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ABSTRACT

With only 536 COVID-19 cases and 11 fatalities, India took the historic decision of a 21-day national
lockdown on March 25, 2020. The lockdown was first extended to May 3 soon after the analysis of this
article was completed, and then to May 18 while this article was being revised. In this article, we use a
Bayesian extension of the susceptible-infected-removed (eSIR) model designed for intervention
forecasting to study the short- and long-term impact of an initial 21-day lockdown on the total number
of COVID-19 infections in India compared to other, less severe nonpharmaceutical interventions. We
compare effects of hypothetical durations of lockdown on reducing the number of active and new
infections. We find that the lockdown, if implemented correctly, can reduce the total number of cases
in the short term, and buy India invaluable time to prepare its health care and disease-monitoring
system. Our analysis shows we need to have some measures of suppression in place after the
lockdown for increased benefit (as measured by reduction in the number of cases). A longer lockdown
from 42-56 days is preferable to substantially ‘flatten the curve’ when compared to 21-28 days of
lockdown. Our models focus solely on projecting the number of COVID-19 infections and thus inform
policymakers about one aspect of this multifaceted decision-making problem. We conclude with a
discussion on the pivotal role of increased testing, reliable and transparent data, proper uncertainty
quantification, accurate interpretation of forecasting models, reproducible data science methods, and
tools that can enable data-driven policymaking during a pandemic. Our software products are

available at covind19.org.


http://covind19.org/
https://assets.pubpub.org/qs8dv1vy/51591737395090.pdf

1. Introduction

Four months since the first case of COVID-19 in Wuhan, China, the SARS-CoV-2 virus has engulfed the
world and has been declared a global pandemic (World Health Organization [WHO], 2020b). The
number of confirmed cases worldwide stands at a staggering 1,930,780 (as of 9:20 a.m. EST April 14,
2020, Microsoft, n.d.). Of these, 10,815 confirmed cases are from India (Figure 1), the world’s largest
democracy with a population of 1.34 billion (compared to China at 1.39 billion and the United States at
325.7 million) (World Bank, n.d.). India has been vigilant and early in instituting strong public health
interventions, including sealing the borders with a travel ban/canceling almost all visas, closing schools
and colleges, and diligently following up with community inspection of suspected/exposed cases with
respect to adherence of quarantine recommendations (Table 1). On March 24, India took the historic
decision of a 21-day national lockdown starting March 25, when it had reported only 536 COVID-19
cases and 11 fatalities. In the subsequent days, we have seen a steady growth in the number of new
cases and fatalities, with growth rates slower than other affected countries, but in 21 days, the curve
has not yet ‘turned the corner’ or showed a steady decline in the number of newly diagnosed cases
(Figure 2). All forecasting models in this article use data up to April 14 with the premise of a 21-day

lockdown in place.

COVID-19 Confirmed New Cases/Recovered/Deaths by Day in India

Data source: Johns Hopkins University CSSE © COV-IND-19 Study Group
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Figure 1. Description of the cases, recovered, and fatalities in India with
landmark policy/recommendations. Data used up to April 14.

While India seems to have done relatively well in controlling the number of confirmed cases compared
to other countries in the early phase of the pandemic (Figure 2), there is a critical missing or unknown
component in this assessment: ‘The number of truly affected cases,” which depends on the extent of

testing, the accuracy of the test results and, in particular, the frequency and scale of testing of



asymptomatic cases who may have been exposed. The frequency of testing has been low in India.
According to the Indian Council of Medical Research (ICMR; 2020), only 229,426 subjects have been
tested as of April 14 (<0.03% of the population). When there is no approved vaccine or drug for treating
COVID-19, entering phase 2 or phase 3 of escalation will have devastating consequences on both the
already overstretched health care system of India, and India’s large at-risk subpopulations (see
Appendix Table Al). As seen for other countries like the United States or Italy, COVID-19 enters
gradually and then explodes suddenly.

Table 1. Timeline of COVID-19 Interventions in India

Date Interventions

March 3, 2020 @ India issues travel ban on four countries -

China, South Korea, Italy, and Iran

March 6, 2020 @ Union Health Ministry issues advisory to avoid

mass gatherings

March 7, 2020 @ Mayor of Agra urges the Union government to
close down historical monuments including Taj
Mahal

@ Kuwait suspends flights to India

March 9, 2020 @ Qatar puts India on travel ban list
March 10, 2020 @ Manipur closes its border with Myanmar
March 11, 2020 @ India suspends all visas/e-visas granted to

nationals of France, Germany, and Spain on or

before today



March 12, 2020

March 13, 2020

March 16, 2020

March 17, 2020

@® WHO declares the COVID-19 outbreak as

1 o 1
pandemic

@ India suspends all visas excepting those for
diplomatic, UN, or international bodies, official

and employment purposes until April 15

@ India reports Ist death

@ India reports 2nd death

@ Several academic institutions (e.g., JNU, IIT,
IIM) cancel classes/convocations; some hostels

close

@ Central government proposes social distancing

measures until March 31

@ India bans passengers from EU countries, UK,
and Turkey until March 31

@ Central government recommends closure of

educational institutions until March 31

@ Taj Mahal is shut until March 31; ASI closes

3,000 monuments and 200 museums

@ Mandatory quarantine is imposed on
passengers coming from UAE, Qatar, Oman, and

Kuwait

@ India is heading toward a countrywide

lockdown mode



March 19, 2020

March 20, 2020

March 21, 2020

March 22, 2020

March 23, 2020

@ India halts all incoming commercial

international flights for one week

@ Some state governments ban public

transportation

@ Prime Minister urges people of India to
observe self-imposed curfew (‘Janata Curfew’) on
March 22

@ Maharashtra announces lockdown in Mumbai,

Nagpur, and Pune

@ Jawaharlal Nehru University (JNU) in Delhi

orders students to vacate hostels

@ Private labs can conduct COVID-19 tests, says

Maharashtra government

@ Rajasthan government declares lockdown
until March 31

@ 12 states, including Telangana and Delhi,

announce lockdown until March 31

@ International commercial passenger flights
are disallowed to land in India for one week

starting today

@ Railways suspend all train services until
March 31

@ Central government orders all states in India

to impose lockdown

@ Legal action is to be initiated against people

violating lockdown measures



March 24, 2020 @ Prime Minister of India announces lockdown
for 21 days as country records 552 COVID-19 cases
and 10 deaths

March 28, 2020 @ Central government unveils stimulus package
to help those hit by 21-day lockdown

@ Priorities are to construct COVID-19 hospitals,
sample testing, contact-tracing, and social

distancing: Union Health ministry

April 2, 2020 @ Common exit strategy necessary for
‘staggered’ relaxations after lockdown period

ends, prime minister tells chief ministers

April 6, 2020 @® Prime Minister instructs union ministers to
prepare a graded plan to gradually open
departments that are not COVID-19 hotspots

April 8, 2020 @ Prime minister and chief ministers decide on

lockdown extension to April 11

April 9, 2020 @ Odisha extends lockdown until April 30 and

becomes first Indian state to do so

Source: https://www.pharmaceutical-technology.com/news/india-covid-19-coronavirus-updates-status-by-state/

We provide a table listing other highly affected countries along with their first reported case, initial
interventions, crude fatality rates, and active case counts in Appendix Table A2 for reference. The
estimated capacity of hospital beds in India is 70 per 100,000 people (World Bank, 2020), which is an
upper bound on treatment capacity. Given an average occupancy rate of 75%, only a quarter of these
are available (Sindhu et al. 2019). Moreover, critically ill COVID-19 patients (about 5 to 10% of those
infected) will require ICU beds and ventilator support. India has only 35,000-58,000 ICU beds, with
very high occupancy rates and at most one ventilator per two ICU beds (Times of India, 2020). In order
to roll out interventions and plan for health care infrastructure, robust projection models for outcomes

of interest are necessary. There are many outcomes that are of potential interest to policymakers, for
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example: How many infected cases will be hospitalized? How many will be admitted to the ICU? How
many patients will need ventilators? And, finally, what will be the mortality due to COVID-19
infections? We focus on the number of active cases as our target of prediction due to the limited data
from India on the other outcomes. From other nations we know that roughly 20% of infections will
probably need hospitalization (Root, 2020), 5% will need ICU admission (Guan et al., 2020), and case-
fatality rates vary from 1to 5% of those hospitalized (Oke & Henegan, 2020). This may provide crude
estimates of other outcomes from case-count predictions.

