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Differential expression (DE) analysis and gene set enrichment (GSE) analysis are commonly applied in single cell RNA sequencing 
(scRNA-seq) studies. Here, we develop an integrative and scalable computational method, iDEA, to perform joint DE and GSE analysis 
through a hierarchical Bayesian framework. By integrating DE and GSE analyses, iDEA can improve the power and consistency of DE 
analysis and the accuracy of GSE analysis. Importantly, iDEA uses only DE summary statistics as input, enabling effective data 
modeling through com-plementing and pairing with various existing DE methods. We illustrate the benefits of iDEA with extensive 
simulations. We also apply iDEA to analyze three scRNA-seq data sets, where iDEA achieves up to five-fold power gain over existing 
GSE methods and up to 64% power gain over existing DE methods. The power gain brought by iDEA allows us to identify many 
pathways that would not be identified by existing approaches in these data.
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S ingle-cell RNA sequencing (scRNA-seq) is becoming a
standard technique for transcriptome profiling and is widely
applied to many areas of genomics. Compared to the pre-

vious bulk RNAseq technique that measures the average gene
expression of a potentially heterogeneous cell population, scRNA-
seq is capable of producing gene expression measurements both
at the genome-wide scale and at a single-cell resolution1. Because
of the technical advantages, various scRNA-seq studies are being
performed to reveal complex cellular heterogeneity in tissues,
yielding important insights into many biological processes.
However, due to the low amount of mRNAs available in a single
cell and the low capture efficiency in the sequencing technique,
scRNA-seq data are often extremely noisy2. Effective analysis of
noisy scRNA-seq data requires development of powerful statis-
tical tools. Here, we develop such a tool for two of the
most commonly applied analysis in scRNA-seq studies: differ-
ential expression (DE) analysis and gene set enrichment (GSE)
analysis.
DE analysis is a routine association analysis task in scRNA-seq

studies for identifying genes that are differentially expressed
between cell subpopulations, between experimental conditions, or
between case control status. Commonly applied DE methods in
scRNA-seq include MAST3, SCDE4, and zingeR5, to name a few.
While different DE methods make various modelling assump-
tions to capture diverse aspects of scRNA-seq data6, almost all of
them analyze one gene at a time. Analyzing one gene at a time
can lead to potential power loss, as this approach fails to exploit
consistent DE evidence across similar genes that could otherwise
be used to enhance DE analysis power. It is plausible that due to
low statistical power, different scRNA-seq DE methods would
tend to prioritize a different set of DE genes in real data appli-
cations, leading to sub-optimal performance and inconsistency of
results among different methods. In many other types of asso-
ciation analysis such as genome-wide association studies, it has
been well recognized that Bayesian approaches that model mul-
tiple predictor variables together, even with the simple composite
likelihood strategy where information is borrowed across multiple
predictor variables each treated independently, can substantially
increase power over univariate approaches7.

GSE analysis is also a routine task that aims to aggregate gene-
level DE evidence to the gene set or pathway level. By aggregating
gene-level DE evidence, GSE analysis can facilitate the robust
biological interpretation of DE results. Many different GSE ana-
lysis approaches have been developed, but almost all of them are
developed in the bulk RNAseq analysis setting8. These existing
GSE approaches include over-representation analysis methods,
such as DAVID9 and Fisher’s exact test10; self-contained test
methods, such as t-test11, Chi-square test12, and others; and
competitive test methods such as PAGE13, GSEA14, and CAM-
ERA15. Despite the abundance of the existing GSE methods, their
effectiveness for scRNA-seq analysis remains elusive. Indeed, no
comparison studies have been performed thus far to evaluate the
effectiveness of the existing GSE methods in the scRNA-seq set-
ting. In addition, and perhaps more importantly, almost all
existing GSE methods treat GSE analysis as a separate analytic
step after DE analysis. However, GSE analysis and DE analysis are
interconnected with each other statistically: while DE results are
certainly indispensable for performing GSE analysis to detect
enriched gene sets, detected enriched or unenriched gene sets also
contain invaluable information that can serve as feedback into DE
analysis to enhance its statistical power. Therefore, integrating DE
analysis and GSE analysis has the potential to substantially
increase the power of both and ensure result reproducibility for
scRNA-seq analysis.
Here, we develop a statistical method, which we refer to as the

integrative Differential expression and gene set Enrichment

Analysis (iDEA), that addresses the aforementioned short-
comings of previous methods for scRNA-seq data analysis. iDEA
models all genes together by borrowing information across genes
in terms of DE effect size distributional properties. iDEA also
integrates DE analysis and GSE analysis into a joint statistical
framework, providing substantial power gains for both analytic
tasks. Importantly, iDEA makes use of summary statistics output
from existing DE tools and does not make explicit modeling
assumptions on the individual-level scRNA-seq data. Use of
summary statistics not only allows iDEA to take advantage of
various existing DE models for effective and flexible data mod-
eling, but also ensures its scalable computation to large-scale
scRNA-seq data sets. In addition, incorporating summary sta-
tistics from scRNA-seq DE analysis into GSE analysis under the
framework of iDEA makes GSE analysis less susceptible to gene-
gene correlations and other technical difficulties such as dropout
events. We illustrate the benefits of iDEA with extensive simu-
lations and applications to three scRNA-seq data.

Results
Methods overview and simulation design. An overview of iDEA
is described in Methods, with technical details provided in Sup-
plementary Notes 1 and 2. We also display a schematic for iDEA
in Fig. 1. Briefly, iDEA requires gene-level summary statistics in
terms of fold change/effect size estimates and their standard
errors as inputs. The input summary statistics can be obtained
using any existing scRNA-seq DE methods. As we will show
below, given the input from any DE method, iDEA can often
improve its power. Besides DE summary statistics, iDEA also
requires pre-compiled gene sets. For human data, we have
compiled and pruned a total of 12,033 gene sets from seven
existing gene set/pathway databases including GO16, KEGG17,
Reactome18, BioCarta19, PubChem Compound20, Immune-
SigDB21, and PID22. For mouse data, we have compiled and
pruned a total of 2851 gene sets from GO16. With these inputs,
iDEA examines one gene set at a time, performs inference
through an expectation maximization algorithm, and uses Louis
method23 to compute a calibrated p-value testing whether the
gene set is enriched in DE genes or not. In addition, given any
gene set, iDEA produces for each gene a posterior probability of
DE as its DE evidence. iDEA is implemented as an open source R
package, freely available at www.xzlab.org/software.html.
We performed simulations to evaluate the effectiveness of

