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Abstract
This work investigates the elasticity imaging inverse problem of tumor identifi-
cation in a fully incompressible medium through a family of inverse problems in
anearly incompressible medium. We develop an inversion framework for saddle
point problems that goes far beyond the elasticity imaging inverse problem and
applies to a wide variety of inverse problems. We introduce a family of convex
optimization problems with regularized saddle point problems as the constraint
and prove its convergence. We discretize the inverse problem by using the finite
element approach and prove the convergence of the discrete problems. We offer
formulas for the gradient and the Hessian computation. The outcome of detailed
numerical computations, carried out using the tissue phantom data, shows the
efficacy of the developed framework.
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1. Introduction

Let Vand Q be real Hilbert spaces with V* and Q* as their dual spaces, B be a real Banach space,
and A be a nonempty, closed, convex, and bounded subset of B. In the applications that we have
in mind, the typical choices are B:= L*(2) and A := {¢ € B|0 < ay < {(x) < a; < oo}, where
ap and a; are constants. Let a: B X V x V — R be a trilinear form which is symmetric in
the last two arguments, that is, a(-,u,v) = a(-,v,u), for every u,v € V, b:V x Q — R
be a bilinear form, and f€ V¥, and g € O* be given. For a fixed ¢ € B, the trilinear
form a and the bilinear form b are associated to linear maps A, € £L(V,V*) and B €
L(V, Q") by the relationships (Ayu,v) = a(l,u,v) for all v € V, and (Bu, q) = b(u, ¢) for all
q € 0.

We consider the saddle point problem: given ¢ € A, find (u(¢), p(¢)) == (u,p) € V x Q such
that

a(l,u,v)+ b(v, p) = f(v), foreveryv eV, (1.1a)

b(u,q) = g(q), foreveryq € Q. (1.1b)

Saddle point problem (1.1), which constitutes the direct problem in this work, provides a con-
venient mathematical framework for studying numerous applied models and has been studied
in great detail, from a theoretical as well as a numerical viewpoint. Our focus, however, is
on the inverse problem of identifying the parameter ¢ from a measurement of the solution of
(1.1). To discuss the solvability of (1.1), we set L:={u € V|b(u,q) = 0,forallg € Q}, and
formulate the conditions:

la(l, u, v)| < sol|€]gllullv]|v|lv, foralll € B, u,v €V, g >0, (1.2a)
a(l,v,v) > ¢ ||v||3, forall/ € A, v €L, g >0, (1.2b)

|b(v, @)| < Kollv|lv]gllos forallv e V, g € Q, ko > 0, (1.2¢)

inf sup M > k1, k1 >0. (1.2d)

e uev [lullvlgllo

It is known that under conditions (1.2c) and (1.2d), for a fixed ¢ € A, saddle point
problem (1.1) has a unique solution (i, p) which depends continuously on the data (fg),
see [1].

We note that for saddle point problems emerging from applied models, continuity condi-
tions (1.2a) and (1.2c) are often easy to verify and the coercivity condition (1.2b) also holds
in many applications. Condition (1.2d), commonly termed as the Babuska—Brezzi or the inf-
sup condition, is a natural substitute for the coercivity condition and plays an essential role in
the theoretical as well as the numerical treatment of saddle point problems. In finite element
discretization of (1.1), a discrete analog of (1.2d), which is obtained by replacing V and Q,
by finite-dimensional subspaces V;, and Qy, is used. The discrete inf-sup condition imposes
compatibility restrictions on the choices of finite-dimensional subspaces of V and Q. Fur-
thermore, there are situations when either the inf-sup condition cannot be verified or is not
completely satisfactory from an analysis viewpoint. Interesting works on the use of (1.2d), its
variants, limitations, and extensions can be found in [2—6], and the cited references. We also
refer to the recent work [7] where a saddle point framework was employed to solve an inverse
problem.
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System (1.1) is related to the following linearly constrained optimization problem:

mi\r/lJI(u) = %a(ﬁ, u,u) — f(u), subjecttob(u,q) = g(q), foreveryq < Q.
ue
(1.3)

Indeed, if we define the Lagrangian L: V x Q — R by

1
L(u, p) = EM’ u,u) — f(u) + b(u, p) — g(p),

then under (1.2a)—(1.2d), L(u, p) has a unique saddle point which solves (1.1); see Braess ([8],
p 132).

The use of Lagrange multipliers, although it avoids the explicit constraints, poses addi-
tional challenges. In particular, increases the dimension from u to (u,p), and the discrete
optimality system is not positive definite, and hence, one has to resort to specialized numerical
techniques.

A commonly used technique in optimization is to consider the regularized Lagrangian
given by

1
L, p) = sa(beu,u) = )+ b, p) = g(p) = S [[pl% = >0,

which is also an unconstrained optimization problem, however, quadratic in both u and p.
Another commonly adopted viewpoint is to consider the following penalized version
of (1.3):

1 1
min P-(u) = Ea(e, uu) — f(u) — ZHBu —gll’, e>0.

These perturbation techniques have led to investigating the regularized saddle point
problem: given € > 0 and a coercive and continuous bilinear form c¢: Q x Q — R, find
(u-, p-) € V x Q such that

a(l,u.,v) + b(v, p:) = f(v), foreveryv eV, (1.4a)
b(u.,q) — ec(p-,q) = g(q), foreveryq e Q. (1.4b)

Regularized saddle point problem (1.4) system has some advantages in comparison to (1.1)
and has been explored extensively, see [1, 3, 9]. A typical result is that under conditions
(1.2a)—(1.2d), the sequence of the regularized solutions {(u.,p-)} converges to the solution
of (1.1), as € — 0. Variants of these conditions have been used to give error estimates for
the regularized solutions and to gauge their impact on the finite-dimensional discretization.
The regularized saddle point problem has also been studied to mitigate the role of the inf-sup
condition; see [5].

This work is partly motivated by the elasticity imaging inverse problem of identifying the
cancerous tumor, which generalizes the practice of palpation by making use of varying elastic
properties of healthy and cancerous tissue to locate tumors. The idea is to apply a relatively
small external quasi-static compression force to the tissue, and then measure the tissue’s axial
displacement field either directly or indirectly through the comparison of the undeformed
and deformed images (see [10—22]). A tumor is then located by the inverse problem of deter-
mining the tissue’s elastic features from this measurement. The following system of partial
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differential equations which describes the response of an isotropic elastic object to known
body forces and boundary traction is central to the elasticity imaging inverse problem:

—V-o=f in, (1.5a)
o =2ue(u) + Adivul, (1.5b)
u=0 onl}y, (1.5¢)

on=h onl5. (1.5d)

Here the domain € is a subset of R? with 9Q = I'; U T, as its boundary, the vector-valued
function # = u(x) is the displacement of the elastic body, fis the applied body force, 7 is the
unit outward normal, and e(u) = %(Vu + Vu") is the linearized strain tensor. The resulting
stress tensor ¢ in the stress-strain law (1.5b) is obtained under the condition that the elas-
tic body is isotropic, and the displacement is sufficiently small so that a linear relationship
remains valid. Here ;2 and \ are the Lamé parameters that quantify the elastic properties of the
object.

