This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.2982144, IEEE

Transactions on Knowledge and Data Engineering

Large Scale Tensor Factorization via
Parallel Sketches

Bo Yang, Ahmed S. Zamzam, Nicholas D. Sidiropoulos

Abstract—Tensor factorization methods have recently gained in-
creased popularity. A key feature that renders tensors attractive
is the ability to directly model multi-relational data. In this work,
we propose ParaSketch, a parallel tensor factorization algorithm
that enables massive parallelism, to deal with large tensors. The
idea is to compress the large tensor into multiple small tensors,
decompose each small tensor in parallel, and combine the re-
sults to reconstruct the desired latent factors. Prior art in this di-
rection entails potentially very high complexity in the (Gaussian)
compression and final combining stages. Adopting sketching
matrices for compression, the proposed method enjoys a dra-
matic reduction in compression complexity, and features a much
lighter combining step. Moreover, theoretical analysis shows
that the compressed tensors inherit latent identifiability under
mild conditions, hence establishing correctness of the overall
approach. Numerical experiments corroborate the theory and
demonstrate the effectiveness of the proposed algorithm.

1 INTRODUCTION

Tensors are a natural generalization of matrices: whereas
matrices model binary relations (e.g. user-item), tensors can
model multi-relations (e.g. user-item-time). Tensor factor-
izations have long been invaluable tools for Chemometrics
and Psycometrics, where fluorescence of chemical analytes
and hidden traits of personalities are examined under the
lens of low-rank tensor factorization. Tensors have also
attracted considerable (and rapidly growing) attention from
the computer science community, most notably in Data
Mining (DM) and Machine Learning (ML), due to the
emergence of large, multi-relational data sets. Pioneering
works in this area include [2], where the authors applied
tensor factorization methods to the problem of webpage
link analysis, and [3] where tensor factorization methods
were used to analyze social network graphs. Subsequently,
tensor methods have been applied to recommender systems
[4], [5], [6], [7], [8], topic modeling [9], [10], clustering [11],
[12], and bioinfomatics [13], to name a few. We refer the
interested readers to the overview papers [14], [15] for an
in-depth review.

B. Yang is with Amazon.com. This work was done when he was a PhD student
at University of Minnesota. Email: yang4173@umn.edu

A. Zamzam is with National Renewable Energy Laboratory. This work was
done when he was he was a PhD student at University of Minnesota. Email:
zamza002@umn.edu

N.D. Sidiropoulos is with the Electrical and Computer Engineering Depart-
ment, University of Virginia. Email: nikos@uirginia.edu

Preliminary version [1] of part of this work was presented at the 2018 SIAM
International Conference on Data Mining.

For DM applications, the large data volume poses a
major challenge to tensor factorization methods. For canon-
ical polyadic decomposition (CPD), a very popular tensor
factorization model, classical applications involve mainly
small datasets, where “heavy” algorithms like alternating
least squares (ALS) or Gauss-Newton usually suffice. On
the other hand, modern datasets in DM are often huge,
thus performing CPD is challenging. To tackle this problem,
several algorithms have been proposed recently, e.g. [16],
[17], [18], [19], [20], [21]

GigaTensor [17] proposes a way to avoid “intermediate
data explosion” in using ALS to perform CPD. DFacTo
proposes to exploit the inherent parallelism in ALS and
gradient descent (GD) iterations. However, these methods
operate on the whole tensor in each iterative step, which
is still prohibitive when the tensor is very large. As such,
these works rely on distributed implementation, where data
and (or) variables are stored in different machines — but
the networking links can be a bottleneck. PARCUBE [21]
puts forth a “divide-and-conquer” approach which offers
scalable approximation of sparse data tensors using sparse
factors. However, it cannot guarantee the recovery of the
true underlying factors. That is, while the true latent fac-
tors of the original tensor may be identifiable, PARCUBE
may fail to identify them, owing to the divide-and-conquer
strategy it employs. This gives up one important advantage
of tensors over matrices: the ability to recover true factors
from the tensor — formally known as the essential uniqueness
property [22]. Essential uniqueness means that, under mild
conditions, the latent factor matrices of a low-rank tensor
can be identified up to column scaling and permutation
— which is drastically different from matrix factorization
models, where linear transformation ambiguity is usually
present.

From the application perspective, model uniqueness /
identifiability is necessary for interpretability, as different
model parametrizations are associated with different expla-
nations of the data. On the theoretical front, uniqueness of
CPD has been tapped to establish model identifiability — a
key property in statistical learning — for some well-known
models, e.g., the Gaussian mixture model (GMM), hidden
Markov model (HMM), and the latent Dirichilet allocation
(LDA), see e.g., [9], [23], [24]. In such cases, tensor factoriza-
tion is employed as an estimation tool for model parameters
(e.g. conditional probability mass functions), hence it is
paramount that these parameters can be uniquely pinned

1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on July 08,2020 at 00:42:47 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.2982144, IEEE

Transactions on Knowledge and Data Engineering

down from data — which is what the essential uniqueness
property of low-rank tensor decomposition offers.

With identifiability in mind, PARACOMP [20] proposes
a similar technique as PARCUBE, where the sub-sampling
step of PARCUBE is replaced by random compression. With
this modification, strong identifiability guarantees for the
rank-one tensor were established [20]. Albeit PARACOMP
enables parallel computation, there are two issues that limit
its application. First, the compression step involves multi-
plying dense matrices with tensors. Second, the combin-
ing step involves solving a large dense linear system of
equations. These two issues can become a bottleneck when
dealing with large tensors.

This is an undesirable compromise: the strong model
identifiability guarantee of PARACOMP comes from using
dense random compression matrices, which can become
a computation bottleneck; whereas the scalability of PAR-
CUBE comes from random sampling, which lacks theo-
retical identifiability guarantees. In this paper, we aim at
bridging this apparent dichotomy. Specifically, we propose
ParaSketch, a parallel algorithm for tensor factorization that
enjoys the following properties:

o Scalability: The proposed method employs sketch-
ing matrices to perform compression, which are
much more computationally efficient compared to
the Gaussian random matrices in PARACOMP.

o Identifiability: With sketching matrices, we character-
ize conditions under which the compressed small
tensors admit unique factorization, thus ensuring
that one can correctly recover factors of the large
tensor from those of the small tensors.

We emphasize that identifiability of the factorization of
the compressed / sampled small tensors is crucial in this
“divide-and-conquer” approach, because without it we can-
not guarantee correctness of the final result.

By design, the ParaSketch algorithm is naturally paral-
lelizable as the sketched tensors are independently factored.
However, the huge computational gains of parallelization
come with some degradation in the accuracy of the recov-
ered factors of the original tensor. In order to elucidate this
trade-off, we also introduce a new joint factorization ap-
proach as a baseline. This method processes all the sketched
tensors in a centralized fashion. Numerical experiments
confirm that the joint factorization approach provides a
more accurate estimation of the latent factors of the original
tensor, at the expense of higher computational complexity
(and of course loss of parallelization).

A conference version of part of this work was presented
at the 2018 SIAM International Conference on Data Mining
[1]. Relative to [1], this journal version includes several
additional contributions, namely i) extension of the ParaS-
ketch framework from the CPD to the so-called block term
decomposition (BTD, [25], [26]), which is well motivated
in applications where one of the factor matrices is known
to have colinear columns, see [25]; ii) more comprehensive
experimental results and insights; and iii) the new joint
factorization approach, which serves as a baseline to allow
us to gauge the trade-off between accuracy and parallel
computation.

2

We conclude this introduction by noting that sketch-
ing [27] has also been utilized to accelerate tensor decom-
positions in a different way. Specifically, in [28], sketching
methods were used to solve the overdetermined linear
least squares sub-problems in the ALS algorithm for CPD.
Different from our method, the approach in [28] requires
centralized processing of the big tensor, thus hindering its
application for large-scale datasets. Additionally, while we
focus on large scale unconstrained tensor factorization, it
is worth mentioning that several recent works [16], [29],
[30], [31] have proposed scalable algorithms for constrained
tensor factorization.

Notation. The symbols ®, ©®, o denote the Kronecker
product, Khatri-Rao product, and outer product, respec-
tively. We use bold lowercase letters to denote vectors
(e.g. x), and bold uppercase for matrices (e.g. A). The
vectors are assumed to be column vectors, and (-)T denotes
transposition. Bold symbols with underscore denote tensors,
e.g. X. The symbols || - ||2 and || - || denote the ¢3-norm
and the Frobenius norm, respectively. We use f(t) = O(t)
to mean that there exits constants C7 and Cs, such that
Cit < f(t) < Cat, and f(t) = Q(t) to mean f(t) > Ct
for some constant C. More specialized notation will be
introduced where needed in the main text.