iDEA for GSE analysis and DE analysis (details in Methods).
Briefly, we simulated zero-inflated count data for 10,000 genes on
174 cells through a zero-truncated negative binomial distribution
using parameters inferred from a real scRNA-seq data. The
simulated data shared similar characteristics with the real scRNA-
seq data (Supplementary Fig. 1). Among the simulated genes, a
certain percentage of them belong to a gene set and we refer to
this percentage as the gene set coverage rate (CR). In the null
simulations of GSE analysis, each of the 10,000 genes is
randomly assigned to be a DE gene with a probability
exp τ0ð Þ=ð1þ expðτ0ÞÞ, where τ0 determines the baseline prob-
ability of a gene being DE. Note that the null simulations of GSE
analysis contain DE genes, though these DE genes are not
enriched in any gene set. In the alternative simulations of GSE
analysis, the j-th gene is randomly assigned to be a DE gene with
probability expðτ0 þ ajτ1Þ=ð1þ expðτ0 þ ajτ1ÞÞ, where aj is a
binary indicator on whether the j-th gene belongs to the gene set
and τ1 is the gene set enrichment coefficient that determines
whether belonging to the gene set is predictive for the gene being
DE. We performed our main simulations in a baseline scenario
with τ0=−2.0 and CR= 10% and explored different combina-
tions of τ0, τ1 and CR to create various simulation scenarios.
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Simulation results. For GSE analysis, we compared the perfor-
mance of iDEA with the commonly used GSE analysis methods
fGSEA24, CAMERA15, PAGE13, and GSEA14. We found that
iDEA produces well-calibrated p-values under the null in differ-
ent simulation scenarios (Fig. 2 and Supplementary Fig. 2). The
genomic control factor (λgc), defined as the ratio between the
median empirically observed test statistic and the expected
median under the null, is close to one for iDEA across a range of
scenarios. Among the other methods, fGSEA, PAGE, and GSEA
generally produce calibrated p-values (Supplementary Fig. 2);
although occasionally the p-values from PAGE may slightly
deviate from the diagonal line (e.g. when CR= 10% and
τ0=−2.0; Fig. 2d). In contrast, the p-values from CAMERA are
only calibrated when CR is very low (1%) and become increas-
ingly overly conservative with increasingly large CR regardless of
the DE gene percentage (e.g. Fig. 2b–d; the last two columns in
Supplementary Fig. 2). The deflation of CAMERA p-values under
large CR is presumably because the asymptotic normal approx-
imation used in CAMERA is no longer accurate there. Certainly,
we note that under settings with both extremely low τ0 (e.g.
τ0=−3; which corresponds to an average of 4.7% genes being
DE) and extremely low CR (e.g. CR= 1%), the distribution of p-
values from all methods would start to deviate from the expected
null (e.g. Supplementary Fig. 2, τ0=−3, CR= 1%; and to a lesser
extent, CR= 5%). Under these extreme parameter combinations,
the suboptimal performance of iDEA in terms of type I error
control is presumably due to the potential parameter
identifiability issue encountered when fitting rare and
imbalanced event data25. The suboptimal performance of the
other methods is presumably because the asymptotic normal

approximation for obtaining p-values in these methods becomes
no longer accurate.
Besides type I error control, we found that iDEA is more

powerful than the other GSE methods across a range of
alternative scenarios (Fig. 3a, c and Supplementary Fig. 3).
Because different methods have different type I error control, to
allow for fair comparison, we computed power at a fixed false
discovery rate (FDR) of 5%. In the baseline parameter setting of
τ1= 0.5 and CR= 10%, we found that iDEA achieved a power of
98%. In contrast, fGSEA, CAMERA, PAGE and GSEA achieved a
power of 26%, 0%, 8%, and 26%, respectively (Fig. 3a). The power
of iDEA and the other methods all increase with increasing τ1 as
well as with increasing CR (Supplementary Fig. 3). In addition to
the power versus FDR plots, the receiver operating characteristic
(ROC) curves, displaying false positive rates (FPR) across a range
of true positive rates (TPR), also show that iDEA achieves a
higher area under the curve (AUC) for GSE analysis (Supple-
mentary Fig. 4). The superior performance of iDEA over existing
GSE methods presumably is due to the previously known fact that
methods using Kolmogorov Smirnov test (e.g. fGSEA, GSEA) are
often not powerful in detecting differences between the distribu-
tion of DE test statistics in the gene set versus that outside the
gene set, while methods using t-tests on the DE z-scores (e.g.
CAMERA, PAGE) would also fail to detect gene set enrichment
as there is no difference in the mean of DE test statistics in the
gene set versus that outside the gene set26.

For DE analysis, we found that iDEA can improve DE analysis
power regardless of whether the summary statistics are from
MAST3, edgeR5,27 or zingeR5,28 (Fig. 3b, d, Supplementary
Figs. 5, 6). For example, with τ1= 5 and CR= 10%, iDEA
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Fig. 1 Schematic overview of iDEA. iDEA is designed to jointly model all genes together for integrative differential expression (DE) analysis and gene set
enrichment (GSE) analysis. iDEA requires input association summary statistics from existing scRNA-seq DE methods in terms of the DE effect size
estimate β̂j and its standard error se β̂j

� �
for every gene (j ¼ 1; 2; � � � ; p) (top left panels). iDEA also requires a pre-defined set of gene sets that we have

compiled and pruned for use with the software (top right panels). With these two inputs, iDEA performs joint DE and GSE analysis through a Bayesian
hierarchical model. For each gene set, iDEA outputs a p-value for testing whether the gene set is enriched with DE genes (bottom right panel) for GSE
analysis. In addition, iDEA outputs the posterior inclusion probability of each gene being DE (bottom left panel) for DE analysis. By modeling all genes
together and integrating DE and GSE analyses in a joint framework, iDEA can increase the power of both analyses.
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achieves a power of 81%, 61%, and 83% at a true FDR of 5%,
when it uses the input summary statistics obtained from zingeR,
MAST and edgeR, respectively. In contrast, the power of these
three different DE methods are 65%, 52%, and 67%, respectively
(Supplementary Figs. 5, 6). The power improvement brought by
iDEA is higher in zingeR and MAST than that in edgeR,
presumably because the p-values from both zingeR and MAST
follow approximately a uniform distribution under the null, more
so than that from edgeR (Supplementary Fig. 7). Because the
model assumption of iDEA also requires the input p-values from
the DE methods to be well behaved, we will mostly report results
based on using zingeR as input in the main text. In the analysis,
we also found that the power gain brought by iDEA is mostly due
to its joint modeling of DE and GSE analyses, rather than its joint
modeling across all genes. Indeed, when the gene set enrichment
parameter τ1 is small, then the power gain brought by iDEA
becomes small or negligible (Supplementary Figs. 5, 6).
Importantly, iDEA produces reasonably calibrated (or slightly
conservative) FDR estimates across a range of simulation
scenarios (Supplementary Fig. 8). The ROC curves also yielded
consistent results, with iDEA achieving a higher AUC for DE
analysis (Supplementary Fig. 4). Besides direct examination of DE
analysis power, we also used the Jaccard index to examine the
results consistency of different DE methods. Presumably because
of the power gain brought up by iDEA, we found that iDEA can
also improve the consistency of DE results in terms of the top DE
gene list obtained from different methods (Supplementary Fig. 9).
For example, when τ1= 5 and CR= 10%, the Jaccard index for

the top 1500 genes with the strongest DE evidence obtained by
each of three DE methods (MAST, edgeR and zingeR) is 0.59.
After applying iDEA to the corresponding summary statistics, the
Jaccard index increases to 0.77.