Doubling time graph for selected countries
as of 14 April 2020
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Figure 2. Early phase of the epidemic and daily growth in cumulative COVID-
19 case counts in India compared to other countries affected by the pandemic
using data through April 14.

At the time of this writing, there exist several models that have been used to analyze the COVID-19
case-count data from India. The approaches for modeling the disease transmission and then
forecasting the number of cases at a future time can be broadly categorized into two genres:
exponential/Poisson type models, and compartmental epidemiologic models. For instance, Ranjan
(2020) and Gupta and Shankar (2020) used the classical exponential model, S. Das (2020) used a
Poisson regression model, while Deb and Majumdar (2020) used an auto-regressive moving-average
model to analyze incidence pattern over time. The compartmental epidemiologic models include
variations of the susceptible-infected-removed (SIR) model, which is guided by a set of differential
equations relating the number of susceptible people, the number of infected people (cases), and the
number of people who have been removed (either recovered or dead) at any given time. This simple
SIR model has been used by Ranjan (2020) and Dhanwant and Ramanathan (2020). Singh and



Adhikari (2020) used an age-structured SIR and social contact model, where an SIR model is assumed
in each age category. Another extension of the SIR model is the susceptible-exposed-infectious-
recovered (SEIR) model, which incorporates an additional compartment of truly exposed people that
is a latent variable. Mandal et al. (2020), Chatterjee et al. (2020), Sardar et al. (2020), and Senapati et
al. (2020) used one or the other variation of the SEIR model. For example, Sardar et al. (2020) used an
extra compartment for lockdown to capture in-home isolation and study the effects of lockdown on

future case counts. Appendix Table A3 compares and summarizes these existing models for India.

In this article, we apply a Bayesian extension of the SIR model, the extended susceptible-infected-
removed (eSIR) model, to explore two primary forecasting objectives: (a) forecasting future case
counts (short term and long term) with different forms of suppression measures in place (post-
lockdown) and (b) studying the relative impact of length/duration of a lockdown on our predictions of
cumulative COVID-19 infections. We carry out extensive sensitivity analysis to assess the robustness of
our forecasting models. We conclude with a discussion regarding the need for reliable case-count data,
increased testing, the importance of uncertainty quantification of the projected case counts, and
transparent data science methods that can inform and influence policymaking during a pandemic. Our
data science products include three articles on media studying pre- (Ray et al., 2020), during
(Salvatore, Wang, et al., 2020), and post- (Salvatore, Ray, etal., 2020) lockdown effects, providing
critical information for policymakers and having an extensive reach (Reuters [Ghosal, 2020], Times of
India [P. Das, 2020], The Guardian [Ellis-Petersen, 2020], The Economic Times [Noronha, 2020]), an

interactive and dynamic R Shiny app that daily updates forecasts as new case counts are reported, and

publicly available codes for reproducible research.

The rest of the article is organized as follows. In Section 2 we describe the structure of the eSIR model,
our parameter choices, and the Bayesian computational algorithm. In Section 3 we present results
from analyzing the data from India that include a sensitivity analysis. We assess how our forecasting
model updates itself with more accrual of data over time. In Section 4 we provide an itemized
discussion of some of the salient data and data science issues related to intervention forecasting and

case-count projections. Section 5 presents a brief conclusion.

2. Methods and Notation

2.1. Study Design and Data Source

We used the current daily data on number of COVID-19 infected cases, recoveries, and deaths in India
to predict the number of infected and removed cases at any given time (L. Wang et al., 2020). We
obtained the data (up to April 14) from the 2019 Novel Coronavirus Visual Dashboard operated by the
Johns Hopkins University Center for Systems Science and Engineering (JHU CSSE) and from
covidl9india.org (covid19india, 2020; Dong et al., 2020; Johns Hopkins University Center for Systems
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Science and Engineering, n.d.). Some of our testing data came from

https://ourworldindata.org/coronavirus.

2.2. Our Statistical Model for Predictions

Overview. The standard SIR model was recently extended to incorporate time-varying transmission
rates or time-varying quarantine protocols and is known as the eSIR model (L. Wang et al., 2020).
When using the eSIR model with time-varying disease transmission rate, it can depict a series of time-
varying changes caused by either external variation like government-initiated macro-isolation
measures, community-level protective measures and environment changes, or internal variations like
mutations and evolutions of the pathogen. To implement the eSIR model, a Bayesian hierarchical
framework is assumed. Using the current time-series data on the proportions of infected and the
removed people, a Markov chain Monte Carlo (MCMC) implementation of this Bayesian model
provides not only posterior estimation of parameters and prevalence of all the three compartments in
the SIR model, but also predicted proportions of the infected and the removed people at future time
points. The R package for implementing this general model for understanding disease dynamics is
publicly available at https://github.com/lilywang1988/eSIR.

Mathematical Framework of the eSIR Model. The eSIR model works by assuming that the true underlying
probabilities of the three compartments follow a latent Markov transition process, and that we
observe only the daily proportions of infected cases and removed cases. First, let us establish some
notation. Assume that the observed proportions of infected and removed cases on day t are denoted by
Y,/ and Y}, respectively. Further, denote the true underlying probabilities of the S, I, and R
compartments ondayt by 67, 6/, and 6F, respectively, and assume that foranyt, 67 + 6/ + 0F = 1.
Assuming a usual SIR model on the true proportions (Appendix Figure Al-A), we have the following set

of differential equations:

dos
d_é - —ﬂ@f@{,
do!
dof
—t — ~fI
dt YU

Here, 8 > 0 denotes the disease transmission rate, and v > ( denotes the removal rate. The basic
reproduction number Ry = = indicates the expected number of cases generated by one infected case

in the absence of any intervention and assuming that the whole population is susceptible. At this stage,
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for the observed infected and removed proportions, we assume a Beta-Dirichlet state-space model,

independent conditionally on the underlying process:
Y, |0y,7 ~ Beta (N'6/,A\" (1-16))),
Y (6,7 ~ Beta (A\R6F, AF (1 — 6F)).
Further, the Markov process on the latent proportions is built as:

04|60y 1,7 ~ Dirichlet (kf(0¢_1,05,7))
where 6; denotes the vector of the underlying population probabilities of the three compartments,
whose mean is modeled as an unknown function of the probability vector from the previous time
point, along with the transition parameters; 7 =(3,, 63 ,A, k) denotes the whole set of parameters
where AT, \E and k are parameters controlling variability of the observation and latent process,
respectively. The function f(.) is then solved as the mean transition probability determined by the SIR

dynamical system, using a fourth-order Runge-Kutta approximation.

Priors and the MCMC Algorithm Setup of the eSIR Model. The prior on the initial vector of latent

probabilities is set as
6o ~ Dirichlet (1 —Y{ — Y&, YI, Y{),65 =1— 6} — 6F.

