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Abstract. Prior work has established that all problems in NP admit classical zero-knowledge
proof systems, and under reasonable hardness assumptions for quantum computations, these proof
systems can be made secure against quantum attacks. We prove a result representing a further
quantum generalization of this fact, which is that every problem in the complexity class QMA has
a quantum zero-knowledge proof system. More specifically, assuming the existence of an uncondi-
tionally binding and quantum computationally concealing commitment scheme, we prove that every
problem in the complexity class QMA has a quantum interactive proof system that is zero-knowledge
with respect to efficient quantum computations. Our QMA proof system is sound against arbitrary
quantum provers, but only requires an honest prover to perform polynomial-time quantum compu-
tations, provided that it holds a quantum witness for a given instance of the QMA problem under
consideration. The proof system relies on a new variant of the QMA-complete local Hamiltonian
problem in which the local terms are described by Clifford operations and standard basis measure-
ments. We believe that the QMA-completeness of this problem may have other uses in quantum
complexity.
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1. Introduction. Zero-knowledge proof systems, which were first introduced by
Goldwasser, Micali, and Rackoff [28], are interactive protocols that allow a prover to
convince a verifier of the validity of a statement while revealing no additional informa-
tion beyond the statement's validity. As paradoxical as it may seem upon a first con-
sideration, several problems that are not known to be efficiently computable, such as
the quadratic non-residuosity, graph isomorphism, and graph non-isomorphism prob-
lems, admit zero-knowledge proof systems [26, 28]. Under reasonable intractability
assumptions, Goldreich, Micali, and Wigderson [26] gave a zero-knowledge protocol
for the graph 3-coloring problem and, because of its NP-completeness, for all NP prob-
lems. This line of work was further extended in [7], which showed that all problems
in IP have zero-knowledge proof systems.

Since the invention of this concept, zero-knowledge proof systems have become a
cornerstone of modern theoretical cryptography. In addition to the conceptual inno-
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vation of a complexity-theoretic notion of knowledge, zero-knowledge proof systems
are essential building blocks in a host of cryptographic constructions. One notable
example is the design of secure two-party and multiparty computation protocols [25].

The extensive works on zero-knowledge largely reside in a classical world. The
development of quantum information science and technology has urged another look
at the landscape of zero-knowledge proof systems in a quantum world. Namely, both
honest users and adversaries may potentially possess the capability to exchange and
process quantum information. There are, of course, zero-knowledge protocols that im-
mediately become insecure in the presence of quantum attacks due to efficient quan-
tum algorithms that break the intractability assumptions upon which these protocols
rely. For instance, Shor's quantum algorithms for factoring and computing discrete
logarithms [49] invalidate the use of these problems, generally conjectured to be clas-
sically hard, as a basis for the security of zero-knowledge protocols against quantum
attacks. Even with computational assumptions against quantum adversaries, how-
ever, it is still highly nontrivial to establish the security of classical zero-knowledge
proof systems in the presence of malicious quantum verifiers because of a technical
reason that we now briefly explain.

The zero-knowledge property of a proof system for a fixed input string is con-
cerned with the computations that may be realized through an interaction between a
(possibly malicious) verifier and the prover. That is, the malicious verifier may take
an arbitrary additional input (usually called the auxiliary input to distinguish it from
the input string to the proof system under consideration), interact with the prover in
any way it sees fit, and produce an output that is representative of what it has learned
through the interaction. Roughly speaking, the prover is said to be zero-knowledge on
the fixed input string if any computation of the sort just described can be efficiently
approximated1 by a simulator operating entirely on its own---meaning that it does
not interact with the prover, and in the case of an NP problem it does not possess a
witness for the fixed problem instance being considered. The proof system is then said
to be zero-knowledge when this zero-knowledge property holds for all yes-instances of
the problem under consideration.

Classically, the zero-knowledge property is typically established through a tech-
nique known as rewinding. In essence, the simulator can store a copy of the auxiliary
input, and it can make guesses and store intermediate states representing a hypothet-
ical prover/verifier interaction---and if it makes a bad guess or otherwise experiences
bad luck when simulating this hypothetical interaction, it simply reverts to an ear-
lier stage (or back to the beginning) of the simulation and tries again. Indeed, it is
generally the simulator's freedom to disregard the temporal restrictions of the actual
prover/verifier interaction in a way such as this that makes it possible to succeed.

However, rewinding a quantum simulation is more problematic; the no-cloning
theorem [60] forbids one from copying quantum information, making it impossible to
store a copy of the input or of an intermediate state, and measurements generally
have an irreversible effect [21] that may partially destroy quantum information. Such
difficulties were first observed by van de Graaf [54] and further studied in [14, 55].
Later, a quantum rewinding technique was found [58] to establish that several in-
teractive proof systems, including the Goldreich--Micali--Wigderson graph 3-coloring
proof system [26], remain zero-knowledge against malicious quantum verifiers (un-

1Different notions of approximations are considered, including statistical approximations and
computational approximations, which require that the simulator's computation is either statisti-
cally (or information-theoretically) indistinguishable or computationally indistinguishable from the
malicious verifier's computation. This paper is primarily concerned with the computational variant.
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der appropriate quantum intractability assumptions in some cases). It follows that
all NP problems have zero-knowledge proof systems even against quantum malicious
verifiers, provided that a quantum analogue of the intractability assumption required
by the Goldreich--Micali--Wigderson graph 3-coloring proof system are in place.

This work studies the quantum analogue of NP, known as QMA, in the context
of zero-knowledge. This is the class of problems having succinct quantum witnesses
satisfying similar completeness and soundness conditions to NP (or its randomized
variant MA). Quantum witnesses and verification are conjectured to be more power-
ful than their classical counterparts: there are problems that admit short quantum
witnesses, whereas there is no known method for verification using a polynomial-sized
classical witness. In other words, NP \subseteq QMA holds trivially, and the containment
is typically conjectured to be proper. The question we address in this paper is, does
every problem in QMA have a zero-knowledge quantum interactive proof system? In
more philosophical terms, viewing quantum witnesses as precious sources of knowl-
edge, can one always devise a proof system that reveals nothing about a quantum
witness beyond its validity?

1.1. Our contributions. We answer the above question positively by construct-
ing a quantum interactive proof system for any problem in QMA. It is zero-knowledge
against any polynomial-time quantum adversary, under a reasonable quantum in-
tractability assumption.

Theorem 1.1. Assuming the existence of an unconditionally binding and quan-
tum computationally concealing bit commitment scheme, every problem in QMA has
a quantum computational zero-knowledge proof system.

A few of the desirable features of our proof system are as follows:
1. Our proof system has a simple structure, similar to the graph 3-coloring proof

system of Goldreich--Micali--Wigderson (and to so-called \Sigma -protocols more
generally). It can be viewed as a three-phase process: the prover commits
to a quantum witness, the verifier makes a random challenge, and finally
the prover responds to the challenge by partial opening of the committed
information that suffices to certify the validity.

2. All communications in our proof system are classical except for the first com-
mitment message, and the verifier can measure the quantum message imme-
diately upon its arrival (which has a strong technological appeal).

3. Our protocol is based on plausible computational assumptions. The sort of
bit commitment scheme it requires can be implemented, for instance, under
the existence of injective one-way functions that are hard to invert in quantum
polynomial time.

4. Our protocol is prover-efficient: given a valid quantum witness, an honest
prover only needs to perform efficient quantum computations in order to
convince the verifier to accept with high probability. Moreover, as has already
been suggested, aside from the preparation of the first quantum message, all
of the remaining computations performed by the honest prover are classical
polynomial-time computations. No computational assumptions on the prover
are required in the soundness case; the protocol is sound against arbitrary
quantum provers.

As a key ingredient of our zero-knowledge proof system, we introduce a new vari-
ant of the k-local Hamiltonian problem and prove that it remains QMA-complete (with
respect to Karp reductions). The k-local Hamiltonian problem asks if the minimum
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eigenvalue (or ground state energy in physics parlance) of an n-qubit Hamiltonian
H =

\sum 
j Hj , where each Hj is k-local (i.e., acts trivially on all but k of the n qubits),

is below a particular threshold value. This problem was introduced and proved to be
QMA-complete by Kitaev, Shen, and Vyalyi [40] for the case k = 5, and subsequently
improved to k = 2 [37]. We show (for the case k = 5) that each Hj can be restricted
to be realized by a Clifford operation, followed by a standard basis measurement, and
the QMA-completeness is preserved. Beyond its use in this paper, this fact has the
potential to provide other insights into the study of quantum Hamiltonian complexity.
For an arbitrary problem A \in QMA, we can reduce an instance of A efficiently to
an instance of the k-local Clifford Hamiltonian problem, and a valid witness for A
can also be transformed into a witness for the corresponding k-local Clifford Hamil-
tonian problem instance by an efficient quantum procedure. As a result, A has a
zero-knowledge proof system by composing this reduction with our zero-knowledge
proof system for the k-local Clifford Hamiltonian

Our proof system also employs a new encoding scheme for quantum states, which
we construct by extending the trap scheme proposed in [11]. While our new scheme
can be seen as a quantum authentication scheme (cf. [2, 5, 6]), it in addition allows
performing arbitrary constant-qubit Clifford circuits and measuring in the compu-
tational basis directly on authenticated data without the need for auxiliary states.
The only previously known scheme supporting this feature requires high-dimensional
quantum systems (i.e., qudits rather than qubits) [6], which make it inconvenient in
our setting where all quantum operations are on qubits.

1.2. Overview of protocol and techniques. A natural approach to con-
structing zero-knowledge proofs for QMA is to consider a quantum analogue of the
Goldreich--Micali--Wigderson proof system for graph 3-coloring (which we will here-
after refer to as the GMW 3-coloring proof system), in which the prover commits to
a 3-coloring of the input graph and reveals only the colors of the vertices correspond-
ing to an edge randomly selected by the verifier. Let us focus in particular on the
local Hamiltonian problem, and consider a proof system in which the prover holds a
quantum witness state for an instance of this problem, commits to this witness, and
receives the challenge from the verifier (which, let us say, is a randomly chosen term
of the local Hamiltonian). The prover might then open the commitments of the set of
qubits on which the term acts nontrivially so that the verifier can measure the local
energy for this term and determine acceptance accordingly.

There is a major difficulty when one attempts to carry out such an approach for
QMA. The zero-knowledge property of the GMW 3-coloring proof system depends
crucially on a structural property of the problem: the honest prover is free to ran-
domize the three colors used in its coloring, and when the commitments to the colors
of two neighboring vertices are revealed, the verifier will see just a uniform mixture
over all pairs of different colors. This uniformity of the coloring marginals is im-
portant in achieving the zero-knowledge property of the proof system. Unlike the
case of 3-coloring, however, none of the known QMA-complete problems under Karp
reductions has such desirable properties. For example, if we use local Hamiltonian
problems directly in a GMW-type proof system, of the sort suggested above, infor-
mation about the reduced state of the quantum witness will be leaked to the verifier,
possibly violating the zero-knowledge requirement.

To overcome the difficulty suggested above, we employ several ideas that enable
the prover to ``partially"" open the commitments, revealing only the fact that the
committed state is supported on certain subspaces. Our first technique simplifies
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the verification circuit for QMA-complete problems through the introduction of the
local Clifford--Hamiltonian problem that was already described. More specifically,
our formulation of this problem requires every Hamiltonian term to take the form
C\ast | 0k\rangle \langle 0k | C for some Clifford operation C. Because the local Clifford--Hamiltonian
problem remains QMA-complete, it implies a random Clifford verification procedure
for problems in QMA: intuitively, the verification of a quantum witness has been
simplified to a Clifford measurement followed by a classical verification.

The Clifford verification procedure works in harmony with the encryption of quan-
tum data via the quantum one-time pad and other derived hybrid schemes that are
used by our proof system. This has the important effect of transforming statements
about quantum states into statements about the classical keys of the quantum one-
time pad, which naturally leads to our second main idea: the use of zero-knowledge
proofs for NP against quantum attacks to simplify the construction of zero-knowledge
proof systems for QMA. In our protocol, the verifier measures the encrypted quantum
data and asks the prover to prove, using a zero-knowledge protocol for NP, that the
decryption of this result is consistent with the verifier accepting.

In fact, if the verifier measures the quantum data according to the specifications of
the protocol, the combination of the Clifford verification and the use of zero-knowledge
proofs for NP suffices. A problem arises, however, if the verifier does not perform the
honest measurement. Our third technique, inspired by work on quantum authenti-
cation [2, 6, 11, 17], employs a new scheme for encoding quantum states. Roughly
speaking, if the prover encodes a witness state under our encoding scheme, then the
verifier is essentially forced to perform the measurement honestly---any attempt to
fake a ``logically different"" measurement result will succeed with negligible proba-
bility. In our proof system, we adapt the trap scheme proposed in [11] so that we
can perform any constant-sized Clifford operations on authenticated quantum data
followed by computational basis measurements, benefiting along the way from ideas
concerning quantum computation on authenticated quantum data.

The resulting zero-knowledge proof system for QMA has a similar overall structure
to the GMW 3-coloring protocol: the prover encodes the quantum witness state using
a quantum authentication scheme, and sends the encoded quantum data together with
a commitment to the secret keys of the authentication to the verifier. The verifier
randomly samples a term C\ast | 0k\rangle \langle 0k | C in the local Clifford--Hamiltonian problem,
applies the operation C transversally on the encoded quantum data, and measures
all qubits corresponding to the k qubits of the selected term in the computational
basis, and sends the measurement outcomes to the prover. The prover and verifier
then invoke a quantum-secure zero-knowledge proof for the NP statement that the
commitment correctly encodes an authentication key and, under this key, the verifier's
measurement outcomes do not decode to 0k.