Human embryonic stem cell scRNA-seq data. We applied iDEA
to analyze three publicly available scRNA-seq data sets. The first
scRNA-seq dataset29 consists of gene expression measurements
for 15,280 genes on five cell types (details in Methods). We car-
ried out both GSE and DE analyses on all ten pairs of the five cell
types. Because results are largely consistent across different cell
type pairs, we mainly report our analysis here on comparing two
cell types, DECs and ECs, while list the other comparison results
in Supplementary Figs. 10–12.

We first applied iDEA and other GSE methods to detect
significantly enriched gene sets across our compiled database of
11,474 human gene sets (Fig. 4a). We also constructed an empirical
null p-value distribution by permuting the gene labels for each gene
set 10 times. Consistent with simulations, we found that the p-
values in the permuted data from iDEA (λgc= 1.13), fGSEA (λgc=
1.02), PAGE (λgc= 0.96), and GSEA (λgc= 1.01) are well behaved,
while that from CAMERA show severe deflation (λgc= 0.29)
(Fig. 4b). For each method, we relied on the empirical null
distribution of p-values to compute power in detecting enriched
gene sets based on a fixed empirical FDR. Consistent with
simulations, iDEA identified more significantly enriched gene sets
compared to the other GSE methods (Fig. 4c). For example, at an
empirical FDR of 5%, iDEA identified 2,106 significantly enriched
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gene sets, which is 20.9% higher than the next best GSE method
(fGSEA, 1,742 significant gene sets). In contrast, CAMERA, PAGE
and GSEA identified 537, 1,328, and 1,079 gene sets, respectively.
Besides these GSE methods, iDEA is also more powerful than the
hypergeometric test (Supplementary Fig. 13). Notably, besides the
statistical power, many of the top gene sets identified by iDEA are
closely related to embryonic development (Fig. 4e). Examples
include the Wnt signaling pathway, the transforming growth factor
beta (TGF-beta) receptor signaling pathway30, and relevant GO
terms such as GO:0048514 (blood vessel morphogenesis),
GO:0001944 (vasculature development) and GO:0007492 (endo-
derm development)31. In order to quantify the biological
significance of gene sets identified by different GSE methods, we
quantified the relevance between gene sets and embryonic cell
development in an unbiased way by searching the related literatures
in PubMed (details in Methods). Indeed, in the top 50 enriched
gene sets identified by different methods, iDEA identified more
gene sets relevant to embryonic cell development (25; Supplemen-
tary Table 1) than fGSEA (20), CAMERA (23), PAGE (10), and
GSEA (12). The higher number of detected enriched gene sets
relevant to embryonic cell development by iDEA provides
convergent support for the higher power of iDEA for GSE analysis.
We next applied iDEA for DE analysis where we treated the

biologically meaningful gene set GO:0001944 (vasculature develop-
ment) as the annotation. Consistent with simulations, iDEA
identified more DE genes than zingeR. For example, at an empirical
FDR of 1%, iDEA identified 2753 DE genes, which is 64.0% higher
than zingeR (which identified 1673; Fig. 4d). The 50 selected
important DE genes identified by iDEA clearly distinguishes the
two examined cell types, DECs and ECs (Fig. 4f). Importantly,
based on29, iDEA identified 1119 genes directly related to definitive
endoderm cell differentiation, a process one would expect to be
detected by comparing DECs versus ECs; while zingeR only

identified 706. The higher number of DE genes relevant to definitive
endoderm cell differentiation detected by iDEA provides convergent
support for its higher power for DE analysis. Important DE genes
involved in the cell differentiation process that are detected by iDEA
but missed by zingeR include SMAD332, GATA333, TGFBR134,
WNT7B35, HAND136, CCND137, and HEY238. Among them,
SMAD3 is essential for activating the necessary transcriptional
network for directing definitive endoderm (DE) formation;32

GATA3 is indispensable for the signaling pathways in large vessel
endothelial cells;33 TGFBR1 plays an important role in activating
SMAD2 and SMAD3;34 WNT7B is necessary for the redundant
ligand–receptor systems which helps activating activate β-catenin
signaling in vascular endothelial cells during endoderm develop-
ment35. Finally, as in simulations, iDEA improves the consistency
of DE analysis results: the Jaccard index for the top DE genes
obtained by each of the three DE methods (MAST, edgeR or
zingeR) at an FDR of 1% is only 0.10; after applying iDEA to the
corresponding summary statistics, the Jaccard index increases
substantially to 0.25 (Supplementary Figs. 14, 15).

Mouse sensory neuron scRNA-seq data. The second scRNA-seq
data set39 consists of 13,598 genes and 622 mouse neuronal cells
from eleven different cell types. Following the original paper39, we
carried our analysis on comparing the nonpeptidergic nociceptor
type I (NP1) neurons with each of the other 10 cell-types (details
in Methods). Because the results are again largely consistent
across different cell type pairs, we mainly report our analysis here
on comparing NP1 versus the remaining ten cell types together.
The corresponding results comparing NP1 versus each of the ten
cell types are listed in Supplementary Figs. 16–18.
We first applied iDEA for GSE analysis on a pre-compiled set

of 2851 mouse gene sets (Fig. 5a). Consistent with simulations,
the GSE p-values in the permuted data from iDEA (λgc= 1.07),
fGSEA (λgc= 1.08), PAGE (λgc= 0.99), and GSEA (λgc= 0.94)
are all well behaved, while the p-values from CAMERA show
severe deflation (λgc= 0.11) (Fig. 5b). Also consistent with
simulations, iDEA identified more significantly enriched gene
sets compared to the other methods (Fig. 5c). For example, at an
FDR of 5%, iDEA identified 1,268 enriched gene sets, which is
five times higher than the second-best method (GSEA, 246). In
contrast, fGSEA, CAMERA and PAGE identified 236, 134, and
205 enriched gene sets, respectively. Besides these GSE methods,
iDEA is also more powerful than the hypergeometric test
(Supplementary Fig. 19). Notably, the significant gene sets
identified by iDEA are biologically relevant to the compared cell
type pair (Fig. 5e and Supplementary Table 2). Most of the top 1%
enriched terms were associated with the nervous system, neuronal
response and neuronal functions. Such examples include neuron
projection (GO:0043005), neuron part (GO:0097458), and
somatodendritic compartment (GO:0036477)40. Other identified
gene sets such as axon (GO:0030424) synapse (GO:0045202) and
ion transport (GO:0006811)41 also play important roles in
neuronal functions and activities. None of these gene sets were
detected by fGSEA and CAMERA. PAGE and GSEA can also
detect these gene sets but do not rank them highly: the rank of
these gene sets ranges from top 5% to 61% by PAGE and from
top 15% to 71% by GSEA. In addition, use of iDEA recovered 102
out of the 237 gene sets known to be involved in inflammatory
itch39. In contrast, fGSEA, CAMERA, PAGE, and fGSEA
identified 31, 20, 19, and 29 gene sets among them, respectively.
We next applied iDEA for DE analysis where we treated the gene

set GO:0097458 (neuron part) as the annotation. Again, iDEA
identified more DE genes than zingeR (Fig. 5d). At an FDR of 1%,
iDEA detected 1,103 DE genes, which is 11.0% higher than zingeR
(993). We illustrate 50 selected DE genes identified by iDEA in
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enriched pathways (y-axis; a, c) and in identifying differentially expressed
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Fig. 5f, which clearly distinguish the two compared cell types. Many
NP1 neuron marker genes are identified by iDEA but missed by
zingeR even at an FDR of 5%. These marker gene examples include
MRGPRB5, STX1B, FAM167A, KLK8, and STK32A. Among these
genes, MRGPRB5 is a Mas-related gene expressed in primary
nociceptive sensory neurons42. KLK8mediates signals in the PAR1-
dependent signaling responses in the nociceptive neurons43.
Importantly, iDEA detected 79 DE genes out of top 100 previously
known NP1 DE genes listed in the original study, while zingeR
detected 75 DE genes, again supporting the high power of iDEA.
Finally, consistent with simulations, iDEA also improves the
consistency of DE analysis results; namely, the Jaccard index for
the top DE genes obtained by each of the three DE methods
(MAST, edgeR or zingeR) at an FDR of 1% is 0.14; after applying
iDEA to the corresponding summary statistics, the Jaccard index
increases to 0.17 (Supplementary Figs. 20, 21).