The prior distribution of the basic reproduction numberisR; ~ LogNormal(0.582,0.223) so that
E(Ry) =2 and SD (Ry) =1, where E and SD denote the mean and standard deviation, respectively.
The prior distribution of the removal rate is v ~ LogNormal(—2.955,0.910) so that E () = 0.082
and SD () = 0.1. The prior mean of the removal rate y indicates an average infectious period of 12
days, which is originally set using estimates from the SARS outbreak in Hong Kong (Mkhatshwa &
Mummert, 2010) due to the similarity between the two viruses; this value also aligns well with several
recent studies on COVID-19 in China (Chen et al., 2020; Li et al., 2020; Ryu & Chun, 2020). The prior
mean of the basic reproduction number, 2.0, is approximately the average of estimates from many
other COVID-19 studies on the Indian population (S. Das, 2020; Deb & Majumdar, 2020; Ranjan, 2020;
Sardar et al., 2020; Singh & Adhikari, 2020). We have conducted a sensitivity analysis to evaluate how
robust the model is toward the prior settings using Indian population COVID-19 data. The sensitivity
issue can be minimized with more observed data of a longer exponentially increasing period and
stronger intensities by focusing on cities or states that are highly exposed. Note that the prior mean of
the distribution of the transmission rate 3 equals v Ry. For the variability parameters, the default
choice is to set large variances in both observed and latent processes, which may be adjusted over the

course of the epidemic with more data becoming available:

k, XM~ iid Gamma (2, 0.0001).



Denoting ¢, as the last date of data availability, and assuming that the forecast spans over the period

[to + 1, T, our algorithm is as follows.

0. Take M draws from the posterior [6;.¢,, 7| Y 1., |-

1. For each solution pathm € {1, ..., M}, iterate between the following two steps via MCMC.
i. Draw H,Em) from {949&;1),7’(’”)] yte{ty+1,...,T}.

i. Drangm) from [Yt’ng),T(m)} yte{ty+1,...,T}.

Modeling Intervention. We model the effect of interventions by assuming that the intervention will
result in a decrease in the transmission from the S compartment to the I compartment. We do so by
decreasing the effective rate of transition (or, equivalently, the chance of interaction between
members of S and I), by introducing a time-varying transmission rate modifier (t) € [0,1]. This
updates the flow between the three compartments (Appendix Figure Al-B) via a set of differential

equations as follows:

dos
d_é - _/Bﬂ-(t)efetIa
do!
d_tt = B (t)8; 67 — 167,
dof
—t — ~fL
dt YU

The reproductivity is thus modified by the intervention over time as Ry (t). To better understand the
introduction of this effect modifier, we follow an example given by L. Wang et al. (2020). Suppose at a
time t, ¢°® € [0,1] is the chance of an at-risk person being in home isolation, and ¢/® ¢ [0, 1] is the
chance of an infected person being in hospital quarantine. Consequently, the chance of disease
transmission when an at-risk person meets an infected person is

B{1—a*0}65 {1-g"0}0] =B (n) 656 ,withr (1) == {1-¢50}{1-g"0} € 0,1]
In effect, this 7r(¢) modifies the chance of a susceptible person meeting with an infected person, which
is termed as a transmission modifier. In this article, the functional form of 7 (t) is a continuous
function that reflects a combination of steadily increased community-level awareness and responsible
quarantine and preventive measures, and the country-wide lockdown measures initiated by the
government. This predefined transmission modifier can be smoothly incorporated into the differential
equations as well as the MCMC algorithms. Its functional form can be quite flexible in reflecting the
changing pattern of human intervention that affects the transmission rate of the epidemic within the

population.



Implementation of the eSIR Model. We implemented the proposed algorithm in R package rjags
(Plummer et al.) and the differential equations were solved via a fourth-order Runge-Kutta
approximation. To ensure quality of the MCMC, we set the adaptation number to be 104, thinned the
chain by keeping one draw from every 10 random draws to reduce autocorrelation, set a burn-in
period of 10° draws to let the chain stabilize, and started from 4 separate chains. Thus, in total, we
have 2 x 10° effective draws with about 2 x 10°® draws discarded. One could reduce the computation
time, but consequently might risk the quality of data. This implementation provides not only posterior
estimation on parameters and prevalence of all three compartments in the SIR model, but also
predicted proportions of the infected and the removed cases at future time points. To obtain predicted
case counts from the predicted prevalence, we used 1.34 billion as the population of India, thus

treating the country as a homogeneous system for the outbreak (World Bank, 2017).

Uncertainty Quantification. One major advantage of a Bayesian implementation is that uncertainty
associated with all parameters and functions of parameters can be calculated from exact posterior
draws without relying on large-scale approximation or the delta method. The credible intervals (CrI)
for the prevalence are computed using the posterior distribution of proportions given the observed
confirmed and removed prevalence, that is, Yéﬂ +1)T |Y1I:t0 , Yﬁo and Y(ﬁ +1)T ’Y1[:t0 , Yfio , where ¢,
denotes the last observed date, and T" denotes the last forecast date. More specifically, suppose we
want to compute the 95% posterior Crl for the observed proportion of confirmed cases on the first day
of forecast, that is, a Crl for the random variable th; +1- Then, from the M solution paths of the

posterior, we have the draws {Yt{) J(:rll), 1<m<M } We construct a 95% posterior Crl for Ytg 41 by

simply computing the 2.5th upper and lower percentiles from this set of M draws. The cumulative
prevalences are sums of the draws from the I and R compartments at a given time and thus the
confidence interval for the sum can be calculated in a similar way. Case counts can be obtained from
prevalences by using population size. Similar techniques apply to 0{0 +;foranyl < j < T —t;and
transmission parameters like 3 and . For instance, a 95% posterior Crl for 3 can be constructed by
calculating the 2.5th upper and lower percentiles of {3(™), 1 < m < M}. Therefore, we could

simply define R(™) = fz—:; V1 < m < M, and compute the 95% posterior Crl for the effective
reproduction number R from { RM™M 1<m<M }

2.3. Parameter Choices for Short-Term Forecasts

We made projections of the cumulative number of cases over a time horizon to assess the short-term
impact of lockdown as well as the long-term impact of lockdown and post-lockdown activities. For the
short-term forecast on April 30, we assumed lockdown is implemented until April 14 with either a 1- or
a 2-week delay in people’s adherence/compliance to lockdown restrictions. We compared these
projections with two hypothetical scenarios: (A) no non-pharmaceutical intervention (i.e., a constant

disease transmission rate over time since the first case was reported in India), (B) a moderate



intervention with social distancing and travel bans only (i.e., a decreased transmission rate compared
to no intervention). The prior mean for R, (the expected number of cases generated by one infected
person assuming that the whole population is susceptible) was set at 2.0. This was estimated based on
the early phase data in India and is consistent with other models (S. Das, 2020; Deb & Majumdar, 2020;
Ranjan, 2020; Sardar et al., 2020; Singh & Adhikari, 2020). For the no intervention and the moderate
intervention scenarios, we chose the transmission rate and the removal rate such that the means for
the prior distribution of the basic reproductive number R, are 2.0 and 1.5, respectively (SD = 1). The
change in R, from 2.0 to 1.5 as an effect of intervention was created based on what we saw regarding
the effect of interventions and the relative reduction of R, in Wuhan (C. Wang et al., 2020). Given the
similar population size and comparable population densities in China and India, the assumption on
similar effect of interventions on the pandemic across the two countries does not seem too restrictive.
For the current scenario of lockdown, our chosen mean for the prior of R, starts with 2.0 during the
period of no intervention, drops to 75% of its original value or 1.5 during the period of moderate
intervention, and further drops to 0.8 during the 21-day lockdown period, and moves back up to 1.5
after the lockdown ends as described in Figure 3 (assuming a gradual, moderate resumption of daily
activities). The drop in Ry from 2.0 to 0.8 during lockdown represents a 60% reduction, which is
proportionally slightly less than the ~65% drop estimated in R, from the COVID-19 outbreak in Wuhan
following the introduction of cordon sanitaire, or restriction of movement of people (Lin, 2020; Pan et
al., 2020).

