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ABSTRACT
With only 536 COVID-19 cases and 11 fatalities, India took the historic decision of a 21-day national

lockdown on March 25, 2020. The lockdown was first extended to May 3 soon after the analysis of this

article was completed, and then to May 18 while this article was being revised. In this article, we use a

Bayesian extension of the susceptible-infected-removed (eSIR) model designed for intervention

forecasting to study the short- and long-term impact of an initial 21-day lockdown on the total number

of COVID-19 infections in India compared to other, less severe nonpharmaceutical interventions. We

compare effects of hypothetical durations of lockdown on reducing the number of active and new

infections. We find that the lockdown, if implemented correctly, can reduce the total number of cases

in the short term, and buy India invaluable time to prepare its health care and disease-monitoring

system. Our analysis shows we need to have some measures of suppression in place after the

lockdown for increased benefit (as measured by reduction in the number of cases). A longer lockdown

from 42–56 days is preferable to substantially ‘flatten the curve’ when compared to 21–28 days of

lockdown. Our models focus solely on projecting the number of COVID-19 infections and thus inform

policymakers about one aspect of this multifaceted decision-making problem. We conclude with a

discussion on the pivotal role of increased testing, reliable and transparent data, proper uncertainty

quantification, accurate interpretation of forecasting models, reproducible data science methods, and

tools that can enable data-driven policymaking during a pandemic. Our software products are

available at covind19.org.

http://covind19.org/
https://assets.pubpub.org/qs8dv1vy/51591737395090.pdf
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Four months since the first case of COVID-19 in Wuhan, China, the SARS-CoV-2 virus has engulfed the

world and has been declared a global pandemic (World Health Organization [WHO], 2020b). The

number of confirmed cases worldwide stands at a staggering 1,930,780 (as of 9:20 a.m. EST April 14,

2020, Microsoft, n.d.). Of these, 10,815 confirmed cases are from India (Figure 1), the world’s largest

democracy with a population of 1.34 billion (compared to China at 1.39 billion and the United States at

325.7 million) (World Bank, n.d.). India has been vigilant and early in instituting strong public health

interventions, including sealing the borders with a travel ban/canceling almost all visas, closing schools

and colleges, and diligently following up with community inspection of suspected/exposed cases with

respect to adherence of quarantine recommendations (Table 1). On March 24, India took the historic

decision of a 21-day national lockdown starting March 25, when it had reported only 536 COVID-19

cases and 11 fatalities. In the subsequent days, we have seen a steady growth in the number of new

cases and fatalities, with growth rates slower than other affected countries, but in 21 days, the curve

has not yet ‘turned the corner’ or showed a steady decline in the number of newly diagnosed cases

(Figure 2). All forecasting models in this article use data up to April 14 with the premise of a 21-day

lockdown in place.

While India seems to have done relatively well in controlling the number of confirmed cases compared

to other countries in the early phase of the pandemic (Figure 2), there is a critical missing or unknown

component in this assessment: ‘The number of truly affected cases,’ which depends on the extent of

testing, the accuracy of the test results and, in particular, the frequency and scale of testing of

Figure 1. Description of the cases, recovered, and fatalities in India with 

landmark policy/recommendations. Data used up to April 14.

1. Introduction
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asymptomatic cases who may have been exposed. The frequency of testing has been low in India.

According to the Indian Council of Medical Research (ICMR; 2020), only 229,426 subjects have been

tested as of April 14 (<0.03% of the population). When there is no approved vaccine or drug for treating

COVID-19, entering phase 2 or phase 3 of escalation will have devastating consequences on both the

already overstretched health care system of India, and India’s large at-risk subpopulations (see

Appendix Table A1). As seen for other countries like the United States or Italy, COVID-19 enters

gradually and then explodes suddenly.

Table 1. Timeline of  COVID-19 Interventions in India

Date Interventions

March 3, 2020 ● India issues travel ban on four countries -

China, South Korea, Italy, and Iran

March 6, 2020 ● Union Health Ministry issues advisory to avoid

mass gatherings

March 7, 2020 ● Mayor of Agra urges the Union government to

close down historical monuments including Taj

Mahal

● Kuwait suspends flights to India

March 9, 2020 ● Qatar puts India on travel ban list

March 10, 2020 ● Manipur closes its border with Myanmar

March 11, 2020 ● India suspends all visas/e-visas granted to

nationals of France, Germany, and Spain on or

before today
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March 12, 2020 ● WHO declares the COVID-19 outbreak as

'pandemic'

● India suspends all visas excepting those for

diplomatic, UN, or international bodies, official

and employment purposes until April 15

● India reports 1st death

March 13, 2020 ● India reports 2nd death

● Several academic institutions (e.g., JNU, IIT,

IIM) cancel classes/convocations; some hostels

close

March 16, 2020 ● Central government proposes social distancing

measures until March 31

● India bans passengers from EU countries, UK,

and Turkey until March 31

● Central government recommends closure of

educational institutions until March 31

March 17, 2020 ● Taj Mahal is shut until March 31; ASI closes

3,000 monuments and 200 museums

● Mandatory quarantine is imposed on

passengers coming from UAE, Qatar, Oman, and

Kuwait

● India is heading toward a countrywide

lockdown mode
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March 19, 2020 ● India halts all incoming commercial

international flights for one week

● Some state governments ban public

transportation

● Prime Minister urges people of India to

observe self-imposed curfew (‘Janata Curfew’) on

March 22

March 20, 2020 ● Maharashtra announces lockdown in Mumbai,

Nagpur, and Pune

● Jawaharlal Nehru University (JNU) in Delhi

orders students to vacate hostels

March 21, 2020 ● Private labs can conduct COVID-19 tests, says

Maharashtra government

● Rajasthan government declares lockdown

until March 31

March 22, 2020 ● 12 states, including Telangana and Delhi,

announce lockdown until March 31

● International commercial passenger flights

are disallowed to land in India for one week

starting today

● Railways suspend all train services until

March 31

March 23, 2020 ● Central government orders all states in India

to impose lockdown

● Legal action is to be initiated against people

violating lockdown measures
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Source: https://www.pharmaceutical-technology.com/news/india-covid-19-coronavirus-updates-status-by-state/

We provide a table listing other highly affected countries along with their first reported case, initial

interventions, crude fatality rates, and active case counts in Appendix Table A2 for reference. The

estimated capacity of hospital beds in India is 70 per 100,000 people (World Bank, 2020), which is an

upper bound on treatment capacity. Given an average occupancy rate of 75%, only a quarter of these

are available (Sindhu et al. 2019). Moreover, critically ill COVID-19 patients (about 5 to 10% of those

infected) will require ICU beds and ventilator support. India has only 35,000–58,000 ICU beds, with

very high occupancy rates and at most one ventilator per two ICU beds (Times of India, 2020). In order

to roll out interventions and plan for health care infrastructure, robust projection models for outcomes

of interest are necessary. There are many outcomes that are of potential interest to policymakers, for

March 24, 2020 ● Prime Minister of India announces lockdown

for 21 days as country records 552 COVID-19 cases

and 10 deaths

March 28, 2020 ● Central government unveils stimulus package

to help those hit by 21-day lockdown

● Priorities are to construct COVID-19 hospitals,

sample testing, contact-tracing, and social

distancing: Union Health ministry

April 2, 2020 ● Common exit strategy necessary for

‘staggered’ relaxations after lockdown period

ends, prime minister tells chief ministers

April 6, 2020 ● Prime Minister instructs union ministers to

prepare a graded plan to gradually open

departments that are not COVID-19 hotspots

April 8, 2020 ● Prime minister and chief ministers decide on

lockdown extension to April 11

April 9, 2020 ● Odisha extends lockdown until April 30 and

becomes first Indian state to do so

https://www.pharmaceutical-technology.com/news/india-covid-19-coronavirus-updates-status-by-state/
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example: How many infected cases will be hospitalized? How many will be admitted to the ICU? How

many patients will need ventilators? And, finally, what will be the mortality due to COVID-19

infections? We focus on the number of active cases as our target of prediction due to the limited data

from India on the other outcomes. From other nations we know that roughly 20% of infections will

probably need hospitalization (Root, 2020), 5% will need ICU admission (Guan et al., 2020), and case-

fatality rates vary from 1 to 5% of those hospitalized(Oke & Henegan, 2020). This may provide crude

estimates of other outcomes from case-count predictions.