In this study, we will treat the elastic object as incompressible. The incompressibility can
be understood from the relationship A := 127”2%, where v is the Poisson’s ratio. If v =~ 0.5, \ is
large, and the elastic object is called nearly incompressible. If v — %, the elastic object is called
fully incompressible. In this case, the relationship (1.5a) is no more defined, and an alternative,
the Lagrangian formulation, is obtained using the explicit incompressibility constraint, see
Hughes [23].

Taking Q = L*(2),and V = {v = (vy,v2) € H'(Q) x H'(Q): v = 0on T}, the variational
formulation of (1.5) in the incompressible case reads: find (u, p) € V x Q such that

/2ue(u)-e(v)+/p(divv) = /fv+/ vh, for everyv € V, (1.6a)
Q Q Q I,

/(div u)q =0, for everyq € Q, (1.6b)
Q

which corresponds to the saddle point problem (1.1) by taking

a(p, u,v) = /Z/LE(M) -e(v), bu,q) = /pdiv u,
Q Q

where ¢ = p(x) is the sought parameter. We note that inhomogeneous boundary conditions
can be incorporated by using the natural data shifting technique.
Note that if the body is nearly incompressible (A > ), then the mixed formulation reads

/ZMe(u) ce(v) + /p(div v)= [ fv +/ vh, foreveryv € V, (1.7a)
Q Q Q I

1
/(div u)q — / ~pg =0, foreveryg € Q, (1.7b)
Q oA
which corresponds to the regularized saddle point problem (1.4) with 5::% and

C(p’ q) = f Qpq-

We study the inverse problem by formulating an identification problem in an abstract sad-
dle point problem. This generality significantly enhances the reachability of the results beyond
the elasticity imaging inverse problem. We explore the inverse problem as an optimization
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problem by using a new modified output least-squares functional (MOLS). The key idea is to
consider a family of optimization problems given through convex MOLS functionals with a
regularized saddle point problem as the constraint. We prove that under suitable conditions, the
optimization problems with the regularized constraints converge to the optimization problem
with the original saddle point problem as the constraint. We also study the differentiabil-
ity properties of the regularized parameter-to-solution map and give necessary and sufficient
optimality conditions. It turns out that the derivative of the MOLS objective only includes
the trilinear form a. Consequently, as a byproduct of regularizing the saddle point problem,
one can eliminate the variable p from the system, which significantly reduces the computa-
tional cost. This feature of the developed framework is particularly relevant for the elasticity
imaging inverse problems as there as the clinical/experimental data is only available for u but
not for p. We also discretize the direct problem and the inverse problem by using the finite
element approach and provide the convergence of the discrete optimization problems to the
continuous one. We provide discrete formulas for the gradient and the Hessian computation.
We offer detailed numerical examples to show the efficacy of the developed framework. To
fully understand the usefulness of the developed regularization framework, we consider an
analytic example and observe the role of the diminishing regularization parameter. Obtained
numerical results are in full compliance with the theoretical results on the regularized
solutions. We also give detailed numerical experimentation on a phantom data mimick-
ing the behavior of the tissue closely. The numerical results on the real data are quite
encouraging, and the inclusion in the phantom is identified satisfactorily. We note that the
regularized saddle point problem corresponds to the mixed variational formulation corre-
sponding to the nearly incompressible elasticity system. Therefore, the developed frame-
work has an appealing physical interpretation of identifying the tumor in the incompress-
ible medium as a limit of a family of identification problems in a nearly incompressible
medium.

The contents of this paper are organized into six sections. Section 2 contains the
problem formulation, regularization process, convergence analysis, and optimality conditions.
Section 3 presents the discretization framework and the convergence of the discrete prob-
lems to the continuous one. Section 4 gives the discrete formulas, and the numerical
results are provided in section 5. The paper concludes with some remarks on future
work.

2. Identification by the modified output least squares

The nonlinear inverse problem of parameter identification is ill-posed in most usual spaces,
and some regularization is necessary for a stable identification process, see [24—-37]. For reg-
ularization, we assume that the set A of feasible coefficients also belongs to a Hilbert space
H that is compactly embedded in the space B. An example is B = L>({2) and H = H*(Q),
for Q C R2. The compactness assumption is to facilitate the abstract framework; however, for
specific problems, it is often sufficient for the identification of smooth coefficients to regularize
via the H'(Q)-norm.

For any ¢ € A, denoting by (u(¢),p(¢)), a solution of saddle point problem (1.1) and
by (z,2) € V x Q, the measured data, we define the modified output least-squares (MOLS)
functional by

J() = %a(ﬁ, u(l) —z,u() — 2) + b(u(?) — z, p(£) — 2),

and consider the following regularized MOLS-based constrained optimization problem:
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%TJK(E) = %a(f, u(l) = z,u(l) = 2) + bu(?) =z, p(0) =D + w[|[ll|7,  2.1)

where % > 0 is the regularization parameter and || - ||% is the quadratic regularizer.
To highlight some of the features of the MOLS functional, we recall the commonly used
output least-squares functional

~ 1 1 =N
() =5 Jut) - z2l5 + LG 215 (2.2)

where (u(¢), p(¢)) is a solution of (1.1) for £ € A and (z,2) € V x Q is the given data where
V and Q are the suitable data spaces. The key idea behind the above OLS approach is to
minimize the gap between the computed solutions (u(¢), p(¢)) of (1.1) and the measured data
(z,2) € V x Q. Even for simpler identification problems, the OLS functional in nonconvex, in
general.

Remark 2.1. Note that the OLS functional is defined using the norm of the data spaces V
and QQ which are typically larger than the spaces of the computed solutions V and Q. On the
other hand, the MOLS functional requires that the data belongs to the spaces V and Q. In
other words, the MOLS functional imposes regularity restrictions on the data than the OLS
objective.

As a prelude to the forthcoming discussion, we begin with the following existence result:

Theorem 2.1. Assume that for each ¢ € A, saddle point problem (1.1) is uniquely solvable
and the set of all solutions {(u(?), p(£)), ¢ € A} is a bounded set, the trilinear form a satisfies
the continuity condition (1.2a), and the bilinear form b satisfies the continuity condition (1.2c).
Furthermore, either k > 0 or the set A is bounded in H. Then optimization problem (2.1) has
a solution.