1.3. Comparisons to related work. There has been other work on quantum
complexity and theoretical cryptography, some of which is discussed below, that al-
lows one to conclude statements having some similarity to our results. We will argue,
however, that with respect to the problem of devising zero-knowledge quantum inter-
active proof systems for QMA, our main result is stronger in almost all respects. In
addition, we believe that our proof system is appealing both because it is conceptually
simple and represents a natural extension of well-known classical methods.

1. Zero-knowledge proofs for all of IP. Hallgren et al. [32] proved that, under
certain technical conditions, any classical zero-knowledge proof system can
be made secure against malicious quantum verifiers. A well-known result
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of Ben-Or et al. [7] establishes that any problem in IP has a classical zero-
knowledge protocol under a suitable cryptographic assumption. Although
we have not verified that this zero-knowledge protocol for IP satisfies the
technical conditions required by Hallgren et al. [32], we suspect that this
is the case, assuming the existence of a quantum computationally hiding
commitment scheme. If indeed this is so, it implies the existence of a classical
protocol that is zero-knowledge against malicious quantum verifiers for all IP
and, hence, for QMA because QMA is contained in IP. However, this generic
protocol requires a computationally unbounded prover to carry out the honest
protocol, and it is unlikely to allow for a reduced round complexity (e.g.,
constant round with constant soundness error) without causing unexpected
consequences in complexity theory [27, 29, 56].

2. Secure two-party computations. One alternative approach to constructing
zero-knowledge proof systems for QMA is to apply the general tool of secure
two-party quantum computation [6, 16, 17]. In particular, we may imagine
two parties, a prover and a verifier, jointly evaluating the verification circuit
of a QMA problem, with the prover holding a quantum witness as its private
input. In principle, one can design a two-party computation protocol so that
the verifier learns the validity of the statement but nothing more about the
prover's private input. While we believe that a careful analysis could make
this approach work, it comes at a steep cost. First, we need to make sig-
nificantly stronger computational assumptions, as secure quantum two-party
computation relies on (at least) secure computations of classical functions
against quantum adversaries. The best-known quantum-secure protocols for
classical two-party computation assume quantum-secure dense public-key en-
cryption [33] or similar primitives [42], in contrast to the existence of a quan-
tum computationally hiding commitment scheme.2 Second, the protocol ob-
tained this way is an argument system. That is, the protocol is sound only
against computationally bounded dishonest provers. Moreover, the generic
quantum two-party computation protocol evaluates the verification circuit
gate by gate and, in particular, interactions are unavoidable for some (non-
Clifford) gates. This causes the round complexity to grow in proportion to
the size of the verification circuit. In addition, the communications are in-
herently quantum, which makes the protocol much more demanding from a
technological viewpoint.
On the positive side, through this approach, it is possible to achieve a negligi-
ble soundness error using just one copy of the witness state. In contrast, our
proof system directly inherits the soundness error of the most natural and
direct verification for the local Clifford--Hamiltonian problem (i.e., randomly
select a Hamiltonian term and measure). If one reduces an arbitrary QMA-
verification procedure to an instance of this problem, the resulting soundness
guarantee will generally be weakened by this reduction.

3. Zero-knowledge proofs for density matrix consistency. It was pointed out by
Liu [41] that the density matrix consistency problem, which asks if there ex-
ists a global state of n qubits that is consistent with a collection of k-qubit
density matrix marginals, should admit a simple zero-knowledge proof sys-
tem following the GMW 3-coloring approach. (See also [13] for further details

2Roughly speaking, this distinction is analogous to ``cryptomania"" vs ``minicrypt"" according to
Impagliazzo's five-world paradigm [35].
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regarding this claim.) While it approaches our main result, it does not neces-
sarily admit a zero-knowledge proof system for all problems in QMA, as the
density matrix consistency problem is only known to be hard for QMA with
respect to Cook reductions.

4. Verification for QMA, nonlocal games, and follow-up work. We note that
Clifford verification with classical postprocessing of QMA was considered
in [44] using magic states as ancillary resources. Our construction is ar-
guably simpler, uses only constant-size Clifford operations and, most impor-
tantly, does not require any resource states. This helps one to avoid checking
the correctness of resource states in the final zero-knowledge protocol. Our
Clifford--Hamiltonian verification also finds applications in offering an alter-
native proof of the single-qubit measurement verification for QMA in [45], as
well as in the study of nonlocal games [20, 36]. Moreover, following a previous
version of this work [12], Vidick and Zhang [52] showed that our techniques
can be applied to the conceptually simple QMA-complete ``XY Hamiltonian
problem"" [19]. They obtain a classical zero-knowledge argument system for
QMA, at the cost of sacrificing perfect completeness, and assuming the prover
is given polynomially many copies of the witness state.

Organization. Section 2 summarizes notation, definitions, and primitives that
are used for the construction of our zero-knowledge proof system. Section 3 de-
scribes the variant of the local Hamiltonian problem mentioned above. We present
our zero-knowledge proof system for QMA in section 4 and prove its completeness
and soundness in section 5 and zero-knowledge property in section 6. We conclude
with some remarks and future directions in section 7.

2. Preliminaries. This section summarizes some of the notation, definitions,
and known facts concerning quantum information and computation, cryptography,
and other topics that are used throughout the paper. We refer to [40, 48, 57] for further
details on the theory of quantum information and computation. Further information
on classical zero-knowledge and cryptography can be found in [22, 23].

2.1. Basic terminology. Throughout the paper we let \Sigma = \{ 0, 1\} denote the
binary alphabet, and only consider strings, promise problems, and complexity classes
over this alphabet. For a string x \in \Sigma \ast , | x| denotes its length. A function g : \BbbN \rightarrow \BbbN 
is a polynomially bounded function if there exists a deterministic polynomial-time
Turing machine Mg that outputs 1g(n) on input 1n for every nonnegative integer n.
A function f : \BbbN \rightarrow [0,\infty ) is said to be negligible if, for every polynomially bounded
function g, it holds that f(n) < 1/g(n) for all but finitely many values of n.

2.2. Quantum information basics. When we refer to a quantum register in
this paper, we simply mean a collection of qubits that we wish to view as a single unit
and to which we give some name. Names of registers will always be uppercase letters
in a sans serif font, such as X, Y, and Z. The finite-dimensional complex Hilbert
spaces associated with registers will be denoted by capital script letters such as \scrX , \scrY ,
and \scrZ , using the same letter in the two different fonts to denote a quantum register
and its corresponding space for convenience. Dirac notation is used to express vectors
in Hilbert spaces and linear mappings between them in a standard way.

For a given space \scrX , we let L(\scrX ) denote the set of all linear mappings (or opera-
tors) from \scrX to itself. The identity element of L(\scrX ) is denoted 1\scrX , or just as 1 when
\scrX can be taken as implicit. The inner product between operators A and B is defined
as \langle A,B\rangle = Tr(A\ast B).
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Quantum states are represented by density operators, which are positive semi-
definite operators having unit trace. Under the assumption that \scrX corresponds to n
qubits, a linear map \Phi : L(\scrX ) \rightarrow L(\scrY ) is completely positive if and only if its Choi
operator

(2.1) J(\Phi ) =
\sum 

x,y\in \Sigma n

\Phi 
\bigl( 
| x\rangle \langle y| 

\bigr) 
\otimes | x\rangle \langle y| 

is positive semidefinite, and \Phi is said to be a channel if it is both completely posi-
tive and preserves trace. Channels are mappings from density operators to density
operators that, in principle, represent physically realizable operations. A measure-
ment is described by a collection of positive semidefinite operators \{ Mj\} such that\sum 

j Mj = 1, with the probability that the measurement on state \rho results in outcome
j being given by \langle Mj , \rho \rangle .

We review a few definitions of norms on operators, which are used to discuss the
distinguishability of quantum states and channels. The trace norm of an operator
X \in L(\scrX ) is defined as \| X\| 1 = Tr

\surd 
X\ast X. For any linear map \Phi : L(\scrX ) \rightarrow L(\scrY ),

the diamond norm (or completely bounded trace norm) [3, 39, 40] is defined as

\| \Phi \| \diamond = max
\bigl\{ 
\| (\Phi \otimes 1L(\scrW ))(X)\| 1 : X \in L(\scrX \otimes \scrW ) , \| X\| 1 \leq 1

\bigr\} 
,

where \scrW is any space with dimension equal to that of \scrX . (The value remains the
same for any choice of \scrW , provided its dimension is at least that of \scrX .)

Quantum gates and circuits. A quantum circuit is an acyclic network of
quantum gates connected by wires. The quantum gates represent quantum channels
while the wires represent qubits on which the channels act.

We will refer to two types of quantum circuits in this paper: unitary quantum
circuits and general quantum circuits. By unitary quantum circuits we mean circuits
composed of unitary gates (such as the ones described below) chosen from some finite
gate set. General quantum circuits are composed of gates that may correspond to
channels that are not necessarily unitary. It is sufficient for the purposes of this
paper that we consider just two simple nonunitary gates: ancillary gates, which input
nothing and output a qubit in the | 0\rangle state; and erasure gates, which input one
qubit and output nothing (and correspond to the channel described by the trace
mapping). As is described elsewhere [3, 59], arbitrary channels mapping one register
to another can always be approximated arbitrarily closely by quantum circuits whose
gates include a universal collection of unitary gates together with ancillary and erasure
gates. The size of a quantum circuit is the number of gates in the circuit plus the
number of qubits on which it acts. We will refer specifically to the following well-
known single-qubit unitary gates:

1. Pauli gates:

(2.2) X : | a\rangle \mapsto \rightarrow | 1 - a\rangle and Z : | a\rangle \mapsto \rightarrow ( - 1)a| a\rangle 

for each a \in \Sigma , as well as Y = iXZ.
2. Hadamard gate:

(2.3) H : | a\rangle \mapsto \rightarrow 1\surd 
2
| 0\rangle + ( - 1)a\surd 

2
| 1\rangle 

for each a \in \Sigma .
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3. Phase gate:

(2.4) P : | a\rangle \mapsto \rightarrow ia| a\rangle 

for each a \in \Sigma .
In addition, for any k-qubit unitary quantum gate U we define the controlled-U gate
as

(2.5) \Lambda (U) : | a\rangle | x\rangle \mapsto \rightarrow | a\rangle Ua| x\rangle 

for each a \in \Sigma and x \in \Sigma k.
The k-qubit Pauli group is the group containing all unitary operators of the form

(2.6) \alpha U1 \otimes \cdot \cdot \cdot \otimes Uk,

where \alpha \in \{ 1, i, - 1, - i\} and U1, . . . , Uk \in \{ 1, X, Y, Z\} , where 1 denotes the single-
qubit identity operation. Elements of this group are also referred to as Pauli opera-
tions. If a, b \in \Sigma k are binary strings of length k, then we write

(2.7) Xa = Xa1 \otimes \cdot \cdot \cdot \otimes Xak and Zb = Zb1 \otimes \cdot \cdot \cdot \otimes Zbk

to denote the Pauli operations obtained from these strings as indicated.
Channels that can be expressed as convex combinations of unitary channels that

correspond to Pauli operations are called Pauli channels. An example of a Pauli
channel that is relevant to this paper is the completely depolarizing channel

(2.8) \Omega (\rho ) =
1

4

\sum 
a,b\in \Sigma 

\bigl( 
XaZb

\bigr) 
\rho 
\bigl( 
XaZb

\bigr) \ast 
=
1

2

for any single-qubit density operator \rho . We thus see that the effect of \Omega is to com-
pletely randomize the state of a single-qubit system. By treating a random choice of
a pair (a, b) as a secret key, we obtain a quantum generalization of the one-time pad,
known as the quantum one-time pad [4]. When the channel is performed indepen-
dently on k qubits, the effect is given by

(2.9) \Omega \otimes k(\rho ) = 2 - k
1\otimes \cdot \cdot \cdot \otimes 1

for every k-qubit density operator \rho . The quantum one-time pad generalizes naturally
to any choice of the number k.

Sometimes it will be convenient to consider quantum circuits that implement
measurements. When we refer to a measurement circuit, we mean any general quan-
tum circuit, followed by a measurement of all of its output qubits with respect to the
standard basis. If Q is a measurement circuit that is applied to a collection of qubits
in the state \rho , then Q(\rho ) is interpreted as a string-valued random variable describ-
ing the resulting measurement. We will only need to refer to measurement circuits
outputting a single bit in this paper.

A k-qubit Clifford circuit is any unitary quantum circuit on k qubits whose gates
are drawn from the set \{ H,P,\Lambda (X)\} containing Hadamard, phase, and controlled-not
gates. (It is common that one also allows Pauli gates to be included in this set for
convenience. Given thatX = HPPH and Z = PP , there is no generality lost in using
the smaller gate set in the definition.) The set of all unitary operators that can be
described by k-qubit Clifford circuits forms a finite group known as the Clifford group.
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Up to scalar multiples, the k-qubit Clifford group is the normalizer of the k-qubit Pauli
group: if U is a k-qubit unitary operator for which it holds that UV U\ast is an element
of the k-qubit Pauli group for every k-qubit Pauli group element V , then U = \alpha C
for \alpha \in \BbbC satisfying | \alpha | = 1 and C being a k-qubit Clifford group element. Given the
description of a k-qubit Pauli group element V and a k-qubit Clifford circuit C, one
can efficiently compute a description of the k-qubit Pauli group element CV C\ast [31].

Clifford circuits are not universal for quantum computation. Two examples
(among other known examples) of universal gate sets are the following:

1. Hadamard, phase, and Toffoli gates: \{ H,P,\Lambda (\Lambda (X))\} .
2. Hadamard and controlled-phase gates: \{ H,\Lambda (P )\} .

The first of these choices is sometimes easier to work with, but we will make use of
the fact that the second gate set is universal in this work.