Rg over time by scenario
as of 14 April 2020; quick adherence

2.0
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a4 Moderate return
o
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a
g =
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—_—
0.5
Apr 15 May 01 May 15 Jun01
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© COV-IND-19 Study Group
Note: End values continue in perpetuity.

Figure 3. Implied schedules corresponding the hypothetical scenarios under
quick adherence. Corresponding plot for slow adherence is in Appendix Figure A2.
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2.4. Parameter Choices for Long-Term Forecasts

For the longer term forecast until June 15, we considered three hypothetical post-lockdown scenarios:
(i) people return to normal activities due to the urgent desire for reconnecting after lockdown, (ii)
people return to moderate activities as they did during the period with social distancing and travel ban
intervention, and (iii) people make a cautious return out of fear for the coronavirus and partake in
subdued activities. For these three scenarios, we assume the prior mean on R, moves back up from 0.8
to 2.0, 1.5 and 1.2, respectively, 3 weeks after lockdown ends on April 14. We compared these post-
lockdown scenarios with another hypothetical scenario involving perpetual social distancing and travel
ban without any lockdown (we fixed the prior mean on Ry at 1.5 over the entire forecasting interval).

The time-dependent changes to R, values across our simulation scenarios are depicted in Figure 3.

2.5. Parameter Choices for Duration of Lockdown Analysis

To assess the long-term impact of lockdown duration, we considered four scenarios: 21-, 28-, 42-, and
56-day lockdown periods. In all scenarios, we assume the prior mean on R, remains at 0.8 for the
duration of the lockdown. Post-lockdown, the prior mean on R, gradually returns to a value of 1.5 over
a span of 3 weeks (analogous to the ‘moderate return’ scenario). The changes to R, values across our

simulation scenarios for studying length of lockdown are depicted in Appendix Figure A7.

2.6. Open-Source Software

We are committed to data transparency and reproducible research. Daily updates of our India
projections, based on cases, recovered, and deaths reported the day before by covid19india.org, a
crowd-sourced database using state bulletins and official handles, can be found in our interactive and
dynamic Shiny app (covind19.org). Apart from the scenarios described in this article, anyone can create
predictions under other hypothetical scenarios with quantification of uncertainties. Open-source code

underlying this app are available at https://github.com/umich-cphds/cov-ind-19.

3. Results

As we interpret the results from our model, let us use caution in not overinterpreting the
numbers. Any statistical model is wrinkled with many assumptions. Similarly, the predictions
themselves have large uncertainty (as reflected by the large upper-credible limits). A rigorous
quantitative treatment often allows us to analyze a problem with clarity and objectivity, but we
recommend focusing more on the qualitative takeaway messages from this exercise rather than

concentrating on the exact numerical projections or quoting them with certainty.
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3.1. Short-Term Forecast of Cumulative Case Counts in India

Under national lockdown (March 25-April 14), our predicted cumulative number of COVID-19 cases in
India on April 30 are 19,625 and 19,503 (upper 95% Crl 130,326 and 129,422) assuming a 1- or 2-week
delay (i.e., either a quick or a slow adherence), respectively, in people’s adherence to lockdown
restrictions and a gradual, moderate resumption of daily activities post-lockdown (Figure 4, Appendix
Figure A3). In comparison, the predicted cumulative number of cases under “no intervention” and the
“intervention involving social distancing and travel bans without lockdown” are 222,000 and 53,000
(upper 95% Crl of nearly 1.4 million and 0.3 million), respectively. Under quick adherence, these
figures correspond to a relative reduction of 91% and 63% of cases due to lockdown with moderate
return compared to “no intervention” and “social distancing and travel ban.” The relative reduction in
cases between two scenarios (often from the least to the most intense intervention) is calculated as the
difference between an estimate (on a particular day, e.g., April 30) under the social distancing and
travel ban scenario and under the lockdown with moderate return scenario and then divided by the

estimate under the social distancing and travel ban scenario.

Cumulative COVID-19 cases by day in India
as of 14 April 2020; quick adherence

1,000,000 95% upper credible limit
for moderate return
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Figure 4. Short-term daily growth in cumulative case counts in India assuming
a 1l-week delay in people’s adherence to restrictions. Observed data are shown
for days up to April 14. Predicted future case counts for April 15 until April 30 are based
on observed data until April 14 using the eSIR (extended susceptible-infected-removed)
model. The dashed horizontal line represents the upper 95% credible limit for estimates
under “lockdown with moderate release” scenario. Corresponding graph following a 2-
week delay schedule can be found in Appendix Figure A3.

We are reporting only the upper credible limit here and elsewhere since the lower credible limits are
very small and uninformative due to the large uncertainty in our predictions arising from many
unknowns. We also believe that our point estimates are at best underestimates due to potential
surveillance bias (underreporting and /or misdiagnosis of case counts) and our model not taking into
account the population density, age-sex composition, and regional contact network structure of the

whole nation. Increase in testing and community transmission may lead to a spike in a single day and
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that may increase the projections substantially upward. Regardless of the exact numbers, it is clear
that the 21-day lockdown will likely have a strong relative effect on reducing the predicted number of

cases in the short term when compared to weaker interventions.

3.2. Long-Term Impact of Lockdown on the Outbreak in India

We took a close look at what might be coming in the next 2 months, based on what we have seen in
other countries and an epidemiologic model that has been gainfully employed to assess the effect of
interventions in Hubei province (L. Wang et al., 2020). We estimate that roughly 388,000 (upper 95%
Crl 2.4 million), 7.5 million (upper 95% Crl 104 million), and 18.5 million (upper 95% Crl 196 million) cases
are prevented on May 15, June 15, and July 15, respectively, by instituting a 21-day lockdown with quick
adherence and a cautious return compared to perpetual social distancing and travel ban (without
lockdown) (Figure 5). This corresponds to relative reductions in cases of 93%, 96%, and 91%,

respectively, compared to perpetual social distancing.

Without some measures of suppression after lockdown is lifted, the impact of lockdown in bringing
down the case counts (the now ubiquitous term, ‘flattening the curve’) can be negated by as early as
the first week of June. In fact, in Figure 5a, the preintervention (‘normal’) curve first passes the social
distancing and travel ban curve on June 5. In particular, if people immediately go back to
preintervention (‘normal’) activities post-lockdown, a surge in the predicted case counts is expected in
the long term beyond what we would have seen if there were only social distancing and travel ban
measures without any lockdown (27 million when post-lockdown activity returns to preintervention
levels versus 26 million under social distancing and travel ban without a lockdown period on July 31;
Figure 5). Longer lockdowns would delay this crossover, but a normal (preintervention) return post-
lockdown would surpass social distancing and travel ban (if these scenarios continued perpetually).

Long-term forecasting under slow adherence (2-week delay) can be seen in Appendix Figure A4.



a. Predicted number of COVID-19 cases in India under hypothetical scenarios
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b. Predicted number of new COVID-19 cases in India under hypothetical scenarios
as of 14 April 2020; quick adherence
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Figure 5. Long-term daily growth in case counts in India per 100,000 people
assuming a 1-week delay and how that is affected by different non-
pharmaceutical intervention strategies. Predicted cumulative (a) and incident (b)
case counts from May 1 to July 31 from the eSIR(extended susceptible-infected-
removed) model are shown, based on observed data until April 14. Corresponding plots
for slow adherence are in Appendix Figure A4.

We present posterior density and trace plots for the underlying model parameters 3, ~, and Ry,
posterior distributions for the predictions Y and the latent proportions @ for the I and R compartments
over time, and estimates and posterior distribution of the daily prevalence of active cases over time or

% . These are contained in Appendix Figure A5.