Proof. Since for each ¢ € A, saddle point problem (1.1) has the solution (u(¢), p(£)), opti-
mization problem (2.1) is well-defined. Note that for each ¢ € A, J,.(¢) is bounded from below,
and hence there is a minimizing sequence {/,} in A such that J;(¢,) — inf{J.(¢), ¢ € A}, as
n— oo. If k = 0, then the minimizing sequence {/,} is bounded in H by the assumption.
On the other hand, if £ > 0, then the minimizing sequence {/,} is bounded by the definition
of the MOLS objective. Therefore, by the compact embedding of H into B, there is a sub-
sequence converging in | - ||z. By keeping the same notations for subsequences as well,
let {¢,} be the subsequence converging to some ¢ € A. Let {(u,,p,)} be the corresponding
sequence of solutions of (1.1), which by assumption remains bounded, and hence possesses a
weakly convergent subsequence. Let {(u,,p,)} be the subsequence which converges weakly
to some (i, p) € V x Q. We claim that (@, p) = (u(£), p(£)). By the definition of (£,, u,, p,), we
have

a(ly, u,,v) + b(v, p,) = f(v), foreveryv eV,
b(uy, q) = g(q),  foreveryq € Q,
and after a rearrangement, we obtain
ally, — 0, uy, v) + all, u, — i, v) + all,u,v) + b(v, pn) = f(v), foreveryv eV,
b(uy, q) = g(q), foreveryq € Q,
which, due to (1.2c) and (1.2a), when passed to the limit n — oo, yields

6



Inverse Problems 36 (2020) 074003 B Jadamba et al

a(l,i,v) + b(v,p) = f(v), foreveryv €V,
b(u,q) = g(q), foreveryq € Q,

proving that (i, p) = (u((), p({)). . )
We now claim that for ¢, — ¢, u,, .= u,(¢,,) — u({), and p, == p,(¢,) — p({), we have

Syt~ 2t~ D+ bl — % pu D o sallall) — 5D~ 2) 4 baD) — 2, D)~ D),

2.3)

We set v = u,, — z7 and ¢ = p,, — Z in the saddle point problem defining (¢,,, u,, p,) and obtain

a(gn, Uy — Z, U, — Z) + 2b(“n - Z,Pn */Z\) == 70(6,1, Z? Uy — Z) + f(un - Z)
+ g(pn _/Z\) - b(un - Zy/Z\) - b(Z,Pn _/Zj:

and since the right-hand side of the above identity converges to a({,u — Z, i — z) + 2b(u —
P —2), we o_btain (2.3). Using (2.3) and the weak lower semicontinuity of any norm, we
conclude that ¢ € A is a minimizer. The proof is complete. 0

Remark 2.2. We note that the commonly used functionals, such as the output least-squares
or the equation error functional (see [17]) are bounded below by zero because they are defined
by using a norm. The MOLS objective for the scalar PDEs is also bounded below by zero
because the energy norm defines it, see [32]. On the other hand, the MOLS objective for
saddle point problem (1.1) emerges from adding the two equations (1.1a) and (1.1b) and is not
necessarily bounded below by zero. However, due to the continuity assumption (2.8), which
involves ||¢||5, and the boundedness of the set A of feasible parameters in B, the MOLS func-
tional remains bounded below, but in general not by zero. We also note that if we subtract the
two equations (1.1a) and (1.1b), and then define an objective functional, the resulting function
would be bounded below by zero.

We have the following corollary:

Corollary 2.3. Assume that the conditions given in (1.2) hold. Furthermore, either x> 0
or the set A is bounded in H. Then optimization problem (2.1) has a solution.

Proof. Since under (1.2), foreach ¢ € A, saddle point problem (1.1) is uniquely solvable and
the set of all solutions is a bounded set, the proof follows from theorem 2.1. O

We will approximate a solution of (2.1) by a family of regularized MOLS-based optimiza-
tion problems where the constraint is a regularized saddle point problem. The regularization
of the saddle point problem allows us to consider data that is contaminated by some noise
in the sense described below. Let ¢, d, and v be positive reals and f, € Vx, g, € Ox, and
(Zs5,25) € V x Q be the noisy data satisfying the following conditions:

max {[|f, = fllv-s g = gllo} <w, (2.4)
max {|[z; = zllv, l[zs = Zllo} < 0. (2.5)

{5, 260 ”} ~0. (2.6)
E £

7
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We consider the following family of regularized saddle point problems: given the regular-
ization parameter € > 0 and ¢ € A, find (u,, p,) = (Us(£), ps(£)) € V x Q such that

a(l,ug,v) + es(uy,v) + b(v, p,) = f,(v), foreveryv eV, (2.7a)
b(uys,q) — ec(ps,q) = g.(q), foreveryq € O, (2.7b)

where s:V X V+— R and ¢: Q x Q — R are continuous and coercive bilinear forms and
o0 = (e,v) represents the dependence on the noise in the data and the regularization
parameter.

In the following, we only assume that the bilinear form b is continuous and the trilinear
form a is continuous and positive, that is,

all,v,v) >0, forall f€A, veV. (2.8)

Then, by the Lax—Milgram lemma, for a fixed o, and for an arbitrary but fixed ¢ € A,
regularized saddle point problem (2.7) has a unique solution (u,(£), py(£)).

Our objective is to approximate (2.1) by the following family of regularized MOLS-based
optimization problems: given 7 = (k, &, 1, ), find £, € A by solving

I?Ei/{lJT(ﬁ) = %a(ﬁ, Uus(0) = 25, ug(£) — Z5) + b(us(£) — 25, po(£) — 25)

+ %S(un(ﬁ) — 25, us(l) — Z5) — %C(p(,(ﬁ) — %5, Po(0) = Z5) + &[|¢7, (2.9)

where (u,(£), p,(£)) is the unique solution of the regularized saddle point problem (2.7).
The following is the main convergence result:

Theorem 2.2. Assume that for each ¢ € A, saddle point problem (1.1) is uniquely solvable,
the set of all solutions {(u(£), p(£)), ¢ € A} is a bounded set, the trilinear form a satisfies the
continuity condition (1.2a) and the positivity (2.8), the bilinear form b satisfies the continu-
ity condition (1.2¢), and the set A is bounded in H. Then, for each parameter T, regularized
optimization problem (2.9) has a solution {,. Moreover, there is a subsequence {{,} converg-
ing in || - ||g to a solution of (2.1) (with k = 0), as T — 0 in the sense of (2.6), that is, as

{E,U,(S,g,g} — 0.

Proof. By the arguments used in the proof of theorem 2.1, it follows that for a fixed 7
= (k,&,,0),(2.9) has a solution. In fact, it suffices to notice that for any fixed 7, for all £ € A,
the regularized saddle point problem (2.7) is uniquely solvable and the solutions are bounded
(dependent on 7).

We claim that the sequence {{.} of solutions of (2.9) and the regularized solutions
{(us(L;), ps(¢;))} of (2.7) are uniformly bounded. Indeed the sequence {¢, } is bounded since
A is bounded in H.

For the boundedness of the sequences of regularized solutions {(u,, p,)}, we note that

a(ly,uy,v) + es(uy,v) + b(v, py) = f,(v), foreveryv €V,
b(us,q) — ec(ps, q) = 8(q), foreveryq € Q.