2.3. Polynomial-time generated families of quantum circuits and QMA.
Any quantum circuit with gates drawn from a fixed, finite gate set can be encoded as
a binary string, with respect to a variety of possible encoding schemes. The specific
details of such encoding schemes are not important within the context of this paper,
so we will leave it to the reader to imagine that a sensible and efficient encoding
scheme for quantum circuits has been selected, relative to whatever gate set is under
consideration. It should be assumed, of course, that a circuit's size and its encoding
length are polynomially related.

For any infinite set of binary strings S \subseteq \Sigma \ast , a collection \{ Vx : x \in S\} of
quantum circuits is said to be polynomial-time generated if there exists a deterministic
polynomial-time Turing machine that, on input x \in S, outputs an encoding of Vx.
The assumptions on encoding schemes suggested above imply that, if \{ Vx : x \in S\} 
is a polynomial-time generated collection, then Vx must have size polynomial in | x| .

Next we will define the complexity class QMA, which is commonly viewed as the
most natural quantum generalization of NP.

Definition 2.1. A promise problem A = (Ayes, Ano) is contained in the com-
plexity class QMA\alpha ,\beta if there exists a polynomial-time generated collection

(2.10)
\bigl\{ 
Vx : x \in Ayes \cup Ano

\bigr\} 
of quantum circuits and a polynomially bounded function p possessing the following
properties:

1. For every string x \in Ayes \cup Ano, one has that Vx is a measurement circuit
taking p(| x| ) input qubits and outputting a single bit.

2. Completeness. For all x \in Ayes, there exists a p(| x| )-qubit state \rho such that
Pr(Vx(\rho ) = 1) \geq \alpha .

3. Soundness. For all x \in Ano and all p(| x| )-qubit states \rho , Pr(Vx(\rho ) = 1) \leq \beta .

In this definition, \alpha , \beta \in [0, 1] may be constant values or functions of the length of
the input string x. When they are omitted, it is to be assumed that they are \alpha = 2/3
and \beta = 1/3. Known error reduction methods [40, 43, 46] imply that a wide range
of selections of \alpha and \beta give rise to the same complexity class. In particular, QMA
coincides with QMA\alpha ,\beta for \alpha = 1  - 2 - q(| x| ) and \beta = 2 - q(| x| ) for any polynomially
bounded function q.

2.4. Quantum computational indistinguishability and zero-knowledge.
Next we review notions of quantum state and channel discrimination, as well as zero-
knowledge in a quantum setting (as defined in [58]).
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We first specify what it means for two collections of quantum states to be quantum
computationally indistinguishable. The definition that follows may be viewed as being
a nonuniform notion of quantum computational indistinguishability, as it places no
uniformity conditions on quantum circuits and allows for an auxiliary quantum state
\sigma to assist in the task of state discrimination.

Definition 2.2 (quantum computationally indistinguishable states). Let S be
an infinite set of binary strings, let r be a polynomially bounded function, and let \rho x
and \xi x be states on r(| x| ) qubits for each x \in S. The collections \{ \rho x : x \in S\} and
\{ \xi x : x \in S\} are quantum computationally indistinguishable if, for every choice of
polynomially bounded functions s and k, there exists a negligible function \varepsilon such that
the following property holds for every string x \in S: for every k(| x| )-qubit state \sigma and
every measurement circuit Q on r(| x| ) + k(| x| ) qubits having size s(| x| ), it is the case
that

(2.11) | Pr[Q(\rho x \otimes \sigma ) = 1] - Pr[Q(\xi x \otimes \sigma ) = 1]| \leq \varepsilon (| x| ).

This notion extends naturally to distinguishing collections of channels, as the
following definition makes precise.

Definition 2.3 (quantum computationally indistinguishable channels). Let S
be an infinite set of binary strings, let q and r be polynomially bounded functions,
and let \Phi x and \Psi x be channels from q(| x| ) qubits to r(| x| ) qubits for each x \in S.
The collections \{ \Phi x : x \in S\} and \{ \Psi x : x \in S\} are quantum computationally
indistinguishable if, for every choice of polynomially bounded functions s and k, there
exists a negligible function \varepsilon such that the following property holds for every string
x \in S: for every state \sigma on q(| x| )+ k(| x| ) qubits and every measurement circuit Q on
r(| x| ) + k(| x| ) qubits having size s(| x| ), it is the case that

(2.12) | Pr[Q((\Phi x \otimes 1)(\sigma )) = 1] - Pr[Q((\Psi x \otimes 1)(\sigma )) = 1]| \leq \varepsilon (| x| ).

We will also make use of statistical notions of indistinguishability for states and
channels, which are defined as follows.

Definition 2.4 (statistically indistinguishable states). Let S be an infinite set
of binary strings, let r be a polynomially bounded function, and let \rho x and \xi x be states
on r(| x| ) qubits for each x \in S. The collections \{ \rho x : x \in S\} and \{ \xi x : x \in S\} are
statistically indistinguishable if there exists a negligible function \varepsilon such that, for all
x \in S,

(2.13)
1

2
\| \rho x  - \xi x\| 1 \leq \varepsilon (| x| ).

Definition 2.5 (statistically indistinguishable channels). Let S be an infinite set
of binary strings, let q and r be polynomially bounded functions, and let \Phi x and
\Psi x be channels from q(| x| ) qubits to r(| x| ) qubits for each x \in S. The collections
\{ \Phi x : x \in S\} and \{ \Psi x : x \in S\} are statistically indistinguishable if there exists a
negligible function \varepsilon such that, for all x \in S,

(2.14)
1

2
\| \Phi x  - \Psi x\| \diamond \leq \varepsilon (| x| ).

Next we review the definition of quantum computational zero-knowledge proof
systems as defined in [58]. Let (P, V ) be a quantum or classical interactive proof
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system for a promise problem A. An arbitrary (possibly malicious) verifier V \prime is any
quantum computational process that interacts with P according to the structural spec-
ification of (P, V ). Similarly to the classical notion of auxiliary input zero-knowledge,
a verifier V \prime will take, in addition to the input string x, an auxiliary input, and
produce some output. This is crucial for the composition of zero-knowledge proof
systems. The most general situation allowed by quantum information theory is that
both the auxiliary input and the output are quantum, meaning that the verifier oper-
ates on quantum registers whose initial state is arbitrary and may be entangled with
some external system. Also similarly to the classical case, we will assume that for any
given polynomial-time verifier V \prime there exist polynomially bounded functions q and
r that determine the number of auxiliary input qubits and output qubits of V \prime . To
say that V \prime is a polynomial-time verifier means that the entire action of V \prime must be
described by some polynomial-time generated family of quantum circuits.

The interaction of a verifier V \prime with P on input x induces some channel from
the verifier's q(| x| ) auxiliary input qubits to r(| x| ) output qubits. Let \scrW denote
the vector space corresponding to the auxiliary input qubits, let \scrZ denote the space
corresponding to the output qubits, and let \Phi x : L(\scrW ) \rightarrow L(\scrZ ) denote the resulting
channel induced by the interaction of V \prime with P on input x. A simulator S for a given
verifier V \prime is described by a polynomial-time generated family of general quantum
circuits that agrees with V \prime on the functions q and r representing the number of
auxiliary input qubits and output qubits, respectively. Such a simulator does not
interact with P , but simply induces a channel that we will denote by \Psi x : L(\scrW ) \rightarrow 
L(\scrZ ) on each input x.

Definition 2.6 (quantum computational zero-knowledge). An interactive proof
system (P, V ) for a promise problem A is quantum computational zero-knowledge if,
for every polynomial-time generated quantum verifier V \prime , there exists a polynomial-
time generated quantum simulator S that satisfies the following requirements:

1. The verifier V \prime and simulator S agree on the polynomially bounded functions
q and r that specify the number of auxiliary input qubits and output qubits,
respectively.

2. Let \Phi x be the channel that results from the interaction between V \prime and P on
input x, and let \Psi x be the channel induced by the simulator S on input x, both
as described above. Then the collections \{ \Phi x : x \in Ayes\} and \{ \Psi x : x \in Ayes\} 
are quantum computationally indistinguishable.

2.5. Cryptographic tools. In this section we introduce cryptographic building
blocks that are useful in our proof system. We emphasize that, as is typical in the
classical setting, we formulate all computational security properties (e.g., concealing
in a commitment scheme) with respect to nonuniform quantum adversaries, which
provides more stringent security requirements and is crucial in many security proofs.

Commitment schemes. Our definition for quantum computationally secure
commitment schemes is as follows. We note explicitly that this is a noninteractive
definition: all messages are from a sender to a receiver.

Definition 2.7 (quantum computationally secure commitments). A quantum
computationally secure commitment scheme for an alphabet \Gamma is a collection of poly-
nomial-time computable functions \{ fn : n \in \BbbN \} taking the form

(2.15) fn : \Gamma \times \Sigma p(n) \rightarrow \Sigma q(n)

for polynomially bounded functions p and q, such that the following conditions hold:
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1. Unconditionally binding property. For every choice of n \in \BbbN , a, b \in \Gamma , and
r, s \in \Sigma p(n), one has that fn(a, r) = fn(b, s) implies a = b.

2. Quantum computationally concealing property. For every a \in \Gamma and n \in \BbbN ,
define

(2.16) \rho a,n =
1

2p(n)

\sum 
r\in \Sigma p(n)

| fn(a, r)\rangle \langle fn(a, r)| .

For every choice of a, b \in \Gamma the ensembles \{ \rho a,n : n \in \BbbN \} and \{ \rho b,n : n \in \BbbN \} 
are quantum computationally indistinguishable.

Such a bit commitment scheme (i.e., \Gamma = \{ 0, 1\} ) can be constructed based on cer-
tain quantum intractability assumptions. As shown in [1], it suffices to have quantum-
resistant one-way permutations, which are permutations that can be computed effi-
ciently on a classical computer but are hard to invert for both classical and quantum
polynomial-time algorithms. The same commitment scheme remains quantum-secure
based on a slightly weaker assumption of quantum-resistant injective one-way func-
tions. To commit to a string, one can independently use the commitment described
above bit by bit.

Based on a quantum-secure commitment scheme, we can obtain the other two
essential cryptographic building blocks in our protocol: a zero-knowledge proof system
for NP and a coin-flipping protocol, both secure against quantum adversaries.

Zero-knowledge proof for NP. In [58] it was proved that the GMW 3-coloring
protocol [26] remains zero-knowledge in the presence of quantum verifiers, assuming
the existence of a quantum computationally secure commitment scheme. This means
that we have a classical zero-knowledge proof system for any NP language that is
secure against arbitrary polynomial-time quantum verifiers.

Coin flipping. A coin-flipping protocol is an interactive process that allows two
parties to jointly toss random coins. It is not necessary for us to consider this notion
generally, as we only make use of one specific coin-flipping protocol, namely, Blum's
coin-flipping protocol [8] in which an honest prover commits to a random y \in \Sigma , the
honest verifier selects z \in \Sigma at random, the prover reveals y, and the two participants
agree that the random bit generated is r = y \oplus z.

Damg\r ard and Lunemann [15] proved, assuming the existence of a quantum-secure
commitment scheme, that Blum's coin-flipping protocol is quantum-secure. This pro-
tocol generates one random coin, and we will need to flip logarithmically many random
bits. A simple way of achieving this is by sequential repetition, but more effectively it
is possible to extend the analysis of Damg\r ard and Lunemann and show that parallel
repetition of Blum's protocol logarithmically many times remains quantum-secure.

2.6. Concatenated Steane codes. The last topic to be discussed in this sec-
tion concerns the existence of quantum error-correcting codes having certain prop-
erties that are important to the functioning of our zero-knowledge proof system for
QMA. There are multiple choices of codes that satisfy our requirements, but in the
interest of simplicity we will describe just one specific family of codes in this category.

These codes are based on the 7-qubit Steane code [51], in which one qubit is
encoded into 7 qubits by the following action on standard basis states:

(2.17) | 0\rangle \mapsto \rightarrow 1\surd 
8

\sum 
x\in \scrD 0

7

| x\rangle and | 1\rangle \mapsto \rightarrow 1\surd 
8

\sum 
x\in \scrD 1

7

| x\rangle ,
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| \psi \rangle 

| 0\rangle 

| 0\rangle 

| 0\rangle 

| 0\rangle 

| 0\rangle 

| 0\rangle 

H

H

H

Fig. 2.1. A Clifford circuit encoder for the 7-qubit Steane code. Hereafter we will write U7 to
refer to the unitary operator on 7 qubits described by this circuit.

where

\scrD 0
7 = \{ 0000000, 0001111, 0110011, 0111100, 1010101, 1011010, 1100110, 1101001\} ,

\scrD 1
7 = \{ 0010110, 0011001, 0100101, 0101010, 1000011, 1001100, 1110000, 1111111\} .

It is the case that \scrD 0
7 is a [7, 4]-Hamming code, while

(2.18) \scrD 7 = \scrD 0
7 \cup \scrD 1

7

is the dual code to \scrD 0
7 (i.e., it is the code consisting of all binary strings of length

7 whose inner product with any codeword in \scrD 0
7 is even). This is an example of a

CSS code [48], and it is capable of correcting single-qubit errors. The standard error-
correcting procedure, which we do not actually need in this paper, is to first reversibly
correct errors in the standard basis, with respect to the code \scrD 7, and then to do the
same with respect to the diagonal basis. The 7-qubit Clifford circuit depicted in
Figure 2.1 encodes one qubit into 7 with respect to this code, assuming 6 qubits in
the | 0\rangle state are made available.

One of the properties of the 7-qubit Steane code that is important from the view-
point of this paper is that it admits a transversal application of Clifford operations,
in the sense that is explained in Figure 2.2.