2 BACKGROUND

2.1 CPD and its uniqueness property
The CPD model is defined as

F
X =Y A(f)oB(.f)oC(.), M
f=1

where F' is the smallest integer such that the factorization
(1) is possible. This smallest integer is defined to be the
rank of X. The symbol o denotes outer product. We use
A(:, f) to denote the f-th column of A, and (:) means all the
elements in the corresponding argument. Henceforth, we
use the shorthand notation X = [A, B, C] to denote (1). To
facilitate discussion, we will also make use of the matricized
and vectorized forms of tensors. For matricization, we stack
1-D vectors of a tensor into a matrix. For instance, consider
a 3-D tensor X € RT*7*XK we denote

X = [vec(X(1,:,:)) vec(X(1,:,1)) } (2a)
X, = [vec(X (5, 1,:)) vec(X(:, J,1)) } (2b)
Xy = | vec(X(:,1) vee(X(: K)) | (29

where vec(:) is the usual vectorization operator, which
stacks columns of a matrix into a long column vector. We
call these mode-1, mode-2, and mode-3 matricization. Cor-
respondingly, three different vectorized versions of the same
tensor can be obtained as

Ty = VeC(Xl)a T2 = VeC(X2)7 T3 = VeC(XS)a (3)
which are permuted versions of one another. The matriciza-
tion and vectorization operations are illustrated in Figure
1.

1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on July 08,2020 at 00:42:47 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.2982144, IEEE

Transactions on Knowledge and Data Engineering

It can be readily checked that if X admits a CPD model
X =[A, B,C] of rank F, we have
X, =(Co®B)AT
X, =(CoAB'
X3 =(BoA)C".
The symbol © denotes the Khatri-Rao product, which is
defined as

AGB:=[A(,1)® B(,1),--- ,A(:,F) @ B(;, F)],

where ® denotes the Kronecker product. Consequently, for
the vectorized form, we have ;1 = (A ©® C ® B)1, 2 =
(BOCO®A), and 3 = (C ® B ® A)1, where 1 is an
all-one vector of compatible size.

Matricization

—>

I’I’
l Vectorization

[\ 1N

Fig. 1: Tensor matricization and vectorization. The matrix
and vector correspond to X3 and x3.

One central concept in this work is uniqueness of CPD,
which is defined as follows.

Definition 1. (Essential uniqueness) Given a tensor X of
rank F', we say that its CPD is essentially unique if the
rank-1 terms in the decomposition are unique, i.e., there
is no other way to decompose X for the given number
of terms. Note that there exists inherently unresolvable
permutation ambiguity since permutation of rank-1 ten-
sors does not change their sum. If X = [A, B, C], with
A:IxF, B:JxF,and C : K x I, then essential
uniqueness means that A, B, and C are unique up to
a common permutation and scaling / counter-scaling of
columns. In other words, if X = [A, B, (7], for some
A:IxF,B:JxF,and C : K x F, then there exists
a permutation matrix II and diagonal scaling matrices
A1, Ao, and A3 such that

A = ATIA,, B = BIIA,, C = CIIA;, A{AyAs =1.

To present identifiability results of CPD, we need the defini-

tion of Kruskal rank of a matrix.

Definition 2. (Kruskal rank) The Kruskal rank k4 of an I x F’
matrix A is the largest integer k such that any k columns
of A are linearly independent.

Clearly, ka < ra := rank(A) < min(I, F'). We next state
the following classical result on identifiability of CPD.

3

Theorem 1. (Identifiability of CPD, [32]) Given X =
[A,B,C],withA:IxF,B:JxF,andC : K x F,
if ka+kp + ke > 2F + 2, then rank(X) = F and the
decomposition of X is essentially unique.

Theorem 1 asserts that under some mild conditions, the
factors of a tensor are identifiable.

2.2 Block term decomposition

A closely related model of CPD is the so-called PARALIND
[25], where factors have colinear columns. This model is
well motivated for analyzing real-world data, when it is
known a priori that linear dependency exists due to, e.g.,
experimental design, or the underlying physics / chemistry
— see [25] for some examples on analyzing fluorescence
data of chemical reactions. It is worth pointing out that the
PARALIND model is the same as a particular case of the
so-called block term decomposition (BTD, [26]) — and we
adopt the name BTD in this work for conciseness. The rank-
(R, R,1) BTD model is defined as

X = XF: (AfB}) ocy, @)
f=1

where the matrices Ay and By have rank R — hence the
name “rank-(R, R,1) BTD”. In fact, the BTD can also be
written as a special polyadic decomposition (PD) (but not
necessarily minimal — hence not canonical), as follows

X:

NE

AfB}) ocy)

~
Il
—

Il
NE
M=

Af(%T)Bf(%?”)T) ocs (6)
1

<
Il
N

M=

Af(;,r)oBs(:,r)ocy (7)
1

;0B;oC,, 8)

)

s
Il
N

Mz~
5
Il

where Ay (:,7) is the r-th column of matrix Ay, and we
have defined A = [A1, -+ ,AF|, B = [By, -+ ,Bp] and
C = [ci11k, -+, cr1L]. One can see that indeed BTD can be
thought as a special PD, where the third mode has a special
structure: each original column in the third mode of BTD is
repeated R times in the corresponding PD representation.
Uniqueness of BTD cannot be established via uniqueness
of CPD - note in particular that the condition in Theorem 1
always fails to work for BTD, due to the colinearity in the
third mode. Instead, uniqueness of BTD was established in
[26] using a generalized notion of Kruskal rank, named &’'-
rank. To introduce this definition, we consider a partitioned
matrix A = [A4,--- , Ap], where each A; is a matrix.

Definition 3. (k'-rank, [26]) For a partitioned matrix A, the
k'-rank, denoted as k4 (or k'(A)) is the maximal integer
r such that any r submatrices of A form a set of linearly
independent columns.

1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on July 08,2020 at 00:42:47 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.2982144, IEEE

Transactions on Knowledge and Data Engineering

Theorem 2. (Theorem 4.4 of [26]) Let (A, B, C) represent a
decomposition of a tensor X into F'rank-(R, R, 1) terms.
If

kc=F and k,+kg>F+2,)
then (A, B, C) is essentially unique.

Here essential uniqueness of (A, B, C) means that the F’
rank-(R, R, 1) terms are unique; it is clear that within each
of these terms, there is freedom for arbitrary nonsingu-
lar linear transformation. For instance, (Ay B}) ocy =
(A MM *1B}-) o ¢y for any nonsingular matrix M. Note
that this is analogous to essential uniqueness of CPD, where
the F' rank-1 terms are unique; but due to the inner dimen-
sion being 1, there is only scaling / counter-scaling freedom
in that case.

2.3 Compressed tensor factorization

We aim at developing “divide-and-conquer” strategies for
large scale tensor factorization. PARACOMP [20] serves
as the starting point of our work. PARACOMP uses par-
allel compression stages to create multiple small tensors,
performing independent CPD on the small tensors, and
combining the results to get CPD factors for the original
large tensor. To illustrate the idea, we consider a 3-way
tensor X € RIX/*K_ Reference [20] propose to compress
the 3 modes of the tensor independently, with 3 matrices
U e RXT Ve RMX) and W € RV*K where L < T,
M < J,and N < K. The compression scheme is shown in
Figure 2, where U multiplies the tensor on the first mode,
yielding a tensor of size L x J x K. Similar compression is
performed on the second and third mode with V and W.
Suppose the original tensor X admits a CPD model, with
latent factors A, B, and C, i.e. x = (C ©® B ® A)1, where
the subscript 3 is omitted for conciseness, the compressed
tensor y can be written as [33]

y=WeVeU)(CoBOA)
(WC)® (VB)e (UA)) 1.

(10)

1%%
i (S — P

Fig. 2: Tensor compression with random projection.

Subsample Perform PARAFAC Combine

Fig. 3: Schematic of PARCUBE [21]

4

To materialize the compression and factorization
scheme, a key issue is under what conditions are the latent
factors of the compressed tensor y identifiable. For CPD, the
following theorem answers this question.

Theorem 3. (Identifiability of CPD under compression, [20])
Letz = (C ®B® A)l € RVK where Ais I x ', B
is J x F, Cis K x F, and consider compressing it to
y=WeoVel)z=(WC)o(VB)o(UA))1 =
(C ®B® A)1 € REMN where the mode-compression
matrices U(L x I, L. < I), V(M x JJ M < J), and
W(N x K,N < K) are independently drawn from an
absolutely continuous distribution. If

min(L,ka) + min(M, kg) + min(N, ke) > 2F + 2,
(11)

then A, B, C are almost surely identifiable from the
compressed data y up to a common column permutation
and scaling / counter-scaling.

