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Abstract— Knowing how much to trust a prediction is impor-
tant for many critical applications. We describe two simple ap-
proaches to estimate uncertainty in regression prediction tasks
and compare their performance and complexity against popular
approaches. We operationalize uncertainty in regression as the
absolute error between a model’s prediction and the ground
truth. Our two proposed approaches use a secondary model to
predict the uncertainty of a primary predictive model. Our first
approach leverages the assumption that similar observations
are likely to have similar uncertainty and predicts uncertainty
with a non-parametric method. Our second approach trains
a secondary model to directly predict the uncertainty of the
primary predictive model. Both approaches outperform other
established uncertainty estimation approaches on the MNIST,
DISFA, and BP4D+ datasets. Furthermore, we observe that ap-
proaches that directly predict the uncertainty generally perform
better than approaches that indirectly estimate uncertainty.

I. INTRODUCTION

Facial action unit (AU) intensity estimation is central to

many critical technologies, including assistive technologies

in health care, driver fitness evaluations in automotive

applications, and screenings in hiring agencies. For many

of these applications, trust is also important. We need models

that not only predict a primary output, but also a secondary

quantity describing the uncertainty of its prediction.

Uncertainty in machine learning models primarily origi-

nates from two sources: 1) aleatoric uncertainty, in which

observations can be noisy, and 2) epistemic uncertainty, in

which the model might not be well-estimated or might have

an improper structure [9]. For real-world applications, we

need an uncertainty mesaure which combines both types

of uncertainty. For regression tasks, we can operationalize

this uncertainty as the absolute error between a model’s

prediction and the ground truth. While prediction uncertainty

has been studied in different fields [8], uncertainty in facial

AU intensity prediction has not been studied.

Most existing approaches for uncertainty prediction rely on

only epistemic uncertainty. In this paper, we study approaches

which capture both epistemic and aleatoric uncertainties

by predicting the absolute error. We describe two such

approaches and compare them to a variety of established

approaches1. Both approaches have a secondary model that

predicts the absolute error of the primary model. Our first

approach assumes that uncertainty is a weighted combination

of known absolute error from similar reference observations.

This assumption has been previously demonstrated to work

1The code is available at https://github.com/twoertwein/
UncertaintyRegression

well [7], [3] when using a k-nearest neighbor approach. Our

second approach uses a multi-layer perceptron (MLP) to

predict the uncertainty. Such an approach has proven to

work well in the past where a single perceptron predicts

the uncertainty [13], [14]. With these two approaches, we

can capture the prediction uncertainty, whether it is caused

by epistemic uncertainty, by aleatoric uncertainty, or by a

combination of both.

II. SIMPLE AND EFFECTIVE UNCERTAINTY PREDICTION

A. DWAR: Similarity-based Error Prediction

Our first approach adopts the non-parametric deep weighted

averaging classifier [4] for regression (DWAR) as our sec-

ondary model. The DWAR model learns a low-dimensional

embedding (h) in which we use an RBF kernel to define

similarity between a new observation and the reference data

(training data). The predicted uncertainty of a new observation

(ε̂) is the similarity-weighted average over the reference

uncertainty (ε)2.

ε̂ =

∑ref
i=1 εi w(h,hi)∑ref
i=1 w(h,hi)

(1)

w(h,hi) = exp
(−‖h− hi‖2

)
(2)

This model is trained end-to-end. During training, only the

current batch is used as reference data, leading to a time

complexity of O(n2) per batch of size n. At test time, the

entire training dataset (size N ) is used, resulting in O(N)
time complexity for a single prediction.

B. U-MLP: Direct Error Prediction

Our second approach predicts uncertainty using an MLP

(U-MLP). Empirically, we observe that the U-MLP performs

better when provided with the embedding of the last layer

of the primary model concatenated with the primary model’s

prediction, instead of providing it with the original input

representation. For a fair comparison, DWAR uses the same

input representation as the U-MLP.

