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Abstract—Tensor decomposition models have proven to be
effective analysis tools in various applications, including signal
processing, machine learning, and communications, to name a
few. Canonical polyadic decomposition (CPD) is a very popular
model, which decomposes a higher order tensor signal into a
sum of rank 1 terms. However, when the tensor size gets big,
computing the CPD becomes a lot more challenging. Previous
works proposed using random (generalized) tensor sampling or
compression to alleviate this challenge. In this work, we propose
using a regular tensor sampling framework instead. We show
that by appropriately selecting the sampling mechanism, we can
simultaneously control memory and computational complexity,
while guaranteeing identifiability at the same time. Numerical
experiments with synthetic and real data showcase the effective-
ness of our approach.

Index Terms—tensor, big data, large-scale, canonical polyadic
decomposition, PARAFAC, identifiability

I. INTRODUCTION

In the era of data deluge, multi-dimensional data, also
known as tensors, are ubiquitous in a plethora of engi-
neering tasks and data analytics. Tensor decompositions are
essential tools in understanding, analyzing and processing
multi-dimensional data. Tensors and tensor decompositions
find applications in various fields including signal processing
[1], machine learning [2]–[5], data mining [6], [7], remote
sensing [8], [9], medical imaging [10] and communications
[11], to name a few. For example the canonical polyadic
decomposition (CPD) is used to co-cluster high dimensional
data [5], for mining purposes, or to fuse images with different
resolutions in order to produce a super-resolution image [8].

Large-scale, multidimensional tensors have emerged in vari-
ous engineering domains, facilitated by the rapid development
in data acquisition and integration. Tensors with millions
or billions of entries are common in numerous fields. A
raw fMRI scan, for instance, can be represented as a dense
complex tensor with dimensions 10, 000×500×2, 000 which
corresponds to 10 billion non-zero complex entries. The NELL
dataset [12], which represents real world knowledge base data,
is a 26 × 26 × 48 million tensor with 144 million non-zero
entries. Standard CPD methods, which are computationally
intensive and memory demanding, have difficulty in operating
with big data tensors. For an I × J × K tensor of rank F
each iteration of the popular alternating least squares (ALS)
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method requires IJF additional memory and IJF + IJKF
flops for dense or IJF + 2Fm for sparse tensors, where m
is the number of non-zero entries. It is therefore clear that
computing the CPD of large scale tensors is challenging.

This challenge has motivated numerous works in developing
efficient algorithms for computing the CPD of big data tensors.
A first class of algorithms focused in efficiently computing
the CPD of big sparse tensors [13]–[16]. The work in [13],
for example, uses a random sampling mechanism to compute
the non-negative CPD of sparse tensors, whereas [15] uses
a novel, memory friendly sparse tensor data structure in
conjunction with parallel implementation. The idea of random
sampling has also been used in computing more general tensor
structures. The work in [17] uses randomized block sampling
to update only a subset of affected variables at each iteration,
thus mitigating the computational burden. Tensor compression
is another idea which has been used instead of sampling. First
compression was applied via the higher-order singular value
decomposition (HOSVD) [18], followed by [19], [20], which
create compressed versions of the big tensor by multiplying it
with random and pseudo-random matrices respectively. Finally
the idea of computing the CPD of an incomplete version of
the big tensor has been considered in [21].

Albeit the number and variety of works in computing the
decomposition of large-scale tensors, there are still remaining
challenges that need to be addressed. First, it is often the
case that model identifiability is not discussed, especially in
works that use sampling to facilitate the computation. Note
that model identifiability is important, since it guarantees that
the solution of the computationally lighter problem is the
same as the solution of the original one in the noiseless
case (or, fixing residuals). Furthermore, although there exist
various effective algorithms for big sparse tensors, this is
not the case for big and dense ones, which leaves room for
additional improvement. Finally, a number of existing works
exhibit significant performance drop, when real, noisy data are
involved and thus there is need for alternative approaches.

