An analytical example

We will first present the outcome of numerical experimentation carried out on the incompress-

ible system (1.6). Let Ω = (0, 1)× (0, 1) be the domain. The sought parameter is µ(x, y) =
1+ x2y+ yx, and the load function is
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Table 1. Identification error
‖µh−µ‖

L2(Ω)

‖µ‖
L2(Ω)

(CPU time) for κ = 1 × 10−5, h = 0.070 7107.

ε P1P1P1 (non Hessian) P2P1P1 (non Hessian) P2P1P1 (Hessian)

1 × 10−7 8.406 × 10−3 (50.2 s) 6.688 × 10−3 (160.8 s) 7.378 × 10−3 (1814 s)

1 × 10−8 8.686 × 10−3 (47.9 s) 7.157 × 10−3 (168.3 s) 7.378 × 10−3 (1762 s)

1 × 10−9 9.110 × 10−3 (57.4 s) 6.947 × 10−3 (153.3 s) 7.378 × 10−3 (1760 s)

1 × 10−10 9.802 × 10−3 (47.6 s) 7.487 × 10−3 (179.4 s) 7.378 × 10−3 (1798 s)

Table 2. Regularized discretization error for ε = 1 × 10−10 (P2P1P1 elements).

h
‖uh,ε

1
−ū1‖L2(Ω)

‖ū1‖L2(Ω)

‖ūh,ε
2

−ū1‖L2(Ω)

‖ū2‖L2(Ω)
‖ ph,ε‖L2(Ω)

√
2/10 8.674 × 10−4 8.741 × 10−4 1.042 × 10−3

√
2/12 6.021 × 10−4 6.067 × 10−4 7.140 × 10−4

√
2/14 4.422 × 10−4 4.455 × 10−4 5.196 × 10−4

√
2/16 3.384 × 10−4 3.410 × 10−4 3.950 × 10−4

√
2/18 2.673 × 10−4 2.693 × 10−4 3.105 × 10−4

√
2/20 2.165 × 10−4 2.181 × 10−4 2.505 × 10−4

f (x, y) =
(
2x3 + 4x2y+ 4xy− 2x + 2, 6x2y+ 4xy2 + 2y2 − 2y+ 2

)
.

On Γ1 (bottom and right boundaries), we have Dirichlet boundary conditions. On the bottom

boundary, y = 0, we consider g(x, y) = (0, x(1− x)), and the right part, x = 1, we consider

g(x, y) = (y(1− y), 0). We consider Neumann conditions Γ2 in the top and left part. In the

top part, y = 1, we consider h(x, y) =
(
(−(x2y+ xy+ 1)(2x+ 2y− 2), 0)

)
, and in the left

boundary, x = 0, we consider h(x, y) =
(
0, (x2y+ xy+ 1)(2x+ 2y− 2)

)
. The corresponding

displacement vector is ū(x, y) = (y(1− y), x(1− x)).

In the numerical experiments, we use the finite element discretization scheme outlined in

section 4, and for simplicity, we consider no data contamination. For discretization, we use the

finite element library FreeFem++ [38]. To solve the optimization problem, we use the IPOPT

library integrated with FreeFem++. IPOPT is a software library for large-scale nonlinear

constrained optimization problems using a primal-dual interior-point method, see [39]. IPOPT

uses the first-order or second-order derivatives dependingonwhether the Hessianmatrix is pro-

vided. If the Hessian is not supplied, then it is approximated by using the BFGS-quasi-Newton

methods. IPOPT allows us to incorporate the bounds on the constraints, and in all the exper-

iments, we set the lower bound lb = 1 and the upper bound ub = 3.5. In the present context,

this means that the discrete analog of the set A of the feasible parameters is a box constrained

set with the lower bound lb and the upper bound ub. In all the numerical experiments, we take

H = H1(Ω) as regularization space.

For discretization, we use the triangular elements. Moreover, we consider P1 elements for

the pressure term p and the parameterµ, while for the displacement vector u = (u1, u2), we have

two choices, namely,P2 andP1 elements.We consider three possible scenarios. In the first case,

we consider P2 elements for displacement and P1 for pressure term and use the Hessian-based

methods. In the second scenario, we consider the same P2P1P1 discretization scheme, but we

do not provide the Hessian. In the third scenario, we consider P1P1P1 and Hessian is given.
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Table 3. Regularized discretization error for ε = 1 × 10−10 (P1P1P1 elements).

h
‖uh,ε

1
−ū1‖L2(Ω)

‖ū1‖L2(Ω)

‖ūh,ε
2

−ū1‖L2(Ω)

‖ū2‖L2(Ω)
‖ ph,ε‖L2(Ω)

√
2/10 3.871 × 10−4 7.560 × 10−4 3.795 × 10−3

√
2/12 2.704 × 10−4 5.304 × 10−4 2.597 × 10−3

√
2/14 1.995 × 10−4 3.924 × 10−4 1.888 × 10−3

√
2/16 1.532 × 10−4 3.020 × 10−4 1.434 × 10−3

√
2/18 1.214 × 10−4 2.396 × 10−4 1.127 × 10−3

√
2/20 9.851 × 10−5 1.947 × 10−4 9.088 × 10−4

Table 4. Identification error
‖µh−µ‖

L2(Ω)

‖µ‖
L2(Ω)

(CPU time) for κ = 1× 10−6, h = 0.070 7107.