Remark 1. One may be wondering, why does uniqueness
of factorization of the compressed tensors matter at all?
In this “divide-and-conquer” algorithm design context,
uniqueness of factorization of the compressed tensors is
important mainly due to algorithmic correctness consider-
ations. In short, if the compressed tensors do not admit
unique factorization, then there is no principled way of
combining results from these compressed tensors, see
Section 3.2.

Despite the desirable identifiability guarantees offered
by PARACOMP, its compression stage can be expensive
since all the compression matrices are dense and unstruc-
tured. Overall, for a dense tensor, the computational com-
plexity is O(min(L, M, N)IJK), which can be prohibitive
even for moderate tensors, say I = J = K = 1000.

It would be interesting then, to seek matrices that can
perform compression on the tensor faster than the dense
matrix-tensor multiplication as in PARACOMP. Now the
question is, how to construct such compression matrices, so
that one can still guarantee identifiability of the compressed
tensors, with reasonable assumptions?

2.4 Fast Johnson Lindenstrauss Transform

To answer the above question, we introduce the following
subsampled randomized Hadamard transform (SRHT), a
fast version of the celebrated Johnson-Lindenstrauss trans-
form (JLT, [34]). For an overview on JLT and its variants,
please see [27]. The SRHT of a vector € R" is Sz, where
S is a specially structured matrix, S = PHD. The P is
a random subsampling matrix, i.e., each row of P contains
only one nonzero element (equal to 1) whose position is
uniformly distributed. The H is a Hadamard matrix, which
is recursively defined as

1 -1
H, = ,
Note that H is defined only for dimensions that are a certain
power of 2. The D is a diagonal matrix with i.i.d. diagonal

entries, each being a Rademacher random variable that takes
values in {1, —1} with equal probability.

} . (12)

1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on July 08,2020 at 00:42:47 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.2982144, IEEE

Transactions on Knowledge and Data Engineering

Proposition 1. (SRHT, [27], [35], [36]) Let S = \/%PHTLD,
where D is an n x n diagonal matrix with i.i.d. diagonal
entries D;; = 1 with probability 1/2, and D;; = —1 with
probability 1/2. Matrix H,, is a Hadamard matrix of size
n x n, where n is assumed to be a power of 2. The m x n
matrix P samples m coordinates of an n-dimensional
vector uniformly at random, where

m=Q (672(111(1)(\/&4‘ \/1117)2) .

Then with probability at least 0.99, for any fixed U €
R™*? with orthonormal columns,

|II -UTSTSU|; <e. (13)

Moreover, for any vector € R", Sz can be computed
in O(nlnm) time.

A proof of this result can be found in [35]. This proposition
asserts that, with enough rows in the SRHT matrix S,
the matrix SU preserves the dimension of the subspace
spanned by the columns of U, as shown in (13).

3 PROPOSED APPROACH: PARASKETCH FOR

CPD

Our goal is to design an efficient parallel tensor factorization
algorithm, by replacing the Gaussian random matrices in
PARACOMP with SRHT matrices. Towards that end, we
first address the identifiability issue of the CPD of the
compressed tensors in Section 3.1; then, in Section 3.2, we
discuss how to exploit the structure of SRHT matrices to
lower the computation burden of the combining step. We
analyze the complexity of the proposed method in Section
3.3, and compare it with that of PARACOMP. Finally, in
Section 3.4, we propose a new baseline method.

3.1 Identifiability of compressed tensor CPD with
SRHT matrices

Theorem 4. (main result) For x = (C ® B ® A)1, the CPD
model of the sketched tensor y = (8¢ ® S§* ® §2)(C ®
B © A)1 is identifiable with high probability if

ka+kg+kc >2F + 2, (14)

and 8¢ € REXI §b ¢ RMXJ ge ¢ RNXK are a]] SRHT
matrices, with number of rows

L= (672(111]@4)(\/54’ m)Q))
M= ((nkp)(VEp +VinT)?),
N=0 (6—2(1nkc)(\/E+ Vin K)2) ;

respectively, where ¢ € (0,1) is the accuracy parameter
in (13).

This result is similar to Theorem 3. The key difference
is that we replace the dense compression matrices with
sketching matrices. This has a tremendous impact on the
computation complexity, see Table 1 and Figure 5. Moreover,
the argument used in [20] to establish unique factorization
of compressed tensors does not apply here, as it hinges
on compression matrices drawn from absolutely continuous
distributions (c.f. Theorem 3), which is not the case for SRHT

5

matrices. Before proving Theorem 4, several remarks are in
order.

Remark 2. In Theorem 4, we assume dimensions I, .J, K are
powers of 2. In practice, one can simply pad the tensor
with slabs of all zeros if they are not. The redundant
dimensions can be removed in the final factors after
combining.

Remark 3. In many cases of practical interest, the tensor data
is “long”, in the sense that one of the dimension is much
larger than the others. For instance, the spectrogram
tensor in analyzing EEG or MEG data (see e.g. [37]) has
three modes: time, frequency, and channels. The number
of frequency bands and number of channels are often
on the order of hundreds, whereas the time index can
be in the order of hundreds of thousands, due to the
high temporal resolution and long duration of EEG and
MEG recordings. In such a case, one might be interested
in analyzing the frequency mode and channel mode
factors, but not the full temporal factor — which is very
long, and potentially overly detailed. Our method can be
easily adapted to this case. Assuming we are interested
in compressing the third mode, we perform sketching on
the third mode. For this setting, we have the following
corollary.

Corollary 1. For tensor ¢ = (C ® B ® A)1, the CPD of the
partially sketched tensor y = (S°QIQI)(CoOBG®A)1
is identifiable with high probability, provided ka4 +kp +
ko > 2F + 2 and S¢ € RV*K j5 SRHT with

N=0 (6—2(1n(kc))(\/5+ V/In(K))2) ;

rows, where € € (0, 1) is the accuracy parameter in (13).

To prove Theorem 4, we provide the following lemma.
Consider a sketching matrix § € RE*! and a matrix A €
RI*F we show the following result on the Kruskal rank of
the sketched matrix.

Lemma 1. Let S € RE* be an SRHT matrix with
L= (e 2(mka)(VEa +VinT)?),
rows. Then, with high probability, k(SA) = ka.

(15)

The proofs of Lemma 1 and Theorem 4 can be found in the
appendix.

3.2 Combining the results

The combining process generally follows [20], [21], but we
develop special treatments to fully exploit the structure of
SRHT matrices to get away with much lighter computations.
We illustrate the combining process using factor A, and the
other factors can be combined following the same proce-
dure. To avoid clutter, we denote the sketching matrix for
the first mode as .S, instead of S* as above.

Suppose we spawn T' processes to compress the tensor,
with each compressed tensor denoted as Yz, t € {1,--- ,T}.
We next perform CPD on each of these small tensors in
parallel, and obtain [A;, B;,C], t € {1,---T}. Then we
can write

A, = S ATLA,, (16)

1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on July 08,2020 at 00:42:47 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.2982144, IEEE

Transactions on Knowledge and Data Engineering

which means that we still have individual permutation (IL;)
and scaling (A;) ambiguities for each ¢. This is because
factoring each small tensor independently leads to possibly
different scaling and permutation of the (compressed) true
factors, as indicated by the subscript ¢ in (16). Only after
reconciling these different permutations and scalings can we
combine the results to recover the true factors [A, B, C].

To resolve permutation ambiguity, we keep two common
rows in each compression matrix S, denote this part as S,
then the corresponding part in factor A is

A, = SAILA,. (17)

Dividing each column of A, by its largest magnitude ele-
ment, we get

A, = SATL,A. (18)

One can see that scaling ambiguity is fixed: each replica now
has a common scaling mAatrix A. Next, we will match each
replica to the first copy A, i.e., we will solve the following
problem

in [|A; — AJI|?
doin Ay — A,

(19)

where we use Pr to denote the set of permutation matrices
of size F' x F. With a little manipulation, problem (19) is
equivalent to

rr{rgg; tr (AIAtH) . (20)
Problem (20) is known as the Linear Assignment Problem
(LAP), and can be solved efficiently by the Hungarian
algorithm [38].