In the current work we address the aforementioned chal-
lenges and propose a regular tensor sampling framework to
compute the CPD of large-scale tensors. This paper follows
our recent work in [10], which studies the problem of regular
sampling and reconstruction of tensor signals and proves
that under certain conditions, tensor completion from regular



samples is doable. This paper proposes two new multi-modal

regular sampling mechanisms, which are identifiable, i.e., an

optimal solution is guaranteed to provide the true factors, and

accomplish significant speed-up. Furthermore, we develop a

lightweight algorithm to perform the CPD computation and

verify its effectiveness via synthetic and real data simulations.

II. TENSOR ALGEBRA PRELIMINARIES

In this section we briefly present some tensor algebra

preliminaries to facilitate the upcoming discussion. We focus

on third-order tensors, although the analysis can be easily

extended to higher order tensors. The readers are referred to

[22], [23] for detailed discussion.

A third order tensor X ∈ R
I×J×K is a three-way array

indexed by (i, j, k). It has three modes: rows X(:, j, k),
columns X(i, :, k) and fibers X(i, j, :) and three types of

slabs: horizontal X(i, :, :), vertical X(:, j, :) and frontal X(:
, :, k). Any tensor can be realized as a sum of three-way outer

products, i.e.,

X(i, j, k) =

F∑

f=1

A(i, f)B(j, f)C(k, f) (1)

The expression in (1) is called the polyadic decomposition

(PD). If F is minimal, the decomposition is known as canon-
ical polyadic decomposition (CPD) or parallel factor analysis

(PARAFAC) and F is the rank or CP-rank of the tensor. For

brevity we use the following notation to denote the CPD of

a third-order tensor, X = �A,B,C�. A pivotal difference

between tensors and matrices is that the CPD is unique

under mild conditions. The following theorem establishes CPD

identifiability of a third-order tensor:

Theorem 1: [24] Let X = �A,B,C� with A : I ×F , B :
J×F , and C : K×F . The decomposition X = �A,B,C� is

essentially unique with CP rank F if kA+kB+kC ≥ 2F +2.

Essential uniqueness means that A, B, C are identifiable up

to column permutation and scaling/counter-scaling. Here kA
denotes the Kruskal rank of a matrix, i.e., the largest integer

kA such that any kA columns of A are linearly independent.

A tensor can be represented as a matrix form using tensor

matricization. There are three ways to matricize/unfold a third-

order tensor. The following operation, for instance, stacks the

fibers of tensor X as rows of matrix X(3):

X(3) := [vec(X(:, :, 1)), vec(X(:, :, 2)), . . . , vec(X(:, :,K))],

where ‘vec(·)’ is the vectorization operator. One can see that:

X(3) = (B �A)CT ∈ C
IJ×K , (2)

where � denotes the Khatri-Rao product. The superscript (3)
denotes that the unfolding is performed on the third mode of

the tensor.

An important operation in tensor algebra is the mode

product, which multiplies a matrix to a tensor in one mode.

A joint mode-1, mode-2, and mode-3 product of a third-order

tensor is written as:

X̃ = X ×1 P1 ×2 P2 ×3 P3 (3)

where “×1”, “×2”, “×3” denote the operations that multiply

each column, row and fiber of X with P1, P2, and P3

respectively. The mode product is reflected in the PD of the

tensor, i.e., tensor X̃ in (3) admits the following PD:

X̃ = �P1A,P2B,P3C�.

III. SAMPLING IN MULTIPLE MODES

We begin our discussion by presenting the sampling

schemes, used to compute the CPD of large-scale tensors. We

propose two sampling mechanisms, which operate on multiple

modes of the tensor, and provide identifiability analysis of the

sampling model.

