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1. Introduction. Dimension reduction and variable selection have become indispensable
steps for modern-day data analysts in dealing with the “big data,” where thousands or even millions
of features are often available for only hundreds or thousands of samples. With these ultra high-
dimensional data, an effective modeling strategy is to assume that only a few features and/or a few
linear combinations of these features carry the information that researchers are interested in. One
can consider the following multiple index model [Li, 1991]:

y = f(βτ
1x,β

τ
2x, ...,β

τ
dx, ǫ),(1)

where x follows a p-dimensional elliptical distribution with mean zero and covariance matrix Σ,
the βi’s are unknown projection vectors, d is unknown but is assumed to be much smaller than
p, and the error ǫ is independent of x and has mean 0. When p is very large, it is reasonable to
further restrict each βi to be a sparse vector.

Since the introduction of the sliced inverse regression (SIR) method (Li [1991]), many methods
have been proposed to estimate the space spanned by (β1, · · · ,βd) with few assumptions on the
link function f(·). Assume the multiple index model (1), the objective of all the SDR ( Sufficient
Dimension Reduction, Cook [1998]) methods is to find the minimal subspace S ⊆ Rp such that
y ⊥⊥ x | PSx, where PS stands for the projection operator to the subspace S. When the dimension
of x is moderately large, all the SDR methods, including SIR, are proven to be successful [Xia et al.,
2002, Ni et al., 2005, Li and Nachtsheim, 2006, Li, 2007, Zhu et al., 2006]. However, these methods
were previously known to work well when the sample size n grows much faster than the dimension
p, an assumption that becomes inappropriate for many modern-day datasets, such as those from
biomedical researches. It is important to have a thorough investigation of “the behavior of these
SDR estimators when n is not large relative to p”, as raised by Cook et al. [2012].

Lin et al. [2015] made an attempt to address the aforementioned challenge for SIR. They
showed that, under mild conditions, the SIR estimate of the central space is consistent if and only

if ρn
def
= p/n goes to zero as n grows. Additionally, they showed that the convergence rate of the

SIR estimate of the central space (without any sparsity assumption) is ρn. When p is greater than
n, certain constraints must be imposed in order for SIR to be consistent. The sparsity assumption,
i.e., the number of active variables s must be an order of magnitude smaller than n and p, appears
to be a reasonable one. In a follow-up work, Neykov et al. [2016a] studied the sign support recovery
problem of the single index model (d = 1), suggesting that the correct optimal convergence rate for

estimating the central space might be s log(p)
n , a speculation that is partially confirmed in Lin et al.

[2016]. It is shown that, for multiple index models with bounded dimension d and the identity

covariance matrix, the optimal rate for estimating the central space is ds+s log(p/s)
nλ , where s is the

number of active covariates and λ is the smallest non-zero eigenvalue of var(E[x|y]). They further
showed that the Diagonal-Thresholding algorithm proposed in Lin et al. [2015] achieves the optimal
rate for the single index model with the identity covariance matrix.

The main idea.. In this article, we introduce an efficient Lasso variant of SIR for the multiple index
model (1) with a general covariance matrix Σ. Consider first the single index model: y = f(βτx, ǫ).
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Let η be the eigenvector associated with the largest eigenvalue of var(E[x|y]). Since β ∝ Σ−1η,
there are two immediate ways to estimate the space spanned by β. The first approach, as discussed in
Lin et al. [2015], estimates Σ−1 and η separately (see Algorithm 1). The second one avoids a direct
estimation of Σ−1 by solving the following penalized least square problem: ‖ 1

nXXτβ−η‖22+µ‖β‖1,
where X is the p×n covariate matrix formed by the n samples (see Algorithm 2). However, similar
to most L1-penalization methods for nonlinear models, theoretical underpinning of this approach
has not been well understood. Since these two approaches provide good estimates compared with
earlier approaches (e.g.,Li [1991], Li and Nachtsheim [2006], Li [2007]) as shown in Lin et al. [2015]
and Supplementary Materials, we set the two approaches as benchmarks for comparisons.

We note that an eigenvector η̂ of v̂ar(E[x|y]), where v̂ar(E[x|y]) is an estimate of the condi-
tional covariance matrix var(E[x|y]) using SIR [Li, 1991], must be a linear combination of the col-
umn vectors of X. Thus, we can construct an artificial response vector ỹ ∈ Rn such that η̂ = 1

nXỹ,
and estimate β by solving another penalized least square problem: 1

2n‖ỹ−Xτβ‖22+µ‖β‖1 (see Al-
gorithm 3). We call this algorithm “Lasso-SIR”, which is computationally very efficient. In Section

3, we further show that the convergence rate of the estimator resulting from Lasso-SIR is s log(p)
nλ ,

which is optimal if s = O(p1−δ) for some positive constant δ. Note that Lasso-SIR can be easily
extended to other regularization and SDR methods, such as SCAD (Fan and Li [2001]), Group
Lasso (Yuan and Lin [2006]), sparse Group Lasso (Simon et al. [2013]), SAVE (Cook [2000]), etc.

Connection to Other work. Estimating the central space is widely considered as a generalized
eigenvector problem in the literature [Li, 1991, Li and Nachtsheim, 2006, Li, 2007, Chen and Li,
1998]. Lin et al. [2016] explicitly described the similarities and differences between SIR and PCA
(as first studied by Jung and Marron [2009]) under the “high dimension, low sample size (HDLSS)”
scenario. However, after comparing their results with those for Lasso regression, Lin et al. [2016]
advocated that a more appropriate prototype of SIR (at least for the single index model) should be
the linear regression. In the past three decades, tremendous efforts have been put into the study of
linear regression models y = xτβ+ǫ for HDLSS data. By imposing the L1 penalty on the regression
coefficients, the Lasso approach [Tibshirani, 1996] produces a sparse estimator of β, which turns out
to be rate optimal [Raskutti et al., 2011]. Because of apparent limitations of linear models, there are
many attempts to build flexible and computationally friendly semi-parametric models, such as the
projection pursuit regression [Friedman and Stuetzle, 1981, Chen, 1991], sliced inverse regression
[Li, 1991], MAVE [Xia et al., 2002]. However, none of these methods work under the HDLSS setting.
Existing theoretical results for HDLSS data mainly focus on linear regressions [Raskutti et al., 2011]
and submatrix detections [Butucea et al., 2013], and are not applicable to index models. In this
paper, we provide a new framework for the theoretical investigation of regularized SDR methods
for HDLSS data.

The rest of the paper is organized as follows. After briefly reviewing SIR, we present the
Lasso-SIR algorithm in Section 2. The consistency of the Lasso-SIR estimate and its connection to
the Lasso regression are presented in Section 3. Numerical simulations and real data applications
are reported in Sections 4 and 5. Some potential extensions are briefly discussed in Section 6. To
improve the readability, we defer all the proofs and brief reviews of some existing results to the
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appendix.

2. Sparse SIR for High Dimensional Data. Notations. We adopt the following nota-
tions throughout this paper. For a matrix V , we call the space generated by its column vectors the
column space and denote it by col(V ). The i-th row and j-th column of the matrix are denoted
by Vi,∗ and V∗,j, respectively. For (column) vectors x and β ∈ Rp, we denote their inner product
〈x,β〉 by x(β), and the k-th entry of x by x(k). For two positive numbers a, b, we use a ∨ b and
a ∧ b to denote max{a, b} and min{a, b} respectively; We use C, C ′, C1 and C2 to denote generic
absolute constants, though the actual value may vary from case to case. For two sequences {an}
and {bn}, we denote an ≻ bn and an ≺ bn if there exist positive constants C and C ′ such that
an ≥ Cbn and an ≤ C ′bn, respectively. We denote an ≍ bn if both an ≻ bn and an ≺ bn hold.
The (1,∞) norm and (∞,∞) norm of matrix A are defined as ‖A‖1,∞ = max1≤j≤p

∑p
i=1 |Ai,j| and

max1≤i,j≤n ‖Ai,j‖ respectively. To simplify discussions, we assume that s log(p)
nλ is sufficiently small.

We emphasize again that our covariate data X is a p× n instead of the traditional n× p matrix.
A brief review of Sliced Inverse Regression (SIR). In the multiple index model (1), the
matrix B formed by the vectors β1, ...,βd is not identifiable. However, col(B), the space spanned
by the columns of B is uniquely defined. Given n i.i.d. samples (yi,xi), i = 1, · · · , n, SIR [Li, 1991]
first divides the data into H equal-sized slices according to the order statistics y(i), i = 1, . . . , n. To
ease notations and arguments, we assume that n = cH and E[x] = 0, and re-express the data as
yh,j and xh,j, where h refers to the slice number and j refers to the order number of a sample in
the h-th slice, i.e., yh,j = y(c(h−1)+j), xh,j = x(c(h−1)+j). Here x(k) is the concomitant of y(k). Let

the sample mean in the h-th slice be denoted by xh,·, then Λ , var(E[x|y]) can be estimated by:

(2) Λ̂H =
1

H

H∑

h=1

x̄h,·x̄
τ
h,· =

1

H
XHXτ

H

where XH is a p × H matrix formed by the H sample means, i.e., XH = (x̄1,·, . . . , x̄H,·). Thus,
col(Λ) is estimated by col(V̂H), where V̂H is the matrix formed by the top d eigenvectors of Λ̂H .
The col(V̂H) was shown to be a consistent estimator of col(Λ) under a few technical conditions
when p is fixed [Duan and Li, 1991, Hsing and Carroll, 1992, Zhu et al., 2006, Li, 1991, Lin et al.,
2015], which are summarized in the online supplementary file. Recently, Lin et al. [2015, 2016]
showed that col(V̂H) is consistent for col(Λ) if and only if ρn = p

n → 0 as n → ∞, when the number
of slices H can be chosen as a fixed integer independent of n and p when the dimension d of the
central space is bounded. When x’s distribution is elliptically symmetric, Li [1991] showed that

Σcol(B) = col(Λ),(3)

and thus our goal is to recover col(B) by solving the above equation. It is shown in [Lin et al., 2015]

that when ρn → 0, ĉol(B) = Σ̂−1col(V̂H) consistently estimate col(B) where Σ̂ = 1
nXXτ is the

sample covariance matrix of X. However, this simple approach breaks down when ρn 6→ 0, espe-
cially when p ≫ n. Although stepwise methods [Zhong et al., 2012, Jiang and Liu, 2014] can work
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under HDLSS settings, the sparse SDR algorithms proposed in Li [2007] and Li and Nachtsheim
[2006] appeared to be ineffective. Below we describe two intuitive non-stepwise methods for HDLSS
scenarios, which will be used as benchmarks in our simulation studies to measure the performance
of newly proposed SDR algorithms.

Diagonal Thresholding-SIR. When p ≫ n, the Diagonal Thresholding (DT) screening
method [Lin et al., 2015] proceeds by marginally screening all the variables via the diagonal elements
of Λ̂H and then applying SIR to those retained variables to obtain an estimate of col(B). The
procedure is shown to be consistent if the number of nonzero entries in each row of Σ is bounded.

Algorithm 1 (DT-SIR)

1: Use the magnitudes of the diagonal elements of Λ̂H to select the set of important predictors I, with |I| = o(n)

2: Apply SIR to the data (y,xI) to estimate a subspace ŜI .

3: Extend ŜI to a subspace in R
p by filling in 0′s for unimportant predictors.

Matrix Lasso. We can bypass the estimation and inversion of Σ by solving an L1 penalization
problem. Since (3) holds at the population level, a reasonable estimate of col(B) can be obtained by
solving a sample-version of the equation with an appropriate regularization term to cope with the
high dimensionality. Let η̂1, · · · , η̂d be the eigenvectors associated with the largest d eigenvalues of
Λ̂H . Replacing Σ by its sample version 1

nXXτ and imposing an L1 penalty, we obtain a penalized
sample version of (3):

‖ 1
n
XXτβ − η̂i‖22 + µi‖β‖1(4)

for some appropriate µi’s.

Algorithm 2 (Matrix Lasso)

1: Let η̂1, ..., η̂d be the eienvectors associated with the largest d eigenvalues of Λ̂H ;
2: For 1 ≤ i ≤ d, let β̂i be the minimizer of equation (4);

3: Estimate the central space col(B) by col(β̂1, . . . , β̂d).

This simple procedure can be easily implemented to produce sparse estimates of βi’s. Empir-
ically it works reasonably well, so we set it as another benchmark to compare with. Since we later
observed that its numerical performance was consistently worse than that of our main algorithm,
Lasso-SIR, we did not further investigate its theoretical properties.

The Lasso-SIR algorithm. First consider the single index model

(5) y = f(xτβ0, ǫ).
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Without loss of generality, we assume that (xi, yi), i = 1, . . . , n, are arranged in a way such that
y1 ≤ y2 ≤ · · · ≤ yn. Construct an n ×H matrix M = IH ⊗ 1c, where 1c is the c × 1 vector with
all entries being 1. Then, according to the definition of XH , we can write XH = XM/c. Let λ̂ be
the largest eigenvalue of Λ̂H = 1

HXHXτ
H and let η̂ be the corresponding eigenvector of length 1.

That is,

λ̂η̂ =
1

H
XHXτ

H η̂ =
1

nc
XMM τXτ η̂.

Thus, by defining

ỹ =
1

cλ̂
MM τXτ η̂(6)

we have η̂ = 1
nXỹ. Note that a key in estimating the central space col(β) of SIR is the equation

η ∝ Σβ. If approximating η and Σ by η̂ and 1
nXXτ respectively, this equation can be written as

1
nXỹ ∝ 1

nXXτβ. To recover a sparse vector β̂ ∝ β, one can consider the following optimization
problem

min ||β||1, subject to ||X(ỹ −Xτβ)||∞ ≤ µ,

which is known as the Dantzig selector [Candes and Tao, 2007]. A related formulation is the Lasso
regression, where β is estimated by the minimizer of

Lβ =
1

2n
‖ỹ −Xτβ‖22 + µ‖β‖1.(7)

As shown by Bickel et al. [2009], the Dantzig selector is asymptotically equivalent to the Lasso for
linear regressions. We thus propose and study the Lasso-SIR algorithm in this paper.

Algorithm 3 (Lasso-SIR-1: for single index models)

1: Let λ̂ and η̂ be the first eigenvalue and eigenvector of Λ̂H , respectively;

2: Let ỹ = 1

cλ̂
MMτXτ η̂ and solve the Lasso optimization problem

β̂(µ) = argminLβ, where Lβ =
1

2n
‖ỹ −X

τ
β‖22 + µ‖β‖1,

where µ = C
√

log(p)

nλ̂
for sufficiently large constant C;

3: Estimate Pβ by P
β̂(µ).