With a little abuse of notation, we denote the resulting
permutation matrix from (20) as I, ¢ € {2,--- ,T}. We
use these II; to permute the results A; in (16), and get the
following

A, = S, AIIA,. (21)

Now the only remaining ambiguity is scaling A;, which can
be removed by dividing (elementwise) A; with one of the

common rows. After this step, we get
A, = S, ATIA. (22)

After fixing scaling and permutation, we can combine the
results as follows

A, S,
AQ SQ

=| | AIA. (23)
Ar Sr

By SRHT definition, we have S; = P,HD, and we can
write

A P
A, P,
" |=| | HDALIA
Ar Pr
.= PHDATIA, (24)

6

where we have defined P as the concatenation of P;’s. It
can be easily seen that inverting P is simple, since each
P, is a sampling matrix, i.e. each row of P; contains only
one nonzero value. After inverting P, we can invert H
using the fast inverse Hadamard transform, and invert .D
with a simple scaling operation. The most expensive part
is the inverse Hadamard transform operation, which costs
O(In(I)F).

The overall algorithm is summarized in Algorithm 1. The
combining step is presented in Algorithm 2.

Algorithm 1 ParaSketch

Input: Data tensor X, number of replicas T', compression
dimension L, M, N, CPD rank F.
Output: Factors A, B, C.
1: Perform T' compressions as described in Sec. 3.1, yield-
ing small tensors { X1, Xo, -+, X1};
2: Perform CPD on the compressed tensors, yielding
{{A1,B1,C4},- - ,{Ar,Br,Cr}};
3: Perform combining procedure to get A, B, C as de-
scribed in Algorithm. (2).

Algorithm 2 Combining procedure

Input: {A;}, tel,--- T
Output: A
1: Determine permutation matrices for each compressed
small tensor by solving (19), and permute the factors in
(16) to obtain (21);
2: Resolve scaling ambiguity by dividing entries in each
column with values in a common row;
3: Invert P, H, D in (24) in turn.

Remark 4. (Number of replicas needed) By our construction,
each compression shares H and D. To ensure inversion
in (24) can be carried out, we need each row index in
matrix H D AIIA to be sampled at least once. That is, P
cannot have a column that is all zero. Since all the sam-
pling is performed independently and uniformly, this
sampling procedure corresponds to the famous Coupon
Collector’s Problem. In this problem, it is known (see e.g.
[39]) that one needs to try O(nln(n)) times in order to
collect n coupons. In our problem, this means that the
number of replicas T is in the order O(I In(I)/L).

Remark 5. (Data compression ratio) Suppose the original
large data tensor has size I x I x I, and each mode
is compressed to dimension L, then data compression
ratio is I3/(TL?). As argued above, we need 7' to be
T = nlIn(I)/L, where 1 is some constant. In this case,
the compression ratio can be expressed as 1?/(nL?In).
In our simulations, we observed that once 7 exceeds
1.5, we get exact recovery (up to numerical precision)
of the factors in noiseless cases, suggesting that the
compression ratio can be very high when L < I.

3.3 Complexity analysis

To simplify analysis, we focus on the first mode. In PARA-
COMP, to ensure the first mode factor of the original tensor

1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on July 08,2020 at 00:42:47 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.2982144, IEEE

Transactions on Knowledge and Data Engineering

TABLE 1: Time complexity comparison

PARACOMP ParaSketch
Compression O(I?JK) O(IJKInlI)
Combining o(13) O(FIInI)

can be recovered from that of the compressed tensors,
one needs the number of replicas to be ' > I/L. Note
that this means PARACOMP needs a factor of In(I) fewer
replicas. However, the cost of multiplying a dense com-
pression matrix of size I x L with a dense tensor of size
I x Jx K is O(LIJK). In our construction, applying the
compression costs O(IJK In L). The total number of rows
in PARACOMP is O(I), hence the total computations are
O(I?JK). The complexity of ParaSketch is dominated by
the Hadamard transform, which takes time O(/In 1) for a
length I vector, and O(IJK InI) for the whole tensor.

In the final combining procedure, our method costs
O(IFInI), while PARACOMP costs O(I?) in general. Note
that in principle one can invoke the property that a random
Gaussian matrix is approximately orthogonal for large I,
and replace the inversion with transpose, resulting in lower
cost of O(I*F) - but solution accuracy deteriorates if such
an approximation is adopted. Time complexity comparison
of PARACOMP and ParaSketch is summarized in Table 1,
see Figure 5 for numerical experiment results.

In terms of space (memory) complexity, both algorithms
require storage of the compressed tensors, as well as the
compression matrices for use in the combining step. To
simplify analysis, we focus on a tensor of size I x I x I. For
PARACOMP, the storage requirement for the compressed
tensors is O(TparacomrL?), and O(TparacompLI) for the
compression matrices. For ParaSketch, the storage of com-
pressed tensors is O(Tparasketch L2). The Hadamard matrices
in compression do not need to be stored, and the total
storage in compression is due to {P;} and D, which incur
O(Tparasketch L) storage requirement.

The difference in Tparacomp and Tparasketcn Makes com-
prehensive comparison of the respective memory foot-
prints challenging. Here we let Tparacomr = [I/L], since
this is the minimal number of replicas needed to re-
cover the factors of the original tensor in PARACOMP,
and Tparasketen = O([(I1nl)/L]), since this ensures suc-
cessful recovery wh.p, as discussed in Remark 4. With
these choices, we get the storage complexity O(IL? + I?)
for PARACOMP, and O(IL?InI + IlnI) for ParaSketch.
Further, if we assume the compression dimension to be
L = /I, we get space complexity O(I?) for PARACOMP,
and O(I?1n) for ParaSketch.

Remark 6. If one aims at achieving full parallelism when fac-
toring all the compressed tensors, the proposed ParaS-
ketch method takes more computational resources than
PARACOMP: a factor of (In I) more storage is needed, as
well as parallel processors. However, when resources are
limited, one can instead instantiate these small tensors in
batch, and discard them after factorization. In Section 5,
we show that factoring small tensors takes a small frac-
tion of time compared to compression and combining in
PARACOMP. Hence we can afford to factor these small
tensors in sequential batches (and perform parallel factor-

7

ization within each batch), so long as the compression
and combining time are reduced dramatically — which is
exactly the case of ParaSketch (c.f. Figure 5).

3.4 Joint factorization of sketched tensors

We next explore a new baseline method, to better under-
stand the trade-off between parallelism speed and accu-
racy of the final result. After the compression process, the
randomly sketched tensors can instead be factored jointly
in order to obtain the latent factors of the original tensor.
The joint factorization is solved as a whole, hence the
benefits of parallel computing as in ParaSketch are lost —
but the resulting factors will be more accurate than those of
ParaSketch, as we shall see in Section 5. The reason for this
is that one exploits all sketched data simultaneously, and
avoids the noisy division and permutation-matching which
are fallible in low SNR and/or high-rank scenarios. The joint
factorization formulation is as follows.

min

T
min S|V - (7 A)o (7 B)) (S;O) [(@25
T t=1

where Y; is the mode-3 matricization of the ¢-th sketched
tensor, and S¢, S? and S¢ are the sketching matrices of
the t-th sketched tensor in the first, second and third mode,
respectively. This optimization problem is clearly noncon-
vex since the unknowns A, B, C are multiplied together.
However, we can adopt an alternating minimization (Alt-
Min) approach, which updates each factor while fixing the
other two in a cyclic fashion, enjoys a closed form optimal
solution for each individual factor.

In order to update the matrix C, we exploit one of the
Kronecker product properties to re-write (25) as

T
min, Z;||ytf(Sf®((SfA>@<sz>))vec<cT>||2F (26)
t=
where y; is the vectorization of Y;. In the AltMin approach,
instantiating the Kronecker product in (26) represents a
computational challenge. The size of the Kronecker product
is (LMN x FK). In addition, similar problems need to be
solved for A and B at each iteration.

In the joint factorization approach, the original factors
are estimated directly. Therefore, there is no need for recon-
ciling the permutation and scaling as in the original ParaS-
ketch procedure. While the joint factorization approach
constitutes the direct solution to obtain the original factors
given the sketched tensors, it represents a heavy computa-
tional burden. On the other hand, it is often more accurate
in terms of estimating the factors.

4 PARASKETCH FOR BTD

We now show how to extend the ParaSketch framework to
BTD. Let the rank of Ay and By tobe R forall f=1---F.
To apply the compression strategy presented in Section 2 to
a tensor that conforms to a BTD model, we first note that

F
vec(X) =) vec((A;B})o (27)
(4,5)
F
:ZcfQ((BfQAf)].R). (28)

.
Il
-

1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on July 08,2020 at 00:42:47 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.2982144, IEEE

Transactions on Knowledge and Data Engineering

Then the compression can be written as

y=WaeVeU)vec(X) (29a)
=S (WeVaU)(co((BfoAf)lg) (29)
=1
F
=Y (Wep) o (VoU)(By © Af)lg) (29¢)
f=1
a
=Y (Wep) @ [((VBy) @ (UAj)) 15], (29d)

<
Il
—

where we applied the mixed product rule: (A ® B)(C ©
D) = (AC) ® (BD) in obtaining (29¢) and (29d). We can
see that the compressed tensor admits a BTD model with
factors being compressed, as follows

Y=y ((TANVBT) o (Wey)).

f=1
To characterize the identifiability condition of the com-
pressed BTD model, we first introduce the following lemma.