A. Combining slab and fiber sampling

The first sampling mechanism, for CPD computation pur-

poses, combines slab and fiber sampling. In particular, we pro-

pose to subsample a subset of frontal slabs Sf ⊆ {1, . . . ,K},
along with a subset of fibers, defined by rows Sr ⊆ {1, . . . , I}
and columns Sc ⊆ {1, . . . , J}. Then two sub-sampled tensors

are formed:

Y 1 =X (Sr,Sc, :) = X ×1 P1 ×2 P2 (4)

Y 2 =X (:, :,Sf ) = X ×3 P3, (5)

where P1 ∈ R
I1×I , P2 ∈ R

J1×J , P3 ∈ R
K2×K are

row, column and fiber selection matrices corresponding to

Sr, Sc, Sf respectively. An illustration of this sampling

technique is depicted in Fig. 1. Note that the samples are

Fig. 1: Combination of fiber and frontal slab sampling.

not drawn arbitrarily. In contrast with [13], [17] the sampling

is not random. On the contrary regular and highly structured

schemes are preferred since they are simpler to implement.

Now, let X = �A,B,C� and Y 1 ∈ R
I1×J1×K , Y 2 ∈

R
I×J×K2 as defined in (4). Then it holds:

Y 1 = �A (Sr, :) ,B (Sc, :) ,C� = �P1A,P2B,C� (6a)

Y 2 = �A,B,C (Sf , :)� = �A,B,P3C� (6b)

Identifiability of the model is established, under the conditions

of the following theorem:

Theorem 2: Let X ∈ R
I×J×K , with CPD X = �A,B,C�.

Assume that A�,B�,C� satisfy the equations in (6). Then,

A� = AΠΛ1, B� = BΠΛ2, and C� = CΠΛ3, where Π is

a permutation matrix and Λi is a full rank diagonal matrix such

that Λ1Λ2Λ3 = I , provided that 2F+2 ≤ kA�+kB�+kP3C�

and P2B
� � P1A

� has full column rank.



The proof of Theorem 2 is relegated to the journal version,

due to space limitation. The main insight is that if Y 2 admits

a unique CPD, under Theorem 1, one can identify A, B up

to common permutation and scaling. Then C can be obtained

from Y 1, via a linear system of equations, if P2B
� � P1A

�

has full column rank.

B. Fiber sampling in multiple modes

We also propose a fiber sampling mechanism in multiple

modes which can further reduce the complexity of computing

the CPD. In particular, fiber samples are taken along different

modes of the tensor, i.e. rows, columns and fibers are jointly

sampled from X , as illustrated in Fig. 2. Following similar

Fig. 2: Multi-mode fiber sampling.

analysis as before we deduce:

Y 1 ∈ R
I1×J1×K = X (Sr,Sc, :) = X ×1 P1 ×2 P2

= �A (Sr, :) ,B (Sc, :) ,C� = �P1A,P2B,C� (7a)

Y 2 ∈ R
I2×J×K2 = X (Sr, :,Sf ) = X ×1 P1 ×3 P3

= �A (Sr, :) ,B,C (Sf , :)� = �P1A,B,P3C� (7b)

Y 3 ∈ R
I×J3×K3 = X (:,Sc,Sf ) = X ×2 P2 ×3 P3

= �A,B (Sc, :) ,C (Sf , :)� = �A,P2B,P3C� (7c)

As far as identifiability is concerned, we have the following

theorem:

Theorem 3: Let X ∈ R
I×J×K , with CPD X = �A,B,C�.

Assume that A�,B�,C� satisfy the equations in (7). Then,

A� = AΠΛ1, B� = BΠΛ2, and C� = CΠΛ3, where Π
is a permutation matrix and Λi is a full rank diagonal matrix

such that Λ1Λ2Λ3 = I , provided that 2F + 2 ≤ kP1A� +
kP2B� + kC� and P3C

� � P2B
�, P2B

� � P1A
� have full

column rank, or

2F +2 ≤ kP1A� +kB� +kP3C� and P2B
��P1A

�, P2B
��

P3C
� have full column rank, or

2F +2 ≤ kA� +kP2B� +kP3C� and P3C
��P1A

�, P2B
��

P1A
� have full column rank.