There is no need to estimate the inverse of Σ in Lasso-SIR. Moreover, since the optimiza-
tion problem (7) is well studied for linear regression models [Tibshirani, 1996, Efron et al., 2004,
Friedman et al., 2010], we may formally “transplant” their results to the index models. Practically,
we use the R package glmnet to solve the optimization problem where the tuning parameter µ is
chosen using cross-validation.
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Last but not least, Lasso-SIR can be easily generalized to the multiple index model (1). Let
λ̂i, 1 ≤ i ≤ d, be the d-top eigenvalues of Λ̂H and η̂ = (η̂1, · · · , η̂d) be the corresponding eigen-
vectors. Similar to the definition of the “pseudo response variable” for the single index model, we
define a multivariate pseudo response Ỹ as

Ỹ =
1

c
MM τXτ η̂ diag(

1

λ̂1

, · · · , 1

λ̂d

).(8)

We then apply the Lasso on each column of the pseudo response matrix to produce the correspond-
ing estimate.

Algorithm 4 (Lasso-SIR: for multiple index model)

1: Let λ̂i and η̂i, i = 1, · · · , d be the top d eigenvalues and eigenvectors of Λ̂H respectively.

2: Let Ỹ = 1
c
MMτXτ η̂ diag( 1

λ̂1

, · · · , 1

λ̂d

). For each 1 ≤ i ≤ d, solve the Lasso optimization problem

β̂i = argminLβ,i where Lβ,i =
1

2n
‖Ỹ∗,i −X

τ
β‖22 + µi‖β‖1,

where µi = C
√

log(p)

nλ̂i

for sufficiently large constant C;

3: Let B̂ be the matrix formed by β̂1, · · · , β̂d. The estimate of PB is given by P
B̂
.

The number of directions d plays an important role when implementing Algorithm 4. A com-
mon practice is to locate the maximum gap among the ordered eigenvalues of the matrix Λ̂H , which
does not work well under HDLSS settings. In Section 3, we show that there exists a gap among the
adjusted eigenvalues λ̂a

i = λ̂i||β̂i||2 where β̂i is the i-th output of Algorithm 4. Motivated by this,
we estimate d according to the following algorithm:

Algorithm 5 Estimation of the number of directions d

1: Apply Algorithm 4 by setting d = H ;

2: For each i, calculate λ̂a
i = λ̂i||β̂i||2;

3: Apply the k-means method on λ̂a
i with k being 2 and the total number of points in the cluster with larger λ̂a is

the estimated value of d.

Remark 1. In another paper that the authors are preparing, it is shown that the Lasso-SIR
algorithm works on the joint distribution of (X, Y ) and is thus not tied to the single or multiple
index models. We choose the single/multiple index models to have a clear representation of the
central subspace S, i.e., S = span{β1, ...,βd} .

Remark 2. When dealing with real data, we suggest that the users employ quantile nor-
malization to transform each covariate when X is not normally distributed. When p is too large
and beyond our bound of n = O(

√
p), as required by our provided R-package (see Section 7 for its

downloading information), the user can first conduct variable screening based on DT-SIR, which is
also included in this package.
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3. Consistency of Lasso-SIR. For simplicity, we assume that x ∼ N(0,Σ). The normality
assumption can be relaxed to elliptically symmetric distributions with sub-Gaussian tail; however,
this will make technical arguments unnecessarily tedious and is not the main focus of this paper.
From now on, we assume that d, the dimension of the central space, is bounded; thus we can assume
that H, the number of slices, is a large enough but finite integer [Lin et al., 2016, 2015]. In order
to prove the consistency, we need the following technical conditions:

A1) There exist constants Cmin and Cmax such that 0 < Cmin < λmin(Σ) ≤ λmax(Σ) < Cmax;

A2) There exists a constant κ ≥ 1, such that

0 < λ = λd(var(E[x|y]) ≤ ... ≤ λ1(var(E[x|y]) ≤ κλ ≤ λmax(Σ);

A3) The central curve m(y) = E[x|y] satisfies the sliced stability condition.

Condition A1 is commonly imposed in the analyses of high-dimensional linear regression mod-
els. Condition A2 is merely a refinement of the coverage condition that is commonly imposed
in the SIR literature, i.e., rank(var(E[x|y]))=d. For single index models, there is a more intu-
itive explanation of condition A2. Since rank(var(E[x|y])) = 1, condition A2 is simplified to
0 < λ = λ1 ≤ λmax(Σ) which is a direct corollary of the total variance decomposition identity
( i.e., var(x) = var(E[x|y]) + E[var(x|y)]). We may treat λ as a generalized SNR and A2 simply
requires that the generalized SNR is non-zero. Condition A3 is a property of the central curve, or
equivalently, a regularity condition on the link function f(·) and the noise ǫ introduced in Lin et al.
[2015].

Remark 3 (Generalized SNR and eigenvalue bound). Recall that the signal-to-noise ratio
(SNR) for the linear model y = βτx+ ǫ, where x ∼ N(0,Σ) and ǫ ∼ N(0, 1), is defined as

SNR =
E[(βτx)2]

E[y2]
=

‖β‖22βτ
0Σβ0

1 + ‖β‖22βτ
0Σβ0

.

where β0 = β/‖β‖2. A simple calculation shows that

var(E[x|y]) = ΣββτΣ

βτ
0Σβ0‖β‖22 + 1

, and λ(var(E[x|y])) = βτ
0ΣΣβ0‖β‖22

βτ
0Σβ0‖β‖22 + 1

,

where λ(var(E[x|y])) is the unique non-zero eigenvalue of var(E[x|y]). This leads to the following
identity for the linear model:

λ(var(E[x|y])) = βτ
0ΣΣβ0

βτ
0Σβ0

SNR.

Thus, in a multiple index model we call λ, the smallest non-zero eigenvalue of var(E[x|y]), the
model’s generalized SNR .
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Theorem 1 (Consistency of Lasso-SIR for Single Index Models). Assume that nλ = pα for
some α > 1/2 and that conditions A1-A3 hold for the single index model, y = f(βτ

0x, ǫ), where β0

is a unit vector. Let β̂(µ) be the output of Algorithm 3, then

‖P
β̂
− Pβ0‖F ≤ C1

√
s log(p)

nλ

holds with probability at least 1− C2 exp(−C3 log(p)) for some constants C2 and C3.

When no sparsity on η is assumed, the condition α > 1/2 is necessary. This condition can be
relaxed if a certain sparsity structure is imposed on η or Σ such that Σβ becomes sparse. Next,
we state the theoretical result regarding the multiple index model (1).

Theorem 2 (Consistency of Lasso-SIR). Assume that nλ = pα for some α > 1/2, where λ
is the smallest nonzero eigenvalue of var(E[x|y]), and that conditions A1-A3 hold for the multiple
index model (1). Assume further that the dimension d of the central subspace is known. Let B̂ be
the output of Algorithm 4, then

‖P
B̂
− PB‖F ≤ C1

√
s log(p)

nλ

holds with probability at least 1− C2 exp(−C3 log(p)) for some constants C2 and C3.

Lin et al. [2016] have shown that the lower bound of the risk E‖P
B̂
− PB‖2F is s log(p/s)

nλ when
(i) d = 1, or (ii) d(> 1) is finite and λ > c0 > 0. This implies that if s = O(p1−δ) for some positive
constant δ, the Lasso-SIR algorithm achieves the optimal rate, i.e., we have the following corollary.

Corollary 1. Assume that conditions A1-A3 hold. If nλ = pα for some α > 1/2 and
s = O(p1−δ), then Lasso-SIR estimate P

B̂
achieves the minimax rate when (i) d = 1, or (ii) d(> 1)

is finite and λ > c0 > 0.

Remark 4. Consider the linear regression y = βτx + ǫ, where x ∼ N(0,Σ), ǫ ∼ N(0, 1).
It is shown in Raskutti et al. [2011] that the lower bound of the minimax rate of the l2 distance

between any estimator and the true β is s log(p/s)
n and the convergence rate of Lasso estimator β̂Lasso

is s log(p)
n . Namely, the Lasso estimator is rate optimal for linear regression when s = O(p1−δ) for

some positive constant δ. A simple calculation shows that λ(var(E[x|y])) ∼ ‖β‖22, if ‖β‖2 is bounded
away from ∞. Consequently,

‖P
β̂Lasso

− Pβ‖F ≤ 4
‖β̂Lasso − β‖2

‖β‖2
≤ C

√
s log(p)

nλ(var(E[x|y]))(9)

holds with high probability. In other words, if we treat Lasso as a dimension reduction method
(where d = 1 and the link function is linear), the projection matrix P

β̂Lasso
based on Lasso is
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rate optimal. The Lasso-SIR has extended the Lasso to the non-linear multiple index models. This
justifies a statement in Chen and Li [1998], stating that ”SIR should be viewed as an alternative
or generalization of the multiple linear regression”. The connection also justifies a speculation in
Lin et al. [2016] that ”a more appropriate prototype of the high dimensional SIR problem should be
the sparse linear regression rather than the sparse PCA and the generalized eigenvector problem”.

Determining the dimension d of the central space is a challenging problem for SDR, especially
for HDLSS cases. If we want to discern signals (i.e., the true directions) from noises (i.e., the other
directions) simply via the eigenvalues λ̂i of Λ̂H , i = 1, ...,H, we face the problem that all these λ̂i’s
are of order p/n, but the gap between the signals and noises is of order λ (≤ Cmax). With the Lasso-
SIR, we can bypass this difficulty by using the adjusted eigenvalues λ̂a

i = λ̂i‖β̂i‖2, i = 1, . . . ,H. To
this end, we have the following theorem.

Theorem 3. Let β̂i be the output of Algorithm 4 for i = 1, . . . ,H. Assume that nλ = pα for
some α > 1/2, s log(p) = o(nλ), and H > d, then, for some constants C1, C2 C3 and C4,

λ̂a
i ≥ C1

√
λ− C2

√
s log(p)

n
, for 1 ≤ i ≤ d, and

λ̂a
i ≤ C3

√
p log(p)

nλ

√
λ+ C4

√
s log(p)

n
, for d+ 1 ≤ i ≤ H,

hold with probability at least 1− C5 exp(−C6 log(p)) for some constants C5 and C6.

Theorem 3 states that, if s log(p) ∨ (p log(p))1/2 = o(nλ), there is a clear gap between signals
and noise. The Lasso-SIR algorithm then provides us the rate optimal estimation of the central
space. It can be easily verified that p1/2 dominants s log(p) if s < p1/2 and s log(p) dominants p1/2 if
s > p1/2. The region s2 = o(p) and the region p = o(s2) are often referred to as the “highly sparse”
and “moderately sparse” regions [Ingster et al., 2010], respectively. These two scenarios should be
treated differently in high dimensional SIR and SDR frameworks, just like what has been done in
high dimensional linear regression (Ingster et al. [2010]).

4. Simulation Studies.

4.1. Single index models. Let β be the vector of coefficients and let S be the active set;
namely, βi = 0,∀i ∈ Sc. Furthermore, for each i ∈ S, we simulated independently βi ∼ N(0, 1).
Let x be the design matrix with each row following N(0,Σ). We consider two types of covariance
matrices: (i) Σ = (σij) where σii = 1 and σij = ρ|i−j|; and (ii) σii = 1, σi,j = ρ when i, j ∈ S or
i, j ∈ Sc, and σi,j = 0.1 when i ∈ S, j ∈ Sc or vice versa. The first one represents a covariance
matrix which is essentially sparse and we choose ρ among 0, 0.3, 0.5, and 0.8. The second one
represents a dense covariance matrix with ρ chosen as 0.2. In all the simulations, we set n = 1, 000
and let p vary among 100, 1,000, 2,000, and 4,000. For all the settings, the random error ǫ follows
N(0, In). For single index models, we consider the following model settings:
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Table 1

Estimation error for the first type covariance matrix with ρ = 0.5.

p Lasso-SIR DT-SIR Lasso M-Lasso Lasso-SIR(Known d) d̂

I

100 0.12 ( 0.02 ) 0.47 ( 0.11 ) 0.11 ( 0.02 ) 0.19 ( 0.08 ) 0.12 ( 0.02 ) 1
1000 0.18 ( 0.02 ) 0.65 ( 0.14 ) 0.15 ( 0.02 ) 0.26 ( 0.02 ) 0.18 ( 0.02 ) 1
2000 0.2 ( 0.02 ) 0.74 ( 0.15 ) 0.16 ( 0.02 ) 0.3 ( 0.03 ) 0.2 ( 0.02 ) 1
4000 0.23 ( 0.09 ) 0.9 ( 0.17 ) 0.18 ( 0.01 ) 0.39 ( 0.09 ) 0.23 ( 0.03 ) 1

II

100 0.07 ( 0.01 ) 0.6 ( 0.1 ) 0.23 ( 0.03 ) 0.27 ( 0.31 ) 0.07 ( 0.01 ) 1
1000 0.12 ( 0.02 ) 0.78 ( 0.11 ) 0.31 ( 0.04 ) 0.17 ( 0.02 ) 0.12 ( 0.02 ) 1
2000 0.15 ( 0.02 ) 0.86 ( 0.13 ) 0.34 ( 0.05 ) 0.2 ( 0.03 ) 0.15 ( 0.02 ) 1
4000 0.2 ( 0.04 ) 0.99 ( 0.15 ) 0.37 ( 0.05 ) 0.28 ( 0.06 ) 0.19 ( 0.03 ) 1

III

100 0.21 ( 0.03 ) 0.55 ( 0.12 ) 1.25 ( 0.19 ) 0.26 ( 0.11 ) 0.21 ( 0.03 ) 1
1000 0.28 ( 0.04 ) 0.74 ( 0.14 ) 1.32 ( 0.18 ) 0.51 ( 0.04 ) 0.27 ( 0.04 ) 1
2000 0.35 ( 0.17 ) 0.87 ( 0.17 ) 1.34 ( 0.14 ) 0.66 ( 0.14 ) 0.31 ( 0.05 ) 1.1
4000 0.46 ( 0.28 ) 1 ( 0.25 ) 1.33 ( 0.16 ) 0.83 ( 0.22 ) 0.39 ( 0.1 ) 1.1

IV

100 0.46 ( 0.05 ) 0.92 ( 0.09 ) 0.78 ( 0.12 ) 0.58 ( 0.06 ) 0.45 ( 0.04 ) 1
1000 0.62 ( 0.22 ) 1.07 ( 0.18 ) 0.87 ( 0.11 ) 0.78 ( 0.22 ) 0.59 ( 0.04 ) 1.1
2000 0.71 ( 0.34 ) 1.22 ( 0.26 ) 0.89 ( 0.12 ) 0.94 ( 0.31 ) 0.59 ( 0.04 ) 1.3
4000 0.71 ( 0.26 ) 1.3 ( 0.18 ) 0.91 ( 0.13 ) 1 ( 0.22 ) 0.63 ( 0.04 ) 1.2

V

100 0.12 ( 0.02 ) 0.37 ( 0.1 ) 0.42 ( 0.18 ) 0.15 ( 0.02 ) 0.12 ( 0.02 ) 1
1000 0.2 ( 0.03 ) 0.55 ( 0.15 ) 0.55 ( 0.22 ) 0.41 ( 0.05 ) 0.2 ( 0.05 ) 1
2000 0.38 ( 0.34 ) 0.8 ( 0.29 ) 0.6 ( 0.24 ) 0.67 ( 0.27 ) 0.29 ( 0.18 ) 1.2
4000 0.78 ( 0.51 ) 1.22 ( 0.31 ) 0.77 ( 0.25 ) 1.06 ( 0.41 ) 0.48 ( 0.31 ) 1.5

I. y = xβ + ǫ where S = {1, 2, · · · , 10};
II. y = (xβ)3/2 + ǫ where S = {1, 2, · · · , 20};
III. y = sin(xβ) ∗ exp(xβ) + ǫ where S = {1, 2, · · · , 10};
IV. y = exp(xβ/10) + ǫ where S = {1, 2, · · · , 50};
V. y = exp(xβ + ǫ) where S = {1, 2, · · · , 7}.