At the time of this writing, there exist several models that have been used to analyze the COVID-19

case-count data from India. The approaches for modeling the disease transmission and then

forecasting the number of cases at a future time can be broadly categorized into two genres:

exponential/Poisson type models, and compartmental epidemiologic models. For instance, Ranjan

(2020) and Gupta and Shankar (2020) used the classical exponential model, S. Das (2020) used a

Poisson regression model, while Deb and Majumdar (2020) used an auto-regressive moving-average

model to analyze incidence pattern over time. The compartmental epidemiologic models include

variations of the susceptible-infected-removed (SIR) model, which is guided by a set of differential

equations relating the number of susceptible people, the number of infected people (cases), and the

number of people who have been removed (either recovered or dead) at any given time. This simple

SIR model has been used by Ranjan (2020) and Dhanwant and Ramanathan (2020). Singh and

Figure 2. Early phase of the epidemic and daily growth in cumulative COVID-

19 case counts in India compared to other countries affected by the pandemic 

using data through April 14.
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Adhikari (2020) used an age-structured SIR and social contact model, where an SIR model is assumed

in each age category. Another extension of the SIR model is the susceptible-exposed-infectious-

recovered (SEIR) model, which incorporates an additional compartment of truly exposed people that

is a latent variable. Mandal et al. (2020), Chatterjee et al. (2020), Sardar et al. (2020), and Senapati et

al. (2020) used one or the other variation of the SEIR model. For example, Sardar et al. (2020) used an

extra compartment for lockdown to capture in-home isolation and study the effects of lockdown on

future case counts. Appendix Table A3 compares and summarizes these existing models for India.

In this article, we apply a Bayesian extension of the SIR model, the extended susceptible-infected-

removed (eSIR) model, to explore two primary forecasting objectives: (a) forecasting future case

counts (short term and long term) with different forms of suppression measures in place (post-

lockdown) and (b) studying the relative impact of length/duration of a lockdown on our predictions of

cumulative COVID-19 infections. We carry out extensive sensitivity analysis to assess the robustness of

our forecasting models. We conclude with a discussion regarding the need for reliable case-count data,

increased testing, the importance of uncertainty quantification of the projected case counts, and

transparent data science methods that can inform and influence policymaking during a pandemic. Our

data science products include three articles on media studying pre- (Ray et al., 2020), during

(Salvatore, Wang, et al., 2020), and post- (Salvatore, Ray, et al., 2020) lockdown effects, providing

critical information for policymakers and having an extensive reach (Reuters [Ghosal, 2020], Times of

India [P. Das, 2020], The Guardian [Ellis-Petersen, 2020], The Economic Times [Noronha, 2020]), an

interactive and dynamic R Shiny app that daily updates forecasts as new case counts are reported, and

publicly available codes for reproducible research.

The rest of the article is organized as follows. In Section 2 we describe the structure of the eSIR model,

our parameter choices, and the Bayesian computational algorithm. In Section 3 we present results

from analyzing the data from India that include a sensitivity analysis. We assess how our forecasting

model updates itself with more accrual of data over time. In Section 4 we provide an itemized

discussion of some of the salient data and data science issues related to intervention forecasting and

case-count projections. Section 5 presents a brief conclusion.

2. Methods and Notation

2.1. Study Design and Data Source
We used the current daily data on number of COVID-19 infected cases, recoveries, and deaths in India

to predict the number of infected and removed cases at any given time (L. Wang et al., 2020). We

obtained the data (up to April 14) from the 2019 Novel Coronavirus Visual Dashboard operated by the

Johns Hopkins University Center for Systems Science and Engineering (JHU CSSE) and from

covid19india.org (covid19india, 2020; Dong et al., 2020; Johns Hopkins University Center for Systems

https://medium.com/@covind_19/predictions-and-role-of-interventions-for-covid-19-outbreak-in-india-52903e2544e6
https://medium.com/@covind_19/historic-lockdown-prediction-models-to-study-lockdown-effects-and-the-role-of-data-in-the-crisis-a0afeeec5a6
https://medium.com/@covind_19/unlocking-the-40-day-national-lockdown-in-india-there-is-no-magic-key-de4e43177cb4
http://covind19.org/
https://github.com/umich-cphds/cov-ind-19
http://covid19india.org/
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Science and Engineering, n.d.). Some of our testing data came from

https://ourworldindata.org/coronavirus.

2.2. Our Statistical Model for Predictions

Overview. The standard SIR model was recently extended to incorporate time-varying transmission

rates or time-varying quarantine protocols and is known as the eSIR model (L. Wang et al., 2020).

When using the eSIR model with time-varying disease transmission rate, it can depict a series of time-

varying changes caused by either external variation like government-initiated macro-isolation

measures, community-level protective measures and environment changes, or internal variations like

mutations and evolutions of the pathogen. To implement the eSIR model, a Bayesian hierarchical

framework is assumed. Using the current time-series data on the proportions of infected and the

removed people, a Markov chain Monte Carlo (MCMC) implementation of this Bayesian model

provides not only posterior estimation of parameters and prevalence of all the three compartments in

the SIR model, but also predicted proportions of the infected and the removed people at future time

points. The R package for implementing this general model for understanding disease dynamics is

publicly available at https://github.com/lilywang1988/eSIR.

Mathematical Framework of the eSIR Model. The eSIR model works by assuming that the true underlying

probabilities of the three compartments follow a latent Markov transition process, and that we

observe only the daily proportions of infected cases and removed cases. First, let us establish some

notation. Assume that the observed proportions of infected and removed cases on day t are denoted by

 and , respectively. Further, denote the true underlying probabilities of the S, I, and R

compartments on day t by , , and , respectively, and assume that for any t, . 

Assuming a usual SIR model on the true proportions (Appendix Figure A1-A), we have the following set

of differential equations:

Here,  denotes the disease transmission rate, and  denotes the removal rate. The basic

reproduction number  indicates the expected number of cases generated by one infected case

in the absence of any intervention and assuming that the whole population is susceptible. At this stage,

Yt
I Yt

R

θt
S θt

I θt
R θ +t

S θ +t
I θ =t

R 1

=
dt
dθt

S

−βθ θ ,t
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t
I

=
dt
dθt

I

βθ θ −t
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t
I γθ ,t

I

=
dt
dθt

R

γθ .t
I

β > 0 γ > 0
R =0 : γ

β

https://ourworldindata.org/coronavirus
https://github.com/lilywang1988/eSIR


12

for the observed infected and removed proportions, we assume a Beta-Dirichlet state-space model,

independent conditionally on the underlying process:

Further, the Markov process on the latent proportions is built as:

where  denotes the vector of the underlying population probabilities of the three compartments, 

whose mean is modeled as an unknown function of the probability vector from the previous time

point, along with the transition parameters;  denotes the whole set of parameters

where  and  are parameters controlling variability of the observation and latent process,

respectively. The function  is then solved as the mean transition probability determined by the SIR

dynamical system, using a fourth-order Runge-Kutta approximation.

Priors and the MCMC Algorithm Setup of the eSIR Model. The prior on the initial vector of latent

probabilities is set as

The prior distribution of the basic reproduction number is  so that

 and , where  and  denote the mean and standard deviation, respectively.