In a nutshell, the above theorem states that the multi-mode

fiber sampling model is identifiable if one of the subsampled

tensors admits a unique CPD, under Theorem 1. The other

two subtensors do not need to admit unique CPD’s as long as

they satisfy certain full column rank conditions. For example,

factor C can be identified from the CPD of Y 1. Then B, A
are computed from Y 2, Y 3 respectively, as solutions to linear

system of equations.

IV. ALGORITHMIC FRAMEWORK

The first part of our approach selects an appropriate mech-

anism, which samples the given tensor, such that the CPD

identifiability is maintained. In this section we develop an

algorithmic framework which exploits the sampling pattern

and reduces the computational and memory complexity of the

CPD problem.

A three step approach is being followed for both sampling

mechanisms.

Case of slab-fiber sampling: In the first step the CPD of Y 2

is computed and factors A, B are obtained. Then factor C
is computed as the solution of the following linear system:

Y
(3)
1 = (P2B � P1A)CT (8)

Finally the following estimator is employed:

minimize
A,B,C

‖Y 1 − �P1A,P2B,C�‖2F + ‖Y 2 − �A,B,P3C�‖2F ,

(9)

Problem 9 is non-convex and NP-hard in general. To handle it

we employ a block coordinate descent (BCD) approach with

exact line search, which admits lightweight updates.

Case of multi-mode fiber sampling: The first step computes

the CPD of Y 1 which obtains factor C. Note that for multi-

mode fiber sampling the CPD of Y 2 or Y 3, can be computed

instead, with similar analysis. Step 2 computes the remaining

factors, e.g. A, B, as solutions to the following system of

linear equations:

Y
(2)
2 = (P3C � P1A)BT (10a)

Y
(1)
3 = (P3C � P2B)AT (10b)

Finally, step 3 solves the following problem as before:

minimize
A,B,C

∥
∥
∥Y 1 −

�
P

(1)
1 A,P

(1)
2 B,C

�∥
∥
∥

2

F
+

∥
∥
∥Y 2 −

�
P

(2)
1 A,P

(2)
2 B,C

�∥
∥
∥

2

F
+

∥
∥
∥Y 3 −

�
P

(3)
1 A,P

(3)
2 B,C

�∥
∥
∥

2

F
(11)

The FIber-Slab Tensor sampling algorithm (FIST) is pre-

sented in Algorithm 1.

Algorithm 1: FIST

Input:X ,F .

Select sampling mechanism

Sample X and generate Y 1, Y 2, Y 3.

Case Slab-fiber sampling:
1) A,B ← CPD(Y 2)
2) C ← solve (8).

3) If ‖X − �A,B,C�‖F > threshold:

Solve (9) using BCD with exact line search.

Case multimode fiber sampling:
1) C ← CPD(Y 1)
2) A,B ← solve (10).

3) If ‖X − �A,B,C�‖F > threshold:

Solve (11) using BCD with exact line search.



V. SIMULATIONS

In this section we showcase the effectiveness of the pro-
posed framework with simulated experiments involving syn-
thetically generated and real tensors. All simulations are
performed in MATLAB on a Linux server with 8 3.6GHz cores
and 32GB RAM.

The baseline algorithms used for comparison are:
CPD: The CPD of the original tensor X is computed using
Tensorlab’s CPD command [25]. The stopping criterion is
maximum number of iterations equal to 50, which empirically
are sufficient to give a good CPD fit.
Randomized Block Sampling (RBS) [17]: Tensorlab’s
implementation is being used and the algorithm is tested for
different block sizes.
Paracomp [19]: Author’s implementation is being used with
three anchor rows between the compressed factors to reconcile
for permutation and scaling mismatches. The CPD of the com-
pressed tensors is performed with 50 iterations of Tensorlab’s
algorithm.
FIST1, FIST2: The two proposed approaches for slab-fiber
and multi-fiber sampling respectively. We run step 1 with
50 iterations of Tensorlab’s algorithm and the CPD stopping
criterion is maximum number of iterations equal to 50. The
threshold is set equal to 10−2‖X‖F and the stopping criterion
for step 3 is maximum number of iterations equal to 5.