III. BASELINES

As aleatoric uncertainty is difficult to measure without

the influence of epistemic uncertainty, we name approaches

which directly predict uncertainty “supervised approaches”.

2Using the validation data should result in less biased errors, but we use
the validation set for the prediction interval evaluation, and therefore cannot
use the validation set to estimate the uncertainty.



A. Epistemic Baselines

Ensemble: The variance of ensembles is an established

approach to the quantification of prediction uncertainty [6].

Ensembles often consist of multiple models of the same type

trained on bootstrapped data. While this approach does not

make any assumption about the error distribution and can

be used with any type of model, it can be computationally

expensive to train k models instead of one model. We use

an ensemble consisting of ten MLP models.

Dropout: By using dropout at inference time in a neural

network, Bayesian inference can be approximated without the

high computational costs associated with training Bayesian

models [5]. To derive an estimation of uncertainty, we keep

dropout at the second-to-last layer of the primary model

activated, and consider the variance over 1,000 inference runs

for each data point to approximate Bayesian inference [5]

(requiring 999 additional matrix multiplications). Since no

additional computations are required during training, this

approach is more practical than the ensemble approach.

Gaussian Process (GP): Similar to DWAR, we use an

MLP to learn a projection into a low-dimensional space,

where a sparse GP [16] then uses an RBF kernel to determine

the similarity between two data points. All parameters of this

model—MLP parameters, scale parameter of the RBF kernel,

inducing points of the GP, and the GP’s observation noise

parameter, which is shared between all inducing points—

are trained end-to-end, optimizing the sparse GP’s marginal

likelihood. The time complexity during training of the sparse

GP is O(NM2), where M is the number of inducing points

(M = 2, 000 in all our experiments).

B. Supervised Baselines

Multi-task MLP: Training a multi-task MLP for two tasks,

one for the AU intensity estimation (ŷ) and one for the

estimated absolute error (ε̂), could improve prediction of the

absolute error at the cost of worsened AU intensity prediction.

We optimize the following combined loss for the two tasks.

(y − ŷ)2 + 0.5(|y − ŷ| − ε̂)2 (3)

Attenuation: A loss-function-agnostic approach deriving

uncertainty is the attenuation the original loss function by

allowing the model to estimate its prediction variance (σ2)

for a prediction (ŷ) [9].

loss(y, ŷ)

σ2
+ log σ2 (4)

The greater the uncertainty estimation of a model (σ2), the

less confidence it has in its prediction.

IV. EXPERIMENTAL SETUP

A. Datasets

We focus on two facial AU datasets, and for comparison, we

run the same experiments on a (subset of) MNIST to evaluate

whether the approaches simply exploit skewed labels3.

3Facial AU datasets are known to be highly skewed towards no/little
activation. An uncertainty estimation approach might simply learn to associate
a high activation estimation with a high uncertainty estimation.

BP4D+: This dataset [17] (version 0.2) consists of videos

of 140 subjects that have been annotated for facial AU

intensities during emotion-eliciting tasks (AU 6, 10, 12, 14,

and 17). We use subject-stratified hold-out sets for training

(containing 60% of subjects), validation (20% of subjects),

and testing (20% of subjects). Stratification is used to ensure

a similar average AU intensity for each set.

DISFA: This dataset contains AU-annotated videos of 27

subjects viewing an emotion-eliciting video [11] (AU 1, 2,

4, 5, 6, 9, 12, 15, 17, 20, 25, and 26). We use the same

method as for BP4D+ to determine the dataset split. The

input representation of each image for these two datasets is

the same as for OpenFace 2.0’s AU intensity estimation [1]:

face-aligned HOG features and the rigid and non-rigid shape

parameters.

MNIST: We use MNIST [10] to validate the uncertainty

approaches on a different domain. To make MNIST similar to

BP4D+ and DISFA, we reframe MNIST as a regression task

instead of a classification task and only consider numbers

between 0 and 5 (the same range as facial AU intensities).