ε P1P1P1 (non Hessian) P2P1P1 (non Hessian) P2P1P1 (Hessian)

1 × 10−7 7.542 × 10−3 (105.1 s) 4.131 × 10−3 (320.7 s) 5.560 × 10−3 (1805.1 s)

1 × 10−8 9.668 × 10−3 (90.4 s) 5.186 × 10−2 (370.6 s) 5.560 × 10−3 (1759.1 s)

1 × 10−9 1.113 × 10−2 (75.6 s) 4.629 × 10−3 (301.9 s) 5.560 × 10−3 (1779.5 s)

1 × 10−10 1.114 × 10−2 (97.6 s) 3.092 × 10−3 (334.0 s) 5.560 × 10−3 (1805.8 s)

Figure 1. Scenario P1P1P1. Estimated parameter for different κ, ε = 1. × 10−10,

h =
√
20
20

.

In the second scenario, we studied the influence of the regularization parameters κ and ε on

the identification error for a fixed discretization parameter h =

√
2

20
, where h is defined as the

length of the longest edge of all elements in the mesh. For this, we measure the identification

error by the quantity

‖ µh − µ‖L2(Ω)

‖ µ‖L2(Ω)

,

where µ is the interpolated exact parameter and µh is the computed solution.

We performed several groups of numerical experiments. Firstly, we studied the influence of

ε for the discrete saddle point problem. Tables 2 and 3 show that the stability of discretization

error. For ε ∈ {1× 10−7, 1× 10−8, 1× 10−9, 1× 10−10}, we obtained similar results. Forκ, the
most stable option appears to be κ = 1× 10−5, which gives excellent reconstruction for all the
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Figure 2. Exact and estimated parameter for ε = 1.0 × 10−10, h =
√
20
20

.

Table 5. Identification error
‖µh−µ‖

L2(Ω)

‖µ‖
L2(Ω)

(CPU time) for κ = 1 × 10−7, h =
√
2

20
.

ε P1P1P1 (non-Hessian) P2P1P1 (non-Hessian) P2P1P1 (Hessian)

1 × 10−7 4.254 × 10−2 (163.3 s) 2.212 × 10−2 (418.2 s) 7.283 × 10−3 (1763.4 s)

1 × 10−8 3.445 × 10−2 (144.5 s) 2.776 × 10−2 (424.4 s) 7.283 × 10−3 (1754.0 s)

1 × 10−9 7.748 × 10−2 (113.2 s) 3.252 × 10−2 (409.9 s) 7.283 × 10−3 (1765.0 s)

1 × 10−10 2.823 × 10−2 (148.8 s) 2.275 × 10−2 (302.6 s) 7.283 × 10−3 (1821.6 s)

Table 6. Identification error
‖µh−µ‖

L2(Ω)

‖µ‖
L2(Ω)

for κ = 1 × 10−5, ε = 1 × 10−10.

h P1P1P1 (non-Hessian) P2P1P1 (non-Hessian) P2P1P1 (Hessian)

√
2/10 1.525 × 10−2 5.766 × 10−3 6.200 × 10−3

√
2/12 1.251 × 10−2 6.259 × 10−3 6.485 × 10−3

√
2/14 1.010 × 10−2 6.211 × 10−3 7.145 × 10−3

√
2/16 1.110 × 10−2 7.066 × 10−3 7.511 × 10−3

√
2/18 8.741 × 10−3 6.684 × 10−3 7.521 × 10−3

√
2/20 9.802 × 10−3 7.487 × 10−3 7.378 × 10−3

chosen values of ε (table 1). For smaller values of κ, we noticed some instability in the recon-

struction, particularly for the non-Hessian-based schemes. For κ = 1 × 10−6 (see table 4), the

discretization scheme P1P1P1 gives a less satisfactory reconstruction (see figure 1), but still a

bit better than the other two scenarios, see figure 2. For κ = 1 × 10−7, the Hessian-based

identification scheme gives excellent reconstruction, while P1P1P1 scenarios give accept-

able reconstruction. On the other hand, P1P1P1, discretization is by far the fastest method,

especially if we compare with the Hessian-based schemes which are computationally expen-

sive. In conclusion, P1P1P1 gives a much faster method and excellent reconstruction for

specific a regularization parameter, while still acceptable reconstruction for other values of the

regularization parameter. For P2P1P1, with the use of Hessian, the reconstruction is very good,

but the computational cost is high (table 5). The choice P2P1P1 resides in between the two.