3.3. Relative Impact of Duration of Lockdown on Predicted Case
Counts

We took the quick adherence epidemiologic models and compared the 21-day lockdown with
hypothetical 28-, 42-, and 56-day lockdown scenarios (Figure 6). When comparing a 21-day lockdown
with a hypothetical lockdown of longer duration, we find that 28-, 42-, and 56-day lockdowns can
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approximately prevent 733,000 (upper 95% Crl 6.8 million), 1.4 million (upper 95% Crl 9.8 million), and
1.6 million (upper 95% CrI 10.3 million) cases by June 15, respectively. These numbers correspond to a
relative reduction in cases of 45%, 86% and 96%, respectively. A 28-day lockdown does not appear to
have a substantial impact on cumulative case counts when compared to a 21-day lockdown. From an
epidemiologic perspective, there appears to be some evidence that suggests a 42- or 56-day lockdown
would have a more meaningful impact on reducing cumulative COVID-19 case counts in India. Our
models suggest that some form of post-lockdown suppression (e.g., extension of social distancing
measures, limits of gathering size, etc.) is necessary to observe long-term benefits of the lockdown
period. We note that longer lockdown periods are also accompanied by increasing costs to individuals,
such as economic costs, mental health issues, and other public health exacerbation costs and must be
considered in policymaking.

a. Predicted number of COVID-19 infections under varying lockdown lengths
as of 14 April, 2020; quick adherence
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b. Predicted number of daily COVID-19 infections under varying lockdown lengths
as of 14 April, 2020; quick adherence
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Figure 6. Cumulative (a) and incidence (b) graphs for forecasting models
assuming a 1-week delay under 21-, 28-, 42-, and 56-day lockdown scenarios
using observed data through April 14. Corresponding plots for slow adherence are

in Appendix Figure A4.
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Lockdown duration study under the slow adherence (2-week delay) scenario can be found in Appendix

Figure A6. The implied R, plots can be found in Appendix Figure A7.

3.4. Sensitivity Analyses

We did explore some alternative assumptions and conducted thorough sensitivity analysis before
settling on the models presented above. In one example, we assumed that there are actually 10 times
the number of reported cases to date to reflect potential underreporting of cases due to lack of testing.
We note that our predictions of case counts indeed go up and the effect of underreporting of cases is
more palpable with long-term projections (see Table 2, underreporting). In another scenario, we
assumed these cases occurred in metropolitan areas to reflect a potential intensification of case
clustering. In our primary analyses, we assumed that the cumulative case counts across the country
represent equal contributions from all the regions, and using the whole population of India as a scaling
factor to compute initial inputs for Yy, and Y;% . This may lead to extremely small proportions,
which may in turn yield underestimated outputs from the eSIR model. Changing the total population
size from that of India to that of representative (large) cities from the hub states (the states of Kerala,
Maharashtra, and Karnataka, and the national capital region of Delhi) is a simple but intuitive way to
potentially do away with the aforementioned underestimation. We note that this substantially reduces
the width of the credible intervals (see Table 2, case-clustering). In yet a third scenario, we
hypothesized that the prior mean of R, is set at 3.0 or 4.0 instead of 2.0 (i.e., a single infected
individual would infect 3 or 4 susceptible individuals, on average, instead of 2). In most of our analyses
(Table 2), the posterior mean for R, was seen to be from 1.8 and 2.4, irrespective of whether a
higher/lower starting (prior) mean was used. We observe that a prior mean of 4.0 for R, sways the
posterior R, estimate substantially (posterior mean 3.38). As more data accumulate, we will expect
the effect of the prior on the posterior estimates to diminish. The posterior distributions of the
prevalence in each compartment and latent proportions under these changing scenarios are available

in Appendix Figure A8.

Table 2. Comparison of Estimated Projections and Posterior Estimates of Model Parameters
Across Different Sensitivity Analysis Scenarios Under 21-Day Lockdown With Moderate
Return, Using Observed Data Until April 14

Sensitivity Predictions Posterior Estimates

Analysis

Scenario May 1 May 15 Ry B v
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Underreportin 25,248 62,797 2.28 0.20 0.09

*

g

[104,411] [343,465] [1.05, 4.20] [0.05, 0.39] [0.03, 0.19]
Case- 24,818 57,499 2.81 0.16 0.06
clustering™

[59,525] [189,010] [1.47, 4.70] [0.07, 0.26] [0.03, 0.10]
Prior mean for 20,251 42,252 1.80 0.27 0.16
Ry =2

[135,034] [315,348] [0.87, 3.26] [0.06, 0.59] [0.04, 0.35]
Prior mean for 25,757 86,750 243 0.30 0.13
Ry =3

[165,287] [638,770] [1.41, 4.07] [0.09, 0.60] [0.04, 0.30]
Prior mean for 34,587 253,935 3.38 0.32 0.10
Ry =14

[213,556] [1,854,319] [2.09, 5.27] [0.10, 0.63] [0.03, 0.23]

Note. Prior SD for R, is1.0.
*Observed case counts are multiplied by 10, prior mean for Ry = 2

** Assume that the cases happen in metro hotspots, use population size N=32 million instead of national population 1.34

billion, prior mean forR0 -9

In summary, these sensitivity analysis scenarios did not appreciably change our conclusions in broad
qualitative terms, though the exact quantitative projections for case counts are quite sensitive to such
choices. We note that the estimate of basic reproduction number R, is more robust to underreporting
issues because counts in all compartments of our eSIR model are assumed to be underreported. Since
underreported case counts affect all our hypothetical intervention scenarios in a similar way, the
relative comparison of interventions and the associated conclusion remain valid in a qualitative sense.
In all cases, our confidence in these projections decreases markedly the farther into the future we try

to forecast. It is extremely important to update these models as new data arise.

3.5. Model Calibration

To check the calibrating properties of our model, we truncated the data to certain dates and tried
assessing the quality of the case-count predictions with essentially adding one more week of data for
predicting active cases at a future date (Table 3 and Appendix Figure A9). We do notice the projected

case counts change significantly with more data and improve (become closer to the observed) with
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more data. Our projections always underestimate the observed counts. This phenomenon is also due to
more testing being done each week. However, the observed number of infected cases is always within
the 95% prediction credible interval provided by our model. This again reveals the large uncertainty in

our predictions.

Table 3. Comparison of Model Projections Using Observed Data up to Different Dates Assuming
a 21-Day Lockdown With Moderate Return

Projected Counts Posterior Estimates [95% CrI]

[Upper Credible Interval]

Observed/Pro April 15 May 1 Ry B g
jection
Observed 12,370 37,262 - - -
Used dataup 1,944 3,807 1.85 0.28 0.16
to April 1
[14,178] [28,777] [0.84, 3.47] [0.05, 0.70] [0.03, 0.40]
Used dataup 5,344 8,330 1.74 0.22 0.14
to April 7
[36,222] [61,270] [0.80, 3.22] [0.05, 0.52] [0.03, 0.32]
Used dataup 11,736 20,251 1.80 0.27 0.16
to
[68,836] [135,034] [0.87, 3.26] [0.04, 0.35] [0.04, 0.35]
April 14

Note. All prediction scenarios assume a prior mean of Ry =2

4. Discussion

Our projections using current daily data on case counts until April 14 in India show that the lockdown,

if implemented correctly in the end, has a high chance of reducing the number of COVID-19 cases in

the short term and buying India invaluable time to prepare its health care and disease-monitoring

system. In the long term, we need to have some measures of suppression in place after the lockdown is
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lifted to prevent a massive surge in the number of cases that can quickly overwhelm an already
overstretched Indian health care system resulting in increased fatalities. Specific vulnerable
populations will be at higher risk of severity and fatality from COVID-19 infection: older persons and
persons with preexisting medical conditions (e.g., high blood pressure, heart disease, lung disease,
cancer, diabetes, immunocompromised persons) (Centers for Disease Control and Prevention [CDC],
2020; WHO, 2020a). Appendix Table Al provides a description of the approximate number of
individuals in these high-risk categories in India. Beyond the fragile population characterized by
health and economic indicators, we must remember that health care workers and first responders at
the frontline of this pandemic are among the most vulnerable (C. Wang et al., 2020). Though we have
focused on forecasting and modeling of COVID-19 case counts in this article, we recognize that this is
only one component of the problem. Long-term surveillance and management of the COVID-19 crisis is
needed with not just public health in mind but also to take care of the economic, social, and

psychological impact that it will have on the people of India.