The prior distribution of the removal rate is  so that  

and . The prior mean of the removal rate  indicates an average infectious period of 12

days, which is originally set using estimates from the SARS outbreak in Hong Kong (Mkhatshwa &

Mummert, 2010) due to the similarity between the two viruses; this value also aligns well with several

recent studies on COVID-19 in China (Chen et al., 2020; Li et al., 2020; Ryu & Chun, 2020). The prior

mean of the basic reproduction number, 2.0, is approximately the average of estimates from many

other COVID-19 studies on the Indian population (S. Das, 2020; Deb & Majumdar, 2020; Ranjan, 2020;

Sardar et al., 2020; Singh & Adhikari, 2020). We have conducted a sensitivity analysis to evaluate how

robust the model is toward the prior settings using Indian population COVID-19 data. The sensitivity

issue can be minimized with more observed data of a longer exponentially increasing period and

stronger intensities by focusing on cities or states that are highly exposed. Note that the prior mean of

the distribution of the transmission rate  equals . For the variability parameters, the default 

choice is to set large variances in both observed and latent processes, which may be adjusted over the

course of the epidemic with more data becoming available:

Y ∣θ , τ ∼t
I

t Beta λ θ ,λ 1 − θ ,( I
t
I I ( t

I))

Y ∣θ , τ ∼t
R

t Beta λ θ ,λ 1 − θ .( R
t
R R ( t

R))

θ ∣θ , τ ∼t t−1 Dirichlet κf θ ,β, γ( ( t−1 ))
θt

τ =(β,γ, θ ,λ,κ)0
T

λ ,  λI R κ
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I Y ,   Y ,   Y ), θ =1

R
1
I

1
R

0
S 1 − θ −0

I θ .0
R

R ∼0 LogNormal(0.582, 0.223)

E R =( 0) 2 SD R =( 0) 1 E SD

γ ∼ LogNormal(−2.955, 0.910) E γ =( ) 0.082

SD γ =( ) 0.1 γ

β γR0

κ,  λ ,λ ∼   I R iid Gamma 2,  0.0001 . ( )
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Denoting  as the last date of data availability, and assuming that the forecast spans over the period

, our algorithm is as follows.

0. Take draws from the posterior .

1. For each solution path , iterate between the following two steps via MCMC.

i. Draw  from .

ii. Draw  from .

Modeling Intervention. We model the effect of interventions by assuming that the intervention will

result in a decrease in the transmission from the S compartment to the I compartment. We do so by

decreasing the effective rate of transition (or, equivalently, the chance of interaction between

members of S and I), by introducing a time-varying transmission rate modifier . This 

updates the flow between the three compartments (Appendix Figure A1-B) via a set of differential

equations as follows:

The reproductivity is thus modified by the intervention over time as . To better understand the

introduction of this effect modifier, we follow an example given by L. Wang et al. (2020). Suppose at a

time , is the chance of an at-risk person being in home isolation, and  is the 

chance of an infected person being in hospital quarantine. Consequently, the chance of disease

transmission when an at-risk person meets an infected person is

, with . 

In effect, this  modifies the chance of a susceptible person meeting with an infected person, which

is termed as a transmission modifier. In this article, the functional form of  is a continuous

function that reflects a combination of steadily increased community-level awareness and responsible

quarantine and preventive measures, and the country-wide lockdown measures initiated by the

government. This predefined transmission modifier can be smoothly incorporated into the differential

equations as well as the MCMC algorithms. Its functional form can be quite flexible in reflecting the

changing pattern of human intervention that affects the transmission rate of the epidemic within the

population.

t0
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∣
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=
dt
dθt

I
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Implementation of the eSIR Model. We implemented the proposed algorithm in R package rjags

(Plummer et al.) and the differential equations were solved via a fourth-order Runge–Kutta

approximation. To ensure quality of the MCMC, we set the adaptation number to be , thinned the 

chain by keeping one draw from every 10 random draws to reduce autocorrelation, set a burn-in

period of  draws to let the chain stabilize, and started from 4 separate chains. Thus, in total, we

have  effective draws with about  draws discarded. One could reduce the computation 

time, but consequently might risk the quality of data. This implementation provides not only posterior

estimation on parameters and prevalence of all three compartments in the SIR model, but also

predicted proportions of the infected and the removed cases at future time points. To obtain predicted

case counts from the predicted prevalence, we used 1.34 billion as the population of India, thus

treating the country as a homogeneous system for the outbreak (World Bank, 2017).

Uncertainty Quantification. One major advantage of a Bayesian implementation is that uncertainty

associated with all parameters and functions of parameters can be calculated from exact posterior

draws without relying on large-scale approximation or the delta method. The credible intervals (CrI)

for the prevalence are computed using the posterior distribution of proportions given the observed

confirmed and removed prevalence, that is,  and , where  

denotes the last observed date, and  denotes the last forecast date. More specifically, suppose we

want to compute the 95% posterior CrI for the observed proportion of confirmed cases on the first day

of forecast, that is, a CrI for the random variable . Then, from the solution paths of the

posterior, we have the draws . We construct a 95% posterior CrI for  by

simply computing the 2.5th upper and lower percentiles from this set of M draws. The cumulative

prevalences are sums of the draws from the I and R compartments at a given time and thus the

confidence interval for the sum can be calculated in a similar way. Case counts can be obtained from

prevalences by using population size. Similar techniques apply to  for any  and

transmission parameters like  and . For instance, a 95% posterior CrI for  can be constructed by

calculating the 2.5th upper and lower percentiles of . Therefore, we could

simply define , and compute the 95% posterior CrI for the effective

reproduction number  from .

2.3. Parameter Choices for Short-Term Forecasts
We made projections of the cumulative number of cases over a time horizon to assess the short-term

impact of lockdown as well as the long-term impact of lockdown and post-lockdown activities. For the

short-term forecast on April 30, we assumed lockdown is implemented until April 14 with either a 1- or

a 2-week delay in people’s adherence/compliance to lockdown restrictions. We compared these

projections with two hypothetical scenarios: (A) no non-pharmaceutical intervention (i.e., a constant

disease transmission rate over time since the first case was reported in India), (B) a moderate

104
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2 × 105 2 × 106
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1:t0
R Y ∣Y ,  Y(t +1):T0

R
1:t0
I

1:t0
R t0

T

Yt +10
I M

Y ,  1 ≤ m ≤M{ t +10

I  m( ) } Yt +10
I

θt +j0
I 1 ≤ j ≤ T − t0

β γ β

β ,  1 ≤ m ≤M{ (m) }

R =(m)  ∀ 1 ≤
γ (m)
β(m) m ≤M

R R ,  1 ≤ m ≤M{ (m) }



15

intervention with social distancing and travel bans only (i.e., a decreased transmission rate compared

to no intervention). The prior mean for  (the expected number of cases generated by one infected 

person assuming that the whole population is susceptible) was set at 2.0. This was estimated based on

the early phase data in India and is consistent with other models (S. Das, 2020; Deb & Majumdar, 2020;

Ranjan, 2020; Sardar et al., 2020; Singh & Adhikari, 2020). For the no intervention and the moderate

intervention scenarios, we chose the transmission rate and the removal rate such that the means for

the prior distribution of the basic reproductive number  are 2.0 and 1.5, respectively (SD = 1). The

change in  from 2.0 to 1.5 as an effect of intervention was created based on what we saw regarding

the effect of interventions and the relative reduction of  in Wuhan (C. Wang et al., 2020). Given the

similar population size and comparable population densities in China and India, the assumption on

similar effect of interventions on the pandemic across the two countries does not seem too restrictive.