To study the impact of skewed datasets on uncertainty, we

use the 0-5 MNIST and also generate a skewed 0-5 MNIST

that reflects the same skew as AU 6 (cheek raiser) has on

the BP4D+ dataset.

To evaluate whether the uncertainty estimation generalizes

to different datasets we train a model on BP4D+ and evaluate

its performance on the DISFA test set (without any adaptation,

denoted as BP4D+ → DISFA+).

B. Implementation Details

All MLP models have the following hyper-parameters

validated using the concordance correlation coefficient (CCC)

on the validation set: the number of layers, the learning rate

of Adam (the learning rate optimizer we use), and the dropout

rate. Early stopping is based on the CCC on the validation

set for the last 50 epochs. The maximum number of epochs

is 500. Aside from the GP, all models are optimized for the

mean squared error.

DWAR, U-MLP, and Dropout share the same primary

model.

C. Metrics

We report the performance of the AU intensity predictions

using the subject-averaged intra-class coefficient (ICC). For

the predicted uncertainty, we use the following two metrics.

Spearman Correlation coefficient (ρ): We use the Spear-

man correlation coefficitent to measure the monotonic rela-

tionship between the estimated uncertainty and the absolute

error. This metric has the advantage that it does not penalize

approaches than do not predict the intensities well, but are

able to estimate their own error well.

Prediction Interval Width (|PI|): We construct prediction

intervals using the normalized inductive conformal predic-

tion [12], where the normalization coefficient (σ̂) is the

predicted uncertainty.

α = σ̂Perc95

({ |yi − ŷi|
σ̂i

∣∣i ∈ calibration set

})
(5)



DISFA BP4D+ BP4D+ → DISFA1 DISFA1

DWAR/U-
MLP/Dropout

0.502 0.653 0.520 0.545

Ensemble 0.341 0.664 0.495 0.535
GP 0.460 0.662 0.491 0.467
Multi-Task 0.477 0.643 0.450 0.549
Attenuation 0.477 0.646 0.479 0.556

TABLE I

ICC (HIGHER IS BETTER) OF THE PRIMARY MODELS AVERAGED OVER

ALL AUS. 1 AVERAGED OVER THE COMMON AUS BETWEEN DISFA AND

BP4D+ (AU 6, 12, AND 17).

P (y ∈ [ŷ − α, ŷ + α]) ≥ 0.95 , (6)

where Perc95 is the 95th-percentile. The constructed intervals

have an asymptotic coverage rate (the probability of con-

taining the true intensity) of 95%, with the assumption that

the calibration set (validation set) and the test set are both

independent and identically distributed. We report the median

interval width as a measure of the efficiency of the prediction

intervals [15]. Smaller intervals at the same coverage rate

are potentially more useful. This metric is affected by the

accuracy of the AU intensity prediction.

Theoretically, a higher correlation (ρ) should result in a

smaller interval width, and vice-versa when the same primary

model is used. In practice, this is not always the case as many

outliers, i.e., more than 5% in the uncertainty prediction, can

have a negative impact on the intervals.

We test for statistical differences at the subject level

between our two described approaches and against all baseline

approaches. These tests are conducted with subject-clustered

percentile bootstrapping4. We do not conduct these tests for

DISFA because we have only five subjects in the test set.

For 0-5 (Skewed) MNIST, we use bootstrapping without

clustering.

V. RESULTS AND DISCUSSION

Our initial experiment evaluates whether estimating uncer-

tainty degrades the performance of AU intensity estimation,

which would influence the prediction interval width (|PI|).
Table I shows that almost all models (with exception of the

ensemble) predict AUs with comparable performance. The

main experimental results are shown in Table II. Table III

provides AU-specific results for BP4D+, including the sta-

tistical test outcomes, and Table IV demonstrates that the

constructed prediction intervals reach their targeted coverage

rate.

Uncertainty under Skew: To study the effects of label

skew, we report results on 0-5 MNIST and 0-5 Skewed

MNIST in Table II. Since uncertainty predictions are better on

0-5 Skewed MNIST for almost all approaches, this indicates

that these approaches at least partly exploit the label skew.

