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Most existing expression quantitative trait locus (eQTL) mapping studies have been focused on individuals of European ancestry and are
underrepresented in other populations including populations with African ancestry. Lack of large-scale well-powered eQTL mapping
studies in populations with African ancestry can both impede the dissemination of eQTL mapping results that would otherwise benefit
individuals with African ancestry and hinder the comparable analysis for understanding how gene regulation is shaped through evolu-
tion. We fill this critical knowledge gap by performing a large-scale in-depth eQTL mapping study on 1,032 African Americans (AA) and
801 European Americans (EA) in the GENOA cohort. We identified a total of 354,931 eSNPs in AA and 371,309 eSNPs in EA, with
112,316 eSNPs overlapped between the two. We found that eQTL harboring genes (eGenes) are enriched in metabolic pathways and
tend to have higher SNP heritability compared to non-eGenes. We found that eGenes that are common in the two populations tend
to be less conserved than eGenes that are unique to one population, which are less conserved than non-eGenes. Through conditional
analysis, we found that eGenes in AA tend to harbor more independent eQTLs than eGenes in EA, suggesting potentially diverse genetic
architecture underlying expression variation in the two populations. Finally, the large sample sizes in GENOA allow us to construct ac-
curate expression prediction models in both AA and EA, facilitating powerful transcriptome-wide association studies. Overall, our results

represent an important step toward revealing the genetic architecture underlying expression variation in African Americans.

Introduction

Genome-wide association studies (GWASs) have identi-
fied thousands of genetic variants that are associated
with various diseases and disease-related complex traits.
However, the vast majority of these disease-associated
variants reside in non-coding regions and have unknown
functions.'* While variants in non-coding regions
cannot directly alter the function of a gene through dis-
rupting protein-coding sequencing, they can influence
the level of gene expression through impacting the regu-
latory mechanisms underlying expression. Indeed, in
recent years, expression quantitative trait loci (eQTL)
mapping studies have successfully identified many cis-
acting genetic variants that are associated with gene
expression levels.”® These identified eQTLs can help
elucidate the molecular mechanisms underlying disease
associations and facilitate the identification of biological
pathways underlying disease etiology. For example, it
has been shown that genetic variants associated with
common diseases tend to be eQTLs and vice versa.'"”'?
In addition, identified eQTLs in mapping studies can
also provide invaluable information to enhance the
power of future GWASs."'

To date, most existing eQTL mapping studies have been
performed on individuals with European ancestry. eQTL
mapping studies in other populations are noticeably un-
derrepresented, with a particularly noticeable absence of

large studies in populations with African ancestry. Indeed,
only a few eQTL mapping studies were carried out thus far
on individuals with African ancestry and these studies
often had small sample sizes that limited the statistical
power of eQTL mapping. For example, HapMap3 included
only 108 Yoruba (YRI) samples; the Geuvadis study
included 89 YRI samples;'” a study on population differ-
ence in immune response collected 100 individuals
with African ancestry;'® and the Multi-Ethnic Study of
Atherosclerosis (MESA) cohort included 233 African Amer-
icans.'* Because of differences in allele frequencies and
linkage disequilibrium (LD) patterns, eQTL mapping re-
sults can vary, sometimes quite substantially, across popu-
lations with diverse genetic backgrounds.'® Consequently,
eQTLs identified in one population are not necessarily
eQTLs in another population, and eQTL mapping results
from one population may not necessarily benefit or trans-
fer to another population. In addition, and equally impor-
tantly, a lack of eQTL mapping studies in populations with
African ancestry also hinders the progress of comparative
analysis between Africans and other populations in terms
of the genetic architecture differences underlying gene
expression variation. Indeed, only a limited number of
comparative studies have been performed between popula-
tions, and again with small sample sizes.'*'®'” Compara-
tive studies on the genetic regulation of gene expression
across populations can provide important insights into
the genetic differences among populations that may
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have been shaped by evolutionary forces. Therefore, well-
powered eQTL mapping studies with large sample sizes
in populations with African ancestry is critically needed
to realize the potential and benefits of eQTL mapping
studies across human populations.

To fill the above critical knowledge gap, here, we
collected gene expression and genotype data from 1,032
African American (AA) samples and 801 European Amer-
ican (EA) samples from the Genetic Epidemiology Network
of Arteriopathy (GENOA) study. We paired genotypes and
gene expression data in these samples together to perform
a comprehensive cis-eQTL mapping in both populations.
By comparing eQTL mapping results in the two popula-
tions, our results reveal the genetic architecture differences
underlying gene expression variation between African
Americans and European Americans.

Material and Methods

Subjects

The Genetic Epidemiology Network of Arteriopathy (GENOA) is a
community-based study of hypertensive sibships that was de-
signed to investigate the genetics of hypertension and target organ
damage. The study includes both African Americans (AA) from
Jackson, Mississippi and European Americans (EA) from Rochester,
Minnesota.'® In the initial phase of GENOA (phase I: 1996-2001),
all members of sibships containing at least two individuals with
essential hypertension clinically diagnosed before age 60 were
invited to participate, including both hypertensive and normoten-
sive siblings. Exclusion criteria for GENOA included secondary
hypertension, alcoholism or drug abuse, pregnancy, insulin-
dependent diabetes mellitus, or active malignancy. Eighty percent
of AA (n = 1,482) and 75% of EA (n = 1,213) from the initial study
population returned for the second examination (phase II: 2001-
20035). Demographic information, medical history, clinical charac-
teristics, lifestyle factors, and blood samples were collected in each
phase. Written informed consent was obtained from all subjects
and approval was granted by participating institutional review
boards (University of Michigan, University of Mississippi Medical
Center, and Mayo Clinic).

Genotyping Data and Quality Control

AA and EA blood samples were genotyped using either the Affyme-
trix Genome-wide Human SNP Array 6.0 platform or the Illumina
Human1M-DUO Beadchip. For each platform, participants were
excluded if they had an overall SNP call rate < 95% or sex mismatch
between genotype and self-report. SNPs were excluded if they had a
call rate < 95%. Principal component analysis was performed to
identify and remove samples whose genotype profile appeared to
be different from all other samples (outliers). After removing
outliers, there were 1,599 AA samples and 1,464 EA samples with
available genotype data. Imputation was performed using the
Segmented HAPlotype Estimation & Imputation Tool (SHAPEIT'’
), v.2.r and IMPUTE v.2?° using the 1000 Genomes project phase
I integrated variant set release (v.3) in NCBI build 37 (hg19) coordi-
nates (released on March 2012). Since genotyping was performed
on multiple platforms, imputation was performed separately by
platform and then the imputed data were combined. After imputa-
tion, SNPs with minor allele frequency (MAF) <0.01 or imputation

quality score (info score) <0.4 in any platform-based imputa-
tion were removed. The final set of genotype data included
30,022,375 and 26,079,446 markers for AA and EA, respectively,
covering both SNPs and SNVs/indels. In our eQTL mapping anal-
ysis (more details below), we focused on genotype information
for 6,432,684 imputed cis-SNPs on 1,032 AA individuals, and geno-
type information for 3,818,520 imputed cis-SNPs on 801 European
American individuals that also have gene expression data.

In EA and AA separately, the GENESIS package in R was used to
infer population structure.”’ We used the PC-AiR function to
extract the first five genotype PCs and used GEMMA?? to estimate
an individual relatedness matrix. Both PCs and the relatedness
matrix were included as covariates in the eQTL mapping analysis.