Lemma 2. Let S be an SRHT matrix,and A = [Ay, -+, Ap]
be a partitioned matrix, where each block has dimension
I x R. Suppose S has dimension L x I, where L satisfies

L=Q ((2 1n[k;1R](\/ijR+ \/In(1))2) . (31

then with high probability, we have
K'(SA) =Fky.

(30)

(32)

The proof is relegated to the appendix. With this lemma in

place, we are ready to state the following theorem.

Theorem 5. Let X € RI*/*K admit a rank-(R, R, 1) BTD.
If we compress this tensor by SRHT S, € RI*/
Sy, € RM*J and S, € RV*E where the compression
dimensions satisfy

L=0 ((2 [y R)(\/KR + \/In(1))2)
M=0 (52 1n[k93m(\//~chR+ \/m)2>
N =0 (e’an[kC](\/%+ m)2> g

and in addition

min (N, kg) = F (33)
Kp+ kg > F+2, (34)

then with high probability (S*A, S®*B, S°C) is essen-
tially unique for the rank-(R, R,1) BTD of Y.

The proof of this theorem can be found in the appendix.
Unlike CPD, for BTD, the roles played by the three
different modes are different. The first and second modes
are “coupled” since they form low-rank matrices within
each term of the BTD. For ease of implementation, we focus
on a special scenario, where one of the “coupled” modes is
small, and we compress the larger mode — assuming that
to be the first mode. Note that compression on both the
first and second modes together will result in a low-rank

1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

8

matrix recovery problem in the combining step, which is
computationally challenging and devising a computation-
ally efficient algorithm for this step is of interest in its own
right (and beyond the scope of this work). We therefore
consider compressing the first and third modes. Recall that
in Section 3.2, we align factors estimated from different
replicas by introducing a small number of anchor rows in
factor A. Due to the special structure of BTD, we introduce
anchor rows in the third mode, since it is uniquely identified
up to column permutation — whereas the first and second
modes are not.

Suppose we create T' replicas with sketching matrices
{St, Sty e

y = (S; @ I ® S7) vec(Xy).

By applying the nonlinear least square (NLS) algorithm
proposed in [40] on y;, we obtain {Mf’t}?zl and C,,
where M t,¢ is the low-rank matrix product of the first and
second mode factors in the f-th term of replica . We let
each S have the first two rows in common, so that we
can reconcile the permutations as in Section 3.2. For the
C' factor, we subsequently resolve the scaling ambiguity
as in Section 3.2. The procedure is exactly the same as in
Algorithm 2. Once we align the permutation of C, we can
permute the corresponding low-rank matrices {M f,t}?:1
since the permutation is common within each replica, by
virtue of the essential uniqueness property of BTD.

Recovery of the low-rank matrix requires more care.
Since there is inherent scaling ambiguity between columns
of C' and the corresponding low-rank matrix, we need a
method to align the scaling of the low-rank matrices from
different replicas. For this purpose, we let Si’s have the
first row in common. By this design, the (1,1) elements of
the low-rank matrices from different replicas are common,
and dividing by this element unifies the scaling of different
replicas, and we denote the result as { M, }j_,

After aligning permutation and scaling, for each low-
rank matrix A ; BT, we have the following problem

min

Jnin (35)

T~ 2
> |y - seas By
F
t=1
Let S* = [S{;--- ; S%] be a vertical concatenation of S§’s,
and My = [My1;--- ; My 7] be a vertical concatenation of
My ,’s. Problem (35) has a closed-form solution

~1/2

A;B} = ((sa)Tsa) UrSrVy%, (36a)
~1/2 —

UsvT = ((S“’)TSQ) (S*)T M, (36b)

where
—1/2
((Sa)Tsa) / — D71H71((Pa)TPa)71/2H71D71.
(37)

Equation (36b) is the Singular Value Decomposition (SVD),
and Ug (Vg) collects the R columns of U (V) that cor-
respond to the largest R singular values, while ¥ is X
with the remaining singular values (other than the largest R
singular values) replaced by zeros. Symbol P¢ denotes the
vertical concatenation of P since S} = PP HD.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on July 08,2020 at 00:42:47 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.2982144, IEEE

Transactions on Knowledge and Data Engineering

The right hand side (RHS) of (36a) may seem intimi-
dating on first sight, but it is in fact easy to compute. By
the design of P?, the product ((P%)TP%) is a diagonal
matrix. Then one can see that after computing the Ur Xz VL
term, we can perform the multiplication from right to left,
and the multiplications are either an inverse Hadamard
transform, or multiplying with a diagonal matrix, which are
all light-weight operations, thanks to the sketching scheme
we proposed. Similarly, we can form the RHS of (36b) from
right to left, enjoying the light computation of the inverse
Hadamard transform and multiplication with diagonal ma-
trices.

In summary, we have shown that for the BTD model,
similar sketching and combining techniques can be applied,
with identifiability guarantees. The combining procedure
for the coupled modes is different, and we summarize it
in Algorithm 3. We remark again that we aim at recovering
only the product terms Ay B} in Algorithm 3, since there is
inherent linear transformation ambiguity between A; and
BT, per the definition of BTD.

Algorithm 3 Combining procedure for coupled-modes of
BTD

Input: {My;,}, f=1,- Ft:l,-~-,T
Output: {Afo} f=1---,F
1: Permute factors using permutatlon matrices determined
from C factor;
2: Resolve scaling amb1gu1ty by dividing the (1,1) entries,
yielding {Mft} f—l JE t=1,---.T;
3: For each f = ,F, solve for A;B} according to
(36a).

5 NUMERICAL RESULTS

In this section, the performance of our presented approach
for different problem settings is measured. For CPD, we
compare the proposed ParaSketch with PARACOMP. PAR-
CUBE is excluded from comparison since it is designed to
approximate a tensor, not to recover the true underlying
factors. We also include direct CPD (without any compres-
sion) as a baseline, for comparison purposes. For the case
of BTD, we will compare with the NLS [40] method, which
is the state-of-the-art algorithm for BTD. We also note that
ParaSketch is a meta-algorithm that can use any tensor de-
composition algorithm as a building block for decomposing
the individual tensor sketches. We conduct our experiments
on a Linux workstation with 16 parallel processors, and 128
GB RAM.

We first focus on CPD. Synthetic data is generated to
test factor estimation accuracy and run time performance.
Specifically, we generate factors { A, B, C'}, and use them to
synthesize (see (1)) tensor X, which is then fed into different
algorithms to estimate {A, B,C'}. For factor estimation,
the performance is measured by normalized mean-squared-
error (NMSE), which is defined as

2

. 1 AGH A(:,7y)
NMSE = min —
e F | TAG DR Y A,

(38)

9

where A is the estimated factor, A is the ground truth factor,
II is the set of all permutations of the set {1,2,---, F'}, and
my is the corresponding f after applying the permutation .
The permutation 7 is needed due to the inherent permuta-
tion ambiguity of CPD. Finding the best 7 is the celebrated
linear assignment problem, which can be efficiently solved
by the Hungarian algorithm. Symbol cy is to resolve sign
ambiguity.

5.1 Comparing ParaSketch to baselines

In the first experiment, we generate noisy data with additive
Gaussian noise. The dimensions of the considered tensor are
I =512, J =512, K = 512, and F' = 10. The dimensions of
each sketched replica are fixed to L = 64, M = 64, N = 64.
The noise power is set to 0 = 0.01. Note that this is a dense
tensor, which has about 0.13 billion entries. Also note that
we create moderate tensors to facilitate comparison with the
direct CPD, which doesn’t scale well for dense tensors. The
number of common rows in each replica is set to 3. The
factor A is generated in MATLAB as randn(!, F), and B,
C' are generated in a similar fashion We vary the number
of replicas T such that n = +& (7y takes values between
1 and 3.5. To factor the compressed small tensors, we use
the same CPD solver provided in the N-way toolbox! [41]
for both ParaSketch and PARACOMP. For each parameter
configuration, 50 randomly generated problem instances are
created, and the result is averaged across these instances.

The results are shown in Figure 4. As can be seen,
the proposed ParaSketch performs as well as PARACOMP
once enough replicas are employed. As we pomt out in
Remark 5, the data compression ratio is L2 m7- In this
experlment we have I = 512,L = 64, the compression
ratio is - Lg =7 = 3.55 when n = 2. This means when only
28% of the original amount of data is used for factorization,
an accurate estimation of the factors is achieved. Note that
the proposed ParaSketch achieves similar factor estimation
performance as PARACOMP, at much lighter computation
cost (see Table 1 and Figure 5).