The skew may also explain the different prediction interval

4We calculate the metric of interest for each cluster (each subject), and
then bootstrap the difference between the approaches (5000 re-samplings
and a 95%-confidence interval).

widths between DISFA and BP4D+: DISFA is much more

skewed and has much smaller prediction interval widths.

Cross-dataset evaluation: Testing the BP4D+ models on

DISFA provides two particularly intersting results. The first

result is a high correlation between the absolute error and the

estimated uncerainty for the BP4D+ → DISFA evaluation

(shown in Table II). The second result is that the coverage

rates for the prediction intervals, as reported in Table IV, are

closely centered around the targeted 95%, even though the

BP4D+ validation set is used for the calibration set. This could

indicate that the evaluated uncertainty approaches generalize

to data from slightly different conditions.

Epistemic vs. Supervised Approaches: The best perform-

ing approaches for each dataset and metric are supervised

approaches. We hypothesize that supervised approaches

perform better because they can use both the aleatoric and

epistemic uncertainty to estimate the prediction uncertainty,

whereas epistemic approaches can only capture the epistemic

uncertainty.

DWAR: This non-parametric approach achieves high cor-

relations for almost all evaluations, but tends to perform less

well for the prediction interval width: it performs significantly

worse on it than other approaches for severely-skewed AUs,

e.g., AU 14 and AU 17. Similar to the weighted average,

DWAR is confined to the previously-observed range of errors

in the training set. This may artificially truncate its correlation

and result in large prediction intervals. This approach seems

to work very well even across datasets. Compared to the U-

MLP, it requires more computational efforts, but also provides

transparency. A user can inspect the nearest neighbors, which

influence the prediction the most.

U-MLP: U-MLP works very well across all datasets and

metrics and never performs significantly worse than any other

approach (see Table III). It produces remarkably efficient

prediction intervals across all datasets, e.g., +/- 0.6 on average

for AU intensities on BP4D+, whereas other approaches need

around +/- 0.9. In a few cases it is outperformed by DWAR

and dropout, but is otherwise always the best performing

approach across both families.

Epistemic Baselines: The MLP ensemble and dropout are

the best performing epistemic baselines. The sparse GP poorly

estimates the variance of some AUs (and the 0-5 MNIST). We

hypothesize that this occurs because the marginal likelihood

of this specific sparse GP is known to have many local

minima [2]. Despite this drawback, this specific sparse GP

has been shown to better estimate the variance than other

sparse GPs [2].

Compared to the MLP ensemble, dropout variance has

no overhead during training and is still computationally

feasible at test time: there are only n− 1 additional matrix

multiplications for the last layer. It is also already in use in

many situations, which makes it a convenient approach that

can be implemented easily without re-training or training an

additional model to derive uncertainty.

Supervised Baselines: The motivation behind a multi-task

MLP model and the loss attenuation was to attain good

error estimation despite a decrease in AU intensity prediction



0-5 MNIST 0-5 Skewed MNIST DISFA BP4D+ BP4D+ → DISFA

ρ ↑ |PI| ↓ ρ ↑ |PI| ↓ ρ ↑ |PI| ↓ ρ ↑ |PI| ↓ ρ ↑ |PI| ↓
DWAR 0.923U 0.085U 0.900U 0.001U 0.646 0.303 0.681 1.819 0.754 1.486
U-MLP 0.932 0.042 0.970 0.001 0.835 0.502 0.690 1.211 0.754 0.902

Ensemble 0.710UD 0.360UD 0.891U 0.001UD 0.506 0.907 0.591 1.839 0.572 1.621
Dropout 0.537UD 0.119UD 0.887U 0.001UD 0.795 0.351 0.576 1.923 0.614 1.543
GP 0.023UD 0.365UD 0.766UD 0.235UD 0.369 0.739 0.213 2.132 0.365 1.580
Multi-Task 0.851UD 0.121UD 0.785UD 0.303UD 0.654 0.881 0.620 2.065 0.689 1.800
Attenuation 0.617UD 0.301UD 0.834UD 0.411UD 0.576 1.162 0.632 2.091 0.735 1.672

TABLE II

AVERAGED UNCERTAINTY METRICS OVER AUS. MNIST UNCERTAINTY METRICS ARE NOT AVERAGED. FOR MNIST, MARKED RESULTS INDICATE A

SIGNIFICANTLY WORSE PERFORMANCE COMPARED TO U-MLP (U) / DWAR (D).