4.1.Limitations

Our statistical modeling and forecasts are not without limitations. We have limited number of data
points and a wide time-window to extrapolate for the long-term forecasts. The uncertainty in our
predictions is largely due to many unknowns arising from model assumptions, population
demographics, the number of COVID-19 diagnostic tests administered per day, testing criteria,
accuracy of the test results, and heterogeneity in implementation of different government-initiated
interventions and community-level protective measures across the country. We have neither accounted
for age-structure, contact patterns, or spatial information to finesse our predictions (Klein et al., 2020;
Mandal et al., 2020; Singh & Adhikari, 2020) nor considered the possibility of a latent number of true
cases, only a fraction of which are ascertained and observed (C. Wang et al., 2020). Increase in
frequency and scale of testing, and community transmission of the SARS-CoV-2 virus may lead to a
spike in a single day and that can shift the projection curve substantially upward. COVID-19 hotspots in
India are not uniformly spread across the country, and state-level forecasts (S. Das, 2020) may be more
meaningful for state-level policymaking. We are assuming that the implementation and effects of
public health interventions and policies are the same everywhere in India by treating India as a

homogeneous unit.

The eSIR model treats the entire group of people within a single compartment as homogenous and
exchangeable. We also assume that all subjects who were not infected are susceptible. Certainly, this
overlooks the possibilities of people moving between states and different subsets of infected and
susceptible populations having greater or lesser likelihood of coming into contact with one another. To
account for all such potential factors, we need more-nuanced modeling. One potential way is to break

up the interaction component into further subcompartments; however, sparsity of current data in each
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subcompartment is an issue. Another way that has been pursued in a recent study is to inform the SIR
modeling via introducing contact networks at the initial stage (Bhattacharyya et al., 2020). However, it
is worth noting that any such approach would need more-granular and reliable data containing
individual details of the confirmed cases, including their location and travel history. Even though such
data are available from some self-reporting-based repositories (Kaggle, 2020), the quality and detail
of the information provided are quite heterogeneous and, thus, how to best utilize such data remains a
question. We see the tremendous role of data and its transparency of collection and reporting in
finessing our predictions. Accurate and consistent reporting of case counts and deaths due to COVID-19
are extremely critical. Future opportunities for improving our model include incorporating contagion
network, age-structure, and test imperfection and estimating SEIR model and true fatality/death
rates. Future research would benefit from easily accessible hospitalization data, accurate recording of
deaths in death records, and availability of ecological-level covariate data. Regardless of the caveats in
our study, our analyses show the impact and necessity of lockdown and of suppressed activity post-
lockdown in India. Though the exact numerical projections are perhaps far from the truth, the qualitative
inference on the relative effects of the interventions are still valuable and valid since all projections are

subject to similar biases.

One ideological limitation of considering only the perspective of controlling COVID-19 transmission in
our model is the inability to account for excess deaths due to other causes during this period (chronic
disease and mental health-related diseases in particular), or the flexibility to factor in reduction in
mortality/morbidity from some other infectious or flu-like illnesses, traffic accidents, or the health
benefits of reduced air pollution levels. A more expansive framework of a cost-benefit analysis is
needed as we gather more data and build an integrated landscape of changes in population-

attributable risks due to various disease categories.

4.2. Testing

Areviewer of this article suggested giving a sense of the testing data from India and how that may
affect our conclusions. India’s priorities in testing have changed multiple times over the past few
weeks. On March 17, India proposed testing all people who recently traveled internationally and
developed symptoms (fever, cough, difficulty in breathing, etc.) of COVID-19 within 14 days of return,
all symptomatic contacts of laboratory-confirmed positive cases, or all symptomatic health care
workers managing respiratory distress. On March 20, India revised this testing strategy to include all
symptomatic health care workers, all hospitalized patients with severe acute respiratory illness (fever
and cough and/or shortness of breath), and asymptomatic direct and high-risk contacts of a confirmed
case to be tested once between day 5 and day 14 of coming into contact. The testing strategy was again

revised on April 9 to include testing of all symptomatic people in hotspots/clusters and in large
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migration gatherings or evacuee centers. These testing strategies are obtained from the Indian Council
of Medical Research (https://www.icmr.gov.in).

We looked a little deeper into the issue of testing bias using data from Our World in Data (Hasell et al.,
n.d.). Appendix Figure Al10-A shows that, even though the number of tests in India has increased in
recent days, the proportion of daily discovered positive cases still remain stable (at about 4%) and do
not yet show an obvious increasing trend like in other countries such as the United States and United
Kingdom. We also plot Iceland and South Korea on this figure as they have performed remarkably in
administering a large number of tests per detected case and serve as examples for the world. We also
looked at the proportion of the population tested in 61 countries around the world (Appendix Figure
A10-B). While most advanced countries have tested around 1to 3% of the population, India has tested
roughly 0.06% population and it will take weeks, if not months, for India to reach testing 1-3% of the
population. In the absence of rapid and large-scale testing, informative proxies or surrogates can be
tracked through syndromic surveillance, temperature reporting, and monitoring hospital admissions
and medical claims due to respiratory and flu like illnesses. This additional information will
strengthen the prediction models. In absence of these models, we rely on sensitivity analysis for

underreporting as presented in Table 2.

4.3. Our Data Science Product

Finally, in our strong commitment to reproducibility and dissemination of our research, we have made

the code for our predictions available at GitHub and created an interactive and dynamic R Shiny app

to visualize the observed data and create predictions under hypothetical scenarios with quantification
of uncertainties. These forecasts are updated daily as new data come in. We hope these products will
remain our contribution and service as data scientists during this tragic global catastrophe, and the

model and methods will be used to analyze data from other countries.

5. Conclusion

Our epidemiologic and mathematical calculations make a convincing case for enforcing national
lockdown in the largest democracy in the world, acting early, before the growth of COVID-19 infections
in India starts to accelerate. We observe the public health benefit of extending the lockdown by 3 to 5
weeks in our projections. Measures of suppression are needed post-lockdown to acquire maximal long-
term benefits from the lockdown. We also illustrate the critical role of epidemiologic forecasting in
aiding policy decisions through this modeling exercise. We highlight the importance of conducting

model checks, sensitivity analysis, and uncertainty quantification.

We realize that these draconian public health measures come at a tremendous price to social and

economic health that can last for months or even years after the restrictions on social mobility are
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lifted. Our general message to the public is to proceed with prudence and caution and adhere to
effective public health interventions until there are rapid and reliable home testing kits; there are
none yet (Food and Drug Administration [FDA], 2020), FDA approved drugs (WHO, 2020c), and a

vaccine (Craven, 2020).
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Table Al. Proportion of Population in Specifically Vulnerable Subgroups at Potentially High
Risk of COVID-19 Severity Risk in India

Metric Number® Year Source

(in millions)
Uninsured 1,104 2014 Prinja et al. 2019
Population over 65 92.5 2020 (est.) CIA World Factbook
Hypertension (men)* 1757 2015/16 Gupta & Ram 2019
Hypertension 132.6 2015/16 Gupta & Ram 2019
(women)*
People with 78.7 2016 Prabhakaran et al. 2018

cardiovascular disease®

Population with COPD*  75.9 2016 Salvi et al. 2018
Population with 45.5 2016 Salvi et al. 2018
asthma®

Develop cancer byage  70.3 2018 NICPR

75 (men)**

Develop cancer by age  62.3 2018 NICPR

75 (men)**

Population with 122.8 - IDF

diabetes (adult)