10x Genomics PBMC scRNA-seq data. The third scRNA-seq
data set consists of 13,713 genes and 2638 cells collected from

peripheral blood mononuclear cells (PBMCs)44. We focused on
comparing CD4+ T-cells with CD8+ T-cells in order to examine
the performance of various methods in the challenging setting
where the two examined cell types are similar (Supplementary
Fig. 22). We also focused on examining a small set of 144 gene
sets that contain important gene signatures of immune and
stroma cell types45. In particular, these gene sets contain CD4+
and CD8+ cell type signatures and thus can be treated as true
positives for method comparison in this data.
We first applied iDEA to identify enriched gene signatures

among these true positives (Fig. 6a). Due to the small number of
gene sets examined here, the p-values from all methods in the
permuted data are not discernable from the null expectation
(Fig. 6b). Likely due to the low read depth in 10x genomics data
and the subsequent high gene expression measurement noise, all
GSE methods have similar power in terms of detecting enriched
gene sets based on a fixed FDR threshold (Fig. 6c). However,
almost all top enriched gene sets identified by iDEA are relevant
to CD4 or CD8 cell functions (Fig. 6e). For example, in the top 25
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Fig. 4 Analysis results in the embryonic stem cell scRNA-seq data. Results are shown for comparing two cell types, endothelial cell (EC) and definitive
endoderm derivatives cell (DEC). a p-values from iDEA for GSE analysis display expected enrichment of small p-values (for true signals) and a long flat tail
toward large p-values. b Quantile-quantile plots of −log10(p-values) from GSE methods including iDEA (orange), fGSEA (green), CAMERA (navyblue),
PAGE (skyblue) and GSEA (yellow) are shown under permuted null. The p-values from iDEA, fGSEA, PAGE and GSEA are reasonably well calibrated, while
that from CAEMRA are overly conservative. Here λgc is the genomic control factor. c Number of identified enriched gene sets by iDEA (orange), fGSEA
(green), CAMERA (navyblue), PAGE (skyblue) and GSEA (yellow) are plotted against different empirical false discovery rates (FDR). iDEA is more
powerful than other methods for GSE analysis. d Number of identified DE genes by iDEA (orange) and zingeR (blue) are plotted against different empirical
FDR values. iDEA is more powerful than zingeR for DE analysis. e Heatmap shows the normalized expression level (log10-transformation with pseudo-
count 0.1) for selected 50 DE genes (rows) identified by iDEA for cells in the two cell types (columns). Genes are sorted by Hierarchical clustering, cells are
ordered by cell types (EC: red; DEC: blue). These DE genes clearly distinguish two compared cell types. f Bubble plot shows –log10(p-values) for GSE
analysis from iDEA (y-axis) for different gene sets. Gene sets are colored by ten categories: immunologic signatures (red), chemical and genetic
perturbations (yellow), GO biological process (blue), GO molecular function (green), GO cellular component (orange), oncogenic signatures (deep blue),
Reactome (grass-green), KEGG (purple), PID (rose), and Biocarta (gray). The size of the dot represents the number of genes contained in the gene set.
Names for ten of the gene sets that are closely related to embryonic cell development are highlighted in the panel.

6

www.nature.com/naturecommunications


gene sets identified by iDEA, 22 of them are relevant to CD4 or
CD8 cells (Supplementary Table 3). In contrast, 13 from fGSEA
(Supplementary Table 4), 13 from CAMERA (Supplementary
Table 5), 14 from PAGE (Supplementary Table 6), and 13 from
GSEA (Supplementary Table 7) are relevant to CD4 or CD8 cells.
Besides these commonly used GSE methods, iDEA is also more
powerful than the hypergeometric test, which only identified one
significant gene set (Supplementary Fig. 23).
We next applied iDEA to perform DE analysis where we

treated the gene set CD8+ T-effector memory as the annotation.
Consistent with simulations, iDEA identified more DE genes than
zingeR (Fig. 6d). At an FDR of 1%, iDEA detected 255 significant
DE genes, which is 15.3% higher than that detected by zingeR
(221). We illustrate 30 selected DE genes identified by iDEA
(Fig. 6f), which clearly distinguish the two cell types. The
significant DE genes identified by iDEA include CD8A, KLRG1,
GNLY, and PRF1 that are all relevant to CD T cell differentia-
tion46. Indeed, iDEA identified many T cell activation and

differentiation related genes that are missed by zingeR. Among
the genes missed by zingeR, BTG2 is important for T-cell
activation marker expression, T cell proliferation and migra-
tion47; KLF2 is involved in both the activation of CD4+ T cell
trafficking (through regulation of S1PR1) and T helper cells
differentiation;48 CD247 of the Ctex region is essential for the
TCR-mediated activation of T cells;49 and LSP1 is found to
be down regulated in human T-cell lines and plays an important
role in the process of T-cell transformation50. iDEA also
improved the consistency of DE analysis results. Specifically,
the Jaccard index for the top DE genes obtained by each of three
DE methods (MAST, edgeR or zingeR) at an FDR of 1% was only
0.06; after applying iDEA to the corresponding summary
statistics, the Jaccard index increased substantially to 0.15
(Supplementary Fig. 24, 25).
Finally, while the DE analysis relies on a pre-selected gene set,

we found that the number of DE genes identified by iDEA
without the pre-selected gene set (=252, at an FDR of 1%) is
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similar to the results using the cell type defined gene set (=255),
both are larger than that identified by zingeR (=221) (Supple-
mentary Fig. 26). Using the large set of human gene sets described
earlier, instead of using the small cell type specific gene sets, also
leads to a similar conclusion on the type I error control and
power of iDEA (Supplementary Fig. 27). Indeed, many top
enriched gene sets identified by iDEA from the large gene sets are
also related to immune systems (Supplementary Table 8). In the
three real data applications, we also found that the results from
iDEA are largely insensitive to the choice of hyperparameters in
the prior distribution for the variance parameters (analysis details
in Methods; Supplementary Fig. 28). Performing analysis on two
groups of cells randomly selected form the same cell type also
demonstrates the proper type I error control by iDEA
(Supplementary Fig. 29).