The goal is to estimate col(β), the space spanned by β. As in Lin et al. [2015], the estimation

error is defined as D(ĉol(β), col(β)), where D(M,N), the distance between two subspaces M,N ⊂
Rp, is defined as the Frobenius norm of PM − PN where PM and PN are the projection matrices
associated with these two spaces. The methods we compared with are DT-SIR, matrix Lasso (M-
Lasso), and Lasso. The number of slices H is chosen as 20 in all simulation studies. The number
of directions d is chosen according to Algorithm 5. Note that both benchmarks (i.e., DT-SIR and
M-Lasso) require the knowledge of d as well. To be fair, we use the d̂ estimated based on Algorithm
5 for both benchmarks. For comparison, we have also included the estimation error of Lasso-SIR
assuming d is known. For each p, n, and ρ, we replicate the above steps 100 times to calculate the
average estimation error for each setting. We tabulated the results for the first type of covariance
matrix with ρ = 0.5 in Table 1 and put the results for other settings in Tables 4-7 in the online
supplementary file. The average of estimated directions d̂ is reported in the last column of these
tables.

The simulation results in Table 1 show that Lasso-SIR outperformed both DT-SIR and M-
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Lasso under all settings. The performance of DT-SIR has become worse when the dependence is
stronger and denser. The reason is that this method is based on the diagonal threshold and is
only supposed to work well for the diagonal covariance matrix. Overall, Algorithm 5 provided a
reasonable estimate of d especially for moderate covariance matrix. When assuming d is known, the
performances of both DT-SIR and M-Lasso are inferior to Lasso-SIR, and are thus not reported.

Under Setting I when the true model is linear, Lasso performed the best among all the methods,
as expected. However, the difference between Lasso and Lasso-SIR is not significant, implying that
Lasso-SIR does not sacrifice much efficiency without the knowledge of the underlying linearity.
On the other hand, when the models are not linear (Case II-VI), Lasso-SIR worked much better
than Lasso. We observed that Lasso performed better than Lasso-SIR for Setting V when ρ=0.8
(Supplemental Materials) or when the covariance matrix is dense. One explanation is that Lasso-
SIR tends to overestimate d under these conditions while Lasso used the actual d. If assuming
known d = 1, Lasso-SIR’s estimation error is smaller than that of Lasso.

The results, reported in the supplementary material, for the other values of ρ are similar
to what we observed when ρ = 0.5. The Lasso-SIR performed the best when compared to its
competitors.

4.2. Multiple index models. Let β be the p× 2 matrix of coefficients and S be the active set.
Let x be simulated similarly as in Section 4.1, and denote z = xβ. Consider the following settings:

VI. yi = |zi2/4 + 2|3 ∗ sgn(zi1) + ǫi where S = {1, 2, · · · , 7} and β1:4,1 = 1, β5:7,2 = 1, and βi,j = 0
otherwise;

VII. yi = zi1 ∗ exp(zi2) + ǫi where S = {1, 2, · · · , 12} and β1:7,1, β8:12,2 ∼ N(0, 1), and βi,j = 0
otherwise;

VIII. yi = zi1 ∗ exp(zi2 + ǫi) where S = {1, 2, · · · , 12} and β1:7,1, β8:12,2 ∼ N(0, 1), and βi,j = 0
otherwise;

IX. yi = zi1 ∗ (2 + zi2/3)
2 + ǫi where S = {1, 2, · · · , 12} and β1:8,1 = 1, β9:12,2 = 1 and βi,j = 0

otherwise.

For the multiple index models, we compared both benchmarks (DT-SIR and M-Lasso) with
Lasso-SIR. Lasso is not applicable for these cases and is thus not included. Similar to Section 4.1,
we tabulated the results for the first type covariance matrix with ρ = 0.5 in Table 2 and put the
results for others in Tables 8-11 in the online supplementary file.

For the identity covariance matrix (ρ = 0), there was little difference between performances of
Lasso-SIR and DT-SIR. However, Lasso-SIR was substantially better than DT-SIR in other cases.
Under all settings, Lasso-SIR worked much better than the matrix Lasso. For the dense covariance
matrix Σ2, Algorithm 5 tended to underestimate d, which is worthy of further investigation.

The results, reported in the supplementary material, for the other values of ρ are similar to
what we observed when ρ = 0.5. The Lasso-SIR performs the best when compared to its competi-
tors.

There are other sparse inverse regression method, such as the Sparse SIR, given in Li and Nachtsheim
[2006]. In Lin et al. [2015], we have shown that the DT-SIR outperforms this method. We thus did
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Table 2

Estimation error for the first type covariance matrix with ρ = 0.5.

p Lasso-SIR DT-SIR M-Lasso Lasso-SIR(Known d) d̂

VI

100 0.26 ( 0.06 ) 0.57 ( 0.15 ) 0.31 ( 0.05 ) 0.26 ( 0.05 ) 2
1000 0.33 ( 0.07 ) 0.74 ( 0.17 ) 0.62 ( 0.04 ) 0.33 ( 0.07 ) 2
2000 0.36 ( 0.11 ) 0.92 ( 0.18 ) 0.73 ( 0.07 ) 0.38 ( 0.08 ) 2
4000 0.44 ( 0.14 ) 1.12 ( 0.25 ) 0.87 ( 0.1 ) 0.42 ( 0.09 ) 2

VII

100 0.32 ( 0.04 ) 0.67 ( 0.11 ) 0.42 ( 0.04 ) 0.32 ( 0.04 ) 2
1000 0.6 ( 0.28 ) 0.93 ( 0.22 ) 1.02 ( 0.2 ) 0.66 ( 0.3 ) 2.1
2000 0.95 ( 0.44 ) 1.18 ( 0.27 ) 1.35 ( 0.32 ) 0.83 ( 0.35 ) 2.3
4000 1.17 ( 0.38 ) 1.43 ( 0.31 ) 1.47 ( 0.33 ) 1.08 ( 0.33 ) 2.1

VIII

100 0.29 ( 0.09 ) 0.61 ( 0.11 ) 0.34 ( 0.08 ) 0.25 ( 0.03 ) 2
1000 0.37 ( 0.08 ) 0.82 ( 0.14 ) 0.69 ( 0.13 ) 0.35 ( 0.07 ) 2
2000 0.54 ( 0.35 ) 1 ( 0.25 ) 0.92 ( 0.28 ) 0.47 ( 0.22 ) 2.2
4000 0.88 ( 0.45 ) 1.37 ( 0.26 ) 1.27 ( 0.31 ) 0.71 ( 0.37 ) 2.5

IX

100 0.43 ( 0.06 ) 0.74 ( 0.12 ) 0.48 ( 0.05 ) 0.43 ( 0.07 ) 2
1000 0.47 ( 0.09 ) 0.91 ( 0.15 ) 0.91 ( 0.05 ) 0.48 ( 0.09 ) 2
2000 0.58 ( 0.23 ) 1.11 ( 0.23 ) 1.12 ( 0.16 ) 0.5 ( 0.1 ) 2.1
4000 0.57 ( 0.18 ) 1.25 ( 0.22 ) 1.23 ( 0.1 ) 0.56 ( 0.11 ) 2

not include the numerical comparison. For the reason of completeness, we have included the nu-
merical results of comparing Lasso-SIR and Sparse SIR in Section D of the online supplementary
file, showing that Lasso-SIR is better than Sparse-SIR.

4.3. Discrete responses. We consider the following simulation settings where for the response
variable Y is discrete.

X. y = 1(xβ + ǫ > 0) where S = {1, 2, · · · , 10};
XI. y = 1(exp(xβ) + ǫ > 0) where S = {1, 2, · · · , 7};
XII. y = 1((xβ)3/2 + ǫ) where S = {1, 2, · · · , 20};
XIII. Let z = xβ where S = {1, 2, · · · , 12}, β is a p by 2 matrix with β1:7,1, β8:12,2 ∼ N(0, 1) and

βi,j = 0 otherwise. The response yi is

yi =





1, if zi1 + ǫi1 < 0,
2, if zi1 + ǫi1 > 0 and zi2 + ǫi2 < 0,
3, if zi1 + ǫi1 > 0 and zi2 + ǫi2 > 0,

where ǫij ∼ N(0, 1).

In settings X, XI, and XII, the response variable is dichotomous, and βi ∼ N(0, 1) when i ∈ S
and βi = 0 otherwise. Thus the number of slices H can only be 2. For Setting XIII where the
response variable is trichotomous, the number of slices H is chosen as 3. The number of direction
d is chosen as H − 1 in all these simulations.

Similar to the previous two sections, we calculated the average estimation errors for Lasso-SIR
(Algorithm 4), DT-SIR, M-Lasso, and generalized-Lasso based on 100 replications and reported
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Table 3

Estimation error for the first type covariance matrix with ρ = 0.5.

p Lasso-SIR DT-SIR M-Lasso Lasso

X

100 0.22 ( 0.03 ) 0.66 ( 0.05 ) 0.26 ( 0.03 ) 0.2 ( 0.03 )
1000 0.26 ( 0.04 ) 1.21 ( 0.03 ) 0.52 ( 0.03 ) 0.28 ( 0.03 )
2000 0.27 ( 0.03 ) 1.33 ( 0.02 ) 0.59 ( 0.02 ) 0.29 ( 0.04 )
4000 0.28 ( 0.04 ) 1.39 ( 0.02 ) 0.65 ( 0.03 ) 0.3 ( 0.04 )

XI

100 0.32 ( 0.07 ) 0.83 ( 0.07 ) 0.6 ( 0.17 ) 0.33 ( 0.07 )
1000 0.43 ( 0.1 ) 1.32 ( 0.02 ) 1.07 ( 0.05 ) 0.45 ( 0.09 )
2000 0.45 ( 0.09 ) 1.38 ( 0.01 ) 1.15 ( 0.04 ) 0.46 ( 0.09 )
4000 0.49 ( 0.12 ) 1.41 ( 0.01 ) 1.2 ( 0.05 ) 0.51 ( 0.12 )

XII

100 0.24 ( 0.03 ) 0.63 ( 0.05 ) 0.52 ( 0.35 ) 0.22 ( 0.03 )
1000 0.33 ( 0.03 ) 1.18 ( 0.04 ) 0.53 ( 0.03 ) 0.32 ( 0.03 )
2000 0.37 ( 0.05 ) 1.3 ( 0.04 ) 0.62 ( 0.03 ) 0.35 ( 0.03 )
4000 0.4 ( 0.04 ) 1.38 ( 0.03 ) 0.68 ( 0.03 ) 0.39 ( 0.04 )

XIII

100 0.38 ( 0.06 ) 1.09 ( 0.06 ) 0.61 ( 0.05 ) 1.07 ( 0.02 )
1000 0.39 ( 0.07 ) 1.79 ( 0.02 ) 1.12 ( 0.05 ) 1.08 ( 0.02 )
2000 0.38 ( 0.07 ) 1.91 ( 0.02 ) 1.24 ( 0.04 ) 1.09 ( 0.03 )
4000 0.42 ( 0.07 ) 1.98 ( 0.01 ) 1.32 ( 0.03 ) 1.1 ( 0.03 )

the result in Table 3 for the first type covariance matrix with ρ = 0.5 and the results for other
cases in Tables 12-15 in online supplementary file. It is clearly seen that Lasso-SIR performed much
better than DT-SIR and M-Lasso under all settings and the improvements were very significant.
The generalized Lasso performed as good as Lasso-SIR for the dichotomous response; however, it
performed substantially worse for Setting XIII.

5. Applications to Real Data. Arcene Data Set. We first apply the methods to a two-
class classification problem, which aims to distinguish between cancer patients and normal subjects
from using their mass-spectrometric measurements. The data were obtained by the National Cancer
Institute (NCI) and the Eastern Virginia Medical School (EVMS) using the SELDI technique,
including samples from 44 patients with ovarian and prostate cancers and 56 normal controls.
The dataset was downloaded from the UCI machine learning repository (Lichman [2013]), where
a detailed description can be found. It has also been used in the NIPS 2003 feature selection
challenge (Guyon et al. [2004]). For each subject, there are 10,000 features where 7,000 of them are
real variables and 3,000 of them are random probes. There are 100 subjects in the validation set.

After standardizing X, we estimated the number of directions d as 1 using Algorithm 5. We
then applied Algorithm 3 and the sparse PCA to calculate the direction of β and the corresponding
components, followed by a logistic regression model. We applied the fitted model to the validation
set and calculated the probability of each subject being a cancer patient. We also fitted a Lasso
logistic regression model to the training set and applied it to the validation set to calculate the
corresponding probabilities.