In the second experiment, we compare the run time
performance of the proposed algorithm against baseline
methods. Specifically, we vary dimension I and fix J = 256,
K = 256 when generating data. Accordingly, the compres-
sion dimensions are set to M = N = 64, and L = I/8.
The rank is set to ' = 10, and the number of common
rows is set to 3. For ParaSketch, the ratio is fixed to
1 = 1.8. Recall that the number of replicas for ParaSketch
will be Tparasketch = (I InI/L). For PARACOMP, we set
Traracomp = 31, since we observed that this gives good
factor estimation accuracy. We repeat each experiment 20
times with different randomly generated data, and report
the average run time. In addition to the total run time, we
also record and report the part of time spent on compression
and combining stages of ParaSketch and PARACOMP. We
include two other strong baselines for comparison: the CP-
OPT method proposed in [42] and the NLS method from
[40]. The CP-OPT method is a first-order method, aiming
at tackling large scale tensor factorization. The NLS method
[40] exploits structure of tensor factorization to derive an

1. http:/ /www.models life.ku.dk/nwaytoolbox

1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on July 08,2020 at 00:42:47 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.2982144, IEEE

Transactions on Knowledge and Data Engineering

T T
—©— ParaSketch

Direct, no compression
—#— PARACOMP

NMSE

Fig. 4: The NMSE of estimating A

efficient implementation of Levenberg-Marquardt algorithm
[43]. Both these two methods have well-documented success
in the literature. For this experiment, we use a stopping
criterion of 1076 tolerance for all the algorithms: if the cost
function changes less than this threshold, the algorithms are
terminated, otherwise the algorithm is run till the maximum
number of steps set by the authors of each algorithm.

The run time results are shown in Figure 5. As we can
see, the proposed ParaSketch scales much better compared
with PARACOMP. More importantly, we can see that for
PARACOMP, most of the time is spent on the compression
and combining part. This highlights the merit of the propose
method: For large tensors, compression and combining can
be a performance bottleneck for PARACOMP, and using
SRHT matrices to perform compression can greatly alleviate
this issue. Also note that the runtime results in Figure 5
verify the complexity analysis presented in Table 1. The
methods CP-OPT and NLS require longer running time
compared with the proposed ParaSketch especially when
the tensor gets large. This comparison highlights the neces-
sity of exploiting parallel processing for large scale tensor
factorization.

In Figure 6, we show factor estimation performance un-
der different noise power levels. The noise level is quantified
by signal to noise ratio (SNR), which is defined as

X1 o)
(# of elements in X) x 02)’

SNR = 10log;, <

where 02 is the variance of Gaussian noise added to each
entry of the tensor. The dimensions of the tensor are shown
in the figure. As expected, the estimation performance im-
proves as the SNR get larger (i.e. relatively weaker noise).
Again, one can observe that the proposed method achieves
similar estimation performance as PARACOMP.

5.2 Comparison with joint factorization approach

In order to identify the advantages and disadvantages of
the ParaSketch approach compared to the joint factorization
approach, we conduct several simulations assessing the

10

120

=——©— ParaSketch -- total
= ® = PARACOMP -- total

100 | ParaSketch -- compression & combining »
= ® = PARACOMP -- compression & combining y

~ & - CP-OPT S
NLS ‘.

80

»
o
g eof
c
3
['4
40 f
20
o L&
0 500 1000 1500 2000 2500 3000 3500 4000 4500
|
Fig. 5: Run time comparison for CPD
o 1=J=K=512;L=M=N=64;F=5
10 T T T T
ParaSketch
Direct, no compression
10-2 PARACOMP]
104
7
= 10 6
=z
1078
10-10
10-12

SNR (dB)

Fig. 6: Factor estimation performance under different SNR.

estimation accuracy of the original factors as well as the
computational performance.

First, we test the ability of the ParaSketch algorithm and
the joint factorization approach to identify the low-rank
factors of the original tensor. We measure and report the
averaged normalized mean squared error (NMSE) in esti-
mating the low-rank factors over 100 simulations. In each
simulation, the size of the original tensor is 512 x 128 x 32
where the rank of the underlying factors is 5. A total of 128
sketched tensors of size 64 x 16 x 4 are created. Then, both
approaches are used to identify the factors of the original
tensor. From Figure 7, it is clear that the joint approach
is more accurate in identifying the factors when the noise
level is high. The ParaSketch algorithm requires higher SNR
in order to identify the low-rank factors with an acceptable
accuracy.

However, run time for the algorithms shows large dif-
ference. For this experiment, the ParaSketch method factors
the sketched tensors on all the 16 parallel processors. The
average time needed by the joint factorization approach is
150.0 seconds, and the average time needed by ParaSketch

1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on July 08,2020 at 00:42:47 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.2982144, IEEE

Transactions on Knowledge and Data Engineering

to factor the sketched tensors and combine the resulting
factors is 1.0 seconds — a 150 times difference. Note also that
both algorithms offer higher accuracy in estimating factor
matrices of the smaller modes. An explanation for this is
that the conditional least squares updates for the smaller
modes are more over-determined, so assuming reasonable
estimates for the other modes gives a higher ‘coherent
combining’ advantage for these modes.

NMSE
)
w

1076 I I |
5 10 15 20

SNR (dB)

Fig. 7: Factor estimation performance under different SNR.
PS — ParaSketch; J — Joint factorization.

In the next experiment, we compare the accuracy in
estimating the original tensor factors using both approaches
for different ranks. Again, we average the NMSE of the
estimated low-rank factors over 100 simulations. The size
of the original tensor is 64 x 64 x 32 where the noise power
is set such that the signal to noise ratio is 70 dB. A total of
64 sketched tensors of sizes 16 x 16 x 8 are created, and
then used to estimate the factors of the original tensor. In
Figure 8, the estimation performance is depicted for both
methods. It can be seen that the considered approaches can
accurately identify the low-rank factors when the rank of
the factors is relatively small. However, when the rank of
the original tensor grows, the joint factorization approach
is more robust in identifying the low-rank factors than the
ParaSketch approach. This confirms our intuition that using
parallel processing and combining results from multiple
processors can introduce some accuracy degradation, as
discussed in Section 1. On the other hand, Figure 9 depicts
the average time required by both methods to estimate the
low-rank factors from the sketched tensors. The ParaSketch
approach is a least an order (and sometimes close to two
orders) of magnitude faster than the joint factorization ap-
proach for all values of rank.

5.3 Simulation for BTD

We next perform simulations to evaluate the proposed
method for BTD. As mentioned earlier, the state of the
art algorithm for BTD is NLS. We compare the proposed
method with directly applying NLS to the large tensor. The
subproblems in the proposed method are also solved with
the same NLS method. In this experiment, the initialization

11

NMSE

10710 | | | | | |
2 4 6 8 10 12 14 16

Fig. 8: Factor estimation performance for different ranks. PS
— ParaSketch; J — Joint factorization.

102
=&~ ParaSketch
—&~- Joint Factorization
1L i
7 10
o
£
C
=)
& 400t 3
107"

2 4 6 8 10 12 14 16
F

Fig. 9: Computational time of ParaSketch and joint factor-
ization for different ranks.

method for NLS is set to generalized eigenvalue decompo-
sition, as implemented in [44]. We set the dimensions to be
J = 256, K = 1024, and vary I. The compression dimen-
sionsare L = I/8 and N = 128. The rank parameters are set
to F' = R = 4, i.e. there are four “block terms”, within which
the first and second modes form rank-4 matrices. Zero-mean
Gaussian noise with standard deviation o = 1072 is added
to the elements of the generated tensor.

The result for run time comparison is shown in Figure 10.
As can be seen, the run time of the proposed method scales
more favorably than directly applying NLS on the large
tensor.

BTD brings some complications for testing factor estima-
tion performance: the first and second modes have linear-
transformation ambiguity within each block term, which
means e.g. Ay and By are not essentially unique as opposed
to CPD. In order to calculate NMSE as defined in (38) , we
adopt the following strategy: we multiply each pair of (A,
B t) and vectorize it into a vector of size IJ x 1, which
are then collected into a matrix of size IJ x F'. This matrix

1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on July 08,2020 at 00:42:47 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.2982144, IEEE

Transactions on Knowledge and Data Engineering

10°

=——©— ParaSketch-BTD Y
—o—NLS

Run time [s]
>
o

10°
Dimension of first mode

Fig. 10: Run time comparison for BTD

107
—6— ParaSketch-BTD: AB
= © =ParaSketch-BTD: C
8| NLS: AB i
10
- ® =NLS: C

-~ -
- -

- -
- -

~ -
- -

-
- -

10°
Dimension of first mode

Fig. 11: NMSE comparison for BTD

is compared, using metric (38), with the matrix produced
from the ground truth factors with the same “multiplying-
vectorization” process. The results are shown in Figure 11.
As expected, notwithstanding some degradation in accuracy
compared to applying NLS directly, the proposed method
estimates factors with high accuracy.