We will use the assumption that for every ¢ € A, saddle point problem (1.1) is uniquely solv-
able. For /. € A, let (ii, p;) be the solution of (1.1). Since the set of solutions is bounded by
assumption, the sequence { (i, p,;)} is bounded. Moreover, we have

8
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a(l;,it;,v) + b(v, p;) = f(v), foreveryv eV,
b(u-,q) = g(q), foreveryq € Q.
We combine the above two saddle point problems and rearrange them to obtain
allr iy — Uz, v) + sy, v) + b(v, pr — pr) = (fy, — f)(v), foreveryv eV,
b(us — -, q) — ec(po. q) = (8 — 8)(g), foreveryq € Q.

We set v = u, —ii., ¢ = p, — pr in the above system, combine the resulting equations,
and using a(?,, i, — u,, i, — u,) = 0, obtain (with my,my, L;, L, as modulus of coercivity,
continuity of s, ¢)

emy|[uq || + ema|| po |G < e5(ug, itr) + ec(po, pr) + (fy — 1t — i) + (8 — 8)(Ps — Pr)
< eLi|lug||v-|lv+ eLa|l psllolPrllo+ v [ pe— Prllo+ llitr— uqllv].

which, by taking m = min(m;, m;), further results in

e+ el < ol | 2 + 2] + Dol | 21l + 2| + il + el
(2.10)
and consequently, we have
ol + 1ol < Kl + Kallpolo + K,

where
Ly, . v
K ::max{—1||u7|v+—},
o m e
L2 - 1%
Kyi=max{ (Bl + 2 ¢,
o m 3

v, . V.
K= max { 2l + 2o}

are positive constants. We therefore conclude that the sequence {(u,, p,)} is bounded.
Since the regularized solutions are bounded, we can extract a subsequence {(u,,p,)}
converging weakly to some (i, p). Recalling that ¢, — ¢, we claim that (i, p) = (u(0), p(é_)).
Since £, is a solution of (2.9), we have

a(lr,uy,v) + es(uy,v) + b(v, py) = f,(v), foreveryv €V,
b(us, q) — ec(ps, q) = u(q), foreveryg € Q,
or equivalently,
all, — 0, u,, v) + a(lz Uy — U, v) + all, a, v) + es(uy, v) + b(v, p;) = f,(v), foreveryv €V,
b(us, q) — ec(ps, q) = 8.(q), foreveryg € Q,
which due to the imposed conditions, when passed to the limit o — 0, implies that

9
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a(l,i,v) + b(v,p) = f(v), foreveryv €V,
b(u,q) = g(q), foreveryq € Q,
confirming that (i, p) = (), p(f))._ - -
We will next show that for ¢, — ¢, u, == u,({;) — u(f), and p, = p,(¢;) — p(¢), we have

%a(ﬁn Uug(lr) — Zs uo(lr) — Z5) + bus(€r) — Zs, po(lr) —25) + %68(%(&) — 2o, uo(lr) — Zs)
— Sepo) = 2. poll) = %)
— %a(z, u(l) — z,u(l) — 2) + b(a(l) =z, p(l) = 7).~ (2.11)
For this, we note that for every (v, g) € V x O, we have
a(ly,uy,v) + es(ug,v) + b(v, py) = f,(v), foreveryv €V,
b(us, q) — ec(ps, q) = 8u(q), foreveryq € Q,
which for the choice v = u, — Z5, and ¢ = p, — 25, leads to the following identity:
a(lr,ug — Z5,Us — Z5) + 2b(uy — 25, po — 25) + €8y — 25, Uty — Z5) — €C(Ps — 25, Po — 25)

= —a(l;,Z5. Uy — Z5) + fe — Z5) + 8(po — Z5) — b(uy — 25.25) + fo(tto — Zs)
— fluy —75) — b(Zs, po — 25) + 80 (Po — Z5) — &(Ps — 25)s

and because the right-hand side of the above identity converges to
all,—z,iu—2) + b — 72,2+ b(-2,p—2) + fu—2) + g(p—2),

which, due to the fact that (i, p) is a solution of (1.1) equals to a(f,u —z,u — 7) + 2b(u
—Z, p — 2), results in the desired convergence (2.11).

Let ¢ be a solution of (2.1) (with kK = 0), and (ﬁ(f), ﬁ(f)) be the corresponding solution
of saddle point problem (1.1). We consider the regularized solutions {(un(f), p”(é))} for the
coefficient /. That is,

a(l, uy (), v) + es(uqy (), v) + b(v, p,(0)) = f,(v), foreveryv €V, (2.12a)

b(uy(0),q) — ec(py(0),q) = g,(q), foreveryg € Q. (2.12b)

By the arguments used above, we can show that {(un(f), pg(é))} converges weakly to (i, p).
In fact, the convergence is strong as we show next. We rearrange the above system as
follows:

emi|uy (D) — a(D)|[5; + mae || p,(0) — PO
= es(uy(£) — u(0), u,(0) — (D)) + ec(po (D) — ph), po(d) — p(b))
< (fy = Dlgl) — (D)) — (g — 8)po (D) — pl))
+ e (D), up(0) — D)y + e(ph), py (D) — p(D)) o

10
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which after a simple calculation implies that
Tim|lug (D) — a(D)[[§ + lim||ps (D) — p(D)[|3 < 0,

and consequently the strong convergence of {(ug(é), pg(é))} to (ﬂ(f), i)(é)) follows.
Summarizing the above observations, we have

J() = %a(ﬁ_, iu(l) — z,u(l) — 2) + b(al) — z, p(f) — 2)
< lim { Sl lr) 25, 0s(L) — 29) 4 Btolr) — 2, o) — %)
o)~ at0) ~ )~ Sepu6) ~ oo palt) ~ )+ tim i w6
< lim {;a(z& 1y (0) — 25, (6) — Z5) + blus(0) — 25, po(0) — Z5)
+ %ss(ug(@ — Z o (D) — Z5) — %c(pg(é) — % pe(D) = %) + ml%}
< gallih) —z,ih) —2) + bGath — 2 ph) ),

and since / € A was chosen arbitrarily, we have established that £ € A is a minimizer
of (2.1). O

To derive optimality conditions for (2.1), the following result that sheds some light on the
smoothness of the regularized parameter-to-solution map will play a key role

Theorem 2.3. For a fixed o, let { be in the interior of A which we assume to be nonempty.
The first-order derivative (Du,(£)0¢, Dp,(£)6£) of the regularized parameter-to-solution map
L — (u,(£), ps(£)) at £ in the direction 6{ € B is the unique solution of the regularized saddle
point problem:

a(l, Du,(£)64, v) + es(Du,(£)64,v) + b(v, Dp,(£)60) = —a(dl, u,(£),v), for every v €V,
(2.13a)
b(Du,(£)6l, q) — ec(Dpy(£)04,q) = 0, for every g € Q. (2.13b)

Moreover, the second-order derivative (D*u,(0)(5€,, 502), D*po(£)(501, 662)) of (us(£), ps(£))
at U in the direction (64y,6¢,) € B X B is the unique solution of the regularized saddle point
problem:

a(l, D*u,(£)(801, 542),v) + es(D*u, (0)(541, 602), v) + b(v, D* py(£)(501, 545))
= —a(6ly, Du,(0)601,v) — a(5ly, Du,(£)ls, v), for everyv € V,
(2.14a)

b(D*u,(0)(5Ly, 805), q) — ec(D*p,(£)(641,602),q) =0, for every q € Q (2.14b)
Proof. The proof follows by similar arguments that were used in [32]. U

1
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We again consider the following MOLS objective with perturbed data:

1 ~
JA0) = Sallsup(0) = Za, ua (D) = 25) + blua(D) = 25, po(0) — Z)
+ %s(ug(o Tty — ) — %e(p{,w) — 2 ) — Z), (2.15)

where (u,(£), p,(£)) is the unique solution of regularized saddle point problem (2.7).
We have the following result: 0

Theorem 2.4. For each fixed o, the modified output least-squares functional (2.15) is
convex in A.