In Figure 1, we plot the Receiver Operating Characteristic (ROC) curves for various methods.
Lasso-SIR, represented by the red curve, was slightly better than Lasso (insignificant) and the
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Fig 1. ROC curve of various methods for Arcene Data set.

sparse PCA, represented by the green and blue curves respectively. The areas under these three
curves are 0.754, 0.742, and 0.671, respectively.
HapMap. In this section, we analyzed a data set with a continuous response. We consider the
gene expression data from 45 Japanese and 45 Chinese from the international “HapMap” project
(Thorisson et al. [2005], Thorgeirsson et al. [2010]). The total number of probes is 47,293. According
to Thorgeirsson et al. [2010], the gene CHRNA6 is the subject of many nicotine addiction studies.
Similar to Fan et al. [2015], we treat the mRNA expression of CHRNA6 as the response Y and
expressions of other genes as the covariates. Consequently, the number of dimension p is 47,292,
much greater than the number of subjects n=90.

We first applied Lasso-SIR to the data set with d being chosen as 1 according to Algorithm
5. The number of selected variables was 13. Based on the estimated coefficients β and X, we
calculated the first component and the scatter plot between the response Y and this component,
showing a moderate linear relationship between them. We then fitted a linear regression between
them. The R-sq of this model is 0.5596 and the mean squared error of the fitted model 0.045.

We also applied Lasso to estimate the direction β. The tuning parameter λ is chosen as 0.1215
such that the number of selected variables is also 13. When fitting a regression model between Y
and the component based on the estimated β, the R-sq is 0.5782 and the mean squared error is
0.044. There is no significant difference between these two approaches. This confirms the message
that Lasso-SIR performs as good as Lasso when the linearity assumption is appropriate.

We have also calculated a direction and the corresponding components based on the sparse
PCA [Zou et al., 2006]. We then fitted a regression model. The R-sq is only 0.1013 and the mean
squared error is 0.093, significantly worse than the above two approaches.

Classify Wine Cultivars. We investigate the popular wine data set which has been used to
compare various classification methods. This is a three-class classification problem. The data, avail-
able from the UCI machine learning repository (Lichman [2013]), consists of 178 wines grown in
the same region in Italy under three different cultivars. For each wine, the chemical analysis was
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conducted and the quantities of 13 constituents are obtained, which are Alcohol, Malic acid, Ash,
Alkalinity of ash, Magnesium, Total Phenols, Flavanoids, Nonflavanoid Phenols, Proanthocyanins,
Color intensity, Hue, OD280/OD315 of diluted wines, and Proline. One of the goals is to use these
13 features to classify the cultivar.

The number of directions d is chosen as 2 according to Algorithm 5. We tested PCA, DT-SIR,
M-Lasso, and Lasso-SIR, for obtaining these two directions. In Figure 2, we plotted the projection
of the data onto the space spanned by two components. The colors of the points correspond to
three different cultivars. It is clearly seen that Lasso-SIR provided the best separation of the three
cultivars. When using one vertical and one horizontal line to classify three groups, only one subject
would be wrongly classified.

6. Discussion. Researchers have made some attempts to extend Lasso to non-linear regres-
sion models in recent years (e.g.,Plan and Vershynin [2016], Neykov et al. [2016b]). However, these
approaches are not efficient enough for SDR problems. In comparison, Lasso-SIR introduced in this
article is an efficient high-dimensional variant of SIR [Li, 1991] for obtaining a sparse solution to
the estimation of the SDR subspace for multiple index models. We showed that Lasso-SIR is rate
optimal if nλ = pα for some α > 1/2, where λ is the smallest nonzero eigenvalue of var(E[x|y]).
This technical assumption on n, λ, and p is slightly disappointing from the ultra-high dimensional
perspective. We believe that this technical assumption arises from an intrinsic limitation in esti-
mating the central subspace, i.e., some further sparsity assumptions on either Σ or var(E[x|y]) or
both are needed to show the consistency of any estimation method. We will address such extensions
in our future researches.

Cautious reader may find that the concept of “pseudo-response variable” is not essential for
developing the theory of the Lasso-SIR algorithm. However, by re-formulating the SIR method
as a linear regression problem using the pseudo-response variable, we can formally consider the
model selection consistency, regularization path and many others for multiple index models. In
other words, the Lasso-SIR does not only provide an efficient high dimensional variant of SIR,
but also extends the rich theory developed for Lasso linear regression in the past decades to the
semi-parametric index models.

The R-package, LassoSIR, is available on CRAN (https://cran.r-project.org/package=LassoSIR).
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18 Q. Lin, Z. Zhao and J.S. Liu, p.

References.

P. J. Bickel, Y. Ritov, and A. B. Tsybakov. Simultaneous analysis of Lasso and Dantzig selector. The Annals of
Statistics, 37(4):1705–1732, 2009.

Cristina Butucea, Yuri I Ingster, et al. Detection of a sparse submatrix of a high-dimensional noisy matrix. Bernoulli,
19(5B):2652–2688, 2013.

E. Candes and T. Tao. The Dantzig selector: Statistical estimation when p is much larger than n. The Annals of
Statistics, 35(6):2313–2351, 2007.

C. H. Chen and K. C. Li. Can SIR be as popular as multiple linear regression? Statistica Sinica, 8(2):289–316, 1998.
H. Chen. Estimation of a projection-pursuit type regression model. The Annals of Statistics, 19(1):142–157, 1991.
D. R. Cook. Regression graphics. Wiley Series in Probability and Statistics: Probability and Statistics. John Wiley

& Sons, Inc., New York, 1998.
D. R. Cook. SAVE: a method for dimension reduction and graphics in regression. Communications in statistics-Theory

and methods, 29(9-10):2109–2121, 2000.
D. R. Cook, L. Forzani, and A. J. Rothman. Estimating sufficient reductions of the predictors in abundant high-

dimensional regressions. The Annals of Statistics, 40(1):353–384, 2012.
N. Duan and K. C. Li. Slicing regression: a link-free regression method. The Annals of Statistics, 19(2):505–530,

1991.
B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani. Least angle regression. The Annals of statistics, 32(2):407–499,

2004.
J. Fan and R. Li. Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the

American statistical Association, 96(456):1348–1360, 2001.
J. Fan, Q. Shao, and W. Zhou. Are discoveries spurious? distributions of maximum spurious correlations and their

applications. arXiv preprint arXiv:1502.04237, 2015.
J. Friedman, T. Hastie, and R. Tibshirani. Regularization paths for generalized linear models via coordinate descent.

Journal of statistical software, 33(1):1, 2010.
J. H. Friedman and W. Stuetzle. Projection pursuit regression. Journal of the American statistical Association, 76

(376):817–823, 1981.
I. Guyon, S. Gunn, A. Ben-Hur, and G. Dror. Result analysis of the NIPS 2003 feature selection challenge. In

Advances in neural information processing systems, pages 545–552, 2004.
T. Hsing and R. J. Carroll. An asymptotic theory for sliced inverse regression. The Annals of Statistics, 20(2):

1040–1061, 1992.
Yuri I Ingster, Alexandre B Tsybakov, Nicolas Verzelen, et al. Detection boundary in sparse regression. Electronic

Journal of Statistics, 4:1476–1526, 2010.
B. Jiang and J. S. Liu. Variable selection for general index models via sliced inverse regression. The Annals of

Statistics, 42(5):1751–1786, 2014.
S. Jung and J. S. Marron. PCA consistency in high dimension, low sample size context. The Annals of Statistics, 37

(6B):4104–4130, 2009.
K. C. Li. Sliced inverse regression for dimension reduction. Journal of the American Statistical Association, 86(414):

316–327, 1991.
L. Li. Sparse sufficient dimension reduction. Biometrika, 94(3):603–613, 2007.
L. Li and C. J. Nachtsheim. Sparse sliced inverse regression. Technometrics, 48(4):503–510, 2006.
M. Lichman. UCI machine learning repository, 2013. URL http://archive.ics.uci.edu/ml.
Q. Lin, Z. Zhao, and J. S. Liu. On consistency and sparsity for sliced inverse regression in high dimensions. arXiv

preprint arXiv:1507.03895, 2015.
Q. Lin, X. Li, H. Dong, and J. S. Liu. On optimality of sliced inverse regression in high dimensions. 2016.
M. Neykov, Q. Lin, and J. S. Liu. Signed support recovery for single index models in high-dimensions. Annals of

Mathematical Sciences and Applications, 1(2):379–426, 2016a.
M Neykov, Cai T, and J. S. Liu. L1-regularized least squares for support recovery of high dimensional single index

models with gaussian designs. JMRL, 17:1–37, 2016b.

http://archive.ics.uci.edu/ml


Q. Lin, Z. Zhao and J.S. Liu, p. 19

L. Ni, D. R. Cook, and C. L. Tsai. A note on shrinkage sliced inverse regression. Biometrika, 92(1):242–247, 2005.
Y. Plan and R. Vershynin. The generalized lasso with non-linear observations. IEEE Transactions on information

theory, 62(3):1528–1537, 2016.
G. Raskutti, M. J. Wainwright, and B. Yu. Restricted eigenvalue properties for correlated gaussian designs. The

Journal of Machine Learning Research, 11:2241–2259, 2010.
G. Raskutti, M. J. Wainwright, and B. Yu. Minimax rates of estimation for high-dimensional linear regression

over-balls. Information Theory, IEEE Transactions on, 57(10):6976–6994, 2011.
N. Simon, J. Friedman, T. Hastie, and R. Tibshirani. A sparse-group lasso. Journal of Computational and Graphical

Statistics, 22(2):231–245, 2013.
T. E. Thorgeirsson, D. F. Gudbjartsson, and many others. Sequence variants at CHRNB3-CHRNA6 and CYP2A6

affect smoking behavior. Nature genetics, 42(5):448–453, 2010.
G. A. Thorisson, A. V. Smith, L. Krishnan, and L. D. Stein. The international HapMap project web site. Genome

research, 15(11):1592–1593, 2005.
R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B,

pages 267–288, 1996.
Y. Xia, H. Tong, W. K. Li, and L. X. Zhu. An adaptive estimation of dimension reduction space. Journal of the

Royal Statistical Society: Series B (Statistical Methodology), 64(3):363–410, 2002.
M. Yuan and Y. Lin. Model selection and estimation in regression with grouped variables. Journal of the Royal

Statistical Society: Series B (Statistical Methodology), 68(1):49–67, 2006.
W. Zhong, T. Zhang, Y. Zhu, and J. S. Liu. Correlation pursuit: forward stepwise variable selection for index models.

Journal of the Royal Statistical Society: Series B, 74(5):849–870, 2012.
L. Zhu, B. Miao, and H. Peng. On sliced inverse regression with high-dimensional covariates. Journal of the American

Statistical Association, 101(474):640–643, 2006.
Hui Zou, Trevor Hastie, and Robert Tibshirani. Sparse principal component analysis. Journal of computational and

graphical statistics, 15(2):265–286, 2006.



20 Q. Lin, Z. Zhao and J.S. Liu, p.

A. Appendix: Sketch of Proofs of Theorems 1 , 2 and 3. We assume the condition
A1) A2) and A3) hold throughout of the rest of the paper. In particular, the sliced stability
condition A3) requires that H > d is a large enough but finite integer. We denote the SIR estimate
of Λ = var(E[x | y]) by Λ̂H = 1

HXHXτ
H (see e.g., (2) ) and its eigenvector of unit length associated

to the j-th eigenvalue λ̂j by η̂j. To avoid unnecessary confusion, we assume that s log(p)
nλ and

√
p

nλ are
sufficiently small. We call an event Ω happens with high probability if P(Ωc) ≤ C1 exp (−C2 log(p))
for some absolute constants C1 and C2.

A.1. Assistant Lemmas.

A.1.1. Concentration Inequalities.

Lemma 1. Let d1, . . . , dp be positive constants. We have the following statements:

i) For p i.i.d. standard normal random variables x1, . . . , xp, there exist constants C1 and C2

such that for any sufficiently small a , we have

P

(∣∣∣∣∣
1

p

∑

i

di(x
2
i − 1)

∣∣∣∣∣ > a

)
≤ C1 exp(−

p2a2

C2
∑

j d
4
j

).(10)

ii) For 2p i.i.d. standard normal random variables x1, . . . , xp, y1, · · · , and yp, there exist constants
C1 and C2 such that for any sufficiently small a , we have

P

(
|1
p

∑

i

dixiyi| > a

)
≤ C1 exp(−

p2a2

C2
∑

j d
4
j

).(11)

Proof. ii) is a direct corollary of i). We put the proof of i) in the supplementary materials.

A.1.2. Sine-Theta Theorem.

Lemma 2 (Sine-Theta Theorem). Let A and A+E be symmetric matrices satisfying

A = [F0,F1]

[
A0 0
0 A1

] [
F τ
0

F τ
1

]
, A+E = [G0,G1]

[
Λ0 0
0 Λ1

] [
Gτ

0

Gτ
1

]

where [F0,F1] and [G0,G1] are orthogonal matrices. If the eigenvalues of A0 are contained in an
interval (a,b) , and the eigenvalues of Λ1 are excluded from the interval (a − δ, b + δ) for some
δ > 0, then

‖F0F
τ
0 −G0G

τ
0‖ ≤ min(‖F τ

1 EG0‖, ‖F τ
0 EG1‖)

δ
,

and
1√
2
‖F0F

τ
0 −G0G

τ
0‖F ≤ min(‖F τ

1 EG0‖F , ‖F τ
0 EG1‖F )

δ
.
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A.1.3. Restricted Eigenvalue Properties. We briefly review the restricted eigenvalue (RE)
property, which was first introduced in Raskutti et al. [2010]. Given a set S ⊂ [p] = {1, ..., p}, for
any positive number α, define the set C(S, α) as

C(S, α) = {θ ∈ R
p | ‖θSc‖1 ≤ α‖θS‖1}.

We say that a sample matrix XXτ/n satisfies the restricted eigenvalue condition over S with
parameter (α, κ) ∈ [1,∞) × (0,∞) if

1

n
θτXXτθ ≥ κ2‖θ‖22, ∀θ ∈ C(S, α).(12)

If (12) holds uniformly for all the subsets S with cardinality s, we say that XXτ/n satisfies
the restricted eigenvalue condition of order s with parameter (α, κ). Similarly, we say that the
covariance matrix Σ satisfies the RE condition over S with parameter (α, κ) if ‖Σ1/2θ‖2 ≥ κ‖θ‖ for
all θ ∈ C(S, α). Additionally, if this condition holds uniformly for all the subsets S with cardinality
s, we say that Σ satisfies the restricted eigenvalue condition of order s with parameter (α, κ). The
following Corollary is borrowed from Raskutti et al. [2010].