Gene Expression Data and Quality Control

Since eQTL architectures can change dynamically during the
development and differentiation of cells, it is essential to map
eQTLs in purified cell types.”*** In our study, gene expression
levels were measured using lymphoblastoid cell lines (LCLs)
from a subset of AAs (n = 1,233) and EAs (n = 919) in order to
minimize environmental influences. The gene expression levels
of AA samples were measured using the Affymetrix Human Tran-
scriptome Array 2.0 and those of EA samples were measured using
the Affymetrix Human Exon 1.0 ST Array. We used the Affymetrix
Expression Console provided by Affymetrix for array quality con-
trol and all array images passed visual inspection. In AA, we
removed 28 samples due to either low signal-to-noise ratio
(n = 1), abnormal polyadenylated RNA spike-in controls (Lys <
Phe < Thr < Dap; n = 24), sample mislabeling (n = 2), or low
RNA integrity (n = 1), leaving a total of n = 1,205 for analysis.
In EA, we removed duplicated samples (n = 31), control samples
(n = 11), and sex mismatch samples (n = 2), leaving n = 875 for
analysis. We processed data in each population separately. Specif-
ically, raw intensity data were processed using the Affymetrix Po-
wer Tool software.”® Affymetrix CEL files were normalized using
the Robust Multichip Average (RMA) algorithm which included
background correction, quantile normalization, log,-transforma-
tion, and probe set summarization.”® The algorithm also includes
GC correction (GCCN), signal space transformation (SST), and
gain lock (value = 0.75) to maintain linearity. The Brainarray
custom CDF?’ version 19 (see Web Resources) was used to map
the probes to genes. This custom CDF?” uses updated genomic an-
notations and multiple filtering steps to ensure that the probes
used are specific for the intended gene cluster. In particular, it re-
moves probes with non-unique matching cDNA/EST sequences
that can be assigned to more than one gene cluster. Consequently,
the gene expression data processed through the custom CDF in*’
is expected to be largely free of mappability issues. However, we
do acknowledge that alignment bias may still exist due to genetic
variation, errors in the reference genome and other complica-
tions.”® After mapping, we used ComBat software’” to remove
batch effects. Finally, the gene expression data were quantile
normalized across genes for the following eQTL analysis. A total
of 17,616 autosomal protein-coding genes in AA and 17,360 auto-
somal protein-coding genes in EA were available for analysis. In
AA samples 17,572 genes and in EA samples 17,343 genes were
mapped to the corresponding imputed SNPs.

eQTL Mapping Analysis
The eQTL mapping analysis was performed in AA and EA
samples separately, using individuals with both genotype and



gene expression data (n = 1,032 in AA and n = 801 in EA). For each
gene, we first extracted cis-SNPs that are within 100 kb of tran-
scription start site or transcription end site of genes, following rec-
ommendations by Peters et al.*” A total of 17,572 genes in AA and
a total of 17,343 genes in EA had non-zero cis-SNPs. The median
number of cis-SNPs per gene is 722 for AA (mean = 825.8; SD =
649.8) and 418 for EA (mean = 491.4, SD = 410.8), with range
varying from 1 to 19,808 for AA and from 1 to 13,379 for EA.
We focused our analysis on genes with at least one cis-SNP. For
each gene, we then applied a linear mixed model implemented
in GEMMA?? for eQTL mapping, adjusting for age, gender, the
top five genotype PCs from PC-AiR, and the genetic relatedness
matrix from GEMMA. Afterward, we selected the SNP with the
lowest p value for each gene as the candidate eQTL and used its
p value as the gene-level significance measure. We permuted the
sample labels ten times and applied the same eQTL mapping pro-
cedure to obtain an empirical null distribution of gene-level
p values.’’* In each population, after each permutation, we
kept the most significant p value per gene. With the empirical
null distribution, we computed the false discovery rate (FDR) asso-
ciated with each p value threshold following Barreiro et al.*' and
Pickrell et al.*” and selected the p value threshold that provided
a 5% FDR control. The p value threshold used is 6.245907e—05
in AA and 1.385504e—4 in EA. We refer to the genes that pass
an FDR threshold of 5% as the identified eGenes and refer to the
SNPs with the lowest p value in these genes as the identified (pri-
mary) eQTLs. We refer to the significant cis-SNPs in the eGenes as
eSNPs. We also used Plink** to calculate Weir and Cockerham’s
Fy*® to measure the degree of population differentiation between
AA and EA. Negative values of Weir and Cockerham’s F; were
treated as zero. The summary statistics from eQTL mapping anal-
ysis along with all analysis scripts are available on our website (see
Web Resources).

We examined the overlap of the detected eGenes and eSNPs in
AA or EA in other replication cohorts (AFA, CAU, and HIS in
MESA; YRI and EUR in Geuvadis; details of these populations are
described below). In particular, we used the qvalue method*®*’
to estimate the expected true positive rate m; between popula-
tions. The m; statistics was estimated by selecting the SNP-gene
pairs with FDR < 0.05 in AA or EA population from the GENOA
cohort and examining their p value distribution in each replica-
tion cohort (YRI and EUR in Geuvadis, AFA, CAU, HIS in MESA).
mo is the proportion of false positives estimated by assuming a uni-
form distribution of null p values and m; = 1 — mo."’

For each eGene in turn, we performed conditional analysis to
identify additional conditional eQTLs following Jansen et al.**
To do so, we refer to the primary eQTLs as E1 SNPs. For each
gene in turn, we performed association analysis conditional on
the E1 SNP and identified the strongest SNP association among
the remaining SNPs. We refer to the identified SNP as an E2 SNP
if its conditional p value is below the genome-wide significance
threshold established in the above paragraph. Afterward, we per-
formed further association analysis conditional on both E1 and
E2 SNPs to identify E3 SNPs. We repeated such process until the
smallest p value among the remaining SNPs can no longer exceed
the genome-wide significance threshold.

We performed subsampling analysis to check whether gene
length is a potential source of bias in eQTL detection. In the first
analysis, we focused on half of the genes that have a SNP number
greater than or equal to the median value (8,802 genes in AA and
8,694 genes in EA). For each gene in turn, we down-sampled its
cis-SNPs to the median value, so that all genes have the same num-

ber of cis-SNPs. In the second analysis, we focused on the genes
with SNP density higher or equal to the median (8,787 genes in
AA and 8,672 genes in EA). The SNP density is defined as the ratio
between the number of SNPs in a gene and the length of that gene.
Afterward, for each gene in turn, we randomly subsampled a spe-
cific number of SNPs to do the analysis, while the specific number
is selected as the median SNP density multiple the gene length. For
both subsampling analyses, we repeated the down-sampling pro-
cedure 10 times and averaged results to account for stochasticity
in the down-sampling process.

Controlling for Local Ancestry

We performed local ancestry (LA) inference in AA and EA samples
using the software Efficient Local Ancestry Inference (ELAI)
v.1.01%% in the FRANC interface (see Web Resources). We used
the default settings in ELAI. We downloaded genotype files in
plink format for 83 Utah Residents (CEPH) with Northern and
Western European Ancestry (CEU) and 88 Yoruba in Ibadan,
Nigeria (YRI) populations from the 1000 Genomes Project to serve
as reference panels. We focused on the common set of autosomal
SNPs that are available both in the 1000 Genomes Project and in
the AA or EA samples for ancestry inference. We converted variant
base pair positions to centimorgans using the hg19 genetic map.
The inferred local ancestry is in the value of the number of African
ancestry alleles (0, 1, or 2) for each SNP. We treated these inferred
values as an additional covariate in the eQTL mapping using the
LAMatrix R package.’” Note that the LAMatrix software is not
able to control for family relatedness in GENOA. In the analysis,
we also constructed empirical null distributions as described
above, computed the false discovery rate (FDR) associated with
each p value threshold, and selected the p value threshold
that provided a 5% FDR control. Such p value threshold is
5.962974e—05 in AA and 1.376416e—4 in EA. As described above,
we refer to genes that pass an FDR threshold of 5% as the identified
eGenes and refer to the SNPs with the lowest p value in these genes
as the identified (primary) eQTLs. We also refer to the significant
cis-SNPs in the eGenes as eSNPs.