Note that by concatenating the 7-qubit Steane code with itself, one obtains a
code having similar properties to the 7-qubit code and, in addition, having a large
minimum distance for the underlying code. More specifically, suppose that N = 7t

for t being an even positive integer. (We take t to be even for convenience, as this
eliminates the entrywise complex conjugation on Clifford operations induced by their
transversal application.) By concatenating the 7-qubit Steane code to itself t times,
one obtains a quantum error-correcting code in which one qubit is encoded into N
qubits in the following way:

(2.19) | 0\rangle \mapsto \rightarrow 1\surd 
8t

\sum 
x\in \scrD 0

N

| x\rangle and | 1\rangle \mapsto \rightarrow 1\surd 
8t

\sum 
x\in \scrD 1

N

| x\rangle ,

where \scrD 0
N ,\scrD 1

N \subseteq \Sigma N are related in a way that generalizes the case N = 7. In
particular, \scrD 0

N is a binary linear code having 8t elements, and whose dual code takes
the form \scrD N = \scrD 0

N \cup \scrD 1
N for \scrD 1

N \subseteq \Sigma N being a coset of \scrD 0
N .
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| 0\rangle 

| 0\rangle 

| 0\rangle 

| 0\rangle 

| 0\rangle 

| 0\rangle 

C

U7

| 0\rangle 

| 0\rangle 

| 0\rangle 

| 0\rangle 

| 0\rangle 

| 0\rangle 

C

C

C

C

C

C

C

U7

| 0\rangle 
| 0\rangle 
| 0\rangle 
| 0\rangle 
| 0\rangle 
| 0\rangle 

| 0\rangle 
| 0\rangle 
| 0\rangle 
| 0\rangle 
| 0\rangle 
| 0\rangle 

U7

U7

| 0\rangle 
| 0\rangle 
| 0\rangle 
| 0\rangle 
| 0\rangle 
| 0\rangle 

| 0\rangle 
| 0\rangle 
| 0\rangle 
| 0\rangle 
| 0\rangle 
| 0\rangle 

U7

U7

Fig. 2.2. The 7-qubit Steane code allows for the transversal application of Clifford operations.
That is, the circuits on the left are equivalent to the corresponding circuits on the right. In general,
the application of any Clifford operation on k qubits prior to being encoded is equivalent to the
entrywise complex conjugate of that Clifford operation being applied 7 times to the 7k qubits that
encode the original k qubits.

The t-fold concatenation of the 7-qubit Steane code inherits the properties of the
7-qubit Steane code mentioned above. A Clifford circuit UN acting on N qubits, N - 1
of which are to be initialized in the | 0\rangle state, performs the encoding. This circuit is
obtained by creating a tree from multiple copies of the circuit U7 in the natural way.
The code allows for Clifford operations to be applied transversally.

An added feature of the concatenated versions of the 7-qubit Steane code is that
it corrects more errors than the ordinary 7-qubit code. In particular, we will make
use of the fact that the code \scrD N , for N = 7t, has minimum Hamming weight 3t for
a nonzero code word. This allows one to obtain a polynomial-length code for any
polynomial lower bound on the minimum nonzero Hamming weight of a code word.

3. The local Clifford--Hamiltonian problem. The local Hamiltonian prob-
lem is a well-known example of a complete problem for QMA, provided that certain
assumptions are in place regarding the gap between the ground state energy (i.e.,
the smallest eigenvalue) of input Hamiltonians for yes- and no-inputs. A general and
somewhat imprecise formulation of the local Hamiltonian problem is as follows.
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The k-local Hamiltonian (k-LH) problem.

Input: A collection H1, . . . ,Hm of k-local Hamiltonian operators, each acting on
n qubits and satisfying 0 \leq Hj \leq 1 for j = 1, . . . ,m, along with real
numbers \alpha and \beta satisfying \alpha < \beta .

Yes: There exists an n-qubit state \rho such that \langle \rho ,H1 + \cdot \cdot \cdot +Hm\rangle \leq \alpha .

No: For every n-qubit state \rho , it holds that \langle \rho ,H1 + \cdot \cdot \cdot +Hm\rangle \geq \beta .

This problem statement is imprecise in the sense that it does not specify how \alpha and \beta 
are to be represented or what requirements are placed on the gap \beta  - \alpha mentioned
above. We will be more precise about these issues when formulating a restricted
version of this problem below, but it is appropriate that we first summarize what is
already known.

It is known that k-LH is complete for QMA (with respect to Karp reductions)
provided \alpha and \beta are input in a reasonable way and separated by an inverse polynomial
gap; this was first proved by Kitaev, Shen, and Vyalyi [40] for the case k = 5, then
by Kempe and Regev [38] for k = 3 and Kempe, Kitaev, and Regev [37] for k = 2.
If one adds the additional requirement that \alpha is exponentially small, which will be
important in the context of this paper, then QMA-completeness for k = 5 still follows
from Kitaev's proof, but the proofs of Kempe and Regev and Kempe, Kitaev, and
Regev do not imply the same for k = 3 and k = 2. On the other hand, the works of
Bravyi [9] and Gosset and Nagaj [30] do establish QMA-completeness for exponentially
small \alpha for k = 4 and k = 3, respectively.

The restricted version of the local Hamiltonian we introduce is one in which each
Hamiltonian term Hj is not only k-local and satisfies 0 \leq Hj \leq 1 but, furthermore,
on the k qubits on which it acts nontrivially, its action must be given by a rank 1
projection operator of the form

(3.1) C\ast 
j | 0k\rangle \langle 0k | Cj

for some choice of a k-qubit Clifford operation Cj . For brevity, we will refer to any
such operator as a k-local Clifford--Hamiltonian projection. The precise statement of
our problem variant is as follows.

The k-local Clifford--Hamiltonian (k-LCH) problem.

Input: A collection H1, . . . ,Hm of k-local Clifford--Hamiltonian projections,
along with positive integers p and q expressed in unary notation (i.e.,
as strings 1p and 1q) and satisfying 2p > q.

Yes: There exists an n-qubit state \rho such that \langle \rho ,H1 + \cdot \cdot \cdot +Hm\rangle \leq 2 - p.

No: For every n-qubit state \rho , it holds that \langle \rho ,H1 + \cdot \cdot \cdot +Hm\rangle \geq 1/q.

It may be noted that, by the particular way we have stated this problem, we are
focusing on a variant of the local Hamiltonian problem in which the parameter \alpha may
be exponentially small and the gap \beta  - \alpha is at least inverse polynomial.

Theorem 3.1. The 5-local Clifford--Hamiltonian problem is QMA-complete with
respect to Karp reductions. Moreover, for any choice of a promise problem A \in QMA
and a polynomially bounded function p, there exists a Karp reduction f from A to
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5-LCH having the form

(3.2) f(x) =
\Bigl\langle 
H1, . . . ,Hm, 1

p(| x| ), 1q
\Bigr\rangle 

for every x \in Ayes \cup Ano.

Proof. The containment of the 5-local Clifford--Hamiltonian problem in QMA
follows from the fact that the 5-LH problem is in QMA for the same choice of the
ground state energy bounds. It therefore remains to prove the statement concerning
the QMA-hardness of the 5-LCH problem.

Let A = (Ayes, Ano) be any promise problem in QMA and let p be a polynomially
bounded function. Using a standard error reduction procedure for QMA, one may
conclude that there exists a polynomial-time generated collection

(3.3) \{ Vx : x \in Ayes \cup Ano\} 

of measurement circuits having these properties:
1. If x \in Ayes, then there exists a state \rho such that Vx(\rho ) = 1 with probability

1 - 2 - p(| x| ).
2. If x \in Ano, then for all quantum states \rho representing valid inputs to Vx it

holds that Vx(\rho ) = 1 with probabilityh at most 1/2.
It is known that \{ \Lambda (P ), H\} is a universal gate set for quantum computation, so

there is no loss of generality in assuming each Vx is a quantum circuit using gates
from this set, together with a supply of ancillary qubits initialized to the state | 0\rangle .
For technical reasons (which are discussed later) we will assume something marginally
stronger, which is that each Vx uses gates from the set \{ \Lambda (P ), H\otimes H\} . That is, every
Hadamard gate appearing in Vx is paired with another Hadamard gate to be applied
at the same time but on a different qubit. Note that for any circuit composed of gates
from the set \{ \Lambda (P ), H\} , this stronger condition is easily met by adding to this circuit
a number of additional Hadamard gates on an otherwise unused ancilla qubit.

Now consider the 5-local circuit-to-Hamiltonian construction of Kitaev, Shen, and
Vyalyi [40], for a given choice of Vx. In this construction, the resulting Hamiltonians
have the form

(3.4) Htotal = Hin +Hout +Hclock +Hprop,

where the terms check the initialization, readout, validity of unary clock, and propa-
gation of computation, respectively. It follows from Kitaev's proof that, for x \in Ayes,
the resulting Hamiltonian Htotal has ground state energy at most 2 - p(| x| ), and for
x \in Ano the ground state energy of Htotal is at least 1/q(| x| ), for some polynomially
bounded function q. To complete the proof, it suffices to demonstrate that each of
these terms can be expressed as a sum of Clifford--Hamiltonian projections.

The first three terms, Hin, Hout, and Hclock, can easily be expressed as sums of
Clifford--Hamiltonian projections, as they are all projection operators that are diago-
nal in the standard basis. The propagation term has the form Hprop =

\sum T
t=1Hprop,t,

where each operator Hprop,t takes the form

Hprop,t =
1

2

\bigl[ 
(| 100\rangle \langle 100| t - 1,t,t+1 + | 110\rangle \langle 110| t - 1,t,t+1)\otimes 1

 - | 110\rangle \langle 100| t - 1,t,t+1 \otimes Ut  - | 100\rangle \langle 110| t - 1,t,t+1 \otimes U\ast 
t

\bigr] 
= | 10\rangle \langle 10| t - 1,t+1 \otimes 

1

2

\bigl[ 
1t \otimes 1 - | 1\rangle \langle 0| t \otimes Ut  - | 0\rangle \langle 1| t \otimes U\ast 

t

\bigr] 
.

(3.5)D
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Here, the first three qubits (indexed by t  - 1, t, and t + 1) refer to qubits in a clock
register and Ut represents the tth unitary gate in Vx. To prove that each propagation
operator Hprop,t can be expressed as a sum of Clifford--Hamiltonian projections, it
suffices to prove the same for every projection of the form

(3.6)
1

2

\bigl[ 
1\otimes 1 - | 1\rangle \langle 0| \otimes U  - | 0\rangle \langle 1| \otimes U\ast \bigr] 

for U being either \Lambda (P ) or H \otimes H.
In the case that U = \Lambda (P ), one has that the projection (3.6) is the sum of the

four Clifford--Hamiltonian projections corresponding to these vectors:

|  - \rangle | 00\rangle = (ZH \otimes 1\otimes 1)| 000\rangle ,
|  - \rangle | 01\rangle = (ZH \otimes 1\otimes X)| 000\rangle ,
|  - \rangle | 10\rangle = (ZH \otimes X \otimes 1)| 000\rangle ,
| \circlearrowright \rangle | 11\rangle = (P \ast H \otimes X \otimes X)| 000\rangle ,

(3.7)

where | \circlearrowright \rangle = (| 0\rangle  - i| 1\rangle )/
\surd 
2. In the case that U = H\otimes H, one has that the projection

(3.6) is the sum of the four Clifford--Hamiltonian projections corresponding to these
vectors:

| \psi 1\rangle =
\bigl( 
| 000\rangle  - | 011\rangle  - | 101\rangle  - | 110\rangle 

\bigr) 
/2,

| \psi 2\rangle =
\bigl( 
| 000\rangle + | 011\rangle  - | 100\rangle  - | 111\rangle 

\bigr) 
/2,

| \psi 3\rangle =
\bigl( 
| 001\rangle  - | 010\rangle + | 101\rangle  - | 110\rangle 

\bigr) 
/2,

| \psi 4\rangle =
\bigl( 
| 001\rangle + | 010\rangle  - | 100\rangle + | 111\rangle 

\bigr) 
/2.

(3.8)

All four of these vectors are obtained by a Clifford operation applied to the all-zero
state. In particular, when the following Clifford circuits are applied to the state | 000\rangle ,
the states | \psi 1\rangle , | \psi 2\rangle , | \psi 3\rangle , and | \psi 4\rangle are obtained:

H

H

Z

Z H

H

Z

H

H

X

Z

H

H

Z

Z

X

This completes the proof.

Remark 3.2. If one is given a witness to a given QMA problem A, it is possible
to efficiently compute a witness to the corresponding k-local Hamiltonian problem
instance through Kitaev's reduction by preparing a superposition of clock states and
then running a verification circuit for the corresponding number of steps. Our reduc-
tion also inherits this property.
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Remark 3.3. There is no loss of generality in setting q = 1 in the statement of
the k-LCH problem, meaning that Theorem 3.1 holds for this somewhat simplified
problem statement. This may be proved by repeating each Hamiltonian term q times
in a given problem instance and adjusting p as necessary.

Remark 3.4. States of the form C| 0k\rangle for a Clifford operation C, are stabilizer
states of k qubits. Theorem 3.1 therefore implies that there exists a QMA verification
procedure in which the verifier randomly chooses a k-qubit stabilizer state and checks
whether the quantum witness state is orthogonal to it.

Remark 3.5. If one takes U = H in (3.6), the resulting projection operator
projects onto the two-dimensional subspace spanned by |  - \rangle | \gamma 0\rangle and | +\rangle | \gamma 1\rangle , where

(3.9) | \gamma 0\rangle = cos(\pi /8)| 0\rangle + sin(\pi /8)| 1\rangle and | \gamma 1\rangle = sin(\pi /8)| 0\rangle  - cos(\pi /8)| 1\rangle 

are eigenvectors of H. This projection cannot be expressed as a sum of Clifford--
Hamiltonian projections, which explains why we needed to replace H with H \otimes H in
the proof above.