Corollary 2. Suppose that Σ satisfies the RE condition of order s with parameter (α, κ).
Let X be the p × n matrix formed by n i.i.d samples from N(0,Σ). For some universal positive
constants a1, a2 and a3, if the sample size satisfies

n > a3

(1 + α)2 maxi∈[p]Σii

κ2
s log(p),

then the matrix 1
nXXτ satisfies the RE condition of order s with parameter (α, κ8 ) with probability

at least 1− a1 exp (−a2n).

It is clear that λmin(Σ) ≥ Cmin implies that Σ satisfies the RE condition of any order s with
parameter (3,

√
Cmin). Thus, we have the following proposition.

Proposition 1. For some universal constants a1, a2 and a3, if the sample size satisfies that
n > a1s log(p), then the matrix 1

nXXτ satisfies the RE condition for any order s with parameter
(3,

√
Cmin/8) with probability at least 1− a2 exp (−a3n).

A.1.4. The sliced approximation Lemma. Let x ∈ Rp be a sub-Gaussian random variable.
For any unit vector β ∈ Rp, let x(β) = 〈x,β〉 and m(β) = 〈m,β〉 = E[x(β) | y]. In order to
get the deviation properties of the statistics varH(x(β)), Lin et al. [2015] has introduced the sliced
stable condition, i.e., the condition A3 in this paper. For the exact definition and more discussion,
we refer to Lin et al. [2015].

Lemma 3. Let x ∈ Rp be a sub-Gaussian random variable. Assume that E[x|y] is sliced table
with respect to y. For any unit vector β ∈ Rp, let x(β) = 〈x,β〉 and m(β) = 〈m,β〉 = E[x(β) | y],
we have the following:
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i) If var(m(β)) = 0 , there exist positive constants C1, C2 and C3 such that for any b and
sufficiently large H, we have

P(varH(x(β)) > b) ≤ C1 exp

(
−C2

nb

H2
+ C3 log(H)

)
.

ii) If var(m(β)) 6= 0 , there exist positive constants C1, C2 and C3 such that, for any ν > 1, we
have

|varH(x(β))− var(m(β))| ≥ 1

2ν
var(m(β))

with probability at most

C1 exp

(
−C2

n var(m(β))

H2ν2
+ C3 log(H)

)
.

where we choose H such that Hϑ > C4ν for some sufficiently large constant C4.

The following proposition is a direct corollary.

Proposition 2. There exist positive constants C1,C2 and C3, such that

‖βτΛHβ − βτvar(E[x|y])β‖2 ≥ 1

2ν
βτvar(E[x|y])β(13)

with probability at most C1 exp
(
−C2

nλ
H2ν2

+ C3 log(H)
)
.

Proof. It follows from Lemma 3 and the fact that for any β ∈ col(var(E[x|y])), var(m(β))) ≥
λ. ✷

A.1.5. Properties of η̂j ’s. .

Proposition 3. Recall that η̂j is the eigenvector associated to the j-th eigenvalue of Λ̂H , j =
1, ...,H. If nλ = pα for some α > 1/2, there exist positive constants C1 and C2 such that

i) for j = 1, ...., d, one has

‖PΛη̂j‖2 ≥ C1

√
λ

λ̂ j
(14)

ii) for j = d+ 1, ...,H, one has

‖PΛη̂j‖2 ≤ C2

√
p log(p)

nλ

√
λ

λ̂ j

(15)
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hold with high probability.
Remark: This result might be of independent interest. In order to justify that the sparsity assump-
tion for the high dimensional setting is necessary, Lin et al. [2015] have shown that for single index

models, E[∠(η1, η̂1)] = 0 if and only if lim p
n = 0. Proposition 3 states that the projection of

√
λ̂j η̂j,

j = 1, . . . , d, onto the true direction is non-zero if nλ > pα where α > 1/2.

Proof. Let x = z + w be the orthogonal decomposition with respect to col(var(E[x|y]))
and its orthogonal complement. We define two p × H matrices ZH = (z1,·, . . . ,zH,·) and WH =
(w1,·, . . . ,wH,·) whose definition are similar to the definition of XH . We then have the following
decomposition

XH = ZH +WH .(16)

By definition, we know that Zτ
HWH = 0 and y ⊥⊥ w. Let Σ1 be the covariance matrix of w, then

WH = 1√
c
Σ

1/2
1 EH where EH is a p×H matrix with i.i.d. standard normal entries.

For sufficiently large ν1 and a, Lemma 3 implies that

Ω1 =
{
ω | (1− κ

2ν1
)λ ≤ λmin(

1

H
Zτ

HZH) ≤ λmax(
1

H
Zτ

HZH) ≤ (1 +
1

2ν1
)κλ

}
(17)

happens with high probability and Lemma 1 implies

Ω2 =
{
ω |

∥∥∥∥
1

H
W τ

HWH − tr(Σ1)

n
IH

∥∥∥∥
F

≤ a

√
p log(p)

n

}
(18)

happens with high probability.
For any ω ∈ Ω = Ω1∩Ω2, we can choose a p×p orthogonal matrix T and an H×H orthogonal

matrix S such that

1

H
TZH(ω)S =




B1 0
0 0
0 0


 and

1

H
TWH(ω)S =




0 0
B2 B3

0 B4


(19)

whereB1 is a d×dmatrix, B2 is a d×dmatrix, B3 is a d×(H−d) matrix and B4 is a (p−2d)×(H−d)
matrix. By definition of the event ω, we have

(20)

(1− κ

2ν1
)λ ≤ λmin(B

τ
1B1) ≤ λmax(B

τ
1B1) ≤ (1 +

1

2ν1
)κλ

∥∥∥∥
(

Bτ
2B2 Bτ

2B3

Bτ
3B2 Bτ

3B3 +Bτ
4B4

)
− tr(Σ1)

n
IH

∥∥∥∥
F

≤ a

√
p log(p)

n

.

Proposition 3 follows from the linear algebraic lemma below:
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Lemma 4. Assume that nλ = pα for some α > 1/2. To avoid unnecessary confusion, we also

assume that

√
p log(p)

nλ is sufficiently small. Let M =




B1 0
B2 B3

0 B4


 be a p×H matrix, where B1 is

a d × d matrix, B2 is a d× d matrix, B3 is a d × (H − d) matrix and B4 is a (p − 2d) × (H − d)
matrix satisfying (20). Let η̂j be the eigenvector associated with the j-th eigenvalue λ̂j of MM τ ,

j = 1, ...,H. Then the length of the projection of η̂j onto its first d-coordinates is at least C
√

λ

λ̂j

for j = 1, ..., d and is at most C

√
p log(p)

nλ

√
λ

λ̂j

for j = d+ 1, ...,H.

Proof. Let us consider the eigen-decompositions of

Q1 , M τM =

(
E1 E2

E3 E4

)(
D1 0
0 D2

)(
Eτ

1 Eτ
3

Eτ
2 Eτ

4

)

where D1 ( resp. D2) is a d × d (resp. (H − d) × (H − d) ) diagonal matrices satisfying that
λmin(D1) ≥ λmax(D2). (20) implies that

(1− κ

2ν1
)λ+

tr(Σ1)

n
−a

√
p log(p)

n
≤ λmin(D1)

≤ λmax(D1) ≤ (1 +
1

2ν1
)κλ+

tr(Σ1)

n
+ a

√
p log(p)

n
.

On the other hand, we could consider the eigen-decomposition of

Q2 ,

(
Bτ

1B1 +
tr(Σ1)

n Id 0

0 tr(Σ1)
n IH−d

)
=

(
F1 0
0 F2

)(
D′

1 0
0 D′

2

)(
F τ
1 0
0 F τ

2

)

where D′
1 ( resp. D′

2) is a d × d (resp. (H − d) × (H − d) ) diagonal matrices satisfying that
λmin(D

′
1) ≥ λmax(D

′
2). (20) implies that

tr(Σ1)

n
− a

√
p log(p)

n
≤ λmin(D

′
2) ≤ λmax(D

′
2) ≤

tr(Σ1)

n
+ a

√
p log(p)

n
.

Thus the eigen-gap is of order λ−a

√
p log(p)

n ( which is of order λ, since nλ = pα for some α > 1/2).

From (20) , we know that ‖Q1 −Q2‖F ≤ C

√
p log(p)

n . The Sine-Theta theorem (see e.g., Lemma 2)
implies that

∥∥∥∥
(

E1

E3

)(
Eτ

1 Eτ
3

)
−

(
Id 0
0 0

)∥∥∥∥
F

≤ C

√
p log(p)

nλ
,(21)
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i.e., ‖E3E
τ
3‖F ≤ C

√
p log(p)

nλ . Similar argument gives us that ‖E2E
τ
2‖F ≤ C

√
p log(p)

nλ .

Let η be the (unit) eigenvector associated to the non-zero eigenvalue λ̂ of MM τ . Let us write
ητ = (ητ

1 ,η
τ
2 ,η

τ
3 ) where η1,η2 ∈ Rd and η3 ∈ Rp−2d. Let α = (ατ

1 , α
τ
2) where α1 = Bτ

1η1 +Bτ
2η2 ∈

Rd and α2 = Bτ
3η2 + Bτ

4η3 ∈ RH−d. It is easy to verify that α/
√

λ̂ is the (unit) eigenvector

associated to the eigenvalue λ̂ of M τM and

η1 =
B1√
λ̂

α1√
λ̂
, η2 =

B2√
λ̂

α1√
λ̂
+

B3√
λ̂

α2√
λ̂
, and η3 =

B4√
λ̂

α2√
λ̂
.

If λ̂ is among the first d eigenvalues of M τM , then ‖α1/
√

λ̂‖2 is bounded below by some positive

constant. Thus ‖η1‖2 ≥ C
√

λ

λ̂
. If λ̂ is among the last H−d eigenvalues ofM τM , then ‖α1/

√
λ̂‖2 =

O

(√
p log(p)

nλ

)
. Thus ‖η1‖2 ≤ O

(
κ
√

λ

λ̂

√
p log(p)

nλ

)
. ✷

A.2. Sketch of Proof of Theorem 1. We only sketch some key points of the proof here and
leave the details in the online supplementary files. Recall that for single index model y = f(βτ

0x, ǫ)

where β0 is a unit vector, we have denoted by η̂ the eigenvector of Λ̂H associated to the largest
eigenvalue λ̂. Let β̂ be the minimizer of

Lβ =
1

2n
‖ỹ −Xτβ‖+ µ‖β‖1,

where ỹ ∈ Rn such that η̂ = 1
nXỹ. Let η0 = Σβ0, η̃ = Pη0 η̂ and β̃ = Σ−1η̃ ∝ β0. Since

we are interested in the distance between the directions of β̂ and β0, we consider the difference
δ = β̂ − β̃. A slight modification of the argument in Bickel et al. [2009] implies that, if we choose

µ = C
√

log(p)

nλ̂
for sufficiently large constant C, we have ‖δ‖2 ≤ C1

√
s log(p)

nλ̂
with high probability.

The detailed arguments are put in the online supplementary file. The Proposition 3, Condition A1)

and β̃ = Σ−1η̃, imply that C1

√
λ

λ̂
≤ ‖β̃‖2 ≤ C2 holds with high probability for some constants C1

and C2. Thus, we have

‖P
β̂
− Pβ0‖F = ‖P

β̂
− P

β̃
‖F ≤ 4

‖β̂ − β̃‖2
‖β̃‖2

= 4‖δ‖2/‖β̃‖2 ≤ C

√
s log(p)

nλ
(22)

holds with high probability. ✷

A.3. Proof of Theorem 2 . Recall that η̂j’s are the (unit) eigenvectors associated to the j-th

eigenvalues of Λ̂H , j = 1, ...., d. We introduce the following notations,

η̃j = PΛη̂j, β̃j = Σ−1η̃j and γj = β̃j/‖β̃j‖2.(23)
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Applying the argument in Theorem 1 on these eigenvectors, we have

‖β̂j − β̃j‖2 ≤ C

√
s log(p)

nλ̂j

and ‖P
β̂j

− P
β̃j
‖F ≤ C

√
s log(p)

nλ
(24)

for some constant C hold with high probability. Since we assume that d is fixed, if we can prove
that

I) the lengths of β̃j , j = 1, ..., d, are bounded below by C
√

λ

λ̂j

,

II) the angles between any two vectors of β̃j, j = 1, ..., d, are bounded below by some constant,

hold with probability, then the Gram-Schmit process implies that ‖P
B̂
−PB‖F ≤ C

√
s log(p)

nλ holds

with high probability from (24). It is easy to verify that I) follows from the Proposition 3 , the
Condition A1) and the definition of β̃j( = Σ−1η̃j), j = 1, ..., d. II) is a direct corollary of the
following two statements.

Statement A. The angles between any two vectors in η̃j
′s , j = 1, ..., d are nearly π/2..

Since nλ = pα for some α > 1/2, we only need to prove that

|cos (∠(η̃j, η̃j))| ≤ C

√
p log(p)

nλ
(25)

holds with high probability for any i 6= j. Recall that we have the following decomposition XH =
ZH +WH . It is easy to see that col(ZH) = col(var(E[x|y])) and √

n cov(w)−1/2WH is identically
distributed to a matrix, E1, with all the entries are i.i.d. standard normal random variables. Let us
choose an orthogonal matrix T such that 1√

H
TZH = (Aτ , 0)τ and 1√

H
TWH = (0,Bτ )τ whereA is a

d×H matrix and B is a (p−d)× H matrix. Thus, T η̂j is the eigenvector of
1
H TXHXτ

HT τ associated

with the j-th eigenvalue λ̂j , j = 1, ..., d. If we have a) λmin(AAτ ) ≥ λ, b) ‖Pcol(TZH )(T η̂j)‖2 ≥
C
√

λ

λ̂j

and c) ‖BτB − µIH‖F ≤ C

√
p log(p)

n for some scalar µ > 0, then the statement I is reduced

to the following linear algebra lemma.