Gene Expression Heritability Estimation and

Partitioning

For each gene, we estimated the proportion of variance in gene
expression level explained by all SNPs using the Bayesian sparse
linear mixed model (BSLMM) implemented in GEMMA. Following
Mogil et al.,"* we also used BSLMM™’ to partition the gene expres-
sion variance into a cis-component that is explained by cis-SNPs
and a trans-component that is explained by trans-SNPs. To do so,
for each gene we fit the following model:

y=u + Xcisﬂcr's + Xtransﬁtmnx +€
Beisi ~ 7TN(0, Gi) + (1 - W)(SO

ﬁtmnxj ~ N(07 Ji)

Where y is a n by 1 vector of gene expression levels for n individ-
uals; u is the intercept; x.; is the n by p.;; matrix of genotypes for
Peis cis-SNPs of interest and g, are the corresponding effect sizes;
Xrans 1S the nby pyans matrix of genotypes for pyans trans-SNPs of in-
terest (i.e., SNPs that are not cis-SNPs); and Sy, are the corre-
sponding effect sizes, here pyqns was based on all genotyped sites
used in our analyses; and ¢ is a n by 1 vector of residual errors.



We used 1,000 burn-in steps and 10,000 sampling steps in the
Markov chain Monte Carlo (MCMC) algorithm to fit BSLMM.
We used the posterior samples of B and B, to calculate
V(xcisBes)/V(y), which represents the proportion of variance
in the phenotype explained by cis-SNPs, as well as
V (XtransBeans)/ V (v), which represents the proportion of variance
in the phenotype explained by trans-SNPs. Besides the main anal-
ysis where we used all trans-SNPs, we also performed sensitivity
analysis where we used only trans-SNPs that reside on different
chromosomes.

Conservation Scores

We obtained three types of conservation scores: phyloP score,*’
phastCons score,*” and dN/dS ratio.** The phyloP score measures
the evolutionary conservation at each individual alignment site
and the absolute phyloP score is a —log p value for testing the
null hypothesis of neutral evolution. A positive sign of phyloP
score indicates conservation and slower evolution than expecta-
tion, while a negative sign of phyloP score indicates faster evolu-
tion than expectation.** The phastCons score measures the prob-
ability that each nucleotide belongs to a conserved element and
aims to compare whether the site is better explained by the
conserved model or by the non-conserved model. A higher phast-
Cons score represents more conservation.*” The dN/dS score mea-
sures the direction and magnitude of nature selection on the pro-
tein-coding genes. A dN/dS ratio greater than 1 implies positive
selection; a ratio less than 1 implies negative selection; while a
ratio of exactly 1 indicates no selection.*> We obtained the per-
site phyloP and phastCons scores from the 100-way vertebrate
comparison on the UCSC Genome Browser*® for each base posi-
tion inside the annotated exons and averaged them to obtain
the per-gene phyloP and phastCons scores. We obtained per-
gene dN and dS scores using the BioMart R package.*’

We compared the conservation scores in eGenes that are identi-
fied in both populations, eGenes that are uniquely identified in
one population, and non-eGenes. We performed Jonckheere-
Terpstra test to test whether there is an observable trend in conser-
vation scores across these three classes of genes.

Functional Enrichment Analysis

We performed GO and KEGG pathway enrichment analyses to
investigate the shared biological function among eGenes in the
AA and EA populations. We do so by using the g:GOSt tool on
the web software g:Profiler and used the expressed genes as back-
ground.”® In the analysis, we used the default option g:SCS
method in g:Profiler for multiple testing correction. We presented
pathways identified with an adjusted p value < 1e—5. To adjust for
the potential influence of gene length to the GO analysis, we also
carried out GO enrichment using R package GOfuncR.***" In the
analysis, we computed family-wise error rates (FWER) based on
permutations of gene-associated variables and used an FWER
threshold of 0.1 to declare enrichment significance.

Comparison of eQTL Results with Previous Studies

We compared our findings (eGenes, eSNPs, and eQTLs) to those
from two previous eQTL mapping studies. These two previous
studies include the Geuvadis Consortium study® and the Multi-
Ethnic Study of Atherosclerosis (MESA)."* The Geuvadis study
was performed on lymphoblastoid cell lines (LCL) of 465 individ-
uals from five different populations: Utah residents (CEPH) with
northern and western European ancestry (CEU, n = 92), Finns

(FIN, n = 95), British (GBR, n = 96), Toscani (TSI, n = 93), and
Yoruba (YRI, n = 89). The MESA study was performed on CD14*
monocytes of individuals from three different populations:
African American (AFA, n = 233), Hispanic (HIS, n = 352), and
European (CAU, n = 578). In the Geuvadis results, we directly
matched their reported Ensembl gene IDs to GENOA and matched
SNPs between studies through their positions. In the MESA data,
we directly matched their reported Ensembl gene IDs to GENOA
and matched SNPs between studies through matching rs IDs.

Gene Expression Prediction

We constructed gene expression prediction models using AA and
EA samples in either GENOA or MESA. We then accessed the pre-
diction performance of these models in a separate study, the Geu-
vadis study. For MESA, we directly downloaded the cis-SNP
weights. These weights were produced by fitting the elastic net
model for gene expression prediction with PrediXcan in the
MESA study.'* For GENOA, we followed the MESA study'* and
used the glmnet R package®’ to fit the elastic net model for gene
expression prediction. Also following the MESA study, we set
elastic net regularization penalty o = 0.5. Besides using the elastic
net, we also used BSLMM™*° for gene expression prediction. After
building expression prediction models in either MESA and
GENOA, we downloaded individual-level genotype and gene
expression data from Geuvadis and examined the prediction per-
formance there. To do so, we processed the Geuvadis gene expres-
sion data as described in Lappalainen et al.® Specifically, we
focused our analysis on protein-coding genes that are annotated
from GENCODE®? (release 12). We removed lowly expressed genes
that have zero counts in at least half of the individuals and re-
tained a total of 15,810 genes. Afterward, we performed PEER
normalization to remove confounding effects and unwanted var-
iations.>® In order to remove potential population stratification
in Geuvadis, we quantile normalized the gene expression measure-
ments across individuals in each population to a standard normal
distribution, and then quantile normalized the gene expression
measurements to a standard normal distribution across individ-
uals from all five populations. In addition to the gene expression
data, all individuals in Geuvadis also have their genotypes
sequenced in the 1000 Genomes project. Among the sequenced
genotypes, we retained 7,072,917 SNPs that have a MAF above
0.05. We compared the prediction performance in a set of 2,524
common genes across all seven prediction models (GENOA AA
and EA with BSLMM and elastic net; MESA AFA, CAU, and HIS
with elastic net). We predicted the expression level of each gene
in the Geuvadis data using the cis-SNP weights constructed in
either GENOA or MESA, with overlap SNPs between GENOA and
Geuvadis and between MESA and Geuvadis. We then measured
the prediction performance using the squared Pearson’s correla-
tion coefficient (R*) between the predicted expression level
and true expression level as described in Mikhaylova and
Thornton.>*

TWAS Analysis in WTCCC

The Wellcome Trust Case Control Consortium (WTCCC) study>®
data consist of about 14,000 case subjects from seven
common diseases and 2,938 shared control subjects. The cases
include 1,963 individuals with type 1 diabetes (T1D [MIM:
222100]), 1,748 individuals with Crohn disease (CD [MIM:
266600]), 1,860 individuals with rheumatoid arthritis (RA
[MIM: 180300]), 1,868 individuals with bipolar disorder



Table 1.