While considering this projection is not useful for proving Theorem 3.1, we do
obtain from it a different result. In particular, we obtain an alternative proof of a
result due to Morimae, Nagaj, and Schuch [45] establishing that single-qubit measure-
ments and classical postprocessing are sufficient for QMA verification. Reference [45]
actually provides two proofs of this fact, one based on measurement-based quantum
computation and the other based on a local-Hamiltonian problem type of approach
similar to what we propose. While their local-Hamiltonian approach does not work for
one-sided error (or QMA1) verifications, ours does (as does their measurement-based
quantum computation proof).

4. Description of the proof system. We now describe our zero-knowledge
protocol for the local Clifford--Hamiltonian problem. The main steps of the proof
system are described in the subsections that follow, and the entire proof system is
summarized in Figure 4.1. Properties of the proof system, including completeness,
soundness, and the zero-knowledge property, are discussed in later sections of the
paper.

As was previously suggested, our proof system assumes the existence of a quan-
tum computationally secure commitment scheme. Throughout this section it is to
be assumed that an instance of the k-LCH problem has been selected. The in-
stance describes Clifford--Hamiltonian projections H1, . . . ,Hm, each given by Hj =
C\ast 

j | 0k\rangle \langle 0k | Cj for k-qubit Clifford operations C1, . . . , Cm, along with a specification
of which of the n qubits these projections act upon. The proof system does not
refer to the parameters p and q in the description of the k-LCH problem, as these
parameters are only relevant to the performance of the proof system and not its im-
plementation. It must be assumed, however, that the completeness parameter 2 - p is
a negligible function of the entire problem instance size in order for the proof system
to be zero-knowledge, and we will make this assumption hereafter.

4.1. Prover's witness encoding. Let X = (X1, . . . ,Xn) be an n-tuple of single-
qubit registers. These qubits are assumed to initially be in the prover's possession,
and they store an n-qubit quantum state \rho representing a possible witness for the
instance of the k-LCH problem under consideration.

The first step of the proof system requires the prover to encode the state of X,
using a scheme that consists of four steps. Throughout the description of these steps
it is to be assumed that N is a polynomially bounded function of the input size and is
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Prover's encoding step:

The prover selects a tuple (t, \pi , a, b) uniformly at random, where t = t1 \cdot \cdot \cdot tn
for t1, . . . , tn \in \{ 0,+,\circlearrowright \} N , \pi \in S2N , and a = a1 \cdot \cdot \cdot an and b = b1 \cdot \cdot \cdot bn for
a1, . . . , an, b1, . . . , bn \in \Sigma 2N . The witness state contained in qubits (X1, . . . ,Xn) is
encoded into qubit tuples

(4.1)
\bigl( 
Y1
1, . . . ,Y

1
2N

\bigr) 
, . . . ,

\bigl( 
Yn
1 , . . . ,Y

n
2N

\bigr) 
as described in the main text. These qubits are sent to the verifier, along with a
commitment to the tuple (\pi , a, b).

Coin-flipping protocol:

The prover and verifier engage in a coin-flipping protocol, choosing a string r of a
fixed length uniformly at random. This random string r determines a Hamiltonian
term Hr = C\ast 

r | 0k\rangle \langle 0k | Cr that is to be tested.

Verifier's measurement:

The verifier applies the Clifford operation Cr transversally to the qubits

(4.2)
\bigl( 
Yi1
1 , . . . ,Y

i1
2N

\bigr) 
, . . . ,

\bigl( 
Yik
1 , . . . ,Y

ik
2N

\bigr) 
,

and measures all of these qubits in the standard basis for (i1, . . . , ik) being the indices
of the qubits upon which the Hamiltonian term Hr acts nontrivially. The result of
this measurement is sent to the prover.

Prover's verification and response:

The prover checks that the verifier's measurement results are consistent with the
states of the trap qubits and the concatenated Steane code, aborting the proof system
if not (causing the verifier to reject). In case the measurement results are consistent,
the prover demonstrates that these measurement results are consistent with its prior
commitment to (\pi , a, b) and with the Hamiltonian term Hr, through a classical zero-
knowledge proof system for the corresponding NP statement described in the main
text. The verifier accepts or rejects accordingly.

Fig. 4.1. Summary of the zero-knowledge proof system for the LCH problem.

an even positive integer power of 7. In effect, N acts as a security parameter (for the
zero-knowledge property of the proof system), and we take it to be an even power of 7
so that it may be viewed as a number of qubits that could arise from a concatenated
Steane code allowing for a transversal application of Clifford operations, as described
in section 2.6. In particular, through an appropriate choice of N , one may guarantee
that this code has any desired polynomial lower bound for the minimum nonzero
Hamming weight of its underlying classical code.

1. For each i = 1, . . . , n, the qubit Xi is encoded into qubits (Yi
1, . . . ,Y

i
N ) by

means of the concatenated Steane code. This results in the N -tuples

(4.3)
\bigl( 
Y1
1, . . . ,Y

1
N

\bigr) 
, . . . ,

\bigl( 
Yn
1 , . . . ,Y

n
N

\bigr) 
.

2. To each of the N -tuples in (4.3), the prover concatenates an additional N
trap qubits with each trap qubit being initialized to one of the single qubit
pure states | 0\rangle , | +\rangle , or | \circlearrowright \rangle , selected independently and uniformly at random.
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This results in qubits

(4.4)
\bigl( 
Y1
1, . . . ,Y

1
2N

\bigr) 
, . . . ,

\bigl( 
Yn
1 , . . . ,Y

n
2N

\bigr) 
.

The prover stores the string t = t1 \cdot \cdot \cdot tn, for t1, . . . , tn \in \{ 0,+,\circlearrowright \} N repre-
senting the randomly chosen states of the trap qubits.

3. A random permutation \pi \in S2N is selected, and the qubits in each of the 2N -
tuples (4.4) are permuted according to \pi . (Note that it is a single permutation
\pi that is selected and applied to all of the 2N -tuples simultaneously.)

4. The quantum one-time pad is applied independently to each qubit in (4.4)
(after they are permuted in step 3). That is, for ai, bi \in \Sigma 2N chosen inde-
pendently and uniformly at random, the unitary transformation XaiZbi is
applied to (Yi

1, . . . ,Y
i
2N ), and the strings ai and bi are stored by the prover

for each i = 1, . . . , n.
The randomness required by these encoding steps is described by a tuple (t, \pi , a, b),
where t is the string representing the states of the trap qubits described in step 2,
\pi \in S2N is the permutation applied in step 3, and a = a1 \cdot \cdot \cdot an and b = b1 \cdot \cdot \cdot bn are
binary strings representing the Pauli operators applied in the one-time pad in step 4.
After performing the above encoding steps, the prover sends the resulting qubits,

(4.5) Y =
\bigl( \bigl( 
Y1
1, . . . ,Y

1
2N

\bigr) 
, . . . ,

\bigl( 
Yn
1 , . . . ,Y

n
2N

\bigr) \bigr) 
,

along with a commitment

(4.6) z = commit((\pi , a, b), s)

to the tuple
\bigl( 
\pi , a, b

\bigr) 
, to the verifier. Here we assume that s is a random string chosen

by the prover that allows for this commitment. (It is not necessary for the prover to
commit to the selection of the trap qubit states indicated by t, although it would not
affect the properties of the proof system if it were modified so that the prover also
committed to the trap qubit state selections.)

4.2. Verifier's random challenge. Upon receiving the prover's encoded wit-
ness and commitment, the verifier issues a challenge: for a randomly selected index
j \in \{ 1, . . . ,m\} , the verifier will check that the jth Hamiltonian term

(4.7) Hj = C\ast 
j | 0k\rangle \langle 0k | Cj

is not violated. Generally speaking, the verifier's actions in issuing this challenge are
as follows: for a certain collection of qubits, the verifier applies the Clifford operation
Cj transversally to those qubits, performs a measurement with respect to the standard
basis, sends the outcomes to the prover, and then expects the prover to demonstrate
that the obtained outcomes are valid (in the sense to be described later).

The randomly selected Hamiltonian term is to be determined by a binary string r,
of a fixed length \lceil logm\rceil , that should be viewed as being chosen uniformly at random.
(In a moment we will discuss the random choice of r, which will be given by the output
of a coin-flipping protocol that happens to be uniform for honest participants.) It is
not important exactly how the binary strings of length \lceil logm\rceil are mapped to the
indices \{ 1, . . . ,m\} , so long as every index is represented by at least one string---so
that for a uniformly chosen string r, each Hamiltonian term j is selected with a
nonnegligible probability. We will write Hr and Cr in place of Hj and Cj , and refer
to the Hamiltonian term determined by r, when it is convenient to do this.
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It would be natural to allow the verifier to randomly determine which Hamiltonian
term is to be tested---but, as suggested above, we will assume that the challenge is
determined through a coin-flipping protocol rather than leaving the choice to the
verifier. More specifically, throughout the present subsection, it should be assumed
that the random choice of the string r that determines which challenge is issued is
the result of independent iterations of a commitment-based coin-flipping protocol
(i.e., the honest prover commits to a random yi \in \Sigma , the honest verifier selects
zi \in \Sigma at random, the prover reveals yi, and the two participants agree that the
ith random bit of r is ri = yi \oplus zi). This guarantees (assuming the security of
the commitment protocol) that the choices are truly random, and greatly simplifies
the analysis of the zero-knowledge property of the proof system. The use of such a
protocol might not actually be necessary for the security of the proof system, but we
leave the investigation of whether it is necessary to future work.

Now, let (i1, . . . , ik) denote the indices of the qubits upon which the Hamiltonian
term determined by the random string r acts nontrivially. The verifier applies the
Clifford operation Cr independently to each of the k-qubit tuples

(4.8)
\bigl( 
Yi1
1 , . . . ,Y

ik
1

\bigr) 
, . . . ,

\bigl( 
Yi1
2N , . . . ,Y

ik
2N

\bigr) 
,

which is equivalent to saying that Cr is applied transversally to the tuples

(4.9)
\bigl( 
Yi1
1 , . . . ,Y

i1
2N

\bigr) 
, . . . ,

\bigl( 
Yik
1 , . . . ,Y

ik
2N

\bigr) 
that encode the qubits on which the Hamiltonian term Hr acts nontrivially. The
qubits (4.9) are then measured with respect to the standard basis, and the results
are sent to the prover. We will let ui1 , . . . , uik \in \Sigma 2N denote the binary strings rep-
resenting the verifier's standard basis measurement outcomes (or claimed outcomes)
corresponding to the measurements of the tuples (4.9).

4.3. Prover's check and response. Upon receiving the verifier's claimed mea-
surement outcomes corresponding to the randomly selected Hamiltonian term, the
prover first checks to see that these outcomes could indeed have come from the mea-
surements specified above, and then tries to convince the verifier that these measure-
ment outcomes are consistent with the selected term.

In more detail, suppose that the Hamiltonian term determined by r has been
challenged. As above, we assume that this term acts nontrivially on the k qubits
indexed by the k-tuple (i1, . . . , ik), and we will write u = ui1 \cdot \cdot \cdot uik \in \Sigma 2kN to denote
the verifier's claimed standard basis measurement outcomes.

To define the prover's check for this string, it will be helpful to first define a
predicate Rr, which is a function of t, \pi , and u, and essentially represents the prover's
check after it has made an adjustment to the verifier's response to account for the
one-time pad. For each i \in \{ i1, . . . , ik\} , define strings yi, zi \in \Sigma N so that

(4.10) \pi (yizi) = ui.

The predicate Rr takes the value 1 if and only if these two conditions are met:
1. yi \in \scrD N for every i \in \{ i1, . . . , ik\} , and yi \in \scrD 1

N for at least one index
i \in \{ i1, . . . , ik\} .

2.
\bigl\langle 
zi1 \cdot \cdot \cdot zik

\bigm| \bigm| C\otimes N
r

\bigm| \bigm| ti1 \cdot \cdot \cdot tik\bigr\rangle \not = 0.
(Here we have written | ti1 \cdot \cdot \cdot tik \rangle to denote the pure state of kN qubits obtained by
tensoring the states | 0\rangle , | +\rangle , and | \circlearrowright \rangle in the most natural way.) The first condition
concerns measurement outcomes corresponding to nontrap qubits, and reflects the
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condition that these measurement outcomes are proper encodings of binary values---
but not all of which encode 0. The second condition concerns the consistency of the
verifier's measurements with the trap qubits.

Next, we will define a predicate Qr, which is a function of the variables t, \pi , a, b,
and u, where t, \pi , and u are as above and a, b \in \Sigma 2nN refer to the strings used for the
one-time pad. The predicate Qr represents the prover's actual check, in the case that
the Hamiltonian term determined by r has been selected, including an adjustment to
account for the one-time pad. Let c1, . . . , cn, d1, . . . , dn \in \Sigma 2N be the unique strings
for which the equation

(4.11) C\otimes 2N
r

\bigl( 
Xa1Zb1 \otimes \cdot \cdot \cdot \otimes XanZbn

\bigr) 
= \alpha 

\bigl( 
Xc1Zd1 \otimes \cdot \cdot \cdot \otimes XcnZdn

\bigr) 
C\otimes 2N

r

holds for some choice of \alpha \in \{ 1, i, - 1, - i\} . The Clifford operation Cr acts trivially
on those qubits indexed by strings outside of the set \{ i1, . . . , ik\} , so it must be the
case that ci = ai and di = bi for i \not \in \{ i1, . . . , ik\} , but for those indices i \in \{ i1, . . . , ik\} 
it may be the case that ci \not = ai and di \not = bi. We will also write c = c1 \cdot \cdot \cdot cn and
d = d1 \cdot \cdot \cdot dn for the sake of convenience. Given a description of the Clifford operation
Cr it is possible to efficiently compute c and d from a and b. Having defined c and d,
we may now express the predicate Qr as follows:

(4.12) Qr(t, \pi , u, a, b) = Rr

\bigl( 
t, \pi , u\oplus ci1 \cdot \cdot \cdot cik

\bigr) 
.