For the current scenario of lockdown, our chosen mean for the prior of  starts with 2.0 during the 

period of no intervention, drops to 75% of its original value or 1.5 during the period of moderate

intervention, and further drops to 0.8 during the 21-day lockdown period, and moves back up to 1.5

after the lockdown ends as described in Figure 3 (assuming a gradual, moderate resumption of daily

activities). The drop in  from 2.0 to 0.8 during lockdown represents a 60% reduction, which is 

proportionally slightly less than the ~65% drop estimated in  from the COVID-19 outbreak in Wuhan 

following the introduction of cordon sanitaire, or restriction of movement of people (Lin, 2020; Pan et

al., 2020).

R0

R0

R0

R0

R0

R0

R0

Figure 3. Implied  schedules corresponding the hypothetical scenarios under 

quick adherence. Corresponding plot for slow adherence is in Appendix Figure A2.
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2.4. Parameter Choices for Long-Term Forecasts
For the longer term forecast until June 15, we considered three hypothetical post-lockdown scenarios:

(i) people return to normal activities due to the urgent desire for reconnecting after lockdown, (ii)

people return to moderate activities as they did during the period with social distancing and travel ban

intervention, and (iii) people make a cautious return out of fear for the coronavirus and partake in

subdued activities. For these three scenarios, we assume the prior mean on  moves back up from 0.8

to 2.0, 1.5 and 1.2, respectively, 3 weeks after lockdown ends on April 14. We compared these post-

lockdown scenarios with another hypothetical scenario involving perpetual social distancing and travel

ban without any lockdown (we fixed the prior mean on  at 1.5 over the entire forecasting interval).

The time-dependent changes to  values across our simulation scenarios are depicted in Figure 3.

2.5. Parameter Choices for Duration of Lockdown Analysis
To assess the long-term impact of lockdown duration, we considered four scenarios: 21-, 28-, 42-, and

56-day lockdown periods. In all scenarios, we assume the prior mean on  remains at 0.8 for the

duration of the lockdown. Post-lockdown, the prior mean on  gradually returns to a value of 1.5 over

a span of 3 weeks (analogous to the ‘moderate return’ scenario). The changes to  values across our

simulation scenarios for studying length of lockdown are depicted in Appendix Figure A7.

2.6. Open-Source Software
We are committed to data transparency and reproducible research. Daily updates of our India

projections, based on cases, recovered, and deaths reported the day before by covid19india.org, a

crowd-sourced database using state bulletins and official handles, can be found in our interactive and

dynamic Shiny app (covind19.org). Apart from the scenarios described in this article, anyone can create

predictions under other hypothetical scenarios with quantification of uncertainties. Open-source code

underlying this app are available at https://github.com/umich-cphds/cov-ind-19.

3. Results
As we interpret the results from our model, let us use caution in not overinterpreting the

numbers. Any statistical model is wrinkled with many assumptions. Similarly, the predictions

themselves have large uncertainty (as reflected by the large upper-credible limits). A rigorous

quantitative treatment often allows us to analyze a problem with clarity and objectivity, but we

recommend focusing more on the qualitative takeaway messages from this exercise rather than

concentrating on the exact numerical projections or quoting them with certainty.

R0

R0

R0

R0

R0

R0

https://www.covid19india.org/
http://covind19.org/
https://github.com/umich-cphds/cov-ind-19
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3.1. Short-Term Forecast of Cumulative Case Counts in India
Under national lockdown (March 25–April 14), our predicted cumulative number of COVID-19 cases in

India on April 30 are 19,625 and 19,503 (upper 95% CrI 130,326 and 129,422) assuming a 1- or 2-week

delay (i.e., either a quick or a slow adherence), respectively, in people’s adherence to lockdown

restrictions and a gradual, moderate resumption of daily activities post-lockdown (Figure 4, Appendix

Figure A3). In comparison, the predicted cumulative number of cases under “no intervention” and the

“intervention involving social distancing and travel bans without lockdown” are 222,000 and 53,000

(upper 95% CrI of nearly 1.4 million and 0.3 million), respectively. Under quick adherence, these

figures correspond to a relative reduction of 91% and 63% of cases due to lockdown with moderate

return compared to “no intervention” and “social distancing and travel ban.” The relative reduction in

cases between two scenarios (often from the least to the most intense intervention) is calculated as the

difference between an estimate (on a particular day, e.g., April 30) under the social distancing and

travel ban scenario and under the lockdown with moderate return scenario and then divided by the

estimate under the social distancing and travel ban scenario.

We are reporting only the upper credible limit here and elsewhere since the lower credible limits are

very small and uninformative due to the large uncertainty in our predictions arising from many

unknowns. We also believe that our point estimates are at best underestimates due to potential

surveillance bias (underreporting and/or misdiagnosis of case counts) and our model not taking into

account the population density, age-sex composition, and regional contact network structure of the

whole nation. Increase in testing and community transmission may lead to a spike in a single day and

Figure 4. Short-term daily growth in cumulative case counts in India assuming 

a 1-week delay in people’s adherence to restrictions. Observed data are shown 

for days up to April 14. Predicted future case counts for April 15 until April 30 are based 

on observed data until April 14 using the eSIR (extended susceptible-infected-removed) 

model. The dashed horizontal line represents the upper 95% credible limit for estimates 

under “lockdown with moderate release” scenario. Corresponding graph following a 2-

week delay schedule can be found in Appendix Figure A3.
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that may increase the projections substantially upward. Regardless of the exact numbers, it is clear

that the 21-day lockdown will likely have a strong relative effect on reducing the predicted number of

cases in the short term when compared to weaker interventions.

3.2. Long-Term Impact of Lockdown on the Outbreak in India

We took a close look at what might be coming in the next 2 months, based on what we have seen in

other countries and an epidemiologic model that has been gainfully employed to assess the effect of

interventions in Hubei province (L. Wang et al., 2020). We estimate that roughly 388,000 (upper 95%

CrI 2.4 million), 7.5 million (upper 95% CrI 104 million), and 18.5 million (upper 95% CrI 196 million) cases

are prevented on May 15, June 15, and July 15, respectively, by instituting a 21-day lockdown with quick

adherence and a cautious return compared to perpetual social distancing and travel ban (without

lockdown) (Figure 5). This corresponds to relative reductions in cases of 93%, 96%, and 91%,

respectively, compared to perpetual social distancing.

Without some measures of suppression after lockdown is lifted, the impact of lockdown in bringing

down the case counts (the now ubiquitous term, ‘flattening the curve’) can be negated by as early as

the first week of June. In fact, in Figure 5a, the preintervention (‘normal’) curve first passes the social

distancing and travel ban curve on June 5. In particular, if  people immediately go back to

preintervention (‘normal’) activities post-lockdown, a surge in the predicted case counts is expected in

the long term beyond what we would have seen if there were only social distancing and travel ban

measures without any lockdown (27 million when post-lockdown activity returns to preintervention

levels versus 26 million under social distancing and travel ban without a lockdown period on July 31;

Figure 5). Longer lockdowns would delay this crossover, but a normal (preintervention) return post-

lockdown would surpass social distancing and travel ban (if these scenarios continued perpetually).

Long-term forecasting under slow adherence (2-week delay) can be seen in Appendix Figure A4.
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We present posterior density and trace plots for the underlying model parameters  and , 

posterior distributions for the predictions and the latent proportions  for the I and R compartments

over time, and estimates and posterior distribution of the daily prevalence of active cases over time or

. These are contained in Appendix Figure A5.