Comparison of eQTL Mapping Results for African Americans and European Americans in the GENOA Study

African American (AA) European American (EA) Overlapping

Number Total Percentage Number Total Percentage Number AA% EA%
eGenes 5,475 17,572 31.16% 4,402 17,343 25.38% 3,048 55.67% 69.24%
eSNPs 354,931 14,511,338 2.45% 371,309 8,521,801 4.36% 112,316 31.64% 30.25%

The first row shows the number of eGenes that are identified in AA (first column), the total number of genes analyzed in AA (second column), the percentage of
genes that are eGenes in AA (third column), the number of eGenes that are identified in EA (fourth column), the total number of genes analyzed in EA (fifth
column), the percentage of genes that are eGenes in EA (sixth column), the number of common eGenes identified in both AA and EA (seventh column), the pro-
portion of eGenes identified in AA that are also identified in EA (eighth column) and the proportion of eGenes identified in EA that are also identified in AA (ninth

column), at FDR <0.05.

(BD [MIM: 125480]), 1,924 individuals with type 2 diabetes (T2D
[MIM: 125853]), 1,926 individuals with coronary artery disease
(CAD [MIM: 608320]), and 1,952 individuals with hypertension
(HT [MIM: 145500]). We obtained quality-controlled genotypes
from WTCCC and imputed missing genotypes using BIM-
BAM.>® We obtained a total of 458,868 SNPs shared across all
individuals. We then imputed SNPs based on the 1000 Genomes
project reference panel using SHAPEIT and IMPUTE2.?° For
TWAS analysis, we focused on genes and SNPs that are shared
between WTCCC and GENOA or shared between WTCCC and
MESA. We calculated the predicted gene expression levels in
WTCCC using models constructed either in GENOA (BSLMM
or elastic net) or MESA (elastic net), with details described in
the previous section. We then tested for association between
the predicted gene expression level and disease status using logis-
tic regression, with the first ten genetic PCs included as covari-
ates. We considered the association between gene and disease
genome-wide significant if its p value is below the Bonferroni
corrected genome-wide threshold of 0.05. For results validation,
for each prediction model in turn, we counted the number of
genes identified in each WTCCC trait (T1D, T2D, RA, HT, CD,
CAD, and BD) that is replicated in post-WTCCC studies. In
particular, we defined replication as the genes within 100 kb of
a previous gene reported to be associated with the same trait in
the GeneCards knowledge base.”’

Results

eQTL Mapping in AA and EA Samples in the GENOA
Study

We performed eQTL mapping in the GENOA study in the
AA and EA samples separately. The description of the
GENOA study, the gene expression data collection
and processing procedure, the genotype data collection
and processing procedure, and the eQTL mapping proced-
ure are all provided in Material and Methods. Briefly, the
AA data include expression measurements for 17,616
protein-coding genes and genotype information for
30,022,375 imputed SNPs for 1,032 AA individuals. The
EA data include 17,360 protein-coding genes and genotype
information for 26,079,446 imputed SNPs for 801 EA indi-
viduals. We processed gene expression data with Combat*’
to remove batch effects or other technical covariates. We
extracted cis-SNPs within 100 kb of each gene and used
linear mixed models implemented in GEMMA for eQTL
mapping.”” In the analysis, we adjusted for age, gender,

the top five genetic principal components (PCs), as well
as a genetic relatedness matrix to control for familial rela-
tionships. Note that, following previous approaches,’®
we determined the number of genotype PCs included in
the model based on maximizing the number of discoveries
(Figure S1). Overall, we examined a total of 17,572 genes
and 6,432,684 unique cis-SNPs, with an average of 825.8
cis-SNPs per gene in the AA samples; and 17,343 genes
and 3,818,520 unique cis-SNPs, with an average of 491.4
cis-SNPs per gene in the EA samples. Following Tung
et al.,>” we refer to a gene that harbors at least one eQTL
as an eGene. We used an empirical gene-level FDR
threshold of 5% constructed across all genes for identifying
eGenes. Following Tung et al.,”” we refer to the lowest p
value SNP in each eGene as the (primary) eQTL. Following
Barreiro et al.*" and Pickrell et al.,** we refer to any cis-SNP
with a significant association with the eGene as an eSNP.
We used the p value threshold corresponding to the
same empirical FDR of 5% for eGene detection to declare
eSNPs. Besides this primary analysis, we also performed
conditional analysis to identify additional eQTLs (more
in the following section). The summary statistics from
eQTL mapping analysis and all analysis scripts are available
on our website (see Web Resources).

In total, we identified 5,475 eGenes in the AA samples
and 4,402 eGenes in the EA samples, with 3,048 overlap-
ping between AA and EA (overlapping Jaccard index =
0.446; Table 1 and Figure 1D). We also identified a total
of 354,931 eSNPs in AA and 371,309 eSNPs in EA, with
112,316 eSNPs overlapping between the two populations
(overlapping Jaccard index = 0.183). The proportion of
overlapped eGenes increases from 53.01% to 59.15% in
AA and increases from 66.81% to 69.05% in EA when the
FDR threshold is increased from 0.01 to 0.2, though the
proportion of overlapped eSNPs remains similar (Table
S1). The lack of complete overlap of eGenes or eSNPs be-
tween the two populations is in part due to statistical
power and in part due to the difference in the genetic ar-
chitecture underlying gene expression levels between pop-
ulations. In addition, our results are largely consistent with
previous studies, with many eSNPs and eGenes in previous
studies replicated in our study. Specifically, compared to
the Geuvadis study,® 81.01% of eGenes and 84.01% of
eSNPs identified in the Yoruba (YRI) population (n = 89)
are also identified in our AA samples. In addition,
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(A) The locations of the eQTLs in the eQTL analysis are shown relative to the most 5’ gene transcription start site (TSS) and the most 3’
gene transcription end site (TES) for each of the 5,475 eGenes in AA.

(B) The locations of the eSNPs are shown relative to the most 5’ TSS and the most 3’ TES for each of the 4,402 eGenes in EA.

In both (A) and (B), identified eQTLs are enriched near TSS, TES, and gene body. For SNPs residing between TSS and TES, we scaled its

distance to the transcript starting site by gene length.

(C) The effect size and direction of effect for the shared gene-SNP pairs (112,316) between AA and EA are highly consistent.
(D) Venn diagram plots show the overlap of eGenes and eSNPs identified in AA and EA.

65.39% of eGenes and 63.4% of eSNPs identified in the Fu-
ropean (EUR) population in Geuvadis (n = 373) are also
identified in our EA samples (Table 2). Compared to the
MESA study (AFA: n = 233; CAU: n = 578; HIS: n =
352),'* 32.21% of eGenes and 24.89% of eSNPs identified
in their AFA population are also identified in our AA sam-
ples. Also, 31.23% of eGenes and 19.33% of eSNPs identi-
fied in the CAU population in the MESA study are also
identified in our EA samples (Table 3). However, our anal-
ysis also identified many new eGenes and eSNPs that
were not identified in these previous studies. For example,
compared to the Geuvadis study,” we identified 4,271 new
eGenes and 22,506 new eSNPs in our AA samples than that
in the YRI population; 2,116 new eGenes and 55,017 new

eSNPs in our EA samples than that in the EUR population.
Similarly, compared to the MESA study, we identified 2,345
new eGenes and 146,651 new eSNPs in our AA samples as
compared to that in the AFA samples; and 1,220 new
eGenes and 99,298 new eSNPs in our EA samples as
compared to that in the CAU samples. We also examined
the true positive rate m; of the detected eSNPs in the AA
or EA populations that are replicated in the MESA and Geu-
vadis studies. The results show the true positive rate of
eSNPs is in the range of 59.3%-91.9% in AA (with values
varying based on which population the comparison is per-
formed on) and that in the 51.4%-90.9% in EA (Table S2).
Certainly, a lack of complete overlap of eGenes or eSNPs
among different studies is expected, given that statistical



Table 2.