Lemma 5. Let A be a d×H matrix (d < H) with λmin(AAτ ) = λ. Let B be a (p − d)×H

matrix such that ‖BτB − µIH‖2F ≤ C

√
p log(p)

n . Let ξ̂j be the j-th (unit) eigenvector of CCτ

associated with the j-th eigenvalue λ̂j where Cτ = (Aτ ,Bτ ) and ξ̃j be the projection of ξ̂j onto its

first d-coordinates. If ‖ξ̃j‖2 ≥ C
√

λ

λ̂j

, then for any i 6= j,

∣∣∣cos
(
∠(ξ̃i, ξ̃j)

)∣∣∣ ≤ C

√
p log(p)

nλ
.(26)

Thus, ξ̃i
′s are nearly orthogonal if nλ = pα for some α > 1/2.
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Proof. Let α̂j = Cτ ξ̂j , then ξ̂j = 1

λ̂j

Cαj and ξ̃j = 1

λ̂j

Aαj . It is easy to see that ‖α̂j‖2 =
√

λ̂j and ‖Cα̂j‖2 ≥ λ̂j . Since α̂j/
√

λ̂j is also the (unit) eigenvector of

CτC = AτA+ µI + (BτB − µI),

for any i 6= j, we have

0 = α̂τ
jC

τCα̂i = α̂τ
jA

τAα̂j + µα̂τ
j α̂i + α̂τ

j (B
τB − µI)α̂i

= λ̂j λ̂iξ̃
τ
j ξ̃i + α̂τ

j (B
τB − µI)α̂i.

Since ‖BτB − tr(Σ)IH‖F ≤ C

√
p log(p)

n and ‖ξ̂j‖2 ≥ C
√

λ

λ̂j

, ∀i 6= j, we have

∣∣∣∣
ξτj ξi

‖ξi‖2‖ξj‖2

∣∣∣∣ ≤ C

∣∣∣∣∣ξ̂
τ
j ξ̂i

λ̂
1/2
j λ̂

1/2
i

λ

∣∣∣∣∣ = C

∣∣∣∣∣
1

λ

α̂τ
j

λ̂
1/2
j

(BτB − µI)
α̂i

λ̂
1/2
i

∣∣∣∣∣ ≤ C

√
p log(p)

nλ
.

✷

Note that a) follows from the Lemma 2, b) follows from Proposition 3 and c) follows from the
Lemma 1. Thus statement A holds.

Statement B. The angles between any two vectors in β̃j
′s are bounded away from 0.

. Since β̃j = Σ−1η̃j, we only need to prove that there exists a positive constant ζ < 1 such that

∣∣∣∣
η̃τ
i Σ

−1Σ−1η̃i

‖Σ−1η̃i‖2‖Σ−1η̃j‖2

∣∣∣∣ ≤ ζ.(27)

Let (η̃1/‖η̃1‖2, ..., η̃d/‖η̃d‖2) = TM , where T is a p × d orthogonal matrix. Since η̃j/‖η̃j‖′2s are
nearly mutually orthogonal, we know that M τM is nearly an identity matrix. Thus, by some
continuity argument, the statement is reduced to the following linear algebra lemma.

Lemma 6. Let A be a p× p positive definite matrix such that Cmin ≤ λmin(A) ≤ λmax(A) ≤
Cmax for some positive constants Cmin and Cmax. There exists constant 0 < ζ < 1 such that for
any p× d orthogonal matrix B, we have

∣∣∣∣
Bτ

∗,iA
τAB∗,j

‖AB∗,i‖2‖AB∗,j‖2

∣∣∣∣ ≤ ζ ∀i 6= j.(28)

Proof. When d is finite, without loss of generality, we can assume that B is a p× 2 matrix.
Note that the expression on the left side is invariant under orthogonal transformation of B. We can
simply assume that B is a matrix with the last p− 2-rows consisting of all zeros. The result follows
immediately based on basic calculation. ✷
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A.4. Proof of Theorem 3. Recall that η̂i is the eigenvector associated with the i-th eigenvalue
λ̂i of Λ̂H , η̃i = PΛη̂i and β̃i = Σ−1η̃i, i = 1, . . . ,H (see e.g., (23)). The argument in Theorem 1
implies that, for any 1 ≤ i ≤ H,

‖β̂i − β̃i‖2 ≤ C

√
s log(p)

nλ̂
.(29)

The Proposition 1 implies that

‖β̃i‖2 ≥ C1

√
λ

λ̂i

, 1 ≤ i ≤ d and ‖β̃i‖2 ≤ C2

√
λ

λ̂i

√
p log(p)

nλ
, d+ 1 ≤ i ≤ H.(30)

The above two statements give us the desried result in Theorem 3. ✷
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Supplementary Material

B. Proof of Theorem 1. Let T = supp(β0). For a vector γ ∈ Rp, let γT and γT c be the
sub-vector consists of the components of γ in T and T c respectively. We consider the following
events sets

E1 =

{
ω | ‖PΛη̂‖2 ≥ b1

√
λ

λ̂

}
,

E2 =

{
ω | 1

n
XXτ satisfies the RE condition of order s with parameter

(
3,

√
Cmin

8

) }
,

E3 =

{
ω | ‖ 1

n
XXτδ‖∞ ≤ µ where µ = b2

√
log(p)

nλ̂

}
,

E4 = { ω | ‖δT c‖1 ≤ 3‖δT ‖1 }

where b1 and b2 are sufficiently large constants to be specified later.
Proposition 3 implies that E1 happens with high probability. Proposition 1 implies that E2

happens with high probability. Below, we will show that E3 happens with high probability ( see
Lemma 7 below) and E4 happens with high probability (see Lemma 8 below). We conclude that
the event E = E1 ∩ E2 ∩ E3 ∩ E4 happens with high probability. Conditioning on E, we have

1

64
Cmin‖δ‖22 ≤ 1

n
‖Xτδ‖2 ≤ 1

n
‖XXτδ‖∞‖δ‖1 ≤ 4µ‖δT ‖1 ≤ 4

√
sµ‖δT ‖2,

i.e., ‖δ‖2 ≤ 256
Cmin

√
sµ = C

√
s log(p)

nλ̂
. Since conditioning on E, there exist constants C1 and C2 such

that C1

√
λ

λ̂
≤ ‖β̃‖2 ≤ C2, we know that ‖P

β̂
−Pβ0‖F = ‖P

β̂
−P

β̃
‖F ≤ 4‖β̂−β̃‖2

‖β̃‖2
≤ C

√
s log(p)

nλ holds

with high probability. ✷

Lemma 7. Assume that conditions A1),A2) and A3) hold. Let µ = A
√

log(p)

nλ̂
. For suffi-

ciently large A, we have that

‖ 1
n
XXτδ‖∞ ≤ µ(31)

holds with high probability.

Proof. Since δ = β̂ − β̃, η̂ = 1
nXỹ and Σβ̃ = η̃, we have

(32)

1

n
‖XXτδ‖∞ ≤ 1

n
‖XXτ β̂ −Xỹ‖∞

︸ ︷︷ ︸
I

+
1

n
‖Xỹ − nη̃‖∞

︸ ︷︷ ︸
II

+ ‖( 1
n
XXτ −Σ)β̃‖∞

︸ ︷︷ ︸
III

.
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For I. By the definition of β̂, we have 0 ∈ 1
n

(
XXτ β̂ −Xỹ

)
+µsgn

(
β̂
)
, i.e., 1

n‖XXτ β̂−Xỹ‖∞ ≤
µ.

For II. Let x = z + w be the orthogonal decomposition with respect to col(var(E[x|y])) and its
orthogonal complement. Recall that we have introduced the decomposition:

XH = ZH +WH .(33)

It is easy to see that col(ZH) = col(η0) and
√
c cov(w)−1/2WH is identically distributed to a

matrix, E1, with all the entries are i.i.d. standard normal random variables. Let

α1 =
1√
H

Zτ
H η̂, α2 =

1√
H

W τ
H η̂ and α =

1√
H

Xτ
H η̂ = α1 +α2.

Since 1
HXHXτ

H η̂ = λ̂η̂, we know that ‖α‖22 = λ̂ and η̂ = 1√
Hλ̂

ZHα + 1√
Hλ̂

WHα. From this, we

know η̃ = Pη0 η̂ = 1√
Hλ̂

ZHα and η̂−Pη0 η̂ = 1√
Hλ̂

WHα. Since ‖α‖1 ≤
√
H‖α‖2 =

√
Hλ̂, we know

that ‖η̂ − Pη0 η̂‖∞ ≤ 1√
λ̂
‖WH‖∞,∞. It is easy to see that for positive constant A2(> 1), we have

P

(
‖cov(w)1/2√

c
E1‖∞,∞ > λ1/2

max(Σ)

√
A2H log(pH)

n

)
≤ 2 exp−(A2−1) log(pH),

i.e., by letting A > 2λ
1/2
max(Σ)

√
A2H, we have that ‖η̂ − Pη0 η̂‖∞ ≤ A

√
log(p)

nλ̂
holds with high

probability.

For III. Let x = Σ1/2ǫ where ǫ ∼ N(0, Ip), then X = Σ1/2E where E is a p × n matrix with

i.i.d standard normal entries. Since β̃ = Σ−1η̃, η̃ = ‖η̃‖η0 and ‖η̃‖ ≤ 1, we know that for any
0 < t < 1/2,

1

n
‖ (XXτ − nΣ) β̃‖∞ = ‖η̃‖‖Σ1/2

(
1

n
EEτ − Ip

)
Σ−1/2η0‖∞ > tλmax(Σ)1/2λmin(Σ)−1/2(34)

with probability at most 4 exp−
3
16

nt2+log(p).

In fact, it follows from ‖Σ1/2
i,∗ ‖ ≤ λmax(Σ)1/2 and ‖Σ−1/2η0‖2 ≤ λmin(Σ)−1/2 and P

(
Ẽ(α1,α2)

)
≤

4 exp−
3
16

nt2 where for any two deterministic vectors α1 and α2,

Ẽ(α1,α2) =
{
ω | |α1

(
1

n
EEτ − Ip

)
α2| > t‖α1‖2‖α2‖2

}
.(35)

Let t =

√
16A3 log(p)

3n . Conditioning on E1 and the events such that equation (34) does not hold, we
have

1

n
‖ (XXτ − nΣ) β̃‖∞ ≤ C

√
λ

λ̂

16A3 log(p)

3n
λmax(Σ)1/2λmin(Σ)−1/2(36)
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with high probability.

To summarize, we know that, for sufficiently large constant A, ‖ 1
nXXτδ‖∞ ≤ A

√
log(p)

nλ̂
holds

with high probability. ✷

Lemma 8. Let µ = A
√

log(p)

nλ̂
. For sufficiently large constant A, we have ‖δT c‖1 ≤ 3‖δT ‖1

holds with high probability.

Proof. Since 1
n‖Xỹ − XXτ β̃‖∞ ≤ ‖η̂ − η̃‖∞ + ‖( 1nXXτ −Σ)β̃‖∞ = II + III where II

and III are introduced in (32). Note that both II and III do not depend on the choice of µ. Thus
there exists A1 ( does not depend on the choice of µ) such that, following the argument presented
in Lemma 7,

‖ 1
n
X ỹ − 1

n
XXτ β̃‖∞ ≤ A1

√
log(p)

nλ̂
(37)

holds with high probability.
Let us choose a sufficiently large A > 2A1 such that‖ 1

nXXτδ‖∞ ≤ µ ( by definition µ =

A
√

log(p)

nλ̂
) holds high probability. Since L

β̂
≤ L

β̃
, we have

−‖δ‖1‖
1

n
X ỹ − 1

n
XXτ β̃‖∞ ≤ µ(‖β̃‖1 − ‖β̂‖1).(38)

Note that ‖β̃‖1 − ‖β̂‖1 ≤ ‖δT ‖1 − ‖δT c‖1 and ‖δ‖1 = ‖δT ‖1 + ‖δT c‖1. Thus, we have ‖δT c‖1 ≤
A+A1
A−A1

‖δT ‖1 ≤ 3‖δT ‖1 holds with high probability. ✷

C. Proof of Lemma 1..

Lemma 9 (Deviation). Let zj = x2j − σ2
j , j = 1, ...., p where xj ∼ N(0, σ2

j ). Assume that

a ≤ σ2
j ≤ b, j = 1, ..., p, for some positive constants a, b. Then for any α satisfying that α < 1

2b
−2,

one has

P



∣∣∣∣∣∣
1

p

∑

j

zj

∣∣∣∣∣∣
> α


 ≤ 2 exp(−Cpα2)(39)

for some constant C.
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Proof. We have E[exptzj ] = exp
(
−1

2 log(1− 2tσ2
j )− tσ2

j

)
. Thus, for any t > 0, one has

P


1

p

∑

j

zj > α


 ≤ exp


−1

2

∑

j

log(1 − 2tσ2
j )− t

∑

j

σ2
j − ptα


 .

Let us choose t = κα where κ < 1 is a constant to be determined later. Then, we have

1

2

∑

j

log(1− 2tσ2
j ) + t

∑

j

σ2
j + ptα ≥ ptα− 2t2

∑

j

σ4
j = pα2(κ− 2κ2

∑

j

σ4
j /p).

Thus, if we choose κ such that κ′ = κ− κ2
∑

j σ
4
j/p > 0, we have

P


1

p

∑

j

zj > α


 ≤ exp(−pκ′α2).(40)

Similar argument provides the bound for P
(
1
p

∑
j zj < −α

)
.

Lemma 10 (Deviation II). Let zj and z′j ∼ N(0, σ2
j ) be independent copies for j = 1, ..., p.

Assume that a ≤ σ2
j ≤ b for some positive constants a and b. Then for any α satisfies that α < 1

2b
−2,

one has

P



∣∣∣∣∣∣
1

p

∑

j

zjz
′
j

∣∣∣∣∣∣
> α


 ≤ 4 exp(−Cpα2)

for some constant C.