In essence, the predicate Qr checks the validity of the verifier's claimed measurement
results by first adjusting for the one-time pad, then referring to Rr.

The prover evaluates the predicate Qr, and aborts the proof system if the predi-
cate evaluates to 0 (as this is indicative of a dishonest verifier). Otherwise, the prover
aims to convince the verifier that the measurement outcomes u are consistent with
the prover's encoding, and also that they are not in violation of the Hamiltonian term
Hr. It does this specifically by engaging in a classical zero-knowledge proof system
for the following NP statement: there exists a random string s and an encoding key
(t, \pi , a, b) such that (i) commit((\pi , a, b), s) matches the prover's initial commitment z,
and (ii) Qr(t, \pi , u, a, b) = 1.

It will be convenient later, in the analysis of the proof system, to sometimes view
r as being an input to the predicates defined above. Specifically, we define predicates

(4.13) Q(r, t, \pi , a, b, u) = Qr(t, \pi , a, b, u) and R(r, t, \pi , u) = Rr(t, \pi , u)

for this purpose. We also note explicitly that these predicates are polynomial-time
computable.

5. Completeness and soundness of the proof system. It is evident that
the proof system described in the previous section is complete. For a given instance
of the local Clifford--Hamiltonian problem, if the prover and verifier both behave hon-
estly, as suggested in the description of the proof system, the verifier will accept with
precisely the same probability that would be obtained by randomly selecting a Hamil-
tonian term, measuring the original n-qubit witness state against the corresponding
projection, and accepting or rejecting accordingly. For a positive problem instance,
this acceptance probability is at least 1 - 2 - p (for every choice of a random string r).

Next we will consider the soundness of the proof system. We will prove that on
a negative instance of the problem, the honest verifier must reject with nonnegligible
probability. The prover initially sends to the verifier the qubits

(5.1)
\bigl( 
Y1
1, . . . ,Y

1
2N

\bigr) 
, . . . ,

\bigl( 
Yn
1 , . . . ,Y

n
2N

\bigr) 
,
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along with a commitment z = commit((\pi , a, b), s) to a tuple (\pi , a, b). We have as-
sumed that the commitment is perfectly binding, so there is a well-defined tuple
(\pi , a, b) that is determined by the prover's commitment z. We may assume without
loss of generality that this tuple has the proper form (meaning that \pi \in S2N is a
permutation and a and b are binary strings of length 2nN , as specified in the descrip-
tion of the proof system), as a commitment to a string not of this form must lead to
rejection with high probability in all cases. Let \xi be the state of the qubits

(5.2)
\bigl( 
Y1
1, . . . ,Y

1
N

\bigr) 
, . . . ,

\bigl( 
Yn
1 , . . . ,Y

n
N

\bigr) 
that is obtained by inverting the quantum one-time pad with respect to the strings a
and b, inverting the permutation of each of the tuples (5.1) with respect to the per-
mutation \pi , and discarding the last N qubits within each tuple (i.e., the trap qubits).
For an honest prover, the state \xi would be the state obtained by encoding the original
witness state using the concatenated Steane code---although in general it cannot be
assumed that \xi arises in this way. Although the verifier is not capable of recovering
the state \xi on its own, because it does not know (\pi , a, b), it will nevertheless be helpful
to refer to the state \xi for the purposes of establishing the soundness condition of the
proof system.

We will define a collection of N -qubit projections operators and a channel from
N qubits to one that will be useful for establishing soundness. First, let

(5.3) \Pi 0 =
\sum 

x\in \scrD 0
N

| x\rangle \langle x| and \Pi 1 =
\sum 

x\in \scrD 1
N

| x\rangle \langle x| ,

where \scrD 0
N and \scrD 1

N are subsets of \Sigma N representing classical code words of the concate-
nated Steane code. A standard basis measurement of any qubit encoded using this
code will necessarily yield an outcome in one of these two sets: an encoded | 0\rangle state
yields an outcome in \scrD 0

N , and an encoded | 1\rangle state yields an outcome in \scrD 1
N . The

projections \Pi 0 and \Pi 1 therefore correspond to these two possibilities, while the pro-
jection operator 1 - (\Pi 0 +\Pi 1) corresponds to the situation in which a standard basis
measurement has yielded a result outside of the classical code space \scrD N = \scrD 0

N \cup \scrD 1
N .

Also define projections

(5.4) \Delta 0 =
1
\otimes N + Z\otimes N

2
and \Delta 1 =

1
\otimes N  - Z\otimes N

2
,

which are the projections onto the spaces spanned by all even- and odd-parity standard
basis states, respectively. It holds that \Pi 0 \leq \Delta 0 and \Pi 1 \leq \Delta 1, as the codewords in
\scrD 0

N all have even parity and the codewords in \scrD 1
N all have odd parity. Finally, define

a channel \Xi N , mapping N qubits to 1 qubit, as follows:

(5.5) \Xi N (\sigma ) =
\langle 1\otimes N , \sigma \rangle 1+ \langle X\otimes N , \sigma \rangle X + \langle Y \otimes N , \sigma \rangle Y + \langle Z\otimes N , \sigma \rangle Z

2

for every N -qubit operator \sigma . It is evident that this mapping preserves trace, and is
completely positive whenN \equiv 1 (mod 4), which holds becauseN is an even power of 7.
The complete positivity of \Xi N when N \equiv 1 (mod 4) may be verified by establishing
that its Choi operator is positive semidefinite, which is a routine verification:

(5.6)

J(\Xi N ) =
1

2

\bigl( 
1
\otimes (N+1) +X\otimes (N+1)  - Y \otimes (N+1) + Z\otimes (N+1)

\bigr) 
=

1

8

\bigl( 
1
\otimes (N+1) +X\otimes (N+1)  - Y \otimes (N+1) + Z\otimes (N+1)

\bigr) 2
.
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One may observe that the adjoint mapping to \Xi N is given by

(5.7) \Xi \ast 
N (\tau ) =

\langle 1, \tau \rangle 1\otimes N + \langle X, \tau \rangle X\otimes N + \langle Y, \tau \rangle Y \otimes N + \langle Z, \tau \rangle Z\otimes N

2
,

and satisfies

(5.8) \Xi \ast 
N (| 0\rangle \langle 0| ) = \Delta 0 and \Xi \ast 

N (| 1\rangle \langle 1| ) = \Delta 1.

Now, consider the state \rho = \Xi \otimes n
N (\xi ) of the qubits (X1, . . . ,Xn) that is obtained

from \xi when \Xi N is applied independently to each of the N -tuples of qubits in (5.2).
We will prove that the verifier must reject with nonnegligible probability for a given
choice of r provided that \rho violates the corresponding Hamiltonian term Hr. Because
every n-qubit state creates a nonnegligible violation in at least one Hamiltonian term
for a negative problem instance, this will suffice to prove the soundness of the proof
system.

For each random string r generated by the coin-flipping procedure, one may de-
fine a measurement on the state \xi that corresponds to the verifier's actions and final
decision to accept or reject given this choice of r, assuming the prover behaves opti-
mally after the coin flipping and the verifier's measurement take place. Specifically,
corresponding to the Hamiltonian term Hr = C\ast 

r | 0k\rangle \langle 0k | Cr, acceptance is represented
by a projection operator \Lambda r on the qubits

(5.9)
\bigl( 
Yi1
1 , . . . ,Y

i1
N

\bigr) 
, . . . ,

\bigl( 
Yik
1 , . . . ,Y

ik
N

\bigr) 
defined as follows:

(5.10) \Lambda r =
\sum 
z\in \Sigma k

z \not =0k

\bigl( 
C\otimes N

r

\bigr) \ast \bigl( 
\Pi z1 \otimes \cdot \cdot \cdot \otimes \Pi zk

\bigr) \bigl( 
C\otimes N

r

\bigr) 
.

The probability that the verifier rejects, for a given choice of r, is therefore at least
1  - \langle \Lambda r, \xi \rangle . Because \Pi 0 \leq \Delta 0 and \Pi 1 \leq \Delta 1, the probability of rejection is therefore
at least

(5.11)

1 - 
\sum 
z\in \Sigma k

z \not =0k

\bigl\langle \bigl( 
C\otimes N

r

\bigr) \ast \bigl( 
\Delta z1 \otimes \cdot \cdot \cdot \otimes \Delta zk

\bigr) \bigl( 
C\otimes N

r

\bigr) 
, \xi 
\bigr\rangle 

=
\bigl\langle \bigl( 
C\otimes N

r

\bigr) \ast \bigl( 
\Delta 0 \otimes \cdot \cdot \cdot \otimes \Delta 0

\bigr) \bigl( 
C\otimes N

r

\bigr) 
, \xi 
\bigr\rangle 
.

By considering properties of the channel \Xi N , we conclude that the verifier rejects with
probability at least

(5.12)

\bigl\langle \bigl( 
C\otimes N

r

\bigr) \ast \bigl( 
\Xi \ast 
N (| 0\rangle \langle 0| )\otimes \cdot \cdot \cdot \otimes \Xi \ast 

N (| 0\rangle \langle 0| )
\bigr) 
C\otimes N

r , \xi 
\bigr\rangle 

=
\bigl\langle 
0k

\bigm| \bigm| \Xi \otimes k
N

\bigl( 
C\otimes N

r \xi 
\bigl( 
C\otimes N

r

\bigr) \ast \bigr) \bigm| \bigm| 0k\bigr\rangle = \bigl\langle 
C\ast 

r | 0k\rangle \langle 0k | Cr,\Xi 
\otimes k
N (\xi )

\bigr\rangle 
=

\bigl\langle 
Hr, \rho 

\bigr\rangle 
.

Here we have used the observation that

(5.13) \Xi \otimes k
N

\bigl( 
C\otimes N\sigma 

\bigl( 
C\otimes N

\bigr) \ast \bigr) 
= C\Xi \otimes k

N (\sigma )C\ast 

for every k-qubit Clifford operation C and every kN -qubit state \sigma , which may be
verified by considering the action of \Xi N on Hadamard, phase, and controlled-not
gates.

D
ow

nl
oa

de
d 

07
/0

7/
20

 to
 1

28
.1

94
.1

8.
45

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

270 A. BROADBENT, Z. JI, F. SONG, AND J. WATROUS

Intuitively speaking, the argument above shows that whatever state a malicious
prover sends in the first message, one can essentially decode that state with respect
to a highly simplified variant of the encoding scheme (after peeling off the quantum
one-time pad and discarding the trap qubits), recovering a state that would pass the
Hamiltonian energy test with at least the same probability as the verifier's acceptance
probability in our zero-knowledge proof system. Because this probability must be
bounded away from 1 on average for any no-instance of the problem, we obtain a
soundness guarantee for the proof system.

6. Zero-knowledge property of the proof system. We now prove that the
proof system described in section 4 is zero-knowledge in the quantum computational
sense, assuming that the commitment scheme used in the proof system is uncondition-
ally binding and quantum computationally concealing. The proof has several steps, to
be presented below, but first we will summarize the main technical goal of the proof.

Figure 6.1 shows a diagram of the interaction between the honest participants in
the proof system. A cheating verifier aiming to extract knowledge from the prover
might, of course, not follow the prescribed actions of the honest verifier. In particular,
the cheating verifier may take a quantum register as input, store quantum informa-
tion in-between its actions, and output a quantum register. Figure 6.2 illustrates
such a cheating verifier interacting with the honest prover. The goal of the proof is
to demonstrate that, for any cheating verifier of the form suggested by Figure 6.2,
there exists an efficient simulator that implements a channel that is computationally
indistinguishable from the channel implemented by the cheating verifier and prover
interaction. In particular, the simulator does not have access to the witness state \rho .
This will be done, through a hybrid-style argument, over the course of several steps.

Step 1: Simulating the coin-flipping protocol. By the results of [15], there
must exist an efficient simulator S1 for the interaction of V \prime 

1 with P1. To be more
precise, for S1 being given an input of the same form as V \prime 

1 , along with a uniformly
chosen random string r of the length required by our proof system, the resulting
action is quantum computationally indistinguishable from V \prime 

1 interacting with P1.

\rho P0

P1

P3

V1 V2 V3

X

(Y, z)

((t, \pi , a, b), s)

r

(Y, z, r)

u

(z, r, u) output

Fig. 6.1. The interaction between honest participants. The prover's quantum witness \rho is
encoded into Y together with the encoding key (t, \pi , a, b) by the prover's action P0. The string z
represents the prover's commitment to (\pi , a, b) and the string s represents random bits used by
the prover to implement this commitment. The string r represents the random bits generated by
the coin-flipping protocol, which is depicted within the dotted rectangle on the left. The string u
represents the verifier's standard basis measurements for a subset of the qubits of Y determined by
the challenge corresponding to the random string r. The classical zero-knowledge protocol is depicted
within the dotted rectangle on the right.
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\rho P0

P1

P3

V \prime 
1 V \prime 

2 V \prime 
3

Z0

X

(Y, z)

((t, \pi , a, b), s)

r

Z1

u

Z2 Z3

Fig. 6.2. A potentially dishonest verifier takes an auxiliary quantum register Z0 as input, may
store quantum information (represented by registers Z1 and Z2), and outputs quantum information
stored in register Z3.