Access to inpatient 7314 2012 IMS Institute 2013

department facilities*™*

Access to outpatient 1,104 2012 IMS Institute 2013

department™*
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7based on 2020 est. of 1.38 billion from UN Department of Economicand Social Affairs
*age-standardized; ** risk; ** defined as within 5-kilometer distance of home or work

Abbrev.: COPD, chronic obstructive pulmonary disease; IDF, International Diabetes Federation; NICPR, National Institute of

Cancer Prevention and Research

Table A2. Intervention Landscape of Countries Severely Affected by COVID-19

Country Date of 15t Interventions Crude fatality Active cases’

caseg / Lockdown rate-l-

China Now. 17, 2019* Lockdown in 4.1% 1,116
Wuhan on
01/22,
extended to
neighboring
cities in Hubei
province on
01/23. Wuhan
lockdown to be

lifted on
04/08.1
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South Korea

Jan. 19, 2020**

Tested widely  2.0%
for the virus,
isolated cases
and
quarantined
suspected
cases. Figures
indicate that
this has helped
suppress
transmission
of the virus.
The country
appears to
have reined in
the outbreak
without some
of the strict
lockdown
strategies
deployed
elsewhere in

the world.2
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3,125



United States

Jan. 20, 2020

On 01/31, 3.7%
restricted
travel from
China;
expanded
restrictions to
other countries
on 02/29. On
03/03, CDC
lifted all
restrictions on
testing. On
03/15, CDC
recommends
no gatherings
of 50 people or
more. Stay-at-
home
directives
issued at state-

level.3
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431,557



France

Jan. 24, 2020

On 03/17, 10.8%
France
imposed a
nationwide
lockdown,
prohibiting
gatherings of
any size and
postponing the
second round
its municipal
elections. The
lockdown was
one of Europe’s
most stringent.
While
residents were
told to stay
home, officials
allowed people
to go out for
fresh air but
warned that
meeting a
friend on the
streetorina
park would be
punishable

with a fine. 3
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79,279



Germany

Jan. 28, 2020

39

Germany has a National
Pandemic Plan, with three
stages. In the first stage
(containment) health
authorities are focusing on
identifying contact persons, who
are put in personal quarantine
and are monitored and tested.
In the second stage (protection)
the strategy will change to using
measures to protect vulnerable
persons from becoming
infected. The final stage
(mitigation) will try to avoid

spikes of intensive treatment in



order to 2.2%
maintain
medical

services.*

United Jan. 31, 2020
Kingdom

76,420

Citizens 12.7%
advised to stay
at home.
Violators to be
fined with the
exception of a
few special
circumstances,
in order to
contain the
spread of the
disease. The
government is
supporting and
coordinating
with research
institutes to
explore
treatment and
curative

options.®
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61,825



Italy

Jan. 31, 2020

Flights to 12.7%
China
suspended and
a national
emergency
declared on
01/31 after two
cases
confirmed in
Rome. Schools
and
universities
closed on
03/04. By
03/09, the
entire nation
placed under
lockdown,
with
restaurants,
bars closing on
03/11and
factories
closing on
03/22. All non-
essential

production
halted.®
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96,877



Spain

Feb. 1, 2020

State of 10.2%
emergency
declared on
03/14, allowing
authorities to
authorities to
confine
infected
people and
ration goods.
Originally
planned to last
until 03/29;
has been
extended to
04/12. Schools,
bars,
restaurants
and shops
selling non-
essential items
have been shut
since March 14
and most of
the population
is house

bound.”
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85,386



Iran Feb. 19, 2020 On02/28,the 6.2% 28,495
Iranian
authorities
closed schools,
canceled
Friday prayers
and moved to
restrict visitors
from China. On
03/15, the
official leading
Iran's response
to the new
coronavirus
acknowledged
Sunday that
the pandemic
could
overwhelm
health
facilities in his
country, which
is battling the
worst
outbreak in
the Middle

East.®

g Date of 1st case data obtained from JHU CSSE time series data on COVID-19 (except for China & South Korea)
t Microsoft bing COVID-19 tracker (https://bing.com/covid, as of 1:00 PM EST April 10, 2020)
*https://www.livescience.com/first-case-coronavirus-found.html

** https://www.worldometers.info/coronavirus/

1https://www.cnn.com/2020/03/24/asia/coronavirus-wuhan-lockdown-lifted-intl-hnk /index.html
2 https://www.npr.org/sections/goatsandsoda/2020/03/26/821688981/how-south-korea-reigned-in-the-outbreak-

without-shutting-everything-down

3 https://www.nytimes.com/article /coronavirus-timeline.html
4 https://enwikipedia.org/wiki/2020 coronavirus pandemic in Germany

5 https://www.govuk/government/publications/coronavirus-action-plan/coronavirus-action-plan-a-guide-to-what-you-
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https://www.nytimes.com/article/coronavirus-timeline.html
https://en.wikipedia.org/wiki/2020_coronavirus_pandemic_in_Germany
https://www.gov.uk/government/publications/coronavirus-action-plan/coronavirus-action-plan-a-guide-to-what-you-can-expect-across-the-uk

can-expect-across-the-uk
6 https://www.axios.com/italy-coronavirus-timeline-lockdown-deaths-cases-2adb0fc7-6ab5-4b7c-9a55-bc6897494dc6.html

7 https://www.reuters.com/article/us-health-coronavirus-spain/shellshocked-spain-reports-record-832-new-coronavirus-
deaths-idUSKBN21FONR
8 https://www.nytimes.com/aponline/2020/03/15/world/middleeast/ap-ml-virus-outbreak-mideast.html?

searchResultPosition=10

Table A3. Comparison of Types of Infectious Disease Models, Specifically Those Used to Study

COVID-19 in India

Model type

Exponential

model

Poisson log-linear

model

Reference

Gupta & Shankar

Research

question

Provide estimate
of the infected
population using

death counts

Short-term
prediction of
future case

counts; estimate

44

Strengths

Simple model
helpful for scant
data; modeled
epidemic hotspots

separately

Simple model
helpful for short-
& medium-term
forecasts using
scant data;
accounted for
quadratic effect of

time

Weaknesses

Not accounted for
population
demographics
(limited by data),
non-
pharmaceutical
(NP) intervention
effects; requires
infection fatality

rate

Not accounted for
population
demographics
(limited by data),
hotspots, NP
intervention
effects;

surveillance bias


https://www.gov.uk/government/publications/coronavirus-action-plan/coronavirus-action-plan-a-guide-to-what-you-can-expect-across-the-uk
https://www.axios.com/italy-coronavirus-timeline-lockdown-deaths-cases-2adb0fc7-6ab5-4b7c-9a55-bc6897494dc6.html
https://www.reuters.com/article/us-health-coronavirus-spain/shellshocked-spain-reports-record-832-new-coronavirus-deaths-idUSKBN21F0NR
https://www.nytimes.com/aponline/2020/03/15/world/middleeast/ap-ml-virus-outbreak-mideast.html?searchResultPosition=10
https://arxiv.org/abs/2004.04025v1
https://arxiv.org/pdf/2004.03147.pdf

Autoregressive-
moving-average

model

Susceptible-
infected-
recovered (SIR)

model

SIR model

Deb & Majumdar

(2020)

‘o
—

Ranjan (2020)

Dhanwant &
Ramanathan
(2020)