Proof. Let wj =
1√
2
(zj + z′j) and w′

j =
1√
2
(zj − z′j), then zjz

′
j =

(w2
j−σ2

j )−(w
′2
j −σ2

j )

2 . Lemma 9

implies the desired bound.
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Table 4

Estimation error: Σ = Σ1, and ρ = 0.

p Lasso-SIR DT-SIR Lasso M-Lasso Lasso-SIR(Known d) d̂

I

100 0.09 ( 0.02 ) 0.21 ( 0.04 ) 0.08 ( 0.01 ) 0.09 ( 0.01 ) 0.09 ( 0.01 ) 1
1000 0.12 ( 0.02 ) 0.21 ( 0.04 ) 0.1 ( 0.02 ) 0.22 ( 0.02 ) 0.12 ( 0.02 ) 1
2000 0.14 ( 0.02 ) 0.22 ( 0.05 ) 0.1 ( 0.01 ) 0.29 ( 0.03 ) 0.14 ( 0.02 ) 1
4000 0.18 ( 0.09 ) 0.22 ( 0.09 ) 0.11 ( 0.02 ) 0.39 ( 0.09 ) 0.18 ( 0.03 ) 1

II

100 0.05 ( 0.01 ) 0.29 ( 0.05 ) 0.23 ( 0.04 ) 0.05 ( 0.01 ) 0.05 ( 0.01 ) 1
1000 0.09 ( 0.01 ) 0.35 ( 0.06 ) 0.3 ( 0.04 ) 0.12 ( 0.02 ) 0.09 ( 0.01 ) 1
2000 0.12 ( 0.02 ) 0.38 ( 0.08 ) 0.31 ( 0.04 ) 0.18 ( 0.03 ) 0.11 ( 0.02 ) 1
4000 0.15 ( 0.03 ) 0.41 ( 0.08 ) 0.33 ( 0.04 ) 0.27 ( 0.06 ) 0.15 ( 0.03 ) 1

III

100 0.17 ( 0.03 ) 0.23 ( 0.06 ) 1.14 ( 0.27 ) 0.2 ( 0.03 ) 0.18 ( 0.04 ) 1
1000 0.27 ( 0.21 ) 0.3 ( 0.22 ) 1.25 ( 0.21 ) 0.63 ( 0.17 ) 0.23 ( 0.04 ) 1.1
2000 0.35 ( 0.29 ) 0.34 ( 0.3 ) 1.31 ( 0.17 ) 0.77 ( 0.23 ) 0.26 ( 0.05 ) 1.1
4000 0.45 ( 0.42 ) 0.42 ( 0.39 ) 1.29 ( 0.18 ) 0.93 ( 0.32 ) 0.34 ( 0.14 ) 1.3

IV

100 0.35 ( 0.03 ) 0.79 ( 0.09 ) 0.41 ( 0.05 ) 0.98 ( 0.3 ) 0.35 ( 0.03 ) 1
1000 0.59 ( 0.2 ) 0.96 ( 0.17 ) 0.61 ( 0.09 ) 0.84 ( 0.18 ) 0.56 ( 0.05 ) 1.1
2000 0.72 ( 0.24 ) 1.02 ( 0.2 ) 0.67 ( 0.07 ) 1.01 ( 0.2 ) 0.64 ( 0.06 ) 1.2
4000 0.95 ( 0.35 ) 1.14 ( 0.28 ) 0.71 ( 0.08 ) 1.23 ( 0.28 ) 0.82 ( 0.16 ) 1.4

V

100 0.1 ( 0.02 ) 0.18 ( 0.03 ) 0.55 ( 0.22 ) 0.11 ( 0.02 ) 0.09 ( 0.02 ) 1
1000 0.12 ( 0.03 ) 0.19 ( 0.04 ) 0.69 ( 0.21 ) 0.3 ( 0.02 ) 0.13 ( 0.03 ) 1
2000 0.15 ( 0.09 ) 0.19 ( 0.09 ) 0.72 ( 0.25 ) 0.37 ( 0.08 ) 0.15 ( 0.03 ) 1
4000 0.18 ( 0.09 ) 0.2 ( 0.09 ) 0.74 ( 0.21 ) 0.47 ( 0.08 ) 0.18 ( 0.04 ) 1

Table 5

Estimation error: Σ = Σ1 and ρ = 0.3.

p Lasso-SIR DT-SIR Lasso M-Lasso Lasso-SIR(Known d) d̂

I

100 0.1 ( 0.02 ) 0.44 ( 0.08 ) 0.09 ( 0.01 ) 0.12 ( 0.02 ) 0.1 ( 0.01 ) 1
1000 0.15 ( 0.02 ) 0.5 ( 0.08 ) 0.12 ( 0.02 ) 0.24 ( 0.02 ) 0.16 ( 0.02 ) 1
2000 0.18 ( 0.02 ) 0.5 ( 0.07 ) 0.13 ( 0.02 ) 0.31 ( 0.04 ) 0.18 ( 0.02 ) 1
4000 0.21 ( 0.03 ) 0.49 ( 0.09 ) 0.14 ( 0.02 ) 0.42 ( 0.07 ) 0.22 ( 0.04 ) 1

II

100 0.06 ( 0.01 ) 0.46 ( 0.08 ) 0.22 ( 0.03 ) 0.08 ( 0.01 ) 0.06 ( 0.01 ) 1
1000 0.11 ( 0.02 ) 0.55 ( 0.08 ) 0.28 ( 0.04 ) 0.14 ( 0.02 ) 0.11 ( 0.02 ) 1
2000 0.14 ( 0.02 ) 0.55 ( 0.08 ) 0.3 ( 0.04 ) 0.2 ( 0.03 ) 0.14 ( 0.02 ) 1
4000 0.19 ( 0.04 ) 0.58 ( 0.09 ) 0.32 ( 0.04 ) 0.32 ( 0.07 ) 0.19 ( 0.04 ) 1

III

100 0.19 ( 0.03 ) 0.5 ( 0.1 ) 1.18 ( 0.21 ) 0.24 ( 0.03 ) 0.19 ( 0.03 ) 1
1000 0.29 ( 0.17 ) 0.6 ( 0.16 ) 1.3 ( 0.16 ) 0.58 ( 0.14 ) 0.25 ( 0.04 ) 1
2000 0.35 ( 0.27 ) 0.63 ( 0.22 ) 1.32 ( 0.14 ) 0.73 ( 0.21 ) 0.29 ( 0.06 ) 1.1
4000 0.57 ( 0.46 ) 0.75 ( 0.39 ) 1.33 ( 0.14 ) 0.98 ( 0.36 ) 0.4 ( 0.2 ) 1.4

IV

100 0.38 ( 0.04 ) 0.85 ( 0.1 ) 0.56 ( 0.08 ) 0.54 ( 0.14 ) 0.37 ( 0.04 ) 1
1000 0.56 ( 0.13 ) 0.97 ( 0.13 ) 0.7 ( 0.08 ) 0.77 ( 0.11 ) 0.54 ( 0.04 ) 1
2000 0.65 ( 0.21 ) 1.03 ( 0.19 ) 0.76 ( 0.11 ) 0.92 ( 0.19 ) 0.58 ( 0.05 ) 1.1
4000 0.79 ( 0.3 ) 1.12 ( 0.25 ) 0.79 ( 0.09 ) 1.09 ( 0.25 ) 0.65 ( 0.05 ) 1.3

V

100 0.1 ( 0.02 ) 0.47 ( 0.11 ) 0.48 ( 0.22 ) 0.14 ( 0.02 ) 0.1 ( 0.02 ) 1
1000 0.14 ( 0.03 ) 0.55 ( 0.08 ) 0.6 ( 0.23 ) 0.35 ( 0.04 ) 0.15 ( 0.03 ) 1
2000 0.17 ( 0.04 ) 0.56 ( 0.08 ) 0.66 ( 0.26 ) 0.44 ( 0.06 ) 0.18 ( 0.04 ) 1
4000 0.3 ( 0.28 ) 0.6 ( 0.21 ) 0.72 ( 0.27 ) 0.66 ( 0.22 ) 0.25 ( 0.13 ) 1.1
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Table 6

Estimation error: Σ = Σ1, and ρ = 0.8.

p Lasso-SIR DT-SIR Lasso M-Lasso Lasso-SIR(Known d) d̂

I

100 0.18 ( 0.02 ) 1.34 ( 0.09 ) 0.16 ( 0.03 ) 1.01 ( 0.04 ) 0.18 ( 0.02 ) 1
1000 0.24 ( 0.02 ) 1.38 ( 0.05 ) 0.22 ( 0.02 ) 0.79 ( 0.08 ) 0.24 ( 0.02 ) 1
2000 0.27 ( 0.03 ) 1.39 ( 0.03 ) 0.23 ( 0.02 ) 0.53 ( 0.07 ) 0.27 ( 0.03 ) 1
4000 0.32 ( 0.04 ) 1.39 ( 0.04 ) 0.25 ( 0.03 ) 0.45 ( 0.05 ) 0.32 ( 0.04 ) 1

II

100 0.1 ( 0.01 ) 1.34 ( 0.09 ) 0.33 ( 0.06 ) 1.17 ( 0.04 ) 0.11 ( 0.01 ) 1
1000 0.16 ( 0.01 ) 1.39 ( 0.03 ) 0.55 ( 0.1 ) 1.08 ( 0.03 ) 0.16 ( 0.02 ) 1
2000 0.19 ( 0.02 ) 1.39 ( 0.05 ) 0.71 ( 0.14 ) 0.92 ( 0.08 ) 0.19 ( 0.02 ) 1
4000 0.23 ( 0.03 ) 1.4 ( 0.03 ) 0.92 ( 0.14 ) 0.54 ( 0.08 ) 0.23 ( 0.03 ) 1

III

100 0.28 ( 0.04 ) 1.34 ( 0.09 ) 1.26 ( 0.22 ) 1 ( 0.06 ) 0.28 ( 0.05 ) 1
1000 0.45 ( 0.08 ) 1.38 ( 0.05 ) 1.29 ( 0.17 ) 0.92 ( 0.06 ) 0.45 ( 0.09 ) 1
2000 0.54 ( 0.11 ) 1.39 ( 0.04 ) 1.3 ( 0.16 ) 0.84 ( 0.09 ) 0.54 ( 0.11 ) 1
4000 0.76 ( 0.28 ) 1.43 ( 0.19 ) 1.29 ( 0.15 ) 0.89 ( 0.28 ) 0.68 ( 0.12 ) 1.1

IV

100 0.74 ( 0.07 ) 1.4 ( 0.02 ) 1.21 ( 0.09 ) 0.91 ( 0.09 ) 0.72 ( 0.06 ) 1
1000 0.75 ( 0.07 ) 1.41 ( 0.01 ) 1.23 ( 0.08 ) 0.88 ( 0.08 ) 0.76 ( 0.08 ) 1
2000 0.79 ( 0.17 ) 1.44 ( 0.1 ) 1.26 ( 0.09 ) 0.94 ( 0.17 ) 0.75 ( 0.07 ) 1.1
4000 0.93 ( 0.31 ) 1.52 ( 0.22 ) 1.27 ( 0.08 ) 1.09 ( 0.3 ) 0.76 ( 0.06 ) 1.4

V

100 0.19 ( 0.04 ) 1.31 ( 0.14 ) 0.36 ( 0.14 ) 1.1 ( 0.39 ) 0.19 ( 0.03 ) 1
1000 0.31 ( 0.1 ) 1.38 ( 0.07 ) 0.56 ( 0.2 ) 0.55 ( 0.12 ) 0.32 ( 0.13 ) 1
2000 0.5 ( 0.34 ) 1.42 ( 0.15 ) 0.74 ( 0.27 ) 0.71 ( 0.29 ) 0.47 ( 0.26 ) 1.1
4000 1.15 ( 0.65 ) 1.66 ( 0.36 ) 0.82 ( 0.22 ) 1.25 ( 0.55 ) 0.8 ( 0.38 ) 2.1

Table 7

Estimation error: Σ = Σ2 and ρ = 0.2.

p Lasso-SIR DT-SIR Lasso M-Lasso Lasso-SIR(Known d) d̂

I

100 0.13 ( 0.03 ) 1.22 ( 0.17 ) 0.09 ( 0.01 ) 0.16 ( 0.03 ) 0.13 ( 0.03 ) 1
1000 0.33 ( 0.25 ) 1.37 ( 0.15 ) 0.11 ( 0.01 ) 0.65 ( 0.18 ) 0.27 ( 0.06 ) 1.1
2000 0.3 ( 0.16 ) 1.37 ( 0.15 ) 0.12 ( 0.02 ) 0.74 ( 0.16 ) 0.3 ( 0.1 ) 1
4000 0.36 ( 0.22 ) 1.38 ( 0.17 ) 0.13 ( 0.02 ) 0.81 ( 0.15 ) 0.3 ( 0.09 ) 1.1

II

100 0.1 ( 0.02 ) 1.26 ( 0.13 ) 0.24 ( 0.03 ) 0.11 ( 0.02 ) 0.1 ( 0.02 ) 1
1000 0.25 ( 0.06 ) 1.37 ( 0.12 ) 0.31 ( 0.04 ) 0.47 ( 0.11 ) 0.25 ( 0.05 ) 1
2000 0.3 ( 0.1 ) 1.38 ( 0.1 ) 0.33 ( 0.04 ) 0.59 ( 0.14 ) 0.29 ( 0.06 ) 1
4000 0.31 ( 0.08 ) 1.4 ( 0.06 ) 0.35 ( 0.05 ) 0.65 ( 0.16 ) 0.32 ( 0.09 ) 1

III

100 0.24 ( 0.12 ) 1.24 ( 0.18 ) 1.19 ( 0.21 ) 0.33 ( 0.11 ) 0.23 ( 0.04 ) 1
1000 0.55 ( 0.33 ) 1.33 ( 0.23 ) 1.3 ( 0.16 ) 0.98 ( 0.15 ) 0.4 ( 0.1 ) 1.3
2000 0.59 ( 0.33 ) 1.35 ( 0.24 ) 1.28 ( 0.18 ) 1.08 ( 0.14 ) 0.45 ( 0.15 ) 1.3
4000 0.58 ( 0.33 ) 1.36 ( 0.22 ) 1.28 ( 0.18 ) 1.14 ( 0.17 ) 0.47 ( 0.17 ) 1.3

IV

100 0.54 ( 0.05 ) 1.37 ( 0.06 ) 1.19 ( 0.1 ) 0.6 ( 0.06 ) 0.54 ( 0.05 ) 1
1000 0.63 ( 0.05 ) 1.41 ( 0.01 ) 1.25 ( 0.1 ) 0.87 ( 0.05 ) 0.63 ( 0.05 ) 1
2000 0.64 ( 0.05 ) 1.41 ( 0 ) 1.27 ( 0.1 ) 0.99 ( 0.05 ) 0.65 ( 0.05 ) 1
4000 0.65 ( 0.06 ) 1.41 ( 0 ) 1.27 ( 0.09 ) 1.07 ( 0.04 ) 0.66 ( 0.05 ) 1

V

100 0.23 ( 0.29 ) 1.23 ( 0.25 ) 0.49 ( 0.19 ) 0.29 ( 0.27 ) 0.13 ( 0.03 ) 1.1
1000 1.03 ( 0.24 ) 1.1 ( 0.36 ) 0.61 ( 0.23 ) 1.15 ( 0.17 ) 0.79 ( 0.37 ) 1.6
2000 1.09 ( 0.2 ) 0.96 ( 0.43 ) 0.67 ( 0.19 ) 1.2 ( 0.16 ) 0.85 ( 0.4 ) 1.6
4000 1.07 ( 0.27 ) 0.99 ( 0.47 ) 0.71 ( 0.22 ) 1.21 ( 0.16 ) 0.87 ( 0.41 ) 1.7
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Table 8