3.3. Relative Impact of Duration of Lockdown on Predicted Case 
Counts
We took the quick adherence epidemiologic models and compared the 21-day lockdown with

hypothetical 28-, 42-, and 56-day lockdown scenarios (Figure 6). When comparing a 21-day lockdown

with a hypothetical lockdown of longer duration, we find that 28-, 42-, and 56-day lockdowns can

Figure 5. Long-term daily growth in case counts in India per 100,000 people 

assuming a 1-week delay and how that is affected by different non-

pharmaceutical intervention strategies. Predicted cumulative (a) and incident (b) 

case counts from May 1 to July 31 from the eSIR(extended susceptible-infected-

removed) model are shown, based on observed data until April 14. Corresponding plots 

for slow adherence are in Appendix Figure A4.

 β,  γ, R0

Y  θ

dt
dθt

I
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approximately prevent 733,000 (upper 95% CrI 6.8 million), 1.4 million (upper 95% CrI 9.8 million), and

1.6 million (upper 95% CrI 10.3 million) cases by June 15, respectively. These numbers correspond to a

relative reduction in cases of 45%, 86% and 96%, respectively. A 28-day lockdown does not appear to

have a substantial impact on cumulative case counts when compared to a 21-day lockdown. From an

epidemiologic perspective, there appears to be some evidence that suggests a 42- or 56-day lockdown

would have a more meaningful impact on reducing cumulative COVID-19 case counts in India. Our

models suggest that some form of post-lockdown suppression (e.g., extension of social distancing

measures, limits of gathering size, etc.) is necessary to observe long-term benefits of the lockdown

period. We note that longer lockdown periods are also accompanied by increasing costs to individuals,

such as economic costs, mental health issues, and other public health exacerbation costs and must be

considered in policymaking.

Figure 6. Cumulative (a) and incidence (b) graphs for forecasting models 

assuming a 1-week delay under 21-, 28-, 42-, and 56-day lockdown scenarios 

using observed data through April 14. Corresponding plots for slow adherence are 

in Appendix Figure A4.
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Lockdown duration study under the slow adherence (2-week delay) scenario can be found in Appendix

Figure A6. The implied  plots can be found in Appendix Figure A7.

3.4. Sensitivity Analyses

We did explore some alternative assumptions and conducted thorough sensitivity analysis before

settling on the models presented above. In one example, we assumed that there are actually 10 times

the number of reported cases to date to reflect potential underreporting of cases due to lack of testing.

We note that our predictions of case counts indeed go up and the effect of underreporting of cases is

more palpable with long-term projections (see Table 2, underreporting). In another scenario, we

assumed these cases occurred in metropolitan areas to reflect a potential intensification of case

clustering. In our primary analyses, we assumed that the cumulative case counts across the country

represent equal contributions from all the regions, and using the whole population of India as a scaling

factor to compute initial inputs for  and . This may lead to extremely small proportions,

which may in turn yield underestimated outputs from the eSIR model. Changing the total population

size from that of India to that of representative (large) cities from the hub states (the states of Kerala,

Maharashtra, and Karnataka, and the national capital region of Delhi) is a simple but intuitive way to

potentially do away with the aforementioned underestimation. We note that this substantially reduces

the width of the credible intervals (see Table 2, case-clustering). In yet a third scenario, we

hypothesized that the prior mean of  is set at 3.0 or 4.0 instead of 2.0 (i.e., a single infected 

individual would infect 3 or 4 susceptible individuals, on average, instead of 2). In most of our analyses

(Table 2), the posterior mean for  was seen to be from 1.8 and 2.4, irrespective of whether a

higher/lower starting (prior) mean was used. We observe that a prior mean of 4.0 for  sways the

posterior  estimate substantially (posterior mean 3.38). As more data accumulate, we will expect

the effect of the prior on the posterior estimates to diminish. The posterior distributions of the

prevalence in each compartment and latent proportions under these changing scenarios are available

in Appendix Figure A8.

Table 2. Comparison of  Estimated Projections and Posterior Estimates of  Model Parameters

Across Different Sensitivity Analysis Scenarios Under 21-Day Lockdown With Moderate

Return, Using Observed Data Until April 14

R0

Y1:t0
I Y1:t0

R

R0

R0

R0

R0

Sensitivity

Analysis

Predictions Posterior Estimates

Scenario May 1 May 15 R0 β γ
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Note. Prior SD for  is 1.0.

* Observed case counts are multiplied by 10, prior mean for  

** Assume that the cases happen in metro hotspots, use population size N=32 million instead of national population 1.34

billion, prior mean for 

In summary, these sensitivity analysis scenarios did not appreciably change our conclusions in broad

qualitative terms, though the exact quantitative projections for case counts are quite sensitive to such

choices. We note that the estimate of basic reproduction number  is more robust to underreporting 

issues because counts in all compartments of our eSIR model are assumed to be underreported. Since

underreported case counts affect all our hypothetical intervention scenarios in a similar way, the

relative comparison of interventions and the associated conclusion remain valid in a qualitative sense.

In all cases, our confidence in these projections decreases markedly the farther into the future we try

to forecast. It is extremely important to update these models as new data arise.

3.5. Model Calibration

To check the calibrating properties of our model, we truncated the data to certain dates and tried

assessing the quality of the case-count predictions with essentially adding one more week of data for

predicting active cases at a future date (Table 3 and Appendix Figure A9). We do notice the projected

case counts change significantly with more data and improve (become closer to the observed) with

Underreportin

g*

25,248

[104,411]

62,797

[343,465]

2.28

[1.05, 4.20]

0.20

[0.05, 0.39]

0.09

[0.03, 0.19]

Case-

clustering**

24,818

[59,525]

57,499

[189,010]

2.81

[1.47, 4.70]

0.16

[0.07, 0.26]

0.06

[0.03, 0.10]

Prior mean for

R =0 2
20,251

[135,034]

42,252

[315,348]

1.80

[0.87, 3.26]

0.27

[0.06, 0.59]

0.16

[0.04, 0.35]

Prior mean for

R =0 3
25,757

[165,287]

86,750

[638,770]

2.43

[1.41, 4.07]

0.30

[0.09, 0.60]

0.13

[0.04, 0.30]

Prior mean for

R =0 4
34,587

[213,556]

253,935

[1,854,319]

3.38

[2.09, 5.27]

0.32

[0.10, 0.63]

0.10

[0.03, 0.23]

R0

R =0 2

R =0 2

R0
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more data. Our projections always underestimate the observed counts. This phenomenon is also due to

more testing being done each week. However, the observed number of infected cases is always within

the 95% prediction credible interval provided by our model. This again reveals the large uncertainty in

our predictions.

Table 3. Comparison of  Model Projections Using Observed Data up to Different Dates Assuming

a 21-Day Lockdown With Moderate Return

Note. All prediction scenarios assume a prior mean of 

4. Discussion
Our projections using current daily data on case counts until April 14 in India show that the lockdown,

if implemented correctly in the end, has a high chance of reducing the number of COVID-19 cases in

the short term and buying India invaluable time to prepare its health care and disease-monitoring

system. In the long term, we need to have some measures of suppression in place after the lockdown is

Projected Counts

[Upper Credible Interval]

Posterior Estimates [95% CrI]

Observed/Pro

jection

April 15 May 1 R0 β γ

Observed 12,370 37,262 - - -

Used data up

to April 1

1,944

[14,178]

3,807

[28,777]

1.85

[0.84, 3.47]

0.28

[0.05, 0.70]

0.16

[0.03, 0.40]

Used data up

to April 7

5,344

[36,222]

8,330

[61,270]

1.74

[0.80, 3.22]

0.22

[0.05, 0.52]

0.14

[0.03, 0.32]

Used data up

to

April 14

11,736

[68,836]

20,251

[135,034]

1.80

[0.87, 3.26]

0.27

[0.04, 0.35]

0.16

[0.04, 0.35]

R =0 2
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lifted to prevent a massive surge in the number of cases that can quickly overwhelm an already

overstretched Indian health care system resulting in increased fatalities. Specific vulnerable

populations will be at higher risk of severity and fatality from COVID-19 infection: older persons and

persons with preexisting medical conditions (e.g., high blood pressure, heart disease, lung disease,

cancer, diabetes, immunocompromised persons) (Centers for Disease Control and Prevention [CDC],

2020; WHO, 2020a). Appendix Table A1 provides a description of the approximate number of

individuals in these high-risk categories in India. Beyond the fragile population characterized by

health and economic indicators, we must remember that health care workers and first responders at

the frontline of this pandemic are among the most vulnerable (C. Wang et al., 2020). Though we have

focused on forecasting and modeling of COVID-19 case counts in this article, we recognize that this is

only one component of the problem. Long-term surveillance and management of the COVID-19 crisis is

needed with not just public health in mind but also to take care of the economic, social, and

psychological impact that it will have on the people of India.