To assess the performance of each algorithm we measure
the CPD relative error defined as:

RelError =
‖X − JA,B,CK‖F

‖X‖F
,

where the subscript F is used to denote the frobenius norm of
a tensor. We also measure the runtime of each algorithm.

A. Synthetic experiments

The first set of experiments uses synthetically generated
third-order tensors. In particular, we generate tensor X ∈
R1000×1000×1000 by randomly drawing the CPD factors A ∈
R1000×F , B ∈ R1000×F , C ∈ R1000×F from a zero-mean
unit-variance Gaussian distribution and synthesize the tensor
as X = JA,B,CK. We vary the rank F from 15 to 1600 and
record the RelError and runtime for all the competing
methods. Two scenarios are considered. In the first, the sam-
pling/compression ratio r = #measurements

IJK , for our method as
well as Paracomp, is in the order of 10−3 and for the second
in the order of 10−2. Then for FIST1 K2 = 2, 5 for the two
scenarios and I1 = J1 are chosen such that I1J1 > F + 10.
Regarding FIST2 I1 = I2 = J1 = J3 = 40, 50 and K2 = K3

are chosen such that I1K2 > F +10. As far as Paracomp is
concerned, the compressed subtensors, for the two scenarios,
are chosen to be of size 50×50×50 or 100×100×100 and their
number is n = 22 and n = 11 respectively, so that the final
system is overdetermined. The block sizes in RBS are chosen
equal to Paracomp for fair comparison. The performance of
the competing methods for the two scenarios is presented in
Fig. 3, 4 respectively. In terms of RelError FIST1, FIST2

work the best and Paracomp comes second (for small ranks).
As far as runtime is concerned FIST1 is the fastest, while
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Fig. 3: Scenario 1
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Fig. 4: Scenario 2
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Fig. 5: F vs r

FIST2 comes second. Note that both of them are at least an
order of magnitude faster than the competing algorithms. The
RBS algorithm exhibits a stable performance. We should also
mention the direct CPD on the full tensors runs out of memory
for rank greater than 500. We also vary the sampling ratio r
from 0.002 to 0.1 for our proposed methods. Fig 5 presents
the RelError for FIST1 and FIST2 as a function of F and
r. The results show that the proposed methods work well for
a wide range of ranks and sampling ratios.

B. Real experiments

Finally we test the proposed approach with real data tensors.
To this end we use the Cuprite hyperspectral image (HSI) from
the AVIRIS platform [26], which is represented as a third order
tensor X ∈ R512×614×187. Note that in HSI’s factor C is
generally ill-conditioned, due to the low rank matrix structure
HSI’s admit. In particular the condition number of Cuprite HSI
for different ranks ranges from 104 to 108. We vary the rank
from 10 to 800 and consider again two scenarios: In the first
I1 = J1 = 40, K2 = 2 for FIST1 and I1 = I2 = J1 = J3 =
K2 = K3 = 50 for FIST2, whereas the blocksize of RBS is
10× 10 × 10. In the second scenario I1 = J1 = 40, K2 = 5
for FIST1, I1 = I2 = J1 = J3 = 100, K2 = K3 = 50
for FIST2 and RBS block is 20× 20× 20. Note that for RBS
block sizes greater than 30 the runtime is worse than CPD. The
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Fig. 6: Real scenario 1
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Fig. 7: Real scenario 2

performance of Paracomp for all sizes and ranks was giving
RelError greater than 10 and thus is omitted. The reason
is that with real noisy data reconciling for permutation and
scaling mismatches becomes very cumbersome. The results are
presented in Fig. 6, 7. Same conclusions can be derived again.
The proposed FIST1, FIST2 are faster and more accurate
than the competitors.

VI. CONCLUSION

In this paper we studied the task of computing the CPD of
large-scale tensors. We proposed two sampling mechanisms
that operate on different modes of the tensor. The sampling
is regular and does not need to follow any stochasticity.
We also established the identifiability of the proposd model
and developed an efficient algorithmic framework to handle
the problem. Simulations with synthetic and real experiments
showcase the effectiveness of the approach.
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