Comparison of eQTL Mapping Results between GENOA and Geuvadis

Detected in Detected in Overlapped between

Genes (or Gene-SNP Pairs) Analyzed in Both Studies Geuvadis GENOA the Two Studies
GENOA AA (n = 1,205) versus Geuvadis YRI (n = 89)

eGenes 10,539 416 4,608 337

eSNPs 51,611 7,791 29,051 6,545
GENOA EA (n = 801) versus Geuvadis EUR (n = 373)

eGenes 11,130 2,800 3,947 1,831

eSNPs 331,784 159,262 156,027 101,010

The first row shows the number of eGenes that are identified in GENOA AA and analyzed in Geuvadis YRI (first column), the number of eGenes in AA that are also
eGenes in Geuvadis YRI (second column), the percentage of also eGenes in Geuvadis YRI that are also eGenes in AA (third column), the number of eGenes that are
identified in GENOA EA and analyzed in Geuvadis EUR (first column), the number of eGenes in EA that are also eGenes in Geuvadis EUR (second column), the
percentage of also eGenes in Geuvadis EUR that are also eGenes in EA (third column).

power is unlikely achieved fully in any study and that
different studies differ in terms of the cis window size,
used tissue types (e.g., MESA uses monocytes while the
others use LCLs) as well as applied FDR methods (e.g., per-
mutation based versus Benjamini-Hochberg).

We used ELAI to infer local ancestry and treated the in-
ferred local ancestry as covariates in the eQTL mapping
analysis using the LAMatrix package. We found that the
eQTL mapping results controlling for local ancestry are
largely consistent with the main results. Specifically, after
adjusting for local ancestry, we identified 5,553 eGenes
in AA and 4,586 eGenes in EA, with 5,312 and 4,333 genes
overlapped with the main results (overlapping Jaccard in-
dex =0.929 in AA and 0.931 in EA; Table S3). We identified
a total of 357,072 eSNPs in AA and 372,240 eSNPs in EA,
with 325,571 and 347,949 eSNPs overlapped with the
main results (Jaccard index = 0.843 in AA and 0.880 in
EA). The estimated effect sizes after adjusting for local
ancestry are highly correlated with the main results (Pear-
son’s correlation = 0.991, p value < 2.23e—308 in AA; cor-
relation = 0.994, p value < 2.23e—308 in EA; Figure S2). In
addition, the —10g10 p values are also highly correlated be-
tween these two approaches (Spearman’s correlation =
0.963, p value < 2.23e—308 in AA; correlation = 0.972, p
value < 2.23e—308 in EA; Figure S3).

Characteristics of eGenes and eQTLs

We first examined the properties of the identified eQTLs and
eSNPs. As expected,®® the eQTLs identified in both AA and
EA samples are strongly enriched near gene transcription
start sites, inside genebodies, and near transcription end sites
(Figures 1A and 1B), validating the eQTL mapping results.
Within each population, the absolute eQTL effect size is
negatively correlated with its minor allele frequency (MAF)
(Pearson coefficient = —0.47, p value < 2.23e—308 in AA;
Pearson coefficient = —0.46, p value < 2.23e—308 in EA; Fig-
ures S4A and S4B), likely reflecting either winner’s curse or
negative selection.’” In addition, the significance level of
the eQTLs in terms of —log10 p value is positively correlated
with MAF in each of the two populations (Spearman’s coeffi-
cient = 0.414, p value < 2.23e—308 in AA; Spearman’s coef-

ficient = 0.341, p value < 2.23e—308 in EA), likely reflecting
the increased power with increasing MAFE. Between popula-
tions, the —1og10(p value) difference between the two popu-
lations is positively correlated with MAF difference (Spear-
man’s correlation = 0.07, p value < 2.23e—308; Figure S5).
The average MAF difference between AA and EA is —0.0133
in non-eSNPs (Wilcoxon test p value < 2.23e—308), 0.0396
in AA-specific eSNPs (p value < 2.23e—308), —0.0496 in
EA-specific eSNPs (p value < 2.23e—308), and —0.0053 in
common eSNPs (p value =9.15e—27; Figures S6 and S7), sug-
gesting that AA-specific eSNPs tend to have higher MAF in
AA than in EA while the EA-specific eSNPs tend to have
higher MAF in EA than in AA. Consistent with Glassberg et
al.,°" we also found that eSNPs tend to have higher MAF as
compared to tested SNPs in both AA and EA (Figure S8). Be-
sides the influence of MAF on power, we found that the effect
sizes of the identified common eSNPs shared between EAs
and AAs are highly correlated with each other (Pearson coef-
ficient = 0.903; p value < 2.23e—308; Figure 1C), with 97.3%
of eSNPs sharing the same effect sign between AA and EA.
The significance level in terms of —1og10 p value of the cor-
responding eSNPs in the two populations are also positively
correlated (Spearman’s coefficient = 0.42, p value <
2.23e—308), partially reflecting the MAF correlation between
the two populations (Pearson coefficient = 0.35, p value <
2.23e—308). In addition, we found that EA unique eSNPs
tends to have larger effect size in EA as compared to AA,
and vice versa (Figure S9). The primary eQTLs also tend to
have the largest effect size across all cis-SNPs for a given
gene: in AA, 428 (7.8%) out of the 5,475 primary eQTLs
have the largest effect sizes (versus 0.15% by chance alone);
in EA, 488 (11.09%) out of 4,402 primary eQTLs also have
the largest effect sizes (versus 0.27% by chance alone). In
addition, in AA, 1,105 (20.18%) out of the 5,475 primary
eQTLs have the largest MAF across all SNPs mapped to a
given gene. In EA, 715 (16.24%) out of 4,402 primary eQTLs
also have the largest MAF across all SNPs mapped to a given
gene.

We next examined the properties of the identified
eGenes. Within each population, we first found that
eGenes with longer length tended to have a higher number



Table 3.

Comparison of eQTL Mapping Results between GENOA and MESA

Genes (or Gene-SNP Pairs) Analyzed in Both Studies

Detected in MESA

Detected in GENOA  Overlapped between the Two Studies

GENOA AA (n = 1,205) versus MESA AFA (n = 233)

eGenes 9,221 4,275 3,722 1,377

eSNPs 5,038,835 197,277 195,747 49,096
GENOA EA (n = 801) versus MESA CAU (n = 578)

eGenes 9,151 5,559 2,956 1,736

eSNPs 3,154,038 533,989 202,503 103,205

The first row shows the number of eGenes that are identified in GENOA AA and analyzed in MESA AFA (first column), the number of eGenes in AA that are also
eGenes in MESA AFA (second column), the percentage of also eGenes in MESA AFA that are also eGenes in AA (third column), the number of eGenes that are
identified in GENOA EA and analyzed in MESA CAU (first column), the number of eGenes in EA that are also eGenes in MESA CAU (second column), the percentage

of also eGenes in MESA CAU that are also eGenes in EA (third column).

of eSNPs (p value in AA = 7.9e—04; p valuein EA = 1.7e—3)
but a lower density of eSNPs (p value in AA = 2.51e—13;
p value in EA = 1.81e—8). Because we defined eGenes as
genes that harbor at least one significant eSNP, longer
genes with a larger number of SNPs will tend to be eGenes.
Therefore, we performed subsampling-based analyses to
avoid such potential confounding and more carefully
examine the property of eGenes in terms of their gene
length and SNP density (details in Material and Methods).
The first subsampling analysis ensures that all analyzed
genes have the same number of cis-SNPs. In such analysis,
we found that the lowest p value for each gene is nega-
tively correlated with gene length (before subsampling:
Spearman’s correlation = —0.146 and —0.141 in AA and
EA; p value = 2.31e—43 and 4.77e—40; after subsampling:
correlation = —0.107 and —0.109; p value = 6.04e—24 and
1.9e—24) while positively correlated with SNP density
(before subsampling: correlation = 0.135 and 0.118;
p value = 3.48e—37 and 3.66e—28; after subsampling: cor-
relation = 0.103 and 0.094; p value = 2.45e—22 and
1.912e—18), consistent with our above conclusion (note
that a negative correlation between p value and gene
length means that an eGene tends to have longer gene
length). The second subsampling analysis ensures that all
analyzed genes have the same SNP density. In such anal-
ysis, we found that the lowest p value for each gene is
also negatively correlated with gene length (before sub-
sampling: Spearman’s correlation = —0.267 and —0.269
in AA and EA; p value = 3.99e—143 and 7.13e—144; after
subsampling: correlation = —0.458 and —0.425; p value
< 2.23e—308 and < 2.23e—308). Overall, these subsam-
pling-based analyses support the conclusion that an eGene
tends to have a longer gene length and lower SNP density.