\rho P0

coins

P3

S1 V \prime 
2 V \prime 

3

Z0

X

(Y, z)

((t, \pi , a, b), s)

r

Z1

u

Z2

r

Z3

Fig. 6.3. The interaction corresponding to the execution of the coin-flipping protocol has been
replaced by a simulator S1 along with a true random string generator (labeled coins).

Figure 6.3 illustrates the process that is obtained by performing this substitution. As
the simulator S1 together with the true random string generator is computationally
indistinguishable from the interaction between V \prime 

1 and P1, the process illustrated in
Figure 6.3 is computationally indistinguishable from the process illustrated in Fig-
ure 6.2. It therefore suffices for us to prove that the process illustrated in Figure 6.3
can be efficiently simulated (without access to the witness state \rho ).

Step 2: Simulating the classical zero-knowledge protocol. In the next
step of the proof, we replace the interaction between a cheating verifier V \prime 

3 and the
prover P3 in the classical zero-knowledge protocol by an efficient simulator S3 together
with the predicate Q, as is illustrated in Figure 6.4.

To describe this step in greater detail, we first observe that the prover holds an
encoding key (t, \pi , a, b) along with the random string s it has used to commit to
the tuple (\pi , a, b). The commitment z = commit((\pi , a, b), s) is sent to the verifier,
together with the encoding register Y, in the first step of the proof system. The
verifier then sends a string u that, in the honest case, represents the output of a
measurement of some subset of the qubits of Y with respect to the standard basis,
after the transversal application of a Clifford operation depending on the random
choice of r. The statement that the honest prover aims to prove in the classical zero-
knowledge protocol is that there exists an encoding key (t, \pi , a, b) along with a string
s such that z = commit((\pi , a, b), s) and Q(r, t, \pi , a, b, u) = 1.
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\rho P0

coins
Q

S1 V \prime 
2 S3

Z0

X

(Y, z)

(t, \pi , a, b)

r

Z1

u

Z2

r

Z3

s

Fig. 6.4. The interaction corresponding to the execution of the classical zero-knowledge protocol
has been replaced by a simulator S3 along with the predicate Q. It is assumed that when the output
of Q is 0, the simulator S3 behaves as the cheating verifier V \prime 

3 would when the prover aborts the
proof system. The string s produced by P0 in forming the commitment to (\pi , a, b) is discarded.

\rho P0

coins
Q

S1 V \prime 
2 S3

commit to
(\pi 0, a0, b0)

z\prime 

Z0

X

Y

(t, \pi , a, b)

r

Z1

u

Z2

r

Z3

(s, z)

Fig. 6.5. The commitment z given as input to S1 has been replaced by a dummy commitment
z\prime to a fixed tuple (\pi 0, a0, b0). Having been replaced by z\prime , the original commitment z computed by
P0 may be considered to be discarded along with the random string s used to form that commitment.

The honest prover always holds an encoding key (t, \pi , a, b) and a binary string s for
which z = commit((\pi , a, b), s), so we need not concern ourselves with the case that this
is not so. The case that Q(r, t, \pi , a, b, u) = 1 therefore corresponds to a yes-instance of
the classical zero-knowledge protocol, and by the assumption that the classical zero-
knowledge protocol is indeed computational zero-knowledge against quantum attacks
(q.v. Definition 2.6), there must therefore exist an efficient simulator S3 that computes
a transformation from Z2 to Z3 that is computationally indistinguishable from the one
induced by the interaction between V \prime 

3 and P3 in this case (which is signaled to S3 when
it receives a 1 input from the predicate Q). We have assumed that the prover aborts
in the case Q(r, t, \pi , a, b, u) = 0, and so we define S3 so that when it receives a 0 input
from the predicate Q, it directly mimics whatever V \prime 

3 does in the situation that the
prover aborts. It follows that the process described in Figure 6.4 is computationally
indistinguishable from the one described by Figure 6.3. We observe that the string s
used by P0 to form the commitment z = commit((\pi , a, b), s) can safely be discarded
immediately after P0 is run, as it is never again used in Figure 6.4.

Step 3: Eliminating the commitment. The next step is to eliminate the
commitment. To this end, we consider the process described in Figure 6.5, which is
identical to Figure 6.4 except that the commitment z to the tuple (\pi , a, b) given as
input to S1 has been replaced by a dummy commitment z\prime to a fixed tuple (\pi 0, a0, b0).
Specifically, we take \pi 0 to be the identity permutation and a0 and b0 to be all-zero
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\rho P0

z

X (t, \pi , a, b)

Y

s

commit to
(\pi 0, a0, b0)

\rho P0

z\prime 

X (t, \pi , a, b)

Y

(s, z)

Fig. 6.6. The processes described in Figures 6.4 and 6.5 differ only in the initial portions
depicted. As the subsequent steps are quantum polynomial-time computable and identical for two
processes, we find that the processes described in Figures 6.4 and 6.5 are quantum computationally
indistinguishable provided that the states generated by the processes depicted are quantum computa-
tionally indistinguishable.

strings of length 2nN . For the sake of clarity, we note explicitly that we do not replace
(\pi , a, b) with (\pi 0, a0, b0) as an input to the predicate Q, it is only the commitment
to S1 that is changed from Figure 6.4 to Figure 6.5. We claim that the processes
described in Figures 6.4 and 6.5 are quantum computationally indistinguishable.

To verify this claim, observe first that S1, V
\prime 
2 , S3, Q, and the generation of the

random coin flips r are all polynomial-time computable quantum processes. Therefore,
if the processes described in Figures 6.4 and 6.5 were computationally distinguishable,
the simpler processes described in Figure 6.6, which simply generate states, would
also necessarily be computationally distinguishable. This is because the processes
described in Figures 6.4 and 6.5 are obtained by composing the processes depicted
in Figure 6.6 with exactly the same polynomial-time computable quantum process
obtained from S1, V

\prime 
2 , S3, Q, and the generation of the random coin flips r.

To justify the claim made above, it therefore suffices to prove that the processes
shown in Figure 6.6 are quantum computationally indistinguishable. Observe that
the states generated by these two processes can be expressed as

(6.1)
\sum 
z

p(z)| z\rangle \langle z| \otimes \tau z and
\sum 
z

p(z)| z\prime \rangle \langle z\prime | \otimes \tau z

for some choice of a distribution p and a collection of states \{ \tau z\} representing both
Y and (t, \pi , a, b). If these two states were quantum computationally distinguishable,
then by convexity the states

(6.2) | z\rangle \langle z| \otimes \tau z and | z\prime \rangle \langle z\prime | \otimes \tau z

would also be quantum computationally distinguishable for at least one choice of z,
which directly contradicts the concealing property of the commitment scheme. We
have therefore proved that the processes described in Figures 6.4 and 6.5 are com-
putationally indistinguishable. For clarification, notice that when we replace z by
z\prime , the input to the classical zero-knowledge proof could become a negative instance.
However, S3 cannot distinguish between a yes- or no-instance here, for otherwise the
hiding property of the commitment would be broken.

Before proceeding to the next step of the proof, it will be convenient to simplify
the description of the process illustrated in Figure 6.5 without making any changes
to the process itself. First, recall that P0 is obtained by first performing the en-
coding steps described in section 4.1, followed by the formation of the commitment
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commit to
(\pi 0, a0, b0)

S1 V \prime 
2

V \prime 

Z0

z\prime 

Z1

Y u

r

Z2

Fig. 6.7. The commitment z\prime to a fixed tuple (\pi 0, a0, b0), the simulator S1, and the dishonest
verifier action V \prime 

2 may be merged into a single efficiently implementable action V \prime that represents
an attack against the encoding scheme.

E

V \prime 

Q

coins

\rho 

S3

r

r

Y

Z0

(t, \pi , a, b)

u

Z2

X

Z3

Fig. 6.8. After making the simplifications described in the text, a process identical to the one
described in Figure 6.5 is obtained. The boxed labeled E represents the encoding step performed by
the prover, as described in section 4.1, and the box labeled V \prime denotes the merger of S1, V \prime 

2 , and the
formation of the dummy commitment.

z = commit((\pi , a, b), s) (along with the random string s used to form this commit-
ment). However, given that the commitment z and the random string s are discarded
in the process described in Figure 6.5, we may as well replace P0 with the process that
performs just the encoding steps alone, without the formation of the commitment.
We will name this process E, and in the interest of clarity let us state explicitly that E
is the process that takes X as input and outputs Y along with (t, \pi , a, b), as described
in section 4.1. Second, we may merge the commitment to the fixed tuple (\pi 0, a0, b0),
the simulator S1, and the cheating verifier action V \prime 

2 to form the single, efficiently
implementable action V \prime as suggested by Figure 6.7. The process resulting from these
simplifications is illustrated in Figure 6.8.

Step 4: Simulating an attack on the encoding scheme. It remains to prove
that, for any efficiently implementable actions V \prime and S3, the channel implemented
by the process described by Figure 6.8 can be efficiently simulated. In fact, it will
be possible to efficiently simulate this channel with statistical accuracy, not just in
a computationally indistinguishable sense. This is not surprising: we have claimed
that the computational zero-knowledge property of our proof system is based on a
computationally concealing commitment scheme, and the uses of the commitment
scheme have all been eliminated from consideration by the steps above.
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E

V \prime 

Q

coins

\rho r

S3
r

r

Y

Z0

(t, \pi , a, b)

u

Z2

r

Z3

Fig. 6.9. The simulation of the process shown in Figure 6.8 is nearly identical to that process,
except that it uses the random string r to encode a state \rho r that is guaranteed to pass the challenge
corresponding to r, rather than encoding the witness state \rho .

E

V \prime 
r

Qr\xi 

Y

Z0

(t, \pi , a, b)

u

Z2

Fig. 6.10. An arbitrary n-qubit state \xi is encoded, and the cheating verifier V \prime and predicate
Q for a fixed choice of a string r interact as depicted. It will be proved that the channels obtained
by substituting \rho and \rho r for \xi are approximately equal.

At this point we may describe the simulator directly: it is illustrated in Figure 6.9,
and it represents the most straightforward approach to obtaining a simulator.

This simulator differs from the process described in Figure 6.8 in that it uses the
output of the random string generator to choose a quantum state that, once encoded,
passes the randomly selected Hamiltonian term challenge with certainty. It is trivial
to efficiently prepare such a state given the string r. It remains to prove that the
channel implemented by the simulator described in Figure 6.9 is indistinguishable
from the channel implemented by the process described in Figure 6.8. By convexity
it suffices to prove that this is so for every fixed choice of the string r. Moreover,
it suffices to prove that the two processes obtained by removing S3 from Figures 6.8
and 6.9, so that the outputs of the processes are Z2 and the output bit of Q, are
indistinguishable---for composing those two processes with the same action S3 cannot
make them more distinguishable.

With this goal in mind, consider the process described in Figure 6.10, in which
an arbitrary state \xi is encoded (corresponding either to \rho or \rho r in Figures 6.8 and
6.9), and the string r is fixed (which has been indicated by the substitution of V \prime 

r and
Qr for V \prime and Q, respectively). We will prove that the channel implemented by any
such process can have only a limited dependence on the state \xi .

More specifically, let us assume that \xi 0 and \xi 1 are arbitrary n-qubit states, let p0
and p1 denote the probabilities with which these two states would pass the challenge
determined by r for an honest prover and verifier pair (i.e., pi = 1 - \langle \xi i| Hr| \xi i\rangle , i = 0, 1).
Let \Psi 0 and \Psi 1 denote the channels from Z0 to Z2 together with the output bit of the
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V \prime 
r

XcZdCr C\ast 
r Xc wY

Z0 Z2

Z0

Y

V \prime \prime 
r

Cr

Z2

w
v

Fig. 6.11. The prover's one-time pad merged with the cheating verifier operation V \prime 
r . Averaging

over random choices of c and d results in a process that can alternatively be described as illustrated in
the lower diagram. In this process, V \prime \prime 

r represents a so-called quantum instrument, which transforms
Z0 into Z2 and produces a classical measurement outcome. In this case, this classical measurement
outcome is XORed onto the string produced by a standard basis measurement of those qubits that
correspond to the Hamiltonian term given by r. (Here, one should interpret Cr and C\ast 

r as referring
to the transversal application of the corresponding Clifford operation, and interpret the rightmost
Xc operation in the top circuit as a classical XOR from the relevant bits of c onto the verifier's
output string u.)

predicate Qr that are implemented by the process shown in Figure 6.10 when \xi 0 or
\xi 1 is substituted for \xi , respectively.

We claim that if | p0  - p1| is negligible, then the distance \| \Psi 0  - \Psi 1\| \diamond is also neg-
ligible. The two steps that follow establish that this claim is true. By the assumption
that the prover initially holds a witness state \rho that satisfies every Hamiltonian term
with probability exponentially close to 1, this will complete the proof.

Step 5: Twirling the cheating verifier. To prove the fact suggested above
regarding the channel implemented by Figure 6.10, we will naturally need to make use
of the specific properties of the encoding scheme, which have not played an important
role in the analysis thus far. The first step is to recognize that the effect of the prover's
one time pad is to twirl3 the verifier as Figure 6.11 illustrates.

More specifically, the last step of the encoding process is the quantum one-time
pad: the prover independently chooses one of the Pauli operations 1, X, Z, or XZ
for each qubit of Y and applies that operation, storing the randomly selected strings
a, b \in \Sigma 2Nn. With respect to the Clifford operation Cr associated with the randomly
selected challenge (determined by the string r), the prover computes the pair (c, d)
for which it holds that

(6.3) XaZb =
\bigl( 
C\otimes 2N

r

\bigr) \ast 
XcZd

\bigl( 
C\otimes 2N

r

\bigr) 
.