Analyze the trend
pattern of
incidence;

estimate

Long-term
prediction of
future case

counts; estimate

Long-term
prediction of

future case counts

45

Accounted for
quadratic effect of
time, lockdown
effect; captured
time dependence

incidence pattern

Classical
epidemiologic
model used;
accounted for
social distancing
effects

Classical
epidemiologic
model used; split
observed data into
training and test
data; training data
used to learn the
transmission rate;
incorporated

lockdown effect

Not accounted for
population
demographics
(limited by data),
hotspots;

surveillance bias

Not accounted for
population
demographics
(limited by data),
hotspots;
surveillance bias;
used first few

weeks of data

Not accounted for
population
demographics
(limited by data),
hotspots;
surveillance bias;
lockdown training
data not used to
learn about
transmission rate

under lockdown


https://arxiv.org/abs/2003.10655
https://www.medrxiv.org/content/10.1101/2020.04.02.20051466v1
https://arxiv.org/abs/2004.00696

Age-structured
SIR model

Susceptible-
Exposed-
Infectious-
Recovered (SEIR)

model

Singh &Adhikari

(2020)

Mandal et al.
(2020),

Study progress of
the disease and
impact of social
distancing
measures;

estimate

Identify NP
intervention
strategies that can
help control the

outbreak

46

Extended
epidemiologic
model accounting
for age
distribution, social
contact, social

distancing effect

Extended
epidemiologic
model with an
added
compartment for
quarantine;
accounted for
other NP
interventions, and
connectivity
between two

places

Not accounted for
other population
demographics
(limited by data),
hotspots;
surveillance bias;
complex model
given the scant
count data and
spotty individual-

level data

Not accounted for
population
demographics
(limited by data);
surveillance bias;
complex model
given the scant
count data;
lockdown effect
not studied;

studied four cities

only


https://arxiv.org/abs/2003.12055
https://www.ncbi.nlm.nih.gov/pubmed/32202261

Expanded SEIR

model

Expanded SEIR

model

Chatterjee et al.

(2020)

Senapatietal.
(2020)

Assess the impact

on healthcare
resources; study
the effect of
different NP

interventions

Assess the effect
of different NP
interventions;

estimate

47

Extended
epidemiologic
model with added
subcompartments
for quarantined,
recovered, and
death; accounted
for different NP
interventions;
accounted for age

groups

Extended
epidemiologic
model with added
subcompartments
for asymptomatic
cases,
quarantined,
hospitalized,
recovered, and
death

Not accounted for
other population
demographics
(limited by data),
hotspots;
surveillance bias;
complex model
given the scant
count data and
spotty individual-
level data;
hospitalization-
related
parameters based
on UK data;
lockdown effect

not studied

Not accounted for
other population
demographics
(limited by data),
hotspots;
surveillance bias;
complex model
given the scant
count data;
lockdown effect

not studied


https://www.sciencedirect.com/science/article/pii/S0377123720300605
https://arxiv.org/abs/2004.04950v1

Expanded SEIR

model

Sardar et al.

(2020)

Assess long-term
effect of 21-day
lockdown;

estimate

48

Extended
epidemiologic
model with added
subcompartments
for asymptomatic
cases, lockdown,
hospitalized,
recovered, and
death; accounted

for transmission

variability
between
symptomatic and
asymptomatic
groups; modeled
hotspots and

overall India

Not accounted for
other population
demographics
(limited by data);
surveillance bias;
complex model
given the scant

count data


https://arxiv.org/abs/2004.03487

A

Susceptible .. Removed

m(t

Susceptible * Infection » Removed

Figure Al. The SIR model with (A) or without (B) considering human
intervention by introducing a transmission rate modifier r (t).

Ro over time by scenario
as of 14 April 2020; slow adherence
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Note: End values continue in perpetuity.

Figure A2. Implied R, schedules corresponding to the hypothetical scenarios
under slow adherence.
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Cumulative COVID-19 cases by day in India
as of 14 April 2020; slow adherence
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Figure A3. Short-term daily growth in cumulative case counts in India
assuming a 2-week delay in people’s adherence to restrictions. Observed data
are shown for days up to April 14. Predicted future case counts for April 15 until April 30

are based on observed data until April 14 using the eSIR model.
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a. Predicted number of COVID-19 cases in India under hypothetical scenarios
as of 14 April 2020; slow adherence
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b. Predicted number of new COVID-19 cases in India under hypothetical scenarios
as of 14 April 2020; slow adherence
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Figure A4. Long-term daily growth in case counts in India per 100,000 people
assuming a 2-week delay and how that is affected by different non-
pharmaceutical intervention strategies. Predicted cumulative (a) and incident (b)
case counts from April 30 to July 31 from the eSIR model are shown, based on observed
data until April 14.
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c. Trace plots and posterior density plots for R,
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India_4: infection forecast with prior fp=0.164,7,=0.0821 and Ry=2
Postetior f,=0.267,7,=0.155 and Rg=1.8
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d. Posterior distribution for the predictions Y and the latent proportions 6 for
the I (infected) compartment
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India_4: removed forecast with prior By=0.164,1,=0.0821 and Ry=2
posterior: [i,=0.267,1,=0.155 and Ry=1.8
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e. Posterior distribution for the predictions Y and the latent proportions ¢ for
the R (removed) compartment
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spaghetti plot of infection prevalence
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f. Estimates and posterior distribution of the (Iiaily prevalence of active cases
over time or d_(ftn.

Figure AS5. Trace plotsand posterior density plots for the underlying model. Parameters B (a), ~ (b), and Ry (c),
posterior distributions for the predictions y~ and the latent proportions g for the I (d),andR (e) compartments over time,

and estimates and posterior distribution of the daily prevalence of active cases overtime or 46, (f). These plots correspond
dt

to the 21-day lockdown with moderate return scenario under quick adherence.
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a. Predicted number of COVID-19 infections under varying lockdown lengths
as of 14 April, 2020; slow adherence
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b. Predicted number of daily COVID-19 infections under varying lockdown lengths
as of 14 April, 2020; slow adherence
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Figure A6. Cumulative (a) and incidence (b) graphs for forecasting models
assuming a 2-week delay under 21-, 28-, 42-, and 56-day lockdown scenarios
using observed data through April 14.
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a. Ry over time by scenario
as of 14 April 2020; quick adherence
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Note: End values continue in perpetuity.

b. Rg over time by scenario
as of 14 April 2020; slow adherence
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Note: End values continue in perpetuity.

Figure A7. Implied R, schedules corresponding to quick and slow adherence
for the hypothetical lockdown duration scenarios.
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India_4_10x: infection forecast with prior fp=0.164,,=0.0821 and Ry=2
Pasterior fi=0.199,1,=0.0918 and Fg=2 28
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a. Scenario with 10 times the number of reported cases (e.g., underreporting)
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Piinfacted)

India_4_metro: infection forecast with prior B;=0.164,7,=0.0821 and Ry=2

Posterior fly=0.1637,+0.0602 and Fp=2.81
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b. Scenario using metro population (e.g., to mimic case-clustering)
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India_4: infection forecast with prior fy=0.164,y,=0.0821 and Ry=2

Postenior u=0.267,1,=0.155 and Fg=1.8
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India_4_R3: infection forecast with prior fy=0.246,,=0.0821 and Ry=3
Posterior f=0.299 1,=0,132 and R=2,43
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India_4_R4: infection forecast with prior fg=0.328,v,=0.0821 and Ry=4
Poslanior fiy=0.324,1,=0.102 and Fly=3.38
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Figure A8. Posterior distributions of the projected case countsand latent proportionsunder sensitivity scenarios.
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Comparison of India projections at different time points
assuming 21-day lockdown with moderate return
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Notes: Gray bars represent observed values. April 1,7 and 14 scenarios represent forecasts using observed data through the given date.

Figure A9. Model Calibration: Relative comparison of predictions using
observed data up to a certain date (April 1, 7, and 14). Observed data (gray) is
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Data source:

https://ourworldindata.org/coronavirus

India: https://api.covid19india.org

Population (2018): https://data.worldbank.org/indicator/sp.pop.tot!



Figure A10. Daily testing patternsin selected countries (A); Testing numbers and proportions for 61 countries
around the world affected by COVID-19 (B).
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