4.1. Limitations

Our statistical modeling and forecasts are not without limitations. We have limited number of data

points and a wide time-window to extrapolate for the long-term forecasts. The uncertainty in our

predictions is largely due to many unknowns arising from model assumptions, population

demographics, the number of COVID-19 diagnostic tests administered per day, testing criteria,

accuracy of the test results, and heterogeneity in implementation of different government-initiated

interventions and community-level protective measures across the country. We have neither accounted

for age-structure, contact patterns, or spatial information to finesse our predictions (Klein et al., 2020;

Mandal et al., 2020; Singh & Adhikari, 2020) nor considered the possibility of a latent number of true

cases, only a fraction of which are ascertained and observed (C. Wang et al., 2020). Increase in

frequency and scale of testing, and community transmission of the SARS-CoV-2 virus may lead to a

spike in a single day and that can shift the projection curve substantially upward. COVID-19 hotspots in

India are not uniformly spread across the country, and state-level forecasts (S. Das, 2020) may be more

meaningful for state-level policymaking. We are assuming that the implementation and effects of

public health interventions and policies are the same everywhere in India by treating India as a

homogeneous unit.

The eSIR model treats the entire group of people within a single compartment as homogenous and

exchangeable. We also assume that all subjects who were not infected are susceptible. Certainly, this

overlooks the possibilities of people moving between states and different subsets of infected and

susceptible populations having greater or lesser likelihood of coming into contact with one another. To

account for all such potential factors, we need more-nuanced modeling. One potential way is to break

up the interaction component into further subcompartments; however, sparsity of current data in each
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subcompartment is an issue. Another way that has been pursued in a recent study is to inform the SIR

modeling via introducing contact networks at the initial stage (Bhattacharyya et al., 2020). However, it

is worth noting that any such approach would need more-granular and reliable data containing

individual details of the confirmed cases, including their location and travel history. Even though such

data are available from some self-reporting–based repositories (Kaggle, 2020), the quality and detail

of the information provided are quite heterogeneous and, thus, how to best utilize such data remains a

question. We see the tremendous role of data and its transparency of collection and reporting in

finessing our predictions. Accurate and consistent reporting of case counts and deaths due to COVID-19

are extremely critical. Future opportunities for improving our model include incorporating contagion

network, age-structure, and test imperfection and estimating SEIR model and true fatality/death

rates. Future research would benefit from easily accessible hospitalization data, accurate recording of

deaths in death records, and availability of ecological-level covariate data. Regardless of the caveats in

our study, our analyses show the impact and necessity of lockdown and of suppressed activity post-

lockdown in India. Though the exact numerical projections are perhaps far from the truth, the qualitative

inference on the relative effects of the interventions are still valuable and valid since all projections are

subject to similar biases.

One ideological limitation of considering only the perspective of controlling COVID-19 transmission in

our model is the inability to account for excess deaths due to other causes during this period (chronic

disease and mental health–related diseases in particular), or the flexibility to factor in reduction in

mortality/morbidity from some other infectious or flu-like illnesses, traffic accidents, or the health

benefits of reduced air pollution levels. A more expansive framework of a cost–benefit analysis is

needed as we gather more data and build an integrated landscape of changes in population-

attributable risks due to various disease categories.

4.2. Testing

A reviewer of this article suggested giving a sense of the testing data from India and how that may

affect our conclusions. India’s priorities in testing have changed multiple times over the past few

weeks. On March 17, India proposed testing all people who recently traveled internationally and

developed symptoms (fever, cough, difficulty in breathing, etc.) of COVID-19 within 14 days of return,

all symptomatic contacts of laboratory-confirmed positive cases, or all symptomatic health care

workers managing respiratory distress. On March 20, India revised this testing strategy to include all

symptomatic health care workers, all hospitalized patients with severe acute respiratory illness (fever

and cough and/or shortness of breath), and asymptomatic direct and high-risk contacts of a confirmed

case to be tested once between day 5 and day 14 of coming into contact. The testing strategy was again

revised on April 9 to include testing of all symptomatic people in hotspots/clusters and in large
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migration gatherings or evacuee centers. These testing strategies are obtained from the Indian Council

of Medical Research (https://www.icmr.gov.in).

We looked a little deeper into the issue of testing bias using data from Our World in Data (Hasell et al.,

n.d.). Appendix Figure A10-A shows that, even though the number of tests in India has increased in

recent days, the proportion of daily discovered positive cases still remain stable (at about 4%) and do

not yet show an obvious increasing trend like in other countries such as the United States and United

Kingdom. We also plot Iceland and South Korea on this figure as they have performed remarkably in

administering a large number of tests per detected case and serve as examples for the world. We also

looked at the proportion of the population tested in 61 countries around the world (Appendix Figure

A10-B). While most advanced countries have tested around 1 to 3% of the population, India has tested

roughly 0.06% population and it will take weeks, if  not months, for India to reach testing 1–3% of the

population. In the absence of rapid and large-scale testing, informative proxies or surrogates can be

tracked through syndromic surveillance, temperature reporting, and monitoring hospital admissions

and medical claims due to respiratory and flu like illnesses. This additional information will

strengthen the prediction models. In absence of these models, we rely on sensitivity analysis for

underreporting as presented in Table 2.

4.3. Our Data Science Product

Finally, in our strong commitment to reproducibility and dissemination of our research, we have made

the code for our predictions available at GitHub and created an interactive and dynamic R Shiny app

to visualize the observed data and create predictions under hypothetical scenarios with quantification

of uncertainties. These forecasts are updated daily as new data come in. We hope these products will

remain our contribution and service as data scientists during this tragic global catastrophe, and the

model and methods will be used to analyze data from other countries.

5. Conclusion
Our epidemiologic and mathematical calculations make a convincing case for enforcing national

lockdown in the largest democracy in the world, acting early, before the growth of COVID-19 infections

in India starts to accelerate. We observe the public health benefit of extending the lockdown by 3 to 5

weeks in our projections. Measures of suppression are needed post-lockdown to acquire maximal long-

term benefits from the lockdown. We also illustrate the critical role of epidemiologic forecasting in

aiding policy decisions through this modeling exercise. We highlight the importance of conducting

model checks, sensitivity analysis, and uncertainty quantification.