5.4 Real world data mining

In the last experiment, we test our algorithm on a dataset of
taxi trajectories in Beijing during the Chinese New Year (a
major Chinese festival) week of 2008 [45]. We construct the
tensor by discretizing the latitude and longitude to a 128 x
128 grid, and considering the time as the third dimension
of the tensor. Therefore, each element in the tensor is an
integer that represents the number of taxis that were at the
corresponding area at a specific moment in time. Then, the
ParaSketch algorithm for CPD is used to find the low rank
components of the 128 x 128 x 8980 tensor. We use 200
replicas of dimensions 16 x 16 x 256 in order to perform
ParaSketch. We set the rank parameter in ParaSketch to 5 in
this experiment.

In Figure 12, we visualize the resulting most significant
factor, which is defined as having the largest sum of squared

1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

12
25
40
20
39.9 il 15
10
39.8
5
116.1 11-6.2 11;3.3 11622 -=11=6.5" 116.6
6 T
4 W‘M JWM M{ M\% M -
“)‘Mr WW P‘w \"W” WVMMM“ mmwmwwu{ /L
0 ! l
2L ! ! ! ! ! !
Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

Fig. 12: Beijing taxi trajectory data analysis. Top: magnitude
of the rank-1 matrix, formed by multiplying the first and
second mode vectors of the most significant rank-1 factor of
the tensor, visualized on the map. The red circles identify
the three locations with the largest magnitude. Bottom: the
corresponding third mode, showing temporal variation.

£y-norm of the three vectors corresponding to a rank-1 term.
In the top sub-figure, the three markers correspond to the
three largest absolute values of the rank-1 matrix formed
by multiplying the first and second mode vectors. After
cross-examining with the map of Beijing, we discover that
these locations correspond to famous attractions: Temple of
Heaven, Longtan Lake Park, and Happy Valley Amusement
Park. The high intensity of taxi activities highlights their
popularity during this festive period. In the bottom sub-
figure, we show the magnitude of corresponding vector in
the third mode, which contains temporal information. As
expected, high activities are observed during the day, and
relatively low activities in the night. More interestingly, we
see that there is a decline in taxi activity for the last 3 days.
Inspection of the exact dates reveals that these days are the
New Year’s Eve (Day 5) and Spring Festival (Day 6, 7) —
those are days for family reunions, hence fewer people on
the road.

6 CONCLUSIONS

We propose an algorithm to facilitate parallel CPD and
BTD on large tensor data. The approach provides great
acceleration over existing prior art, rendering itself suitable
for much larger datasets. Our analysis establishes the cor-
rectness of the proposed algorithm, i.e., identifiability of the
latent factors of the compressed tensors and the original
uncompressed tensor, for both CPD and BTD. We also char-
acterized recovery conditions for the proposed approach,
i.e., the number of rows in the sketching matrices and the
number of replicas needed, to ensure recovery of the factors
of the large tensor data. Numerical results on synthetic as
well as real world data confirm the efficacy of the proposed
method.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on July 08,2020 at 00:42:47 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.2982144, IEEE

Transactions on Knowledge and Data Engineering

ACKNOWLEDGMENT

The authors gratefully acknowledge support from NSF IIS-
1447788, CIF-1525194, and IIS-1704074.

REFERENCES

(1]

(2]

(3]

(4]

(5]

(6]

(71

(8]

(9]

[10]

(1]

(12]

(13]

[14]

[15]

[16]

(17]

(18]

[19]

1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

B. Yang, A. Zamzam, and N. D. Sidiropoulos, “ParaSketch: Parallel
tensor factorization via sketching,” in Proceedings of the 2018 SIAM
International Conference on Data Mining. SIAM, 2018, pp. 396-404.
T. G. Kolda, B. W. Bader, and J. P. Kenny, “Higher-order web link
analysis using multilinear algebra,” in Proceedings of the Fifth IEEE
International Conference on Data Mining. 1EEE, 2005, pp. 8-pp.

B. W. Bader, R. A. Harshman, and T. G. Kolda, “Temporal analysis
of semantic graphs using ASALSAN,” in Proceedings of Seventh
IEEE International Conference on Data Mining. IEEE, 2007, pp. 33—
42.

A. Karatzoglou, X. Amatriain, L. Baltrunas, and N. Oliver, “Mul-
tiverse recommendation: N-dimensional tensor factorization for
context-aware collaborative filtering,” in Proceedings of the fourth
ACM conference on Recommender Systems. ACM, 2010, pp. 79-86.
S. Rendle, L. Balby Marinho, A. Nanopoulos, and L. Schmidt-
Thieme, “Learning optimal ranking with tensor factorization for
tag recommendation,” in Proceedings of the 15th ACM SIGKDD
international conference on Knowledge discovery and data mining.
ACM, 2009, pp. 727-736.

N. Thai-Nghe, L. Drumond, A. Krohn-Grimberghe, and
L. Schmidt-Thieme, “Recommender system for predicting student
performance,” Procedia Computer Science, vol. 1, no. 2, pp. 2811-
2819, 2010.

B. Hidasi and D. Tikk, “Fast ALS-based tensor factorization for
context-aware recommendation from implicit feedback,” in Joint
European Conference on Machine Learning and Knowledge Discovery
in Databases. Springer, 2012, pp. 67-82.

B. Yang, G. Wang, and N. D. Sidiropoulos, “Tensor completion via
group-sparse regularization,” in 2016 50th Asilomar Conference on
Signals, Systems and Computers. IEEE, 2016, pp. 1750-1754.

A. Anandkumar, R. Ge, D.]J. Hsu, S. M. Kakade, and M. Telgar-
sky, “Tensor decompositions for learning latent variable models,”
Journal of Machine Learning Research, vol. 15, no. 1, pp. 2773-2832,
2014.

C. Hu, P. Rai, C. Chen, M. Harding, and L. Carin, “Scalable
Bayesian non-negative tensor factorization for massive count
data,” in Joint European Conference on Machine Learning and Knowl-
edge Discovery in Databases. Springer, 2015, pp. 53-70.

E. E. Papalexakis, N. D. Sidiropoulos, and R. Bro, “From K-
means to higher-way co-clustering: Multilinear decomposition
with sparse latent factors,” IEEE transactions on Signal Processing,
vol. 61, no. 2, pp. 493-506, 2013.

B. Yang, X. Fu, and N. D. Sidiropoulos, “Learning from hidden
traits: Joint factor analysis and latent clustering,” IEEE Transactions
on Signal Processing, vol. 65, no. 1, pp. 256-269, 2017.

I. Perros, E. E. Papalexakis, F. Wang, R. Vuduc, E. Searles,
M. Thompson, and J. Sun, “SPARTan: Scalable PARAFAC2 for
large & sparse data,” arXiv preprint arXiv:1703.04219, 2017.

T. G. Kolda and B. W. Bader, “Tensor decompositions and applica-
tions,” SIAM review, vol. 51, no. 3, pp. 455-500, 2009.

N. D. Sidiropoulos, L. De Lathauwer, X. Fu, K. Huang, E. E.
Papalexakis, and C. Faloutsos, “Tensor decomposition for signal
processing and machine learning,” IEEE Transactions on Signal
Processing, vol. 65, no. 13, pp. 3551-3582, 2017.

A. H. Phan and A. Cichocki, “Parafac algorithms for large-scale
problems,” Neurocomputing, vol. 74, no. 11, pp. 1970-1984, 2011.
U. Kang, E. Papalexakis, A. Harpale, and C. Faloutsos, “Gi-
gaTensor: Scaling tensor analysis up by 100 times-algorithms and
discoveries,” in Proceedings of the 18th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. ACM, 2012,
pp. 316-324.

J. H. Choi and S. Vishwanathan, “DFacTo: Distributed factor-
ization of tensors,” in Advances in Neural Information Processing
Systems, 2014, pp. 1296-1304.

A. L. De Almeida and A. Y. Kibangou, “Distributed large-scale
tensor decomposition,” in 2014 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). 1EEE, 2014, pp.
26-30.

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

(33]

(34]

(35]

[36]

[37]

[38]

[39]

[40]

[41]

13

N. D. Sidiropoulos, E. E. Papalexakis, and C. Faloutsos, “Parallel
randomly compressed cubes: A scalable distributed architecture
for big tensor decomposition,” IEEE Signal Processing Magazine,
vol. 31, no. 5, pp. 57-70, 2014.