Next, between populations, we found that the common
eGenes shared between the two populations are often less
evolutionarily conserved than unique eGenes that are
identified in a single population, which are also less evolu-
tionarily conserved than non-eGenes. This decreased con-
servation pattern in non-eGenes versus unique eGenes
versus common eGenes can be clearly visualized using
each of the three commonly used conservation scores:
phyloP (p value = 1.86e—07; Figure 2A), phastCons

(p value = 1.6e—35; Figure 2B), and dN/dS ratio (p value
= 2.94e—10; Figure 2C). For example, the mean phyloP
score is 0.255, 0.207, 0.228, and 0.166, for non-eGenes,
eGenes unique to EA, eGenes unique to AA, and eGenes
shared between the two populations, respectively. The cor-
responding mean phastCons scores are 0.151, 0.13§,
0.133, and 0.117 and the corresponding mean dN/dS ratios
are 0.135, 0.127, 0.131, and 0.144. The decreased conser-
vation in common eGenes shared between populations
dovetails an early study in primates.’” In addition, we
found that eSNPs in AA and EA tended to have a higher
Ft value than non-eSNPs, supporting the previous observa-
tion that eSNPs are more variable than non-eSNPs'* (Fig-
ures 2D, S10A, and S10B). The mean Fy for the eSNPs
shared between EA and AA, eSNPs unique to either EA or
AA, and non-eSNPs are 0.0888, 0.079, 0.0895, and
0.0338, respectively (Figure 2D).

We also performed a gene ontology (GO) analysis on
eGenes versus non-eGenes to examine whether eGenes
are enriched in particular pathways (details in Material
and Methods). We found that, in both EA and AA, the
eGenes are highly enriched in catalytic activity, protein
binding, and transferase activity among the GO molecular
functions (Tables S4 and S8); are enriched in metabolic
processes among the GO biological processes (Tables S5
and S9); and are enriched in intracellular part, cytoplasmic
part, and mitochondrion among the GO cellular compo-
nents (Tables S6 and S10). In human phenotype ontology
analysis, we found that eGenes are enriched in autosomal-
recessive inheritance in both AA and EA (Tables S7 and
S11). The GO analysis results are consistent with the previ-
ous finding that eGenes tend to be less conserved, are
enriched for targets of purifying selection, and are more
likely to be observed in recessive disorders.®*°* In addition,
the GO enrichment using R package GOfuncR**°° that
controls for the influence of gene length also yields consis-
tent results (Tables S20-S22).

Gene Expression Heritability Estimation and Partitioning

Next, we estimated the genetic architecture underlying
gene expression variation through heritability estimation
and partitioning. For each gene in turn, we estimated the
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Figure 2. The Relationship between Conservation Scores and Four Categories of Genes

(A) Boxplot of phyloP scores, together with the mean (red dot), across four groups of genes: eGenes that are shared between EA and AA;
eGenes that are unique to either EA or AA; non-eGenes. phyloP scores are based on a 100-way primate genome comparison.

(B) Boxplot of phastCons scores, together with the mean (red dot), across the same four groups of genes. phastCons scores are based on a

100-way primate genome comparison.

(C) Boxplot of dN/dS ratio, together with the mean (red dot), across the same four groups of genes.

(D) Boxplot of Fy, together with the mean (red dot), across the same four groups of genes.

Note that a high phyloP score, a high phastCons score, or alow dN/dS ratio represents the gene is more conserved. The results show that
the non-eGenes, which are treated as background genes, are most conserved. The eGenes unique in either European Americans (EA
unique) or African Americans (AA unique) are less conserved. The common eGenes between European Americans and African Americans
are the least conserved. The Jonckheere-Terpstra tests for testing such trend are significant for all these scores: p value = 2.94e—10 for
dN/dS score; p value = 1.86e—07 for phyloP; p value = 1.6e—35 for phastCons; and p value < 2.23e—308 for F,. Again, the red dots

represent the mean values in each boxplot.

proportion of variance (PVE) in gene expression levels that
are accounted for by all SNPs using the Bayesian sparse
linear mixed model (BSLMM). This quantity is commonly
referred to as SNP heritability. We used Benjamini-Hoch-
berg false discovery rates (FDR) to correct for multiple
testing,”* with an FDR < 0.05 used as the threshold for sig-
nificant PVE. In the analysis, we found that 11.3% of genes
in AA and 8.3% of genes in EA have a PVE that significantly
deviates from zero at FDR < 0.05. In AA, the median PVE is

24.6% across these significant genes (1,986 genes, mean =
26.67%; SD = 10.5%), with PVE estimates ranging from
8.49% to 79.46% (Figure S11A). In EA, the median PVE is
26.78% across these significant genes (1,440 genes, mean
= 28.25%; SD = 9.88%), with PVE estimates ranging
from 9.81% to 78.7% (Figure S11B). The PVE of tested com-
mon genes is generally consistent between AA and EA
(Pearson’s correlation = 0.57, p value < 2.23e—308), and
the PVE of common eGenes is also consistent between
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AA and EA (Pearson’s correlation = 0.502, p value =
2.69e—194) (Figures S12A and S12B). As one might expect,
eGenes tend to have a higher PVE than non-eGenes
(p value < 2.23e—308) (Figures 3A and 3B): the median
PVE is 14.19% across eGenes and 5.28% across non-
eGenes in AA, and is 14.7% across eGenes and 6.03%
across non-eGenes in FA.

With BSLMM, we partitioned the PVE of each gene into
two parts: one that is explained by cis-SNPs and the other
that is explained by trans-SNPs. Consistent with previous
studies,'* we found that the majority of PVE is explained
by trans-SNPs, with only a fraction explained by cis-SNPs:
the median proportion of PVE explained by cis-SNPs is
only 1.03% (mean = 3.09%; SD = 5.44%) across all genes
in AA and is 1.01% (mean = 2.63%; SD = 4.85%) across
all genes in EA. As one might expect, cis-SNPs explain a
higher proportion of PVE in eGenes than in non-eGenes.
Specifically, the median proportion of PVE explained by
cis-SNPs is 5.36% (mean = 7.93%; SD = 7.76%) across
eGenes in AA and is 5.09% (mean = 7.61%; SD = 7.63%)

cis—eQTL genes

cis-PVE (the PVE explained by cis-
SNPs) in both AA and EA populations
(Figures S13 and S14): the primary
eQTL explains a median of 64.52%
cis-PVE in AA and 80.43% in EA. Note that the heritability
estimates obtained using trans-SNPs residing on different
chromosomes are almost identical to those obtained using
all trans-SNPs (Figure S15). In particular, the cis heritability
estimates obtained from these two approaches are highly
correlated (0.9988 or 0.9937 in AA and EA, respectively)
and so are the frans heritability estimates (correlation =
0.9989 or 0.9933 in AA and EA, respectively).