Discussion
We have presented a computational method, iDEA, for inte-
grating DE analysis and GSE analysis in scRNA-seq studies. iDEA
directly models summary statistics from existing scRNA-seq DE

tools, produces well-calibrated p-values for enriched gene set
detection, and provides increased power for both DE and GSE
analyses. Modeling summary statistics in iDEA circumvents the
need for explicit modeling of individual-level scRNA-seq data,
allowing iDEA to be paired with existing DE tools for quick
adaptation across a range of scRNA-seq data types. In addition,
use of summary statistics makes iDEA reasonably computation-
ally efficient, with its computing complexity scaling linearly with
respect to the number of genes (Supplementary Table 9). We have
demonstrated the benefits of iDEA using both simulations and
applications to three recently published scRNA-seq data sets.
We have primarily focused on scRNA-seq data, as we aimed to

perform a comprehensive comparative study on GSE methods for
scRNA-seq studies in addition to developing iDEA. However, the
flexible modeling framework of iDEA can be equally applied to
bulk RNA-seq studies. To illustrate this, we applied iDEA to an
oral carcinoma bulk RNA-seq dataset51, where we show that
iDEA can identify more DE genes and more enriched gene sets
that are relevant to oral carcinogenesis (Supplementary Fig. 30;
Supplementary Note 3).
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colored by six projects: HPCA (red), FANTOM (yellow), BLUEPRINT (blue), NOVERSHTERN (green), ENCODE (orange), IRIS (deep blue). The size of the
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We have primarily focused on modeling the marginal effect
size estimates and standard errors from DE analysis, which is
equivalent to modeling of marginal z-scores. Our modeling of
z-scores follows that of52,53 and effectively assumes that the
prior distribution of true effect sizes is dependent on the
standard errors, and subsequently the sample size (Supple-
mentary Note 4). Such prior dependence on sample size
appears to have relatively mild consequences in practical data
analysis and has attractive theoretical properties54. Never-
theless, we have developed a variant of iDEA that does not
require prior dependence on sample size. The iDEA variant has
similar performance as the original iDEA in the real data
applications, properly controlling for type I error and display-
ing higher power than the other methods (Supplementary
Figs. 31–34; Supplementary Note 4).

The DE analyses in our real data applications are performed by
treating a pre-selected gene set as annotation based on prior
biological knowledge. Certainly, selecting such gene set may not
always be possible in every study. In the absence of a pre-selected
gene set to serve as the annotation, we developed a Bayesian
model averaging (BMA) approach (Supplementary Note 5) to
aggregate DE evidence across all available gene sets. The BMA
approach yields consistent results for majority of genes as com-
pared to the pre-selection approach in the real data applications
(Supplementary Fig. 35), demonstrating its utility for practical
applications.
iDEA does not explicitly account for gene set overlap that

may cause non-independence among gene sets. In practice, we
found that the gene set overlap is generally small: the median
number of overlapped genes among pairs of gene sets in the
human data is only 1 (5 in the mouse data), as compared to the
median gene set size of 143 (131 in the mouse data). A careful
examination of the top identified enriched gene sets in the real
data applications also suggest that gene set overlap does not
appear to introduce excessive false signals (Supplementary
Tables 10, 11; Supplementary Note 6). In addition, the sparse
data structure in scRNA-seq appears to further diminish the
concern on gene-gene correlations. Indeed, GSE methods that
do not explicitly account for gene-gene correlation (e.g. iDEA,
PAGE, fGSEA and GSEA) appear to provide more calibrated p-
values than methods that explicitly account for gene-gene
correlation (e.g. CAMERA) in these real data applications.
Nevertheless, we followed most existing GSE approaches and
accounted for GSE test non-independence due to gene set
overlap through permutation of gene labels. Such permutation
retains the gene set overlap proportion under the empirical
null: if one gene set contains genes that are overlapped with
genes in another gene set in the real data, then the overlapped
number remains the same in the permuted data. Consequently,
the test statistics on the two gene sets would be correlated in a
somewhat comparable fashion between the permuted data and
the real data. By estimating FDR based on such permuted null,
we can account for test non-independence due to gene set
overlaps.
Finally, we acknowledge that general caveat exists for DE

analysis between cell types in scRNA-seq studies: because cell
types are often inferred based on the whole gene expression
matrix, DE analysis performed on the inferred cell types may lead
to inflated DE test statistics with artificially smaller standard
errors55. We have attempted to alleviate such issue by conducting
our analysis on datasets where cell types are reasonably rigorously
defined and validated through other experiments (Supplementary
Note 7). Nevertheless, future methodological innovations are
needed to account for the uncertainty associated with cell type
inference for DE analysis between cell types in scRNA-seq
studies.

Methods
iDEA overview. Here, we provide a brief overview of iDEA, with technical details
provided in Supplementary Notes 1, 2. iDEA models all genes jointly and requires
summary statistics from standard DE analysis for all genes. These summary sta-
tistics are in the form of marginal DE effect size estimate β̂j and its standard error

se β̂j

� �
; j ¼ 1; 2; � � � p, where p is the number of genes. We assume that the esti-

mated DE effect size centers around the true effect size β̂j � N βj; se β̂j

� �2� �
, and

that the true effect size βj follows a mixture of two distributions depending on
whether j-th gene is a DE gene or not:

βj � πjN 0; se β̂j

� �2
σ2β

� �
þ 1� πj

� �
δ0; ð1Þ

where πj is the prior probability of being a DE gene; σ2β is a scaling factor that
determines the DE effect size strength; and δ0 is the Dirac function that represents
a point mass at zero. Therefore, with proportion πj, j-th gene is a DE gene and its

DE effect size βj follows a normal distribution with a large variance se β̂j

� �2
σ2β .

With proportion 1� πj , j-th gene is a non-DE gene and its DE effect size is exactly
zero. Note that our modeling above is also equivalent to modeling using marginal
z-statistics

zj � πjN 0; σ2β þ 1
� �

þ 1� πj

� �
N 0; 1ð Þ; ð2Þ

where zj is the marginal z-score on the DE evidence for the j-th gene.

In Eq. (1), we have scaled the variance with respect to se β̂j

� �2
using the scaling

factor σ2β, so that our analysis results are scale invariant; that is, the results remain
the same regardless what the DE effect size is measured on.

For the scaling factor, we followed existing statistical literature and chose the
conjugate distribution for a variance parameter as the prior for σ2β: Specifically, we

specify an inverse gamma prior on σ2β : σ
2
β � InvGðaβ; bβÞ with aβ ¼ 3:0; bβ ¼ 20:0,

which ensures a prior mean of 10 (= bβ/(aβ–1) and the existence of a prior
variance (which requires aβ > 2). To integrate the gene set information into the
above model, we model the gene-specific probability of being a DE gene as

logit πj

� �
¼ log

πj
1� πj

 !
¼ τ0 þ ajτ1 ð3Þ

where τ0 is an intercept that determines the proportion of DE genes outside the
gene set; aj is a binary indicator on whether j-th gene belongs to the gene set (aj=
1) or not (aj= 0); and τ1 is a gene set enrichment parameter that determines the
odds ratio of DE for genes inside the gene set versus genes outside the gene set. To
facilitate computation, we introduce a vector of binary indicators

γ ¼ γ1; � � � ; γp
� �T

to indicate whether each gene is a DE gene (γj= 1) or not (γj=

0). Therefore, the prior distribution of γj is effectively a Bernoulli distribution,

γj � Bern πj

� �
: ð4Þ

With proportion πj, j-th gene is a DE gene and with proportion 1–πj, j-th gene is a
non-DE gene and its DE effect size is exactly zero. With the above model setup, we
are primarily interested in inferring two parameters: the gene-specific indicator γj,
which indicates whether j-th gene is a DE gene or not; and the enrichment
parameter τ1, which represents the enrichment of DE genes in the gene set. We aim
to infer the posterior probability of γj= 1 as evidence for j-th gene being DE and
test the null hypothesis H0:τ1= 0 that DE genes are not enriched in the gene set.