The first step in computing the predicate Qr is the application of Xc to the string u,
which is supposed to represent the outcome of a standard basis measurement of a
subset of the qubits after the transversal application of Cr to the corresponding qubits
in the register Y. The resulting string w = u\oplus ci1 \cdot \cdot \cdot cik is then fed into the predicate
Rr described previously. Merging the Clifford operation C\ast 

r with the cheating verifier

3The term twirl is commonly used in quantum information theory to describe a process whereby
a symmetrization over a collection of randomly chosen unitary operations has a particular effect on
a state or channel. Twirled states and channels often take on a significantly simpler form than the
original state or channel prior to twirling. See examples in [2, 10].
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F Rr\xi 

Cr

Y

(t, \pi )

w

v

Fig. 6.12. An XOR attack against the prover's encoding scheme without the one-time pad. The
transformation F denotes the first three steps of the prover's encoding scheme.

operation V \prime 
r , then averaging over c and d chosen uniformly at random (which is

equivalent to averaging over a and b chosen uniformly at random), one obtains a
process of the form illustrated in the lower diagram in Figure 6.11. In greater detail,
the channel obtained by first performing Zd on Y for d chosen uniformly at random,
followed by the operation C\ast 

r performed on Y, followed by V \prime 
r on (Z0,Y), is a channel

that effectively treats Y as if it were classical, so that it can be expressed as

(6.4)
\sum 
y,z

\Phi y,z \otimes \Delta y,z,

where each \Phi y,z is a completely positive map and \Delta y,z is defined as

(6.5) \Delta y,z(Y ) = | z\rangle \langle y| Y | y\rangle \langle z| 

for every y \in \Sigma 2nN and z \in \Sigma 2kN . For a uniformly selected string c, composing this
operation with the XOR operations represented by Xc yields the operation

(6.6)
\sum 
y,z

\Phi y,z \otimes 
\sum 
c

\Delta y\oplus c,z\oplus ci1 \cdot \cdot \cdot cik =
\sum 
y,z

\Phi y,z \otimes 
\sum 
c

\Delta c,ci1 \cdot \cdot \cdot cik\oplus yi1
\cdot \cdot \cdot yik

\oplus z,

which has the form suggested in Figure 6.11 (for v = yi1 \cdot \cdot \cdot yik \oplus z).
By the observation we have just made, it suffices to consider processes of the form

described in Figure 6.12, in which an n-qubit state \xi is encoded as described by the
first three steps in the prover's encoding procedure (but not including the one-time
pad), the Clifford operation Cr (for a fixed choice of r) is applied transversally to the
resulting register, and the qubits on which those transversal Clifford operations act
are measured with respect to the standard basis. For some arbitrary but fixed string
v, the XOR of the outcome of this measurement with v is fed into the predicate Rr.
The process outputs a single bit, obtained by evaluating the predicate Rr.

Step 6: Encoding security under XOR attacks. Now let us return to the
claim made previously, in which \xi 0 and \xi 1 represent n-qubit states, p0 and p1 denote
the probabilities with which these two states would pass the challenge determined
by r (for an honest prover and verifier pair), and \Psi 0 and \Psi 1 denote the channels
implemented by the process shown in Figure 6.10 when \xi 0 or \xi 1 is substituted for
\xi , respectively. If it is the case that the distributions of output bits obtained by
substituting \xi 0 and \xi 1 for \xi in Figure 6.12 have negligible statistical difference, then
it follows that the difference \| \Psi 0  - \Psi 1\| \diamond is also negligible. It therefore remains to
argue that the distributions obtained by substituting \xi 0 and \xi 1 into Figure 6.12 have
negligible statistical difference.

Before finishing off the last step of the analysis, it is helpful to consider the
possible outcomes of the measurement, the definition of Rr, and the behavior of the
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procedure described in Figure 6.12 when v = 0 \cdot \cdot \cdot 0 is the all-zero string. For any
choice of \xi , the measurement is guaranteed to yield a string of length 2kN taking the
form ui1 \cdot \cdot \cdot uik , where ui1 , . . . , uik \in \Sigma 2N and (i1, . . . , ik) index the qubits on which
Cr acts nontrivially. With respect to a particular choice of (t, \pi ), if we define strings
yi, zi \in \Sigma N for each i \in \{ i1, . . . , ik\} so that \pi (yizi) = ui, then these two conditions
will necessarily be met:

1. yi \in \scrD N for every i \in \{ i1, . . . , ik\} , and
2.

\bigl\langle 
zi1 \cdot \cdot \cdot zik

\bigm| \bigm| C\otimes N
r

\bigm| \bigm| ti1 \cdot \cdot \cdot tik\bigr\rangle \not = 0.
Moreover, in the case that r determines a Hamiltonian term challenge, the event that
yi \in \scrD 1

N for at least one index i \in \{ i1, . . . , ik\} is equivalent to \xi passing this challenge.
Thus, in the case that v = 0 \cdot \cdot \cdot 0, the process described in Figure 6.12 outputs the
bit 1 with precisely the probability that an honest prover and verifier pair would result
in acceptance, assuming the prover's initial state is \xi and r is selected as a random
string determining the challenge.

Now let us assume that v is a nonzero string, and let us consider two cases: the
first is that the Hamming weight | v| 1 of v satisfies | v| 1 < K for K being the minimum
Hamming weight of a nonzero codeword in \scrD N , and the second case is that | v| 1 \geq K.

If it is the case that | v| 1 < K, then there are two possible ways that the value of the
predicate Rr could change in comparison to the case v = 0 \cdot \cdot \cdot 0. In both cases, if there
is a change, it must be from 1 to 0, caused by conditions 1 or 2 above being violated.
The first case is that one or more bits in one of the codewords yi1 , . . . , yik are flipped,
causing condition 1 to be violated. The second case is that a measurement outcome
for the trap qubits is obtained that potentially violates condition 2. Note that it is
not possible that condition 1 remains satisfied while the Hamiltonian term challenge
condition that yi \in \scrD 1

N for at least one index i \in \{ i1, . . . , ik\} changes, as such a change
would require at least K bit-flips to cause a logical change in valid codewords. It is
unimportant for the purposes of the analysis to determine the probability with which
one of the two conditions becomes violated, except to observe that it is independent
of \xi . (In somewhat more detail, the string v may be written as v = vi1 \cdot \cdot \cdot vik , and the
probability that neither of the two conditions is affected is given by the probability that
\pi  - 1(vi) places no 1's within the first N bits or over a trap qubit left in a standard basis
state within the second N bits, for a random choice of \pi and for each i \in \{ i1, . . . , ik\} .)

If it is the case that | v| 1 \geq K, then there is a possibility that, in comparison to the
functioning of the process for v = 0 \cdot \cdot \cdot 0, the Hamiltonian term challenge condition
that yi \in \scrD 1

N for at least one index i \in \{ i1, . . . , ik\} could be affected. That is, v
has enough Hamming weight to affect the logical values represented by the codewords
yi1 , . . . , yik . However, as we will show, the assumption that | v| 1 \geq K necessarily leads
to a negligible probability that the second condition remains satisfied---for a string v
having Hamming weight K or higher, the probability that none of the traps is sprung
is exponentially small. In order to argue that this is so, we require the following
simple lemma.

Lemma 6.1. Let k be a positive integer, let C be a Clifford operation on k qubits,
and let j \in \{ 1, . . . , k\} . There exists a string t \in \{ 0,+,\circlearrowright \} k, a bit a \in \Sigma , and pure
states | \phi 0\rangle and | \phi 1\rangle on j  - 1 qubits and k  - j qubits, respectively, so that

(6.7) C| t\rangle = | \phi 0\rangle | a\rangle | \phi 1\rangle .

Equivalently, there is a choice of t so that the jth qubit of C| t\rangle is left in a standard
basis state.
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Proof. The lemma is equivalent to the existence of a string t so that | t\rangle is an
eigenvector of the operator

(6.8) C\ast \bigl( 
1
\otimes (j - 1) \otimes Z \otimes 1

\otimes (k - j)
\bigr) 
C.

As the Clifford group normalizes the Pauli group, the operator (6.8) is a scalar multiple
of a tensor product of Pauli operators and identity operators. The lemma follows from
the observation that t may be chosen so that each | t1\rangle , . . . , | tk\rangle is an eigenvector of
the Pauli operator in the corresponding position.

By this lemma, one finds that for a random choice of t \in \{ 0,+,\circlearrowright \} kN , and for
any k-qubit Clifford operation C applied transversally to | t\rangle , each qubit is left in a
standard basis state with probability at least 3 - k, and for any choice of N or fewer
qubits acted on by distinct Clifford operations these events are independent. In greater
detail, if the qubits

(6.9)
\bigl( 
Z1
1, . . . ,Z

k
1

\bigr) 
, . . . ,

\bigl( 
Z1
N , . . . ,Z

k
N

\bigr) 
are initialized to the state | t\rangle for t \in \{ 0,+,\circlearrowright \} kN chosen uniformly at random, and
the k-qubit Clifford operation C is applied independently to each k-tuple of qubits,
then each qubit is left in a standard basis state with probability at least 3 - k, and the
states of the k-tuples of qubits are independent.

Now we return to the analysis for a string v of length 2kN having Hamming
weight at least K. By virtue of the fact just mentioned, it is straightforward to obtain
a negligible upper bound on the probability for the process described in Figure 6.12
to output 1. As this event requires that a random choice of the permutation \pi leaves
none of the 1-bits of v in positions corresponding to trap qubits left in standard basis
states by the transversal action of Cr, we find that the probability to output 1 is
exponentially small in K. In particular, this probability is at most

(6.10)

\biggl( 
1 - 1

3k+1

\biggr) K/k

= exp( - \varepsilon (k)K),

where \varepsilon (k) denotes a positive real number depending on k (which the reader will recall
is constant and may be taken to be k = 5) but not K.

From a consideration of the two cases just presented, we may conclude the follow-
ing. Suppose as before that \xi 0 and \xi 1 are n-qubit states that may be substituted for
\xi in Figure 6.12, and that the probabilities p0 and p1 for these states to pass the chal-
lenge determined by a fixed choice of r have negligible difference. Let us write q0(v)
and q1(v), respectively, to denote the probability that the process described in Fig-
ure 6.12 outputs 1. As noted before, it holds that p0 = q0(0 \cdot \cdot \cdot 0) and p1 = q1(0 \cdot \cdot \cdot 0).
For any choice of v satisfying | v| 1 < K, we have that q0(v) = \beta (v)q0(0 \cdot \cdot \cdot 0) and
q1(v) = \beta (v)q1(0 \cdot \cdot \cdot 0) for \beta (v) \in (0, 1) that is independent of \xi 0 and \xi 1. Finally, for
any choice of v satisfying | v| 1 \geq K, we have that q0(v) and q1(v) are both negligible.
It therefore follows that the difference | q0(v) - q1(v)| is negligible in all cases, which
completes the proof.

7. Conclusion. This paper gives a zero-knowledge proof system for any problem
in QMA assuming the existence of a quantum computationally concealing and uncon-
ditionally binding commitment scheme. Such a commitment scheme can be obtained
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assuming quantum-secure one-way permutations [1] (or injections more generally). It
also appears feasible to use a commitment scheme with an interactive commit phase,
such as Naor's two-message commitment scheme [47] based on a pseudorandom gen-
erator. This would reduce the zero-knowledge protocol to a quantum-secure one-way
function [34, 50, 61], and we leave this for further verification. We conclude with a
few open questions and future directions.

1. Our proof system inherits the soundness error of straightforward verifica-
tion procedure for the local Clifford--Hamiltonian problem, which is to ran-
domly select a Hamiltonian term and perform a measurement corresponding
to it. When an arbitrary QMA problem is reduced to the local Hamiltonian
problem, the resulting soundness error may potentially be large (polynomi-
ally bounded away from 1). Can a zero-knowledge proof system for any
QMA problem be obtained with small soundness error while maintaining
the other features of our proof system (e.g., constant round of communica-
tions)?
We note that if a prover has polynomially many copies of a valid quan-
tum witness, then a parallel repetition of our proof system may yield a
constant round zero-knowledge proof system having small soundness error
for any QMA problem---but this would require a parallel repetition result
concerning zero-knowledge proof systems for NP secure against quantum at-
tacks. Analogous results for zero-knowledge proofs for NP against classical
attacks are known [18, 24], but they involve sophisticated rewinding argu-
ments for which known quantum rewinding techniques do not seem to be
applicable.

2. Are there natural formalizations of proofs of quantum knowledge? Roughly
speaking, one would expect such a notion to require that whenever a prover
is able to prove the validity of a statement, one could construct a knowledge
extractor that can extract a quantum witness given access to such a prover.
(Unruh [53] has formulated a notion of quantum proofs of knowledge that
refers to the extraction of a classical witness from a possibly malicious quan-
tum prover, but here we are referring to the extraction of a quantum witness.)
It seems plausible that our proof system could be adapted to such a notion,
although we have not investigated this in depth.

3. Finally, we make one further remark on an abstract view of our proof system.
Classically speaking, one can imagine a ``commit-and-open"" primitive where
a sender commits to a message m, and later opens sufficient information
so that a receiver can test a property \scrP (\cdot ) on m, and nothing more. For
example, \scrP can be an NP-relation R(x, \cdot ) that checks if message m is a
valid witness. This can be implemented easily by a standard commitment
scheme and during the opening phase, the sender and receiver run a zero-
knowledge proof of R(x,m) = 1 instead of the standard opening. Our proof
system, which combines a commitment scheme and classical zero-knowledge
proofs for NP, can be viewed as a quantum analogue. Namely, we commit
to a witness state and open just enough information to verify that some
reduced density of the witness state falls into a specific subspace. We can
only deal with properties of a very special form, and it is an interesting
direction for future work to generalize and find applications of this sort of
primitive.D
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