Independent cis-eQTLs rRevealed through Conditional
Analysis

Because the primary eQTL does not fully explain cis-PVE,
we performed conditional analysis to identify additional
independent eQTLs for eGenes (details in Material and
Methods). Through conditional analysis, we identified
8,070 independent eQTLs in AA and 5,401 in EA (Table 4);
these include 2,595 conditional eQTLs in AA and 999 con-
ditional eQTLs in EA, in addition to the primary eQTLs
identified earlier. We found that most eGenes have only
one independent eQTL (i.e., primary eQTL), with the



Table 4. The Number of Independent eQTLs Identified in eGenes through the Conditional Analysis

Number of Independent eQTLs

1 2 3 4 5 6 7 8 9
African American 3,725 1,203 368 104 49 14 7 4 1
European American 3,577 690 108 18 7 1 1 0 0

Table lists the number of eGenes in AA (first row) and EA (second row) that contain different number of independent eQTLs (columns).

proportion of eGenes with one eQTL lower in AA and
higher in EA (68.03% in AA and 81.26% in EA; Fisher’s
exact test p value < 2.23e—308; Figures 4A and 4D). A sub-
stantial proportion of eGenes have two independent
eQTLs, with the proportion higher in AA and lower in EA
(21.97% in AA and 15.67% in EA; p value = 1.11e—15).
The remaining eGenes have three or more independent
eQTLs and those eGenes are more likely to appear in AA
than EA (9.99% in AA and 3.07% in EA; p value =
6.94e—45). In addition, the eGenes in AA tend to have a
higher number of independent eQTLs: the average number
of eQTLs per eGene is 1.47 in AA and 1.23 in EA (Wilcoxon
test p value = 2.04e—56). The higher number of indepen-
dent eQTLs for eGenes in AA may suggest a more complex
gene regulatory mechanism in AA, although we also note
that the higher number of independent eQTLs in AA
may reflect in part the lower linkage disequilibrium among
SNPs in AA and hence the higher statistical power in de-
tecting conditional eQTLs in AA. By identifying condi-
tional eQTLs, we can explain a higher proportion of total
cis-PVE compared to that explained by primarily eQTLs
only (Figures S13 and S14): both primary and conditional
eQTL explains a median of 77.83% cis-PVE in AA and
86.28% in EA.

As one might expect,”” the conditional eQTLs reside
farther away from the TSS compared to the primary eQTLs,
though they are still enriched around the TSS when
compared with non-eQTLs (Figures 4C and 4F). The num-
ber of independent eQTLs across genes in the conditional
analysis is positively correlated with the number of eSNPs
in the unconditional analysis, more so in AA than in EA
(Pearson’s correlation coefficient = 0.41, p value =
3.34e—218 in AA; correlation = 0.18, p value = 1.88e—22
in EA); and positively correlated with the gene length,
though to a much lesser extent (Spearman’s correlation be-
tween log10 transformed gene length and number of inde-
pendent eQTLs = 0.08, p value = 0.57 in AA; correlation =
0.034, p value = 0.06 in EA; Figure S16). The number of in-
dependent eQTLs across eGenes is also positively corre-
lated with the cis-PVE of each eGene, more so in AA than
in EA (Pearson’s correlation coefficient = 0.57, p value <
2.23e—308 in AA; correlation = 0.41, p value =
1.21e—123 in EA; Figures 4B and 4E). The eGenes with
more independent eQTLs are less conserved: the number
of independent eQTLs across eGenes is positively corre-
lated with the dN/dS scores (Pearson’s correlation =
0.047, p value = 5e—04 in AA; correlation = 0.001, p value
= 0.94 in EA); and negatively correlated with the conserva-
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tion score (phyloP score: Pearson’s correlation coefficient =
—0.082, p value = 1.17e—11 in AA; correlation = —0.11,
p value = 4.57e—09 in EA; phastCons score: correlation =
—0.078, p value = 7.6e—09 in AA; correlation = —0.086,
p value = 2.06e—06 in EA).

Large Sample Size in GENOA Enables More Accurate
Gene Expression Prediction
Finally, we illustrate how the large sample size in both AA
and EA populations in GENOA can allow us to construct
accurate gene expression prediction models, thus poten-
tially facilitating powerful transcriptome-wide association
analysis (TWAS).®® To do so, we constructed gene expres-
sion prediction models for one gene at a time in AA and
EA separately. Each prediction model uses all cis-SNPs as
covariates and is constructed using BSLMM. Afterward,
we evaluated the performance of these prediction models
for the same gene in a separate eQTL mapping study, the
Geuvadis study. The Geuvadis study consists of five
different populations that include CEPH (CEU, n = 92),
Finns (FIN, n = 95), British (GBR, n = 96), Toscani (TSI,
n =93), and Yoruba (YRI, n = 89). We evaluated the perfor-
mance of the prediction models constructed in EA and AA
separately in each of the five populations. In each analysis,
we calculated the coefficients of determination (R?) be-
tween the predicted gene expression and the observed
gene expression to measure prediction performance.®® As
expected,”” we found that genes with high heritability
tend to be predicted with high accuracy. For example,
the prediction R? achieved using GENOA AA samples is
positively correlated with PVE across all genes, in each of
the five populations in Geuvadis (mean correlation
across five populations = 0.36, SD = 0.02; p value <
2.23e—308); similar patterns were observed with the model
constructed based on GENOA EA samples (Figure S17).
Also as expected,'* we found that the expression predic-
tion models constructed in a population often perform
well in the population of the same ancestry. For example,
the prediction models based on EA performed better for
predicting expression levels in FIN and CEU than in other
populations (Tables S26 and S27), while the models con-
structed based on AA performed better in YRI than in other
populations (Figure SA and Table S23). The better perfor-
mance of AA models in YRI highlights the need for eQTL
mapping studies in the African American population.
Besides GENOA, we also obtained previously constructed
gene expression prediction models using elastic net in the
MESA study and evaluated their prediction performance
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Figure 4. Characterization of the Conditional eQTLs

Distance to TSS(kb)

(A and D) Histogram shows the number of eGenes (y axis) that harbor different numbers of independent eQTLs (x axis) in African Amer-
icans (A) or European Americans (D). We displayed eGenes that harbor up to nine independent eQTLs, with the detailed number of
eQTLs listed above each bar. A large fraction of eGenes harbor a small number of independent eQTLs.

(B and E) The proportion of variance (PVE) in gene expression levels explained by SNPs are higher for eGenes that harbor a larger number
of independent eQTLs in African Americans (B) or European Americans (E).

(C and F) Density plot shows the distance from eQTL to the transcription start site (TSS) of the corresponding eGene. The density plot is
stratified by the number of eQTLs: eGenes with one independent eQTL is colored in red; eGenes with two independent eQTL is colored
in green; eGenes with three independent eQTL is colored in blue; eGenes with four or more independent eQTL is colored in purple.
Dashed lines represent the median distance between eQTL and TSS in the four stratified groups in African Americans (C) or European

Americans (F).

in Geuvadis. The MESA study consists of three populations:
African American (AFA, n = 233), Hispanic (HIS, n = 352),
and European (CAU, n = 578). For a fair comparison, we
also constructed gene expression prediction models using
elastic net in GENOA, in addition to using BSLMM above.
In the analysis, we found that the gene prediction models
constructed based on GENOA AA or EA samples outperform
those constructed based on the MESA AFA, CAU, or HIS (Ta-
bles S23-S27). For example, for predicting gene expression
in YRI, models constructed based on AA in GENOA with
elastic net achieve a prediction R* above 0.1 in 337 genes,
which represents a 75.5% gain compared to the prediction
models constructed based on the AFA population in MESA
with elastic net (Table $23). Similarly, for predicting gene
expression in GBR, models constructed based on EA in
GENOA with elastic net achieve a prediction R* above 0.1
in 415 genes, which represents a 30.1% gain compared to
the prediction models constructed based on the CAU popu-
lation in MESA with elastic net (Table S24).