Proof. Let us first compute the derivatives of J.. For any direction { € B, we have

DJ.(0)(f) = %a(é, U (0) — 25, ug(0) — Z5) + a(l, Dug(0)(E), uy () — Zs)
+ es(Du,(O)(E), uy — 75) — ec(Dp, (D)D), po () —Z5)
+ b(Dus(0O)(0), p,(0) — Zs) + bluty () — 25, Dp, (£)(0)). (2.16)
Moreover, by using (2.13), we obtain
a(l, Duy(0)(0), uy(£) — Z5) + es(Dus(0)(0), us () — Z5) + bluy(£) — 25, Dpy(£)(0))
= —a(l,u,(0), us(£) — Z),
b(Duy(£)(0), py(£) — Z5) — ec(Dp,(O)(0), p,(£) —Zs) = O,

which, when substituted in (2.16), yields
DLW = 5al o) 25, u,(0) %) — atl (0, us(0) %)
= 3 alluolD) + 25, u,(6) ~ ).
Furthermore,

D)0, ) = — %a(ﬁ, s (0) — Z5, Duy (0O)(0)) — %a(ﬁ, U, (0) + 25, Du, (0)(0))
= —a(l. u,(0), Dus(£)(D)
= a(l, Duy()(D), Du,(0)(D)) + es(Du, (£)(0), Duy(£)(F))
+ b(Dp,(0)(D), Dp, (£)(0))
= a(l, Duy(0)(0), Dus(0)(0)) + es(Duy (0)(0), Dus(£)(0)
+ 2c(Dpo(0)(D). Dp, (0)(0)).

where we used the following consequence of (2.13):

12
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a(t. Dy (D). Duo (D)) + (D (D)D), Dut (D)) + D (D). D (D)
= —a(l), u,(£), Du,(0)(D)),

b(Du(0)(0), Dp,(0)(0)) — es(Dp,(£)(0), Dp,(£)(0)) = 0.
We notice, in particular, that the following inequality holds for all ¢ in the interior of A:
DX IO, 0) = emy | Dus(O)(D)|[3 + ema||Dp, (OD)[3, (2.17)

and consequently J. is a smooth and convex functional. U

In the following optimality condition, for simplicity we assume that the parameter-to-
solution map is defined on a larger set that contains the closed and convex set A in its
interior.

Theorem 2.5. Under the setting of theorem 2.3, a necessary and sufficient optimality con-
dition for an element (. € A to be a solution of regularized optimization problem (2.9) is the
variational inequality

1
—Ea(ﬁ — Uty + Zs e — Zs) + 260, 0 — L)y = 0, for every [ € A,
(2.18)

where (g, ps) = (Us(L:), ps(€r)) is the solution of regularized saddle point problem (2.7). If
u, (L) — u(l), then the following variational inequality holds:

—%a(ﬁ —Lu(l) +7Z,u(f) —2) =0, for every £ € A. (2.19)

Proof. We notice that due to the convexity of the MOLS functional, a necessary and sufficient
optimality condition for ¢, to be a solution of (2.9) is the variational inequality

DJ. (b))l — b))+ 26l 0 — L)y =0, for every [ € A, (2.20)

where J. is given in (2.15), that is,

1 ~
J(0) = 5alt, us(£) = 25, uo () — 2) + b(us(0) — 25, P (£) = 25)

& ~ ~
+ (e — Z5 Uy — Z5)v — 5(170(5) — 25, Po(0) — Zs)o-

N ™

Since for any direction ¢, we have

1
DJ.(£)(60) = —Ea(éf, Uy + Z5, Uy — Z5)-

We at once obtain (2.18). The variational inequality (2.19) follows by passing the limit in
variational inequality (2.20). The proof is complete. U

13
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Remark 2.4. If a is coercive, then s is not needed, and u, (¢,) — u(f).

3. Finite-dimensional approximation

We will now use a finite-element-based discretization scheme for the inverse problem. We
assume that there is a parameter 4 converging to 0, and families {V,,}, {Ox}, and {By}, of
finite-dimensional subspaces of V, O, and B, respectively. We set A, = B, N A and assume that
NpAy # 0. We define a projection operator P;, = (P, i’h) with

|Prv — v|ly — 0, forevery v €V, (3.1a)
|1Prg — qllo — 0, for every g € Q. (3.1b)

Furthermore, to have an analogous approximation property for the parameter space, we
assume that for any ¢ € A, there exists a sequence {/¢;} C A; such that ¢, — ¢ in B and
12l — 1€l

For simplicity in presentation, we incorporate the data contamination by assuming that
K, €, 0, and v are positive parameters with f, € V;, g, € O}, and (Z5,25) € Vi X Q) such
that

max {[| f, — fllv=. llgv — gllor} < v (3.2)
max {[|zs — zl|v. [[Zs — Zllo} < 6. (3.3)
Moreover, we assume that
)
{/@,e,u,(i,,y} — 0. (3.4)
£ €

Given ¢, € A;, the discrete saddle point problem seeks (uy,, py) € Vi, x Oy, such that
a(ly, up, vy) + b(vp, pr) = f(vy), for every vy, € Vy, (3.5a)
b(un, qn) = g(qn), for every g, € Oy, (3.5b)
and the discrete regularized saddle point problem seeks (uf,’, 1{,’) € Vi x Qy with
a(ﬁh,uf’,,vh) + Es(uﬁ,vh) + b(vh,pf’,) = f,(vy), forevery v, € Vj, (3.6a)
b, q) — ec(pl,q) = g,(qn), forevery g, € Qu,  (3.6b)
where 0 = (g, v) represents the influence of the involved parameters.
We also consider discrete MOLS-based minimization problem: find ¢ € A, by solving
fhmeif{lh T = %a(fh, ul —zs,ul —75) + %S(ug — Zs ! —Z5) + bl — 75, P — %)

13 ~ —~
- Ec(pf,—z(;,pf,—z(;)+/’;|\£h||1%,, (3.7)

where (u", p!') is the unique solution of (3.6) and 7 = (, €, v, §).
The following result ensures the convergence of the discrete optimization problem:

Theorem 3.1. Besides the hypotheses of theorem 2.2, assume that for each ¢, € Ay, (3.5) is
uniquely solvable and the set of all solutions is a bounded set. Then, for each (h, ), (3.7) has

14



Inverse Problems 36 (2020) 074003 B Jadamba et al

a minimizer (" € A;,. Moreover, there is a subsequence {{"} that converges to a solution { of
the optimization problem (2.1).