E. E. Papalexakis, C. Faloutsos, and N. D. Sidiropoulos, “ParCube:
Sparse parallelizable CANDECOMP-PARAFAC tensor decompo-
sition,” ACM Transactions on Knowledge Discovery from Data, vol. 10,
no. 1, p. 3, 2015.

R. A. Harshman, “Foundations of the PARAFAC procedure: Mod-
els and conditions for an” explanatory” multimodal factor analy-
sis,” 1970.

E. S. Allman, C. Matias, J. A. Rhodes ef al., “Identifiability of
parameters in latent structure models with many observed vari-
ables,” The Annals of Statistics, vol. 37, no. 6A, pp. 3099-3132, 2009.
N. Kargas, N. D. Sidiropoulos, and X. Fu, “Tensors, learning, and
Kolmogorov extension for finite-alphabet random vectors,” IEEE
Transactions on Signal Processing, vol. 66, no. 18, pp. 4854-4868,
2018.

R. Bro, R. A. Harshman, N. D. Sidiropoulos, and M. E. Lundy,
“Modeling multi-way data with linearly dependent loadings,”
Journal of Chemometrics: A Journal of the Chemometrics Society,
vol. 23, no. 7-8, pp. 324-340, 2009.

L. De Lathauwer, “Decompositions of a higher-order tensor in
block termspart II: Definitions and uniqueness,” SIAM Journal on
Matrix Analysis and Applications, vol. 30, no. 3, pp. 1033-1066, 2008.
D. P. Woodruff et al., “Sketching as a tool for numerical linear
algebra,” Foundations and Trends® in Theoretical Computer Science,
vol. 10, no. 1-2, pp. 1-157, 2014.

C. Battaglino, G. Ballard, and T. G. Kolda, “A practical randomized
CP tensor decomposition,” SIAM Journal on Matrix Analysis and
Applications, vol. 39, no. 2, pp. 876901, 2018.

K. Huang, N. D. Sidiropoulos, and A. P. Liavas, “A flexible
and efficient algorithmic framework for constrained matrix and
tensor factorization,” IEEE Transactions on Signal Processing, vol. 64,
no. 19, pp. 5052-5065, 2016.

S. Smith, A. Beri, and G. Karypis, “Constrained tensor factoriza-
tion with accelerated ao-admm,” in 2017 46th International Confer-
ence on Parallel Processing (ICPP). 1EEE, 2017, pp. 111-120.

S. Ono and T. Kasai, “Efficient constrained tensor factorization by
alternating optimization with primal-dual splitting,” in 2018 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2018, pp. 3379-3383.

J. B. Kruskal, “Three-way arrays: Rank and uniqueness of trilinear
decompositions, with application to arithmetic complexity and
statistics,” Linear Algebra and its Applications, vol. 18, no. 2, pp.
95-138, 1977.

N. D. Sidiropoulos and A. Kyrillidis, “Multi-way compressed
sensing for sparse low-rank tensors,” IEEE Signal Processing Letters,
vol. 19, no. 11, pp. 757-760, 2012.

W. B. Johnson and J. Lindenstrauss, “Extensions of Lipschitz
mappings into a Hilbert space,” Contemporary Mathematics, vol. 26,
no. 189-206, p. 1, 1984.

N. Ailon and B. Chazelle, “Approximate nearest neighbors and the
fast Johnson-Lindenstrauss transform,” in Proceedings of the thirty-
eighth annual ACM Symposium on Theory of Computing. ACM, 2006,
pp. 557-563.

P. Drineas, M. W. Mahoney, S. Muthukrishnan, and T. Sarlés,
“Faster least squares approximation,” Numerische mathematik, vol.
117, no. 2, pp. 219-249, 2011.

E. Acar, C. Aykut-Bingol, H. Bingol, R. Bro, and B. Yener, “Mul-
tiway analysis of epilepsy tensors,” Bioinformatics, vol. 23, no. 13,
pp. 110-i18, 2007.

H. W. Kuhn, “The Hungarian method for the assignment prob-
lem,” Naval research logistics quarterly, vol. 2, no. 1-2, pp. 83-97,
1955.

P. Flajolet, D. Gardy, and L. Thimonier, “Birthday paradox, coupon
collectors, caching algorithms and self-organizing search,” Discrete
Applied Mathematics, vol. 39, no. 3, pp. 207-229, 1992.

L. Sorber, M. Van Barel, and L. De Lathauwer, “Optimization-
based algorithms for tensor decompositions: Canonical polyadic
decomposition, decomposition in rank-(I_r,l_r,1) terms, and a new
generalization,” SIAM Journal on Optimization, vol. 23, no. 2, pp.
695-720, 2013.

C. A. Andersson and R. Bro, “The N-way toolbox for MATLAB,”
Chemometrics and intelligent laboratory systems, vol. 52, no. 1, pp.
1-4, 2000.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on July 08,2020 at 00:42:47 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.2982144, IEEE
Transactions on Knowledge and Data Engineering

14

[42] E. Acar, D. M. Dunlavy, and T. G. Kolda, “A scalable optimization
approach for fitting canonical tensor decompositions,” Journal of
Chemometrics, vol. 25, no. 2, pp. 67-86, 2011.

[43] K. Levenberg, “A method for the solution of certain non-linear
problems in least squares,” Quarterly of applied mathematics, vol. 2,
no. 2, pp. 164-168, 1944.

[44] N. Vervliet, O. Debals, L. Sorber, M. Van Barel, and
L. De Lathauwer. (2016, Mar.) Tensorlab 3.0. Available online.
[Online]. Available: https://www.tensorlab.net

[45]]. Yuan, Y. Zheng, X. Xie, and G. Sun, “Driving with knowledge
from the physical world,” in Proceedings of the 17th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining.
ACM, 2011, pp. 316-324.

Bo Yang (S'15) received the B.Eng. and M.Eng.
degrees in communication and information sys-
tem from the Huazhong University of Science
and Technology of China, Wuhan, China, in 2011
and 2014, respectively. Since 2014, he has been
working toward the Ph.D. degree in the Depart-
ment of Electrical and Computer Engineering,
University of Minnesota, Minneapolis, MN, USA.
His research interests include data analytics and
machine learning, with an emphasis on unsuper-
vised learning, using tools such as matrix and
tensor factorization, as well as (deep) neural networks. He received a
Best Student Paper Award at IEEE CAMSAP 2015.

Ahmed S. Zamzam (S'14) is a PhD Candi-

date at the Department of Electrical and Com-

puter Engineering at the University of Minnesota,

where he is also affiliated with the Signal and

Tensor Analytics Research (STAR) group under

the supervision of Professor N. D. Sidiropoulos.

Previously, he earned his BSc at Cairo University

in 2013. In 2015, he received the MSc from

Nile University. Ahmed received the Louis John

' Schnell Fellowship (2015), and the Doctoral Dis-

sertation Fellowship (2018) from the University

of Minnesota. He also received Student Travel Awards from the IEEE

Signal Processing Society (2017), the IEEE Power and Energy So-

ciety (2018), and the Council of Graduate Students at the University

of Minnesota (2016, 2018). His research interests include control and

optimization of smart grids, large-scale complex energy systems, grid
data analytics, and machine learning.

Nicholas D. Sidiropoulos (F'09) received the
Diploma degree in electrical engineering from
Aristotelian University of Thessaloniki, Thessa-
loniki, Greece, and the M.S. and Ph.D. degrees
in electrical engineering from the University of
Maryland-College Park, College Park, MD, USA,
in 1988, 1990, and 1992, respectively. He has
served on the faculty of the University of Virginia
(UVA), University of Minnesota, and the Tech-
nical University of Crete, Greece, prior to his
current appointment as Chair of ECE at UVA.

His research interests are in signal processing, communications, opti-
mization, tensor decomposition, and factor analysis, with applications in
machine learning and communications. He received the NSF/CAREER
award in 1998, the IEEE Signal Processing Society (SPS) Best Paper
Award in 2001, 2007, and 2011, served as IEEE SPS Distinguished Lec-
turer (2008-2009), and currently serves as Vice President - Membership
of IEEE SPS. He received the 2010 IEEE Signal Processing Society
Meritorious Service Award, and the 2013 Distinguished Alumni Award
from the University of Maryland, Dept. of ECE. He is a Fellow of IEEE
(2009) and a Fellow of EURASIP (2014).

1041-4347 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Virginia Libraries. Downloaded on July 08,2020 at 00:42:47 UTC from IEEE Xplore. Restrictions apply.