The same behavior can be observed, when studying the effects of the discretization parameter

for fixed regularization parameters κ = 1 × 10−5, ε = 1 × 10−10; see table 6.
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Figure 3. Elastography experiment.

5.2. 3D reconstruction using a tissue phantom data

We will now test the developed framework on a 3D-reconstruction of the elasticity modu-

lus µ using a tissue phantom data. The phantom used in this work was created using gelatin,

with silica added for acoustic scatter, to mimic elastic properties of soft tissue (see figure 3(a),

which is taken from [40]). A complete description of the phantom construction and experi-

mental imaging setup can be found in Richards, et al [40]. The whole phantom was cuboid

in shape (60× 60 × 50 mm in width, length, and height, respectively) with an 8% by mass

background gelatin concentration and a centrally located, stiffer, cylindrical inclusion of 12%

gelatin concentration (4.80 mm in diameter and 5 mm in height). This led to an approximate

inclusion to background contrast of 1.89 ± 0.11 as measured by an independent mechani-

cal test [40]. A bottom layer (approximately 10 mm of additional height) was also added

to the phantom with a layer to background contrast of 2.01 ± 0.22 as measured by an

independent mechanical test [40]. Ultrasound (US) image sequences were collected using

an Analogic AN2300 (Analogic Corp., 8 Centennial Drive, Peabody, MA 01960) with a

40 Hz linear array transducer. Three dimensional, static images were acquired by scanning

the US transducer at a fixed rate while triggering the two-dimensional US frame acquisitions

at a fixed elevational distance of 0.14 mm (see figure 3(b), which is taken from [40]). Two

3D images were acquired, a pre-deformation 3D image at approximately no compression,

and a second, post-deformation image, after ≈1–2 strain was applied to the phantom in the

axial image direction. The scanned volume measured approximately 27.44 mm × 55.62 mm

× 27.44 mm in the lateral (x), axial (y), and elevational (z) directions, respectively. The full

3D displacement vector field was measured from the static images using an image registration

based, 3D displacement estimator described in [40].

We consider a 3D discretization by following the same scheme as used in the previous

example. We also take into account the practical aspects given in [40], see also [41]. For

our computations, we considered the P1P1P1 discretization scheme and used a projected data

on a mesh of size 20× 30× 20 (full data available to us corresponds to a mesh of size

41× 61× 41). Another important aspect, when dealing with phantom data, is the choice of

boundary conditions. Following [40, 41], we considered Dirichlet boundary conditions in the

top and bottom parts of the boundary. We set the vertical direction/component of the remain-

ing boundary conditions to be Dirichlet and allow lateral components to be traction free.

We use lb = 1 and ub = 3.5 as the lower and the upper bound. Since we are dealing with a

discontinuous parameter, we have chosen the standard TV regularizer (see [40, 42, 43]).
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Figure 4. A 3D visualization of the inclusion slices.

In the 3D plots shown in figure 4, the inclusion is highlighted by using a color map corre-

sponding to the identified parameter µ. Considering the use of a projected data into a coarse

mesh, the developed scheme identifies the inclusion quite satisfactorily. The artifacts in the

boundaries and the stand-off layer correspond to the stiffer bottom part. The artifacts are more

pronounced in the lateral part than it is in the upper/bottom part. The background contrast is
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Figure 5. Five lines of parameter reconstruction for two central slices.

approximately 1, corresponding to the lower bound, whereas the inclusion contrast is between

1.3 and 1.5, where the stiffer bottom part corresponds to the stand-off layer. Figure 5 shows

parameter µ reconstruction along five lines for two central slices (by x = 12 and y = 25).

6. Concluding remarks

Saddle point problems have been regularized extensively for stable approximation schemes.

In this work, we successfully used this philosophy to devise a stable procedure of the inverse

problem of identifying a variable parameter in general saddle point problems. We would also

like to note that although the MOLS-type functionals have been used extensively for inverse

problems, this is the first instance of their use on a real-world problem with real data. Our

numerical experiments provide very encouraging results. Furthermore, it appears that some

data smoothing could be used to mitigate the artifacts in the reconstruction procedure. Tools

such as Sobolev gradients or stochastic gradients seem to be adequate for it. Finally, in the

elasticity imaging inverse problem, the boundary conditions are not known. Since the bound-

ary conditions have a direct impact on the overall success of the identification process, it is of

interest to develop a framework that also identifies boundary conditions along with the

elasticity modulus.
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