We realize that these draconian public health measures come at a tremendous price to social and

economic health that can last for months or even years after the restrictions on social mobility are

https://www.icmr.gov.in/
https://github.com/umich-cphds/cov-ind-19
file:///tmp/covind19.org
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lifted. Our general message to the public is to proceed with prudence and caution and adhere to

effective public health interventions until there are rapid and reliable home testing kits; there are

none yet (Food and Drug Administration [FDA], 2020), FDA approved drugs (WHO, 2020c), and a

vaccine (Craven, 2020).
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Table A1.  Proportion of  Population in Specifically Vulnerable Subgroups at Potentially High

Risk of  COVID-19 Severity Risk in India

Metric Number†

(in millions)

Year Source

Uninsured 1,104 2014 Prinja et al. 2019

Population over 65 92.5 2020 (est.) CIA World Factbook

Hypertension (men)* 175.7 2015/16 Gupta & Ram 2019

Hypertension

(women)*

132.6 2015/16 Gupta & Ram 2019

People with

cardiovascular disease*

78.7 2016 Prabhakaran et al. 2018

Population with COPD* 75.9 2016 Salvi et al. 2018

Population with

asthma*

45.5 2016 Salvi et al. 2018

Develop cancer by age

75 (men)**

70.3 2018 NICPR

Develop cancer by age

75 (men)**

62.3 2018 NICPR

Population with

diabetes (adult)

122.8 – IDF

Access to inpatient

department facilities***

731.4 2012 IMS Institute 2013

Access to outpatient

department***

1,104 2012 IMS Institute 2013

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0211793
https://www.cia.gov/library/publications/the-world-factbook/fields/341.html#IN
https://pubmed.ncbi.nlm.nih.gov/31082849/
https://pubmed.ncbi.nlm.nih.gov/31082849/
http://www.onlinejacc.org/content/72/1/79
https://www.thelancet.com/journals/langlo/article/PIIS2214-109X(18)30409-1/fulltext
https://www.thelancet.com/journals/langlo/article/PIIS2214-109X(18)30409-1/fulltext
https://www.thelancet.com/journals/langlo/article/PIIS2214-109X(18)30409-1/fulltext
https://www.thelancet.com/journals/langlo/article/PIIS2214-109X(18)30409-1/fulltext
http://cancerindia.org.in/cancer-statistics/
http://cancerindia.org.in/cancer-statistics/
https://idf.org/our-network/regions-members/south-east-asia/members/94-india.html
http://docshare04.docshare.tips/files/25555/255552955.pdf
http://docshare04.docshare.tips/files/25555/255552955.pdf


35

† based on 2020 est. of 1.38 billion from UN Department of Economic and Social Affairs

* age-standardized; ** risk; *** defined as within 5-kilometer distance of home or work

Abbrev.: COPD, chronic obstructive pulmonary disease; IDF, International Diabetes Federation; NICPR, National Institute of

Cancer Prevention and Research

Table A2. Intervention Landscape of  Countries Severely Affected by COVID-19

Country Date of  1st 

case¶

Interventions

/Lockdown

Crude fatality

rate†
Active cases†

China Nov. 17, 2019* Lockdown in

Wuhan on

01/22,

extended to

neighboring

cities in Hubei

province on

01/23. Wuhan

lockdown to be

lifted on

04/08.1

4.1% 1,116

https://population.un.org/wpp/DataQuery/
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South Korea Jan. 19, 2020** Tested widely

for the virus,

isolated cases

and

quarantined

suspected

cases. Figures

indicate that

this has helped

suppress

transmission

of the virus.

The country

appears to

have reined in

the outbreak

without some

of the strict

lockdown

strategies

deployed

elsewhere in

the world.2

2.0% 3,125
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United States Jan. 20, 2020 On 01/31,

restricted

travel from

China;

expanded

restrictions to

other countries

on 02/29. On

03/03, CDC

lifted all

restrictions on

testing. On

03/15, CDC

recommends

no gatherings

of 50 people or

more. Stay-at-

home

directives

issued at state-

level.3

3.7% 431,557
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France Jan. 24, 2020 On 03/17,

France

imposed a

nationwide

lockdown,

prohibiting

gatherings of

any size and

postponing the

second round

its municipal

elections. The

lockdown was

one of Europe’s

most stringent.

While

residents were

told to stay

home, officials

allowed people

to go out for

fresh air but

warned that

meeting a

friend on the

street or in a

park would be

punishable

with a fine. 3

10.8% 79,279
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Germany Jan. 28, 2020 Germany has a National

Pandemic Plan, with three

stages. In the first stage

(containment) health

authorities are focusing on

identifying contact persons, who

are put in personal quarantine

and are monitored and tested.

In the second stage (protection)

the strategy will change to using

measures to protect vulnerable

persons from becoming

infected. The final stage

(mitigation) will try to avoid

spikes of intensive treatment in 
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order to

maintain

medical

services.4

2.2% 76,420

United

Kingdom

Jan. 31, 2020 Citizens

advised to stay

at home.

Violators to be

fined with the

exception of a

few special

circumstances,

in order to

contain the

spread of the

disease. The

government is

supporting and

coordinating

with research

institutes to

explore

treatment and

curative

options.5

12.7% 61,825
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Italy Jan. 31, 2020 Flights to

China

suspended and

a national

emergency

declared on

01/31 after two

cases

confirmed in

Rome. Schools

and

universities

closed on

03/04. By

03/09, the

entire nation

placed under

lockdown,

with

restaurants,

bars closing on

03/11 and

factories

closing on

03/22. All non-

essential

production

halted.6

12.7% 96,877
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Spain Feb. 1, 2020 State of

emergency

declared on

03/14, allowing

authorities to

authorities to

confine

infected

people and

ration goods.

Originally

planned to last

until 03/29;

has been

extended to

04/12. Schools,

bars,

restaurants

and shops

selling non-

essential items

have been shut

since March 14

and most of

the population

is house

bound.7

10.2% 85,386
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¶ Date of 1st case data obtained from JHU CSSE time series data on COVID-19 (except for China & South Korea)

† Microsoft bing COVID-19 tracker (https://bing.com/covid, as of 1:00 PM EST April 10, 2020)

* https://www.livescience.com/first-case-coronavirus-found.html

**  https://www.worldometers.info/coronavirus/

1 https://www.cnn.com/2020/03/24/asia/coronavirus-wuhan-lockdown-lifted-intl-hnk/index.html

2 https://www.npr.org/sections/goatsandsoda/2020/03/26/821688981/how-south-korea-reigned-in-the-outbreak-

without-shutting-everything-down

3 https://www.nytimes.com/article/coronavirus-timeline.html

4 https://en.wikipedia.org/wiki/2020_coronavirus_pandemic_in_Germany

5 https://www.gov.uk/government/publications/coronavirus-action-plan/coronavirus-action-plan-a-guide-to-what-you-

Iran Feb. 19, 2020 On 02/28, the

Iranian

authorities

closed schools,

canceled

Friday prayers

and moved to

restrict visitors

from China. On

03/15, the

official leading

Iran's response

to the new

coronavirus

acknowledged

Sunday that

the pandemic

could

overwhelm

health

facilities in his

country, which

is battling the

worst

outbreak in

the Middle

East.8

6.2% 28,495

https://bing.com/covid
https://www.livescience.com/first-case-coronavirus-found.html
https://www.worldometers.info/coronavirus/
https://www.cnn.com/2020/03/24/asia/coronavirus-wuhan-lockdown-lifted-intl-hnk/index.html
https://www.npr.org/sections/goatsandsoda/2020/03/26/821688981/how-south-korea-reigned-in-the-outbreak-without-shutting-everything-down
https://www.nytimes.com/article/coronavirus-timeline.html
https://en.wikipedia.org/wiki/2020_coronavirus_pandemic_in_Germany
https://www.gov.uk/government/publications/coronavirus-action-plan/coronavirus-action-plan-a-guide-to-what-you-can-expect-across-the-uk
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can-expect-across-the-uk

6 https://www.axios.com/italy-coronavirus-timeline-lockdown-deaths-cases-2adb0fc7-6ab5-4b7c-9a55-bc6897494dc6.html

7 https://www.reuters.com/article/us-health-coronavirus-spain/shellshocked-spain-reports-record-832-new-coronavirus-

deaths-idUSKBN21F0NR

8 https://www.nytimes.com/aponline/2020/03/15/world/middleeast/ap-ml-virus-outbreak-mideast.html?

searchResultPosition=10

Table A3. Comparison of  Types of  Infectious Disease Models, Specifically Those Used to Study