AU 6 AU 10 AU 12 AU 14 AU 17

ρ ↑ |PI| ↓ ρ ↑ |PI| ↓ ρ ↑ |PI| ↓ ρ ↑ |PI| ↓ ρ ↑ |PI| ↓
DWAR 0.723 2.693U 0.543 2.551U 0.653 2.569U 0.749U 1.202 0.738U 0.080U

U-MLP 0.653D 1.541 0.520 1.596 0.631D 1.485 0.783 1.423 0.862 0.012

Ensemble 0.635D 2.750U 0.391D 2.571U 0.509UD 2.607U 0.761 1.189D 0.657UD 0.077U
D

Dropout 0.507UD 2.505U
D

0.418UD 3.356UD 0.389UD 2.617UD 0.702UD 1.107U
D

0.862D 0.029U
D

GP 0.339UD 2.524U −0.035UD 3.130UD −0.132UD 3.231UD 0.297UD 1.366U 0.598UD 0.407UD

Multi-Task 0.557UD 2.930U 0.392UD 2.888UD 0.576D 2.698UD 0.799D 1.285 0.774U
D

0.523UD

Attenuation 0.632D 2.479U 0.464D 3.039UD 0.602D 2.701UD 0.771 1.258 0.692UD 0.976UD

TABLE III

STATISTICAL TESTS ON BP4D+. RESULTS MARKED IN SUPERSCRIPT/SUBSCRIPT INDICATE A SIGNIFICANTLY WORSE/BETTER PERFORMANCE

COMPARED TO U-MLP (U) / DWAR (D).

Mean Coverage Rate

DISFA BP4D+ BP4D+ → DISFA

DWAR 0.953 0.934 0.964
U-MLP 0.961 0.935 0.955

Ensemble 0.962 0.938 0.937
Dropout 0.956 0.935 0.960
GP 0.944 0.941 0.953
Multi-Task 0.951 0.944 0.951
Attenuation 0.957 0.934 0.953

TABLE IV

OBSERVED COVERAGE RATE (RATIO OF THE TRUE VALUE BEING IN THE

INTERVAL) FOR THE PREDICTION INTERVALS AVERAGED OVER AUS.

performance. The results suggest that estimating the error

separately (as done in DWAR and U-MLP) outperforms these

two baselines in both regards. However, it is important to

note that both baselines have less computational overhead

during training and testing than the U-MLP, only requiring

back-propagation for an additional variable and one additional

dot product at test time.

VI. CONCLUSION

We evaluated the performance of two supervised ap-

proaches to the estimation of uncertaity, and compared their

performance to several established approaches. Some of these

approaches require the use of slightly different architectures

(GP, multi-task MLP, and loss attenuation), some require

secondary models (U-MLP, DWAR, and ensemble), and

some generally do not require any changes for existing

users (dropout). The results suggest that epistemic approaches

achieve a worse perform than supervised approaches, perhaps

because they do not capture aleatoric uncertainty. The clearly

best-performing and most simple approach is the prediction

of absolute error with a secondary MLP model (U-MLP).

However, a notable results is that dropout provides decent

uncertainty estimation while requiring the fewest changes

during training.

A future avenue of work is the evaluation of uncertainty

prediction for emotion recognition, as well as the developt-

ment of more transparent approaches to ucnertainty (similar

to DWAR), to break the cycle of needing an uncertainty

estimation for the uncertainty.
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