Proof. For fixed (h, o), (3.6) is uniquely solvable, and the minimization problem (3.7) has
a solution ¢ € A, by arguments analogous to those given in theorem 2.2. Since A;, C A, and
since the set A is bounded in H by assumption, the sequences {¢"} is bounded in || - ||z, and
by the compact embedding of H into B, there is a subsequence, still denoted by {¢}, that
converges to some £ € A. Let (u", p!) be the unique solution of the discrete regularized sad-
dle point problem (3.6) that corresponds to coefficient £?. The boundedness of the sequence
{(ul, p)} C Vi x Oy can be proved exactly as in the previous section. Let {(u’, p')} be
the subsequence converging weakly to some (&, p) € V x Q. We will show that (i, p) =
(u(f), p(£)), the unique solution of (1.1).

Let (v,q) € Vx Q be arbitrary. We take (v, qn) = (th,Phq) €V, x Qp in the dis-
crete regularized saddle point problem (3.6), and after rearranging the resulting equations,
obtain

a(lyul, v) + £,5(un, vi) + b, plY +a(l, u, vy — )+ b(v, — v, ply+a(lh — L, u",v) = f,(vh),

bGady, @)+ by, qn— ) — ec(Ply an) = gu(qn).
We pass the above system to the limit 7 — 0, 0 — 0, and using (3.1), deduce that

a(l, i, v) + b(v, p) = f(v), forevery v eV,
b(u,q) = g(q), for every q € Q,

and consequently (i, p) = (u(é_),p(f)) is the unique solution of saddle point problem
(1.1).

Furthermore, following the argument used in the proof of (2.11), we can show that if
{¢n} C Aj, converges to some £ € A as h — 0 in B, then

. 1 B B € _ _
lim | Za(t, ul (0y) — zs, ul () — 75) + 5s(ui’,(eh) — Z5,u () — %)
—~ 9 —~ ~
+ b () — 75, PO — Z5) — ic(pii(&a — 25, Ph(ln) — Z)

= %a(ﬁ, u(l) — z,u() — z) + b(u(l) — z, p(¢) — 2).

Let ¢ € A be arbitrary. By the assumption, there exists a sequence {Eh} C Ay, such that
¢, — ¢ in B and ||¢,||p — ||¢||z. This fact when combined with the above observations,
yields

15
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J() = %a(z, u(l) — z,u(l) — 2) + bu(l) — 7, p(f) — 2)

< lim { %a(fﬁ, Wl () — zs, Ul (0" — 75) + %s(u?,(f’;) — o, uB(l2) — Z5)
+ bl () — zs, pL(EY) — %) — %c(pﬁ(ﬁ’;) — 25 Pyl — Ea)} + lim inf |7

< lim inf { %a(ﬁﬁ, Ul 0y — zs, ul (0" — 75) + gs(u’;(eﬁ) — Zs, ul (0" — Z5)
+ bl (L)) — z5, pL(lh) — Z5) — %dpf’,(f’i) — 5, DA —Z5) + H||£ﬁ||12q}

< lim inf { %a(&, wh(Cy) — 2wl (0y) — Z0) + %s(u’;(&» — 2ot (0y) — Z)
b — 2, B — %) — ek ) — 5 st — 50+ | ;,}

= %a(f, u(0) — z,u(f) — 2) + b(u(l) — z, p(f) — 2) = J(¥),

where we also used the fact that " is a minimizer. Since the element £ € A was chosen arbi-
trarily, we obtain that ¢ is a solution of the continuous optimization problem. This completes
the proof. U

Remark 3.1. If a is coercive and b satisfies discrete inf-sup condition, then for each ¢, dis-
crete saddle point problem (3.5) is uniquely solvable and the set of all solutions is bounded,
uniformly in A.

4. Computational framework

We shall now collect discrete formulas for the regularized saddle point problem and the inverse
problem. For this, we begin with a triangulation 7, on the domain €). Assume that L, is the
space of all continuous piecewise polynomials of degree d, relative to 7, Uy is the space
of all continuous piecewise polynomials of degree d, relative to 7, and Qj is the space of
all continuous piecewise polynomials of degree d, relative to 7;. We specify the bases for
Ly, Uy, and Qp, by {©1, 02, -+, @m}s {1,002, ..., ¥y}, and {x1, X2, - -, Xk} respectively.
The space Ly, is then isomorphic to R” and for any ¢ € L;,, we define L € R" by L; = l(x;),i =
1,2,...,m, where the nodal basis {¢1, @2, . . ., o, } corresponds to the nodes {x1, X2, . .., Xy }-
Conversely, each L € R™ corresponds to ¢ € Ly, defined by £ = > | Li;. Analogously, u €
Uy, will correspond to U € R", where U; = u(y;),i = 1,2,...,n,and u = Y ;_, Un);, where
Y1, Y2, - . ., ¥ are the nodes of the mesh defining Uj,. Finally, ¢ € Q,, will correspond to Q € R¥,
where Q; = ¢q(z),i =1,2,...,k, and g = Zf;l Qixi, where z1,2,...,z are the nodes of
the mesh defining Q. The spaces A;, Uy, and Qy, are defined relative to the same elements,
however, the nodes will be different if d, # d,, # d,.

Let S : R™ — R"** be the finite element solution map that related to any ¢ € Ay, the unique
solution (u”, pl') € Uy, x Qy of (3.6). Then S, (L) = U", where U” is given by

K'L)U" = F", 4.1
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with the stiffness matrix K”(L) € R"T0*+h and the load vector F" € R"** are given by

KoL) — {K(L)—i—ES B" ]

B —eC
with
K(L)ij = alt. v, ij=1,2,....n,
S = 5(1j, i), Lj=12,...,n,

Bij = b(y;, Xi)s i=1,2,...,k j=12...,n
Cij = c(Xj» Xi)s Lj=12,...,k
(Fh)i = f,(n), i=1,2,....n,
(Fg)j:gu(Xi)» j=n+1,n+2,...,n+k.

In the following, for notational simplicity, in vectors and matrices, we drop the dependence
on the parameters. A straightforward calculation leads to the discrete MOLS:

u(r) - g} ! [I?(L) +eS BT } [U(L) - z]

1
D=5 [P(L) -7 B —<C| |PL)-2Z

= %(U(L) -2 (l?(L) + ss) (U(L) — Z) + (U(L) — Z)"BT(P(L)Z)
— %(P(L) —-2)TcPL) - 2).

Denoting by A an adjoint stiffness matrix defined by the condition that K (L)V =A(V)L,
forevery L € R™, and for every V € R", the gradient and the Hessian are given by

VJ(L) = %A(U(L))TU(L) + %A(Z)TZ,

V2J(L) = VU(L)"A(VU(L)) + eVU(L)'SVU(L) + eVP(L)'CVP(L).