COVID-19 in India

Model type Reference Research

question

Strengths Weaknesses

Exponential

model

Gupta & Shankar

(2020)

Provide estimate

of the infected

population using

death counts

Simple model

helpful for scant

data; modeled

epidemic hotspots

separately

Not accounted for

population

demographics

(limited by data),

non-

pharmaceutical

(NP) intervention

effects; requires

infection fatality

rate

Poisson log-linear

model

Das (2020) Short-term

prediction of

future case

counts; estimate

Simple model

helpful for short-

& medium-term

forecasts using

scant data;

accounted for

quadratic effect of

time

Not accounted for

population

demographics

(limited by data),

hotspots, NP

intervention

effects;

surveillance bias

https://www.gov.uk/government/publications/coronavirus-action-plan/coronavirus-action-plan-a-guide-to-what-you-can-expect-across-the-uk
https://www.axios.com/italy-coronavirus-timeline-lockdown-deaths-cases-2adb0fc7-6ab5-4b7c-9a55-bc6897494dc6.html
https://www.reuters.com/article/us-health-coronavirus-spain/shellshocked-spain-reports-record-832-new-coronavirus-deaths-idUSKBN21F0NR
https://www.nytimes.com/aponline/2020/03/15/world/middleeast/ap-ml-virus-outbreak-mideast.html?searchResultPosition=10
https://arxiv.org/abs/2004.04025v1
https://arxiv.org/pdf/2004.03147.pdf
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Autoregressive–

moving-average

model

Deb & Majumdar

(2020)

Analyze the trend

pattern of

incidence;

estimate

Accounted for

quadratic effect of

time, lockdown

effect; captured

time dependence

incidence pattern

Not accounted for

population

demographics

(limited by data),

hotspots;

surveillance bias

Susceptible-

infected-

recovered (SIR)

model

Ranjan (2020) Long-term

prediction of

future case

counts; estimate

Classical

epidemiologic

model used;

accounted for

social distancing

effects

Not accounted for

population

demographics

(limited by data),

hotspots;

surveillance bias;

used first few

weeks of data

SIR model Dhanwant &

Ramanathan

(2020)

Long-term

prediction of

future case counts

Classical

epidemiologic

model used; split

observed data into

training and test

data; training data

used to learn the

transmission rate;

incorporated

lockdown effect

Not accounted for

population

demographics

(limited by data),

hotspots;

surveillance bias;

lockdown training

data not used to

learn about

transmission rate

under lockdown

https://arxiv.org/abs/2003.10655
https://www.medrxiv.org/content/10.1101/2020.04.02.20051466v1
https://arxiv.org/abs/2004.00696
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Age-structured

SIR model

Singh &Adhikari

(2020)

Study progress of

the disease and

impact of social

distancing

measures;

estimate

Extended

epidemiologic

model accounting

for age

distribution, social

contact, social

distancing effect

Not accounted for

other population

demographics

(limited by data),

hotspots;

surveillance bias;

complex model

given the scant

count data and

spotty individual-

level data

Susceptible-

Exposed-

Infectious-

Recovered (SEIR)

model

Mandal et al.

(2020)

Identify NP

intervention

strategies that can

help control the

outbreak

Extended

epidemiologic

model with an

added

compartment for

quarantine;

accounted for

other NP

interventions, and

connectivity

between two

places

Not accounted for

population

demographics

(limited by data);

surveillance bias;

complex model

given the scant

count data;

lockdown effect

not studied;

studied four cities

only

https://arxiv.org/abs/2003.12055
https://www.ncbi.nlm.nih.gov/pubmed/32202261
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Expanded SEIR

model

Chatterjee et al.

(2020)

Assess the impact

on healthcare

resources; study

the effect of

different NP

interventions

Extended

epidemiologic

model with added

subcompartments

for quarantined,

recovered, and

death; accounted

for different NP

interventions;

accounted for age

groups

Not accounted for

other population

demographics

(limited by data),

hotspots;

surveillance bias;

complex model

given the scant

count data and

spotty individual-

level data;

hospitalization-

related

parameters based

on UK data;

lockdown effect

not studied

Expanded SEIR

model

Senapati et al.

(2020)

Assess the effect

of different NP

interventions;

estimate

Extended

epidemiologic

model with added

subcompartments

for asymptomatic

cases,

quarantined,

hospitalized,

recovered, and

death

Not accounted for

other population

demographics

(limited by data),

hotspots;

surveillance bias;

complex model

given the scant

count data;

lockdown effect

not studied

https://www.sciencedirect.com/science/article/pii/S0377123720300605
https://arxiv.org/abs/2004.04950v1
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Expanded SEIR

model

Sardar et al.

(2020)

Assess long-term

effect of 21-day

lockdown;

estimate

Extended

epidemiologic

model with added

subcompartments

for asymptomatic

cases, lockdown,

hospitalized,

recovered, and

death; accounted

for transmission

variability

between

symptomatic and

asymptomatic

groups; modeled

hotspots and

overall India

Not accounted for

other population

demographics

(limited by data);

surveillance bias;

complex model

given the scant

count data

https://arxiv.org/abs/2004.03487
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Figure A1. The SIR model with (A) or without (B) considering human 

intervention by introducing a transmission rate modifier .π t( )

Figure A2. Implied  schedules corresponding to the hypothetical scenarios 

under slow adherence.

R0
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Figure A3. Short-term daily growth in cumulative case counts in India 

assuming a 2-week delay in people’s adherence to restrictions. Observed data 

are shown for days up to April 14. Predicted future case counts for April 15 until April 30 

are based on observed data until April 14 using the eSIR model.
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Figure A4. Long-term daily growth in case counts in India per 100,000 people 

assuming a 2-week delay and how that is affected by different non-

pharmaceutical intervention strategies. Predicted cumulative (a) and incident (b) 

case counts from April 30 to July 31 from the eSIR model are shown, based on observed 

data until April 14.
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a. Trace plots and posterior density plots for β

b. Trace plots and posterior density plots for γ
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c. Trace plots and posterior density plots for R0
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d. Posterior distribution for the predictions Y and the latent proportions  for

the I (infected) compartment

θ
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e. Posterior distribution for the predictions Y and the latent proportions  for

the R (removed) compartment

θ
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Figure A5. Trace plots and posterior density plots for the underlying model. Parameters  (a),  (b), and  (c), 

posterior distributions for the predictions and the latent proportions  for the I (d), and R (e) compartments over time,

and estimates and posterior distribution of the daily prevalence of active cases over time or (f). These plots correspond

to the 21-day lockdown with moderate return scenario under quick adherence.

f. Estimates and posterior distribution of the daily prevalence of active cases

over time or 
dt
dθt

I

 β γ R0

Y  θ

dt
dθt

I
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Figure A6. Cumulative (a) and incidence (b) graphs for forecasting models 

assuming a 2-week delay under 21-, 28-, 42-, and 56-day lockdown scenarios 

using observed data through April 14.
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Figure A7. Implied  schedules corresponding to quick and slow adherence 

for the hypothetical lockdown duration scenarios.

R0
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a. Scenario with 10 times the number of reported cases (e.g., underreporting)
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b. Scenario using metro population (e.g., to mimic case-clustering)
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c. Scenario with prior mean of R =0 2
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d. Scenario with prior mean of R =0 3
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Figure A8. Posterior distributions of  the projected case counts and latent proportions under sensitivity scenarios.

e. Scenario with prior mean of R =0 4
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Figure A9. Model Calibration: Relative comparison of predictions using 

observed data up to a certain date (April 1, 7, and 14). Observed data (gray) is 

provided through April 30.

B
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Figure A10. Daily testing patterns in selected countries (A); Testing numbers and proportions for 61 countries

around the world affected by COVID-19 (B).
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