To achieve both goals, we develop an expectation maximization (EM)-Markov
chain Monte Carlo (MCMC) algorithm for parameter estimation. Briefly, we treat
the vector of both β and γ as missing data and develop an iterative EM
optimization algorithm that alternates between an expectation step and a
maximization step. In the expectation step, the expectation of the log likelihood
effectively requires computing the posterior probability of each gene being a DE
gene, P(γj= 1|data), through MCMC. In the maximization step, we estimate the
enrichment parameter through optimization, which is effectively equivalent to
fitting a logistic regression model, where we treat the posterior probabilities for
each gene being DE obtained from the expectation step as the outcome variable.
While our EM-MCMC algorithm yields accurate parameter estimates, we found
that the standard errors for the enrichment parameter obtained through the
complete-data log-likelihood function is overly liberal and leads to p-value
inflations (λgc= 1.33; Supplementary Fig. 36A), a phenomenon that has been
observed in many other settings23,56. Therefore, we used the Louis method23 to
obtain the corrected information matrix and produce calibrated p-values (λgc=
1.06; Supplementary Fig. 36B).

Summary statistics and gene annotations. iDEA requires DE summary statistics
in the form of fold change/effect size estimates and their standard errors as input.
These summary statistics in principal can be obtained using any existing scRNA-
seq DE methods, such as MAST3 or zingeR5 etc. Here, we primarily focus on
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presenting the results obtained based on input from zingeR, which directly outputs
DE effect size estimates and their standard errors and which is the most recent DE
method for scRNA-seq analysis. However, we also explored the benefits of pairing
iDEA with different scRNA-seq DE methods in part of the Results section. Details
of these DE methods are provided in the next subsection.

In addition to DE summary statistics, iDEA also requires pre-defined gene sets.
For human data, we downloaded a total of 12,033 gene sets based on seven existing
gene set/pathway databases annotated on the reference genome GRCh37 from
MSigDB databases (http://software.broadinstitute.org/gsea/downloads.jsp). These
databases include BioCarta19, KEGG17, GO16, PubChem Compound20,
ImmuneSigDB21, PID22, and Reactome18. We divided the compiled gene sets into
ten functional categories that include immunologic signatures (4856 gene sets),
chemical and genetic perturbations (2,379 gene sets), GO biological process (2835
gene sets), GO molecular function (544 gene sets), GO cellular component (355
gene sets), oncogenic signatures (186 gene sets), Reactome (415 gene sets), KEGG
(163 gene sets), PID (207 gene sets), and Biocarta (93 gene sets). We merged the
gene sets with summary statistics and filtered out gene sets that contain less than 20
genes and finally focused on a total of 11,474 gene sets in GSE analysis. For mouse
data, we downloaded the gene ontology (GO) annotations of mouse genes in the
GAF 2.0 format from the website (http://www.informatics.jax.org/downloads/
reports/index.html#go). We merged the gene sets with summary statistics and
filtered out gene sets that contain less than 50 genes and finally focused on a total of
2851 gene sets in GSE analysis. These GO terms were based on four categories:
biological process (1719 gene sets), cellular component (279 gene sets), molecular
function (297 gene sets), and unannotated gene sets (556 gene sets). For 10x
Genomics data, we collected a total of 489 gene sets consisting of cell type specific
gene signatures from Xcell and these gene signatures were previously collected to
annotate 64 distinct cell types and cell subsets45. We merged the gene sets with
summary statistics and filtered out gene sets that contain less than 10 genes to focus
on a final set of 144 cell type specific gene sets. We note that we filtered out gene
sets with a small number of genes (e.g.<10 or <20) as the pruning step due to
computational reasons: for iDEA and other GSE methods, the gene set enrichment
parameter estimation can become inaccurate and unstable for gene sets with
small sizes.

Compared methods. For DE analysis in both simulations and real data applica-
tions, we compared iDEA with three existing approaches: (1) MAST (version
1.8.1), which outputs a coefficient (coef) as the effect size estimate and a corre-
sponding p-value for each gene3; (2) edgeR (version 3.8), which outputs a log fold
change (logFC) as the effect size estimate and a corresponding p-value for each
gene27. The edgeR function we used was the weighted version of edgeR: it first
calculated the cell-level weights using ZINB-WaVE and then used these weights
inside edgeR for final computation; (3) zingeR (version 1.0)5, where we applied
zingeR to obtain cell-level weights, which were further supplied to DESeq2 (version
1.18.1) for DE analysis. The output from this procedure consists of a log fold
change (log2FoldChange) as the effect size estimate and a corresponding standard
derivation (lfcSE) for every gene28. iDEA can be paired with each of these DE
methods to use the corresponding summary statistics as input for analysis. In these
DE methods, in order to extract summary statistics for iDEA, we treated either the
logarithm fold change or fold change as the gene effect size β̂j , and back derived the

standard error of β̂j using the unsigned z-score by se β̂j

� �
¼ jβ̂j=zscorej, where z-

score was either directly available or was obtained by transforming the p-value via
the R function qnorm(p-value/2.0, lower.tail= F). Afterwards, we used summary
statistics obtained from these DE methods to fit iDEA.

For GSE analysis in both simulations and real data applications, we mainly
compared iDEA with four existing approaches: (1) fGSEA (R version 1.8.0)24; (2)
CAMERA (inside limma, R version 3.8.3)15; (3) PAGE (PGSEA, R version 1.56.0)13;
and (4) GSEA (Java version 2.2.4)14. We used z-score statistics from zingeR DE
analysis as input for all these methods. Here, the z-score statistics were calculated by
the transformation of the unadjusted p-values, paired with the sign of log-fold change
estimate: z score ¼ Φ�1ð1� p value

2 ÞsignðlogFCÞ, where Φ �ð Þ denotes the standard
Gaussion cumulative distribution. We used the default settings for all GSE methods.
We used the recommended interGeneCorrelation function in CAMERA to calculate
the correlation between genes. In addition, we compared iDEA with the
hypergeometric test in all real data applications. In particular, we counted the number
of DE genes (defined as p-value < 0.05) and non-DE genes in the gene set as well as
outside the gene set and performed hypergeometric test to obtain GSE p-value.