One of the main advantages of A is the computational flexibility that it provides by exploiting
the relationship between the bases of u and the bases for ¢ in the trilinear form a, which leads
to explicit formulas for the discrete MOLS functional and its gradient.

5. Computational experimentation for the elasticity imaging inverse problem

We now present numerical results for the incompressible system (1.6). Since, for this case,
a is elliptic, we do not regularize by using the bilinear form s. However, a natural choice
for s is s(u, v) = (u, v)y, the inner product in the space V. For the bilinear form ¢, we use
cp,q) = f apPg, the inner product in the space Q. In all the numerical experiments, we choose
compatible elements for which the inf-sup condition holds.

5.1 An analytical example

We will first present the outcome of numerical experimentation carried out on the incompress-
ible system (1.6). Let 2 = (0, 1) x (0, 1) be the domain. The sought parameter is p(x,y) =
1 4+ x%y + yx, and the load function is
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Table 1. Identification error

h_
I =nl 2 )
Iell 2

(CPU time) for x = 1 x 1075, A = 0.070 7107.

PyIP;IP; (non Hessian)

P,IP;P; (non Hessian)

P,IP,IP; (Hessian)

1x 1077 8.406 x 1073 (50.2 s) 6.688 x 1073 (160.8 s) 7.378 x 1073 (1814 s)
1 % 1078 8.686 x 1073 (47.9 s) 7.157 x 1073 (168.3 s) 7378 x 1073 (1762 5)
1% 107 9.110 x 1073 (57.4 s) 6.947 x 1073 (153.3 s) 7378 x 1073 (1760 s)
1 x 10710 9.802 x 1073 (47.6 s) 7.487 x 1073 (179.4 5) 7.378 x 1073 (1798 s)
Table 2. Regularized discretization error for ¢ = 1 x 1071 (P,P; P, elements).
N e} =1l 20 Iy =il 2 | 7]
T2 Tl 2 Pz
V2/10 8.674 x 10~ 8.741 x 10~ 1.042 x 1073
V212 6.021 x 107 6.067 x 107 7.140 x 104
\ﬁ/l4 4.422 x 107* 4.455 x 10~* 5.196 x 10~*
\ﬁ/l6 3.384 x 1074 3.410 x 1074 3.950 x 10~*
\ﬁ/l8 2.673 x 1074 2.693 x 1074 3.105 x 1074
V2/20 2.165 x 1074 2.181 x 1074 2.505 x 1074

flx,y) = (2x3 + 4x%y + dxy — 2x + 2,6x%y + dxy* +2y* — 2y + 2) .

On I'; (bottom and right boundaries), we have Dirichlet boundary conditions. On the bottom
boundary, y = 0, we consider g(x,y) = (0, x(1 — x)), and the right part, x = 1, we consider
g(x,y) = (y(1 —y),0). We consider Neumann conditions I'; in the top and left part. In the
top part, y = 1, we consider h(x,y) = ((—(x*y + xy + 1)(2x 4 2y — 2),0)), and in the left
boundary, x = 0, we consider (x, y) = (0, (x2y 4+ xy + 1)(2x + 2y — 2)). The corresponding
displacement vector is u#(x,y) = (y(1 — y), x(1 — x)).

In the numerical experiments, we use the finite element discretization scheme outlined in
section 4, and for simplicity, we consider no data contamination. For discretization, we use the
finite element library FreeFem-+- [38]. To solve the optimization problem, we use the IPOPT
library integrated with FreeFem++-. IPOPT is a software library for large-scale nonlinear
constrained optimization problems using a primal-dual interior-point method, see [39]. IPOPT
uses the first-order or second-order derivatives depending on whether the Hessian matrix is pro-
vided. If the Hessian is not supplied, then it is approximated by using the BFGS-quasi-Newton
methods. IPOPT allows us to incorporate the bounds on the constraints, and in all the exper-
iments, we set the lower bound /, = 1 and the upper bound u, = 3.5. In the present context,
this means that the discrete analog of the set A of the feasible parameters is a box constrained
set with the lower bound /, and the upper bound uy. In all the numerical experiments, we take
H = H'() as regularization space.

For discretization, we use the triangular elements. Moreover, we consider P, elements for
the pressure term p and the parameter 1, while for the displacement vector u = (u;, 1), we have
two choices, namely, P, and IP; elements. We consider three possible scenarios. In the first case,
we consider P, elements for displacement and [P for pressure term and use the Hessian-based
methods. In the second scenario, we consider the same IP,IP|[P; discretization scheme, but we
do not provide the Hessian. In the third scenario, we consider P;[P;[P; and Hessian is given.
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Table 3. Regularized discretization error for ¢ = 1 x 107! (P,P|[P, elements).

iy =112, Iy =71l 2,
h Tl 200 2l 200 17"z
V2/10 3.871 x 1074 7.560 x 1074 3.795 x 1073
V2/12 2.704 x 1074 5.304 x 1074 2.597 x 1073
V2/14 1.995 x 10~ 3.924 x 1074 1.888 x 1073
V2/16 1.532 x 10~* 3.020 x 107* 1.434 x 1073
V2/18 1.214 x 107 2.396 x 1074 1.127 x 1073
V2/20 9.851 x 1073 1.947 x 10~ 9.088 x 1074
h_
Table 4. Identification error 7”””ﬂ”ﬂ!ﬂ(9) (CPU time) for k = 1 x 107, h = 0.0707107.
L2(2)

€ P1IP;P; (non Hessian) P,IP;IP; (non Hessian) P,IP;IP; (Hessian)
1x1077 7.542 x 1073 (105.1 s) 4.131 x 1073 (320.7 s) 5.560 x 1073 (1805.1 s)
1x10°8 9.668 x 1073 (90.4 s) 5.186 x 1072 (370.6 s) 5.560 x 1073 (1759.1 s)
1 x107° 1.113 x 1072 (75.6 s) 4.629 x 1073 (301.9 s) 5.560 x 1073 (1779.5 s)
1 x 10710 1.114 x 1072 (97.6 s) 3.092 x 1073 (334.0 5) 5.560 x 1073 (1805.8 s)

3001.0

02 04 06 08 10
k = le-05 k =le-06

Figure 1. Scenario P;P,P,. Estimated parameter for different x, ¢ = 1. x 1071,
h— V20
20 °

In the second scenario, we studied the influence of the regularization parameters « and € on
the identification error for a fixed discretization parameter 1 = 2—‘/3, where £ is defined as the
length of the longest edge of all elements in the mesh. For this, we measure the identification

error by the quantity

I Nh - :LL||L2(Q)
I :LL||L2(Q)

where . is the interpolated exact parameter and 1 is the computed solution.