The accurate expression prediction performance based
on GENOA also translates to a high power for TWAS anal-

ysis.®® To illustrate the TWAS power gain brought by
GENOA, we applied the prediction models constructed in
each of the five populations (GENOA: AA and EA; MESA:
AFA, HIS, and CAU) to seven common diseases collected
from a GWAS case control study: the WTCCC.” These
seven diseases include Crohn disease (CD), rheumatoid
arthritis (RA), bipolar disorder (BD), type 2 diabetes
(T2D), coronary artery disease (CAD), and hypertension
(HT). For each gene and disease pair in turn, we tested
for the association between the predicted gene expression
and disease status using logistic regression, with the first
ten genetic PCs included as covariates. Overall, we found
that models constructed based on GENOA identified
more associations with the seven common diseases
compared to models constructed based on MESA (Figures
5C-5H and S18 and Table S28). For example, using elastic
net for constructing the gene prediction models in GENOA
AA, we identified a total of 48 genes in WTCCC, among
which 42 are reported to be associated with the same trait
in the GeneCards database.”” Using the same elastic net for
constructing the gene prediction models in MESA AFA, we
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Figure 5. Application of GENOA eQTL Mapping Results in Gene Expression Prediction and TWAS in WTCCC

(A) Comparison of the prediction performance measured by R? using GENOA AA (y axis) and MESA AFA (x axis) eQTL mapping results
for the Geuvadis YRI data. The panel also lists the number of genes where AA performs better (2,597) and the number of genes where AA
performs worse than AFA (1,897). Here we compare the commonly predicted genes between AA and AFA.

(B) Comparison of the prediction performance measured by R* using GENOA EA (y axis) and MESA CAU (x axis) eQTL mapping results
for the Geuvadis GBR data. The panel also lists the number of genes where EA performs better (2,627) and the number of genes where EA
performs worse (2,250) than CAU. Here we compare the commonly predicted genes between EA and CAU.

(C-H) Barplots display the number of significant genes from TWAS analysis using gene expression models constructed based on different
populations. The significant genes are those passing the genome-wide significance threshold via Bonferroni correction (« = 0.05/num-
ber of genes tested) in each of the seven common diseases in WTCCC that include Crohn disease (CD), rheumatoid arthritis (RA), bipolar
disorder (BD), type 1 diabetes (T'1D), type 2 diabetes (T2D), coronary artery disease (CAD), and hypertension (HT). The result for HT is not
shown since no gene was identified in any population. The five populations used to construct the gene expression models include
GENOA AA BSLMM (light blue), AA elastic net (deep blue), GENOA EA BSLMM (light green), GENOA EA elastic net (deep green),

MESA AFA (pink), MESA CAU (red), and MESA HIS (yellow).

identified a total of 40 genes in WTCCC, among which 37
are reported in the GeneCards. Table S29 lists the signifi-
cant genes identified by TWAS analysis using GENOA AA
samples, the majority of which have also been identified
in much larger-scale GWASs.**7"

Discussion

We have presented a comprehensive eQTL mapping anal-
ysis in GENOA. Our study is a large eQTL mapping study
performed in the African American population. The large
AA sample size in GENOA allows us to identify a substan-
tial number of eQTLs and eGenes in AA, many of which
were not identified in previous AA eQTL mapping
studies.® In addition, we identified a higher number of
eGenes in AA than in EA, likely due to the larger sample
size, higher number of cis-SNPs per gene, and/or poten-
tially higher diversity in AA. Importantly, only a small per-
centage of the significant gene-SNP pairs identified in AA
are also identified in EA, highlighting the importance of

eQTL mapping with AA samples. The large AA sample
size also allows us to construct accurate gene expression
prediction models in the African American population,
facilitating powerful TWAS analysis there. These analyses
and results enhance our understanding of the genetic ar-
chitecture underlying gene expression variation and facil-
itate the future investigation of the causal molecular mech-
anisms underlying common diseases and disease-related
complex traits.

The availability of both large-scale AA and EA samples
in GENOA allows us to perform comparisons between
these two populations. We found that eGenes with multi-
ple independent eQTLs are often less conserved and
eGenes shared between AA and EA are also less conserved.
Indeed, eGenes are depleted from genes with crucial roles
in regulating cell functions.”> The comparison results
highlight the importance of negative selection, which
constrains biologically important regions, removes
large-effect regulatory variants, and reshapes the genetic
architecture.”® Through comparison, we found that sub-
stantial differences exist between the two populations of



AA and EA. Specifically, despite the similar sample sizes
between AA and EA, we identified a higher number of in-
dependent eQTLs in AA than in EA through conditional
analysis. A higher number of independent eQTLs in AA
supports the potentially more complex regulatory mech-
anisms underlying gene expression in AA. While the
identified eQTLs vary across populations, the shared
eQTLs in the AA and EA populations nevertheless often
share similar effect sizes and effect directions. In addition,
the gene expression prediction models constructed based
on AA apply reasonably accurately for gene expression
prediction in EA, and vice versa. Therefore, at least part
of the eQTL mapping results from one population can
be transferred to the other populations.'” Further inte-
grating the GENOA study with other previous studies
for joint eQTL mapping or joint TWAS analysis is an
important direction for future exploration.

Finally, while we have identified many primary eQTLs
in the main analysis, we acknowledge that the identified
primary eQTLs do not explain all cis-SNP heritability in
eGenes (median = 64.52% in AA and 80.43% in EA).
We can identify many additional eQTLs through condi-
tional analysis. However, these conditional eQTLs in addi-
tion to the primary eQTLs again cannot explain all cis-
SNP heritability (median = 77.83% AA and 86.28% in
EA). In addition, the cis-SNP heritability only represents
a small proportion of total SNP heritability, suggesting
that a large fraction of SNP heritability remains largely un-
identified. The incomplete cis-heritability explained by
identified eQTLs support the likely polygenic architecture
underlying gene expression variation. Therefore, future
studies with larger sample sizes are necessary to fully cap-
ture the genetic architecture underlying gene expression
variation.

Accession Numbers

The accession numbers for the gene expression data used in this
analysis are Gene Expression Omnibus (GEO): GSE138914 for
AA and GSE49531 for EA. The accession number for the SNP
data used in this analysis is Database of Genotypes and Pheno-
types (dbGaP): phs001238.v2.p1. Due to IRB restriction, mapping
of the sample IDs between genotype data (dbGaP) and gene
expression data (GEO) cannot be provided publicly but are avail-
able upon written request to JS and SK.

Supplemental Data

Supplemental Data can be found online at https://doi.org/10.
1016/j.ajhg.2020.03.002.
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Brainarray, http://brainarray.mbni.med.umich.edu/Brainarray/
Database/CustomCDF

FRANC interface, http://web.cbio.uct.ac.za/I[TGOM/franc/

GEMMA, https://www.xzlab.org/software.html

Geuvadis eQTL mapping results, http://jungle.unige.ch/
~lappalainen/geuvadis/

MESA cis-SNP weights, https://github.com/WheelerLab/DivPop/
tree/master/unfiltered_dbs

MESA eQTL mapping results, https://www.dropbox.com/sh/
founSevevyvvyl9/AAA3sfalDgqY67tx4q36P341a?d1=0 OMIM,

https://www.omim.org/

Zhou lab: summary statistics from eQTL mapping analysis along

with all analysis scripts, http://www.xzlab.org/data.html
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