Note that, in the GSE analysis, we have primarily focused on comparing our
method with traditional GSE methods that aim to identify gene sets whose genes
are differentially expressed between cell types or treatment conditions. Different
from these traditional GSE methods, several methods have been recently developed
for scRNA-seq studies that are targeted for a completely different enrichment task:
identifying gene sets whose genes show coordinated transcriptional heterogeneity.
Exemplary such methods include the pathway and gene set overdispersion analysis
(PAGODA)57 and f-scLVM58. Because both PAGADA and f-scLVM are targeted
for detecting coordinated expression heterogeneity (i.e. gene-gene correlation
within a gene set) rather than the usual GSE analysis based on DE analysis, we did
not compare our method and other GSE methods with them.

Simulations. We performed simulations to evaluate the performance of iDEA for
both DE analysis and GSE analysis. In each simulation replicate, we simulated
10,000 genes. We randomly assigned a proportion of these genes to belong to a
gene set of interest. We referred to the percentage of genes belonging to the gene set
as the coverage rate (CR), which were set to be either 1%, 2%, 5%, or 10%; where
10% is close to the median CR of all analyzed pathways in the present study. We
further introduced a binary indicator aj to represent whether j-th gene belongs to
the gene set (aj= 1) or not (aj= 0). Afterwards, we randomly assigned each gene to
be a DE gene with probability πj, which depends on aj. In particular, the parameter
πj is in the form of

πj ¼
exp τ0 þ ajτ1
� �

1þ exp τ0 þ ajτ1
� � ; ð5Þ

where the intercept parameters τ0 was set to be either −0.5, −1.0, −2.0, or −3.0 to
present different proportions of DE genes in the data (e.g. τ0=−2 represents that

roughly 12% of genes are DE genes; exp �2ð Þ
1þ exp �2ð Þ � 0:12); while the gene set enrich-

ment coefficient τ1 was set to be either 0 (no enrichment of DE genes in the gene
set), 0.25 (weak enrichment), 0.5, 1.0 (moderate enrichment), or 5.0 (strong
enrichment). Note that the median gene set enrichment parameter estimate across
all analyzed pathways in the real data applications is close to 0.5 while the highest
enrichment parameter estimate is 17.

In order to compare the performance of iDEA of DE analysis with other count-
based DE methods, we simulated scRNA-seq gene expression counts first. To make
our simulations as realistic as possible, the simulations were performed based on
parameters inferred from a published scRNA-seq data29. Specifically, to simulate
scRNA-seq gene expression counts, we selected two cell types that include
endothelial cells (EC; 105 cells) and trophoblast-like cells (TB, 69 cells) from Chu
et al.29. We fitted each gene using a zero-truncated negative binomial (ZTNB).
Through the ZTNB model, we first inferred the gene-specific mean expression
parameter λjand dispersion parameter ϕj in the negative binomial component of
ZTNB through method of moments5. In particular, these parameter estimates are
obtained iteratively through

λðtþ 1Þ
j ¼

P
i Yij 1� fNB λðtÞj Ni;ϕ

ðtÞ
j

� �� �
P

i Ni

ð6Þ

ϕðtþ 1Þ
j ¼

P
i λðtÞj Ni

� �2
P

i Y
2
ij 1� fNB λðtÞj Ni; ϕ

ðtÞ
j

� �� �
�Pi λðtÞj Ni

� �2
�Pi λðtÞj Ni

� � ; ð7Þ

where Yij is the non-zero expression count for i-th cell and j-th gene in the real data
(note that we ignored zero counts in this estimation step); Ni denotes the total read
counts (i.e. read depth) for i-th cell; the superscripts (t) and (t+ 1) denote the t-th
and (t+ 1)-th iteration estimates, respectively; fNB �; �ð Þ is the negative binomial
density function.

In addition, we also followed5 to infer the zero proportion parameters pij in the
ZTNB model by borrowing information across all genes. Specifically, we model the
dropout probability for i-th cell and j-th gene, pij, using a semi-parametric additive
logistic regression model:

zij � BernðpijÞ; ð8Þ

log
pij

1� pij
¼ sðAjÞ þ logðNiÞ þ sðAjÞlog Nið Þ; ð9Þ

where zij is an indicator on whether the observed count for i-th cell and j-th gene is
zero or not; Bern(pij) denotes a Bernoulli distribution with the dropout parameter
pij; s �ð Þ is a non-parametric thin-plate spline; Aj is the average logarithm scale
counts per million (CPM) calculated by aveLogCPM function in edgeR27. This way,
the dropout probability becomes both cell-specific and gene-specific.

With the above estimated parameters, we simulated gene count through ZTNB
model for both DE and non-DE genes. For DE genes, we simulated each DE effect
size from a normal distribution with mean zero and standard deviation 3.5. For
non-DE genes, we directly set the DE effect size to be zero. We then calculated the
true fold change of each gene as the exponential of effect size fc= exp(βj), which is
multiplied to the estimated mean gene expression levels λ̂j in one population,

resulting in a mean of μ̂ij ¼ λ̂jfcj for all cells in one population and a mean of

μ̂ij ¼ λ̂j for all cells in the other population. Afterwards, we simulated count data

for i-th cell and j-th gene, Cij, follows a negative binomial distribution NB μ̂ij; ϕ̂j

� �
.

We set Cij to be exactly zero with probability p̂ij . Note that the simulations do not
exactly match the iDEA modeling assumptions, allows us to examine the
robustness of iDEA.

We simulated the gene expression counts with τ0 fixed to be −2, and with
varying τ1 (i.e., 0, 0.25, 0.5, 1.0, or 5.0) and varying CR (i.e., 1%, 2%, 5%, or 10%).
With the simulated count data, we fitted different DE methods to obtain summary
statistics, with which we fitted iDEA and other GSE methods. We evaluated the
power of DE analysis and GSE analysis. To evaluate the type I error control of
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different GSE methods, we examined the null simulation settings (τ1= 0). In each
null setting, we permuted the gene labels 10 times to construct the permuted null
sets, to which we applied different GSE methods. We then calculated the genomic
inflation factor (λgc) for each GSE methods. Here, the genomic inflation
factor (λgc) is defined as the ratio of the median of the empirically observed
distribution of the test statistic to the expected median. Specifically, we first convert
the p-value for the gene sets to chi-squared test statistics then calculated λgc by
dividing the resulting chi-squared test statistics by the expected median of a chi-
squared distribution with one degree of freedom (0.4549364; qchisq(0.5,1) in R).
To evaluate the power of different GSE methods, in each simulation setting, we
obtained 1,000 simulation replicates with enriched pathways (i.e., τ1 ≠ 0) and
9,000 simulation replicates without enriched pathways (i.e., τ1= 0). We then
evaluated the power of GSE analysis in detecting these 1000 true signals given an
FDR of 5%. To evaluate the power of different DE methods, we again computed
power to detect true DE genes based on an FDR of 5%.