We performed several groups of numerical experiments. Firstly, we studied the influence of
¢ for the discrete saddle point problem. Tables 2 and 3 show that the stability of discretization
error. Fore € {1 x 1077,1 x 1078, 1 x 1072, 1 x 10~'°}, we obtained similar results. For «, the
most stable option appears to be £ = 1 x 1073, which gives excellent reconstruction for all the
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(a) Exact parameter (b) P,P1P; (non Hessian), x =1e-06 (c) P, P, (Hessian), k =1e-07

Figure 2. Exact and estimated parameter for e = 1.0 x 1071%, 1 = %.

h_
Table 5. Identification error =2y (CPU time) for k=1 x 1077, h= vz
Irll 2 20
€ PPy P (non-Hessian) P,PP; (non-Hessian) P,PP; (Hessian)
1 x 1077 4.254 x 1072 (163.3 s) 2.212 x 1072 (418.2 s) 7.283 x 1073 (1763.4 5)
1x10°8 3.445 x 1072 (144.5 5) 2.776 x 1072 (424.4 s5) 7.283 x 1073 (1754.0 s)
1 x107° 7.748 x 1072 (113.2's) 3.252 x 1072 (409.9 s) 7.283 x 1073 (1765.0 5)
1x 10710 2.823 x 1072 (148.8 s) 2.275 x 1072 (302.6 s) 7.283 x 1073 (1821.6 s)
I I =l 2y s 10
Table 6. Identification error —————= for k=1 x 107, e= 1 x 107",
el 26
h P1IP;P; (non-Hessian) P,IP;P; (non-Hessian) P,IP;IP; (Hessian)
\/5/10 1.525 x 1072 5.766 x 1073 6.200 x 103
V2/12 1.251 x 1072 6.259 x 1073 6.485 x 1073
\/5/14 1.010 x 1072 6.211 x 1073 7.145 x 1073
\/5/16 1.110 x 1072 7.066 x 1073 7.511 x 1073
\/5/18 8.741 x 1073 6.684 x 1073 7.521 x 1073
\/5/20 9.802 x 1073 7.487 x 1073 7.378 x 1073

chosen values of ¢ (table 1). For smaller values of s, we noticed some instability in the recon-
struction, particularly for the non-Hessian-based schemes. For x = 1 x 107° (see table 4), the
discretization scheme P, P[P, gives a less satisfactory reconstruction (see figure 1), but still a
bit better than the other two scenarios, see figure 2. For k = 1 X 1077, the Hessian-based
identification scheme gives excellent reconstruction, while P;[P;[P; scenarios give accept-
able reconstruction. On the other hand, PP;IP| [P, discretization is by far the fastest method,
especially if we compare with the Hessian-based schemes which are computationally expen-
sive. In conclusion, P;P;P; gives a much faster method and excellent reconstruction for
specific a regularization parameter, while still acceptable reconstruction for other values of the
regularization parameter. For P, P, P, with the use of Hessian, the reconstruction is very good,
but the computational cost is high (table 5). The choice P,P;P; resides in between the two.
The same behavior can be observed, when studying the effects of the discretization parameter
for fixed regularization parameters k = 1 X 1075, e =1 x 10719 see table 6.
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Figure 3. Elastography experiment.

5.2. 3D reconstruction using a tissue phantom data

We will now test the developed framework on a 3D-reconstruction of the elasticity modu-
lus w4 using a tissue phantom data. The phantom used in this work was created using gelatin,
with silica added for acoustic scatter, to mimic elastic properties of soft tissue (see figure 3(a),
which is taken from [40]). A complete description of the phantom construction and experi-
mental imaging setup can be found in Richards, ef al [40]. The whole phantom was cuboid
in shape (60 x 60 x 50 mm in width, length, and height, respectively) with an 8% by mass
background gelatin concentration and a centrally located, stiffer, cylindrical inclusion of 12%
gelatin concentration (4.80 mm in diameter and 5 mm in height). This led to an approximate
inclusion to background contrast of 1.89 + 0.11 as measured by an independent mechani-
cal test [40]. A bottom layer (approximately 10 mm of additional height) was also added
to the phantom with a layer to background contrast of 2.01 + 0.22 as measured by an
independent mechanical test [40]. Ultrasound (US) image sequences were collected using
an Analogic AN2300 (Analogic Corp., 8 Centennial Drive, Peabody, MA 01960) with a
40 Hz linear array transducer. Three dimensional, static images were acquired by scanning
the US transducer at a fixed rate while triggering the two-dimensional US frame acquisitions
at a fixed elevational distance of 0.14 mm (see figure 3(b), which is taken from [40]). Two
3D images were acquired, a pre-deformation 3D image at approximately no compression,
and a second, post-deformation image, after ~1-2 strain was applied to the phantom in the
axial image direction. The scanned volume measured approximately 27.44 mm x 55.62 mm
x 27.44 mm in the lateral (x), axial (y), and elevational (z) directions, respectively. The full
3D displacement vector field was measured from the static images using an image registration
based, 3D displacement estimator described in [40].

We consider a 3D discretization by following the same scheme as used in the previous
example. We also take into account the practical aspects given in [40], see also [41]. For
our computations, we considered the P, P[P, discretization scheme and used a projected data
on a mesh of size 20 x 30 x 20 (full data available to us corresponds to a mesh of size
41 x 61 x 41). Another important aspect, when dealing with phantom data, is the choice of
boundary conditions. Following [40, 41], we considered Dirichlet boundary conditions in the
top and bottom parts of the boundary. We set the vertical direction/component of the remain-
ing boundary conditions to be Dirichlet and allow lateral components to be traction free.
We use /, = 1 and u, = 3.5 as the lower and the upper bound. Since we are dealing with a
discontinuous parameter, we have chosen the standard TV regularizer (see [40, 42, 43]).
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Figure 4. A 3D visualization of the inclusion slices.

In the 3D plots shown in figure 4, the inclusion is highlighted by using a color map corre-
sponding to the identified parameter ;.. Considering the use of a projected data into a coarse
mesh, the developed scheme identifies the inclusion quite satisfactorily. The artifacts in the
boundaries and the stand-off layer correspond to the stiffer bottom part. The artifacts are more
pronounced in the lateral part than it is in the upper/bottom part. The background contrast is
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(a) The central zy-slice. (b) The central zx-slice.

Figure 5. Five lines of parameter reconstruction for two central slices.

approximately 1, corresponding to the lower bound, whereas the inclusion contrast is between
1.3 and 1.5, where the stiffer bottom part corresponds to the stand-off layer. Figure 5 shows
parameter 4 reconstruction along five lines for two central slices (by x = 12 and y = 25).

6. Concluding remarks

Saddle point problems have been regularized extensively for stable approximation schemes.
In this work, we successfully used this philosophy to devise a stable procedure of the inverse
problem of identifying a variable parameter in general saddle point problems. We would also
like to note that although the MOLS-type functionals have been used extensively for inverse
problems, this is the first instance of their use on a real-world problem with real data. Our
numerical experiments provide very encouraging results. Furthermore, it appears that some
data smoothing could be used to mitigate the artifacts in the reconstruction procedure. Tools
such as Sobolev gradients or stochastic gradients seem to be adequate for it. Finally, in the
elasticity imaging inverse problem, the boundary conditions are not known. Since the bound-
ary conditions have a direct impact on the overall success of the identification process, it is of
interest to develop a framework that also identifies boundary conditions along with the
elasticity modulus.
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