ScRNA-seq data sets. We applied iDEA to analyze three published scRNA-seq
data sets. The first scRNA-seq data is from Chu et al.29 (GEO accession number
GSE75748). It contains a total of 19,097 genes on 1018 cells from seven cell types.
The seven cell types include the human embryonic stem (ES) cell with subtypes H1
(212 cells) and H9 (162 cells); four ES derived linear-specific progenitor cell types
that include neuronal progenitor cell (NPC, ectoderm derivatives, 173 cells),
definitive endoderm derivatives cell (DEC, 138 cells), endothelial cell (EC, meso-
derm derivatives, 105 cells), trophoblast-like cell (TB, extraembryonic derivatives,
69 cells); and human foreskin fibroblasts cell (HFF, 159 cells). We focused our
analysis on five ES derived cell types (NPCs, DEs, ECs, TBs, and HFFs) and
examined all pairs among them. For each pair, we filtered out lowly expressed
genes that have more than 5 counts in at most two cells. The resulting number of
analyzed genes ranges from 14,918 (EC vs TB) to 15,778 (DEC vs NPC). We
considered batch information as a covariate when we fit zingeR to obtain summary
statistics. For DE analysis of iDEA, we included the gene set vasculature devel-
opment which is known to be important for vasculature progression and endo-
thelial cell development59. To evaluate GSE analysis results, we examined the top
50 significant gene sets identified by each GSE methods. To obtain the unbiased
evaluation of different GSE methods, we used the R package RISmed (version 2.1.7)
to query the related articles with the keywords: gene set name, cell type, and
“embryonic development”. We input one gene set at a time, and the number of
gene set that do has the relevant literatures is counted to quantify the performance
of different GSE methods.

The second scRNA-seq data is from Usoskin et al.39 (GEO accession number
GSE59739). This dataset contains a total of 19534 genes on 622 neuronal cells
collected from the mouse lumbar dorsal root ganglion. These cells were classified
into 11 neuronal cell types from four categories. The cell types include the
neurofilament containing (NF) category: NF1 (31 cells), NF2 (48 cells), NF3 (12
cells) and NF4 (22 cells), NF5 (26 cells); nonpeptidergic nociceptors (NP) category:
NP1 (125 cells), NP2 (32 cells), and NP3 (12 cells); peptidergic nociceptors (PEP)
category: PEP1 (64 cells) and PEP2 (17 cells); and tyrosine hydroxylase containing
(TH; 233 cells) category. NPs cell type versus the remaining cell types are shown in
main results; while the pairs of NP1 cell type with each of the other ten cell types
are shown in Supplementary Figs. 16–18. For each pair, we filtered out lowly
expressed genes that have more than 5 counts in at most two cells. The resulting
number of analyzed genes ranges from 10,009 (comparing NP1 cell type vs NP3
cell type) to 10,948 (comparing NP1 cell type vs NF2 cell type). We included
picking sessions as a covariate when we fit zingeR to obtain summary statistics5.
For DE analysis of iDEA, we used the biological meaningful gene set neuron part
(GO:0097458)40 in the model.

The third scRNA-seq data is a peripheral blood mononuclear cells (PBMCs)
data obtained from 10x Genomics website (https://support.10xgenomics.com/
single-cell-gene-expression/datasets/1.1.0/pbmc3k)44. We downloaded the filtered
gene/cell matrix that contains 2,700 cells and 32,738 genes. We processed the data
using the R package Seurat60 following the tutorial (https://satijalab.org/seurat/
pbmc3k_tutorial.html) to obtain at a final set of 2,638 cells and 13,713 genes. We
obtained clustering results from Seurat as shown in Supplementary Fig. 22. Here,
we focus our analysis on 1153 CD4+ T-cells and 305 CD8+ T-cells, to examine the
performance of various methods in the challenging setting where the two examined
cell types are similar to each other. We obtained summary statistics from zingeR
and filtered out genes with p-values larger than 0.8 to focus on a final set of 1,696
genes. We did this due to the p-values obtained by the zingeR under the null are
seriously left-skewed distributed. For DE analysis of iDEA, we used the gene
signature CD8+ T-effector memory61 in the model.

In the real data applications, for both DE analysis and GSE analysis, we
calculated power of different methods based on estimated FDR through
permutations. Specifically, for DE analysis, we permuted the cell type label across
cells ten times. We then applied different DE methods and obtained the empirical
null distribution of test statistics (p-values or posterior estimates of γ’s), with which
we calculated the empirical FDR for each threshold. For iDEA, in the permuted
data, we also fixed the gene set enrichment parameters τ̂ to be those estimated in
the real data without re-estimating them. In our experience, re-estimating the
enrichment parameters can lead to overly liberal FDR estimates and slows
computation. For GSE analysis, we permuted the gene set label across all genes for

each gene set ten times. We then applied different methods and obtained the
enrichment p-values in the permuted null, with which we further calculated the
empirical FDR for each p-value threshold.

Sensitivity analysis. In the main real data applications, we have fixed the
hyperparameters for the inverse Gamma distribution (aβ= 3.0, bβ= 20.0, to ensure

a prior mean
bβ

aβ�1 of 10) because there is insufficient information to estimate these

parameters. Specifically, the inverse Gamma distribution serves as the prior for the
variance parameter, which can be estimated by the effect sizes across many DE
genes. Because there is only one variance parameter, it is impossible to estimate the
hyperparameters in the inverse Gamma distribution for this variance parameter.
Therefore, instead of estimating these hyperparameters, we performed sensitivity
analysis to examine whether results would change with respect to the hyperpara-
meters. To do so, we varied the hyperparameters and tested across a range of gene
sets with different coverages in the three real datasets. Specifically, we varied the
hyperparameters so that the prior mean of the inverse gamma distribution is 0.001,
0.1, 1, 10, 100. We also varied the coverage rate to be the 10th, 30th, 50th, 70th,
90th percentile of the gene set size of the gene sets we used for the corresponding
real data analysis. For example, for the human embryonic scRNA-seq dataset, we
pick the gene set with coverage rate to be the 10th, 30th, 50th, 70th, 90th percentile
of the gene set size of the human gene sets we analyzed and set the hyper parameter
in the prior distribution of σ2β , (aβ,bβ) to be (3, 0.02), (3, 0.2), (3, 2), (3, 20), (3, 200),
respectively. For the mouse sensory neuron scRNA-seq dataset and 10x Genomics
PBMC scRNA-seq data, we followed the same procedure as the first scRNA-seq
dataset.

Ethics approval and consent to participate. No ethnical approval was required
for this study. All utilized public data sets were generated by other organizations
that obtained ethical approval.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The datasets used in the present study are all publicly available. The human embryonic
stem cell scRNA-seq dataset is available at [https://www.ncbi.nlm.nih.gov/geo/query/acc.
cgi?acc=GSE75748]. The Mouse sensory neuron scRNA-seq data is available at [http://
linnarssonlab.org/drg/]. The 10x Genomics PBMC scRNA-seq data is available at 10x
Genomics website [https://support.10xgenomics.com/single-cell-gene-expression/
datasets/1.1.0/pbmc3k]. For the gene sets we collected, the human gene sets are available
from MSigDB databases [http://software.broadinstitute.org/gsea/downloads.jsp] and the
mouse gene sets are available from the website [http://www.informatics.jax.org/
downloads/reports/index.html#go]. In addition, all raw data and processed data used for
analysis are also available at [https://github.com/xzhoulab/iDEA].

Code availability
The iDEA software package and source code have been deposited at [www.xzlab.org/
software.html]. All scripts used to reproduce all the analysis is also available at the same
website.
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