Estimation error: Σ = Σ1 and ρ = 0.

p Lasso-SIR DT-SIR M-Lasso Lasso-SIR(Known d) d̂

VI

100 0.15 ( 0.03 ) 0.18 ( 0.06 ) 0.23 ( 0.05 ) 0.14 ( 0.04 ) 2
1000 0.18 ( 0.06 ) 0.17 ( 0.07 ) 0.61 ( 0.03 ) 0.17 ( 0.05 ) 2
2000 0.22 ( 0.13 ) 0.2 ( 0.14 ) 0.72 ( 0.1 ) 0.2 ( 0.07 ) 2
4000 0.28 ( 0.13 ) 0.2 ( 0.1 ) 0.86 ( 0.09 ) 0.27 ( 0.14 ) 2

VII

100 0.27 ( 0.04 ) 0.35 ( 0.06 ) 0.32 ( 0.06 ) 0.27 ( 0.04 ) 2
1000 0.37 ( 0.09 ) 0.4 ( 0.1 ) 0.93 ( 0.06 ) 0.38 ( 0.07 ) 2
2000 0.44 ( 0.14 ) 0.41 ( 0.14 ) 1.09 ( 0.09 ) 0.44 ( 0.09 ) 2
4000 0.75 ( 0.41 ) 0.64 ( 0.42 ) 1.4 ( 0.27 ) 0.59 ( 0.21 ) 2.4

VIII

100 0.87 ( 0.29 ) 0.88 ( 0.27 ) 0.9 ( 0.23 ) 0.23 ( 0.03 ) 1.2
1000 0.45 ( 0.25 ) 0.44 ( 0.25 ) 0.91 ( 0.21 ) 0.31 ( 0.04 ) 1.8
2000 0.34 ( 0.05 ) 0.35 ( 0.05 ) 0.8 ( 0.05 ) 0.34 ( 0.05 ) 2
4000 0.57 ( 0.31 ) 0.53 ( 0.3 ) 1.04 ( 0.18 ) 0.41 ( 0.07 ) 1.9

IX

100 0.87 ( 0.28 ) 0.89 ( 0.27 ) 0.91 ( 0.22 ) 0.26 ( 0.08 ) 1.2
1000 0.6 ( 0.3 ) 0.54 ( 0.33 ) 1.1 ( 0.06 ) 0.39 ( 0.14 ) 1.7
2000 0.78 ( 0.3 ) 0.71 ( 0.36 ) 1.18 ( 0.14 ) 0.59 ( 0.29 ) 1.6
4000 0.96 ( 0.26 ) 0.83 ( 0.33 ) 1.25 ( 0.19 ) 0.84 ( 0.36 ) 1.5

Table 9

Estimation error: Σ = Σ1 and ρ = 0.3.

p Lasso-SIR DT-SIR M-Lasso Lasso-SIR(Known d) d̂

VI

100 0.2 ( 0.04 ) 0.34 ( 0.1 ) 0.25 ( 0.05 ) 0.2 ( 0.05 ) 2
1000 0.24 ( 0.05 ) 0.3 ( 0.11 ) 0.61 ( 0.03 ) 0.23 ( 0.06 ) 2
2000 0.26 ( 0.11 ) 0.36 ( 0.11 ) 0.71 ( 0.07 ) 0.26 ( 0.08 ) 2
4000 0.31 ( 0.2 ) 0.41 ( 0.21 ) 0.84 ( 0.14 ) 0.29 ( 0.08 ) 2

VII

100 0.28 ( 0.04 ) 0.63 ( 0.09 ) 0.42 ( 0.04 ) 0.28 ( 0.04 ) 2
1000 0.41 ( 0.12 ) 0.71 ( 0.1 ) 0.95 ( 0.09 ) 0.4 ( 0.12 ) 2
2000 0.58 ( 0.27 ) 0.78 ( 0.2 ) 1.17 ( 0.18 ) 0.54 ( 0.19 ) 2.1
4000 0.97 ( 0.41 ) 0.92 ( 0.3 ) 1.46 ( 0.25 ) 0.77 ( 0.31 ) 2.3

VIII

100 0.25 ( 0.07 ) 0.55 ( 0.09 ) 0.35 ( 0.09 ) 0.22 ( 0.03 ) 2
1000 0.32 ( 0.08 ) 0.59 ( 0.13 ) 0.77 ( 0.17 ) 0.29 ( 0.04 ) 2
2000 0.34 ( 0.14 ) 0.69 ( 0.12 ) 0.81 ( 0.12 ) 0.34 ( 0.06 ) 2
4000 0.57 ( 0.35 ) 0.77 ( 0.26 ) 1.11 ( 0.24 ) 0.46 ( 0.2 ) 2.2

IX

100 0.31 ( 0.07 ) 0.5 ( 0.08 ) 0.43 ( 0.07 ) 0.31 ( 0.07 ) 2
1000 0.35 ( 0.11 ) 0.47 ( 0.09 ) 0.99 ( 0.05 ) 0.36 ( 0.09 ) 2
2000 0.42 ( 0.22 ) 0.55 ( 0.2 ) 1.17 ( 0.14 ) 0.4 ( 0.12 ) 2.1
4000 0.51 ( 0.24 ) 0.56 ( 0.21 ) 1.28 ( 0.11 ) 0.44 ( 0.13 ) 2
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Table 10

Estimation error: Σ = Σ1 and ρ = 0.8.

p Lasso-SIR DT-SIR M-Lasso Lasso-SIR(Known d) d̂

VI

100 0.52 ( 0.12 ) 1.86 ( 0.13 ) 1.01 ( 0.07 ) 0.51 ( 0.12 ) 2
1000 0.79 ( 0.11 ) 1.92 ( 0.09 ) 0.93 ( 0.08 ) 0.79 ( 0.12 ) 2
2000 0.96 ( 0.2 ) 1.94 ( 0.1 ) 1.05 ( 0.17 ) 0.94 ( 0.14 ) 2
4000 1.14 ( 0.3 ) 2.01 ( 0.18 ) 1.26 ( 0.29 ) 1.06 ( 0.17 ) 2.2

VII

100 0.8 ( 0.34 ) 1.77 ( 0.12 ) 1.07 ( 0.24 ) 0.72 ( 0.36 ) 1.6
1000 1.09 ( 0.2 ) 1.78 ( 0.13 ) 1.23 ( 0.19 ) 1.33 ( 0.21 ) 1.3
2000 1.09 ( 0.15 ) 1.76 ( 0.12 ) 1.23 ( 0.18 ) 1.38 ( 0.15 ) 1.3
4000 1.12 ( 0.23 ) 1.76 ( 0.15 ) 1.27 ( 0.23 ) 1.42 ( 0.07 ) 1.2

VIII

100 0.42 ( 0.18 ) 1.81 ( 0.14 ) 0.79 ( 0.33 ) 0.34 ( 0.04 ) 2
1000 1 ( 0.38 ) 1.97 ( 0.14 ) 1.22 ( 0.32 ) 0.86 ( 0.4 ) 2.2
2000 1.12 ( 0.35 ) 1.93 ( 0.17 ) 1.27 ( 0.29 ) 1.17 ( 0.33 ) 2.1
4000 1.16 ( 0.28 ) 1.89 ( 0.17 ) 1.27 ( 0.24 ) 1.29 ( 0.24 ) 1.8

IX

100 0.78 ( 0.1 ) 1.9 ( 0.09 ) 0.95 ( 0.1 ) 0.79 ( 0.1 ) 2
1000 0.92 ( 0.13 ) 1.95 ( 0.06 ) 1.08 ( 0.13 ) 0.9 ( 0.09 ) 2
2000 0.97 ( 0.11 ) 1.97 ( 0.07 ) 1.17 ( 0.08 ) 0.95 ( 0.1 ) 2
4000 1.12 ( 0.26 ) 2.03 ( 0.12 ) 1.37 ( 0.22 ) 1.01 ( 0.08 ) 2.3

Table 11

Estimation error: Σ = Σ2 and ρ = 0.2.

p Lasso-SIR DT-SIR M-Lasso Lasso-SIR(Known d) d̂

VI

100 0.27 ( 0.21 ) 1.73 ( 0.17 ) 0.43 ( 0.17 ) 0.22 ( 0.04 ) 1.9
1000 1.01 ( 0.01 ) 1.73 ( 0 ) 1.11 ( 0.03 ) 0.26 ( 0.06 ) 1
2000 1.01 ( 0.01 ) 1.73 ( 0 ) 1.14 ( 0.04 ) 0.29 ( 0.08 ) 1
4000 1.02 ( 0.01 ) 1.73 ( 0 ) 1.18 ( 0.04 ) 0.38 ( 0.19 ) 1

VII

100 0.39 ( 0.24 ) 1.7 ( 0.18 ) 0.55 ( 0.19 ) 0.31 ( 0.05 ) 1.9
1000 1.03 ( 0.06 ) 1.73 ( 0.01 ) 1.25 ( 0.05 ) 0.47 ( 0.19 ) 1
2000 1.04 ( 0.01 ) 1.73 ( 0.01 ) 1.3 ( 0.05 ) 0.55 ( 0.24 ) 1
4000 1.04 ( 0.02 ) 1.73 ( 0 ) 1.34 ( 0.06 ) 0.69 ( 0.3 ) 1

VIII

100 0.24 ( 0.03 ) 1.69 ( 0.17 ) 0.34 ( 0.04 ) 0.24 ( 0.03 ) 2
1000 0.97 ( 0.21 ) 1.73 ( 0.09 ) 1.15 ( 0.11 ) 0.33 ( 0.05 ) 1.1
2000 1.03 ( 0.08 ) 1.74 ( 0.05 ) 1.24 ( 0.06 ) 0.35 ( 0.06 ) 1
4000 1.03 ( 0.07 ) 1.74 ( 0.03 ) 1.26 ( 0.06 ) 0.41 ( 0.12 ) 1

IX

100 1 ( 0.12 ) 1.69 ( 0.06 ) 1.04 ( 0.1 ) 0.41 ( 0.07 ) 1
1000 1.03 ( 0.01 ) 1.73 ( 0 ) 1.22 ( 0.04 ) 0.67 ( 0.2 ) 1
2000 1.03 ( 0.01 ) 1.73 ( 0 ) 1.27 ( 0.03 ) 0.73 ( 0.21 ) 1
4000 1.04 ( 0.03 ) 1.73 ( 0 ) 1.3 ( 0.04 ) 0.89 ( 0.25 ) 1
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Table 12

Estimation error: Σ = Σ1 and ρ = 0.

p Lasso-SIR DT-SIR M-Lasso Lasso

X

100 0.18 ( 0.03 ) 0.54 ( 0.04 ) 0.21 ( 0.05 ) 0.18 ( 0.03 )
1000 0.23 ( 0.03 ) 1.13 ( 0.01 ) 0.6 ( 0.03 ) 0.25 ( 0.04 )
2000 0.23 ( 0.04 ) 1.24 ( 0.01 ) 0.67 ( 0.02 ) 0.27 ( 0.04 )
4000 0.24 ( 0.03 ) 1.29 ( 0.01 ) 0.71 ( 0.03 ) 0.28 ( 0.04 )

XI

100 0.33 ( 0.09 ) 0.81 ( 0.05 ) 0.4 ( 0.13 ) 0.34 ( 0.08 )
1000 0.41 ( 0.1 ) 1.29 ( 0.01 ) 1.16 ( 0.03 ) 0.44 ( 0.1 )
2000 0.43 ( 0.1 ) 1.34 ( 0.01 ) 1.21 ( 0.03 ) 0.45 ( 0.11 )
4000 0.45 ( 0.11 ) 1.37 ( 0.01 ) 1.23 ( 0.03 ) 0.48 ( 0.1 )

XII

100 0.23 ( 0.03 ) 0.53 ( 0.04 ) 0.26 ( 0.03 ) 0.2 ( 0.02 )
1000 0.3 ( 0.03 ) 1.12 ( 0.01 ) 0.62 ( 0.02 ) 0.3 ( 0.03 )
2000 0.32 ( 0.03 ) 1.23 ( 0.01 ) 0.7 ( 0.03 ) 0.33 ( 0.03 )
4000 0.33 ( 0.03 ) 1.29 ( 0.01 ) 0.75 ( 0.03 ) 0.36 ( 0.03 )

XIII

100 0.36 ( 0.07 ) 0.92 ( 0.04 ) 0.44 ( 0.1 ) 1.05 ( 0.02 )
1000 0.44 ( 0.08 ) 1.69 ( 0.01 ) 1.21 ( 0.04 ) 1.08 ( 0.02 )
2000 0.44 ( 0.08 ) 1.8 ( 0.01 ) 1.3 ( 0.03 ) 1.1 ( 0.03 )
4000 0.45 ( 0.08 ) 1.85 ( 0.01 ) 1.34 ( 0.02 ) 1.11 ( 0.03 )

Table 13

Estimation error: Σ = Σ1 and ρ = 0.3.

p Lasso-SIR DT-SIR M-Lasso Lasso

X

100 0.2 ( 0.03 ) 0.59 ( 0.04 ) 0.26 ( 0.03 ) 0.19 ( 0.03 )
1000 0.24 ( 0.03 ) 1.15 ( 0.02 ) 0.56 ( 0.03 ) 0.26 ( 0.03 )
2000 0.24 ( 0.03 ) 1.25 ( 0.01 ) 0.63 ( 0.03 ) 0.27 ( 0.03 )
4000 0.25 ( 0.03 ) 1.31 ( 0.01 ) 0.69 ( 0.03 ) 0.29 ( 0.04 )

XI

100 0.33 ( 0.08 ) 0.86 ( 0.05 ) 0.58 ( 0.15 ) 0.34 ( 0.08 )
1000 0.41 ( 0.1 ) 1.31 ( 0.01 ) 1.12 ( 0.04 ) 0.43 ( 0.09 )
2000 0.41 ( 0.1 ) 1.35 ( 0.01 ) 1.18 ( 0.04 ) 0.43 ( 0.1 )
4000 0.45 ( 0.11 ) 1.38 ( 0.01 ) 1.22 ( 0.04 ) 0.47 ( 0.12 )

XII

100 0.22 ( 0.03 ) 0.53 ( 0.04 ) 0.3 ( 0.13 ) 0.2 ( 0.02 )
1000 0.29 ( 0.03 ) 1.1 ( 0.02 ) 0.58 ( 0.02 ) 0.3 ( 0.03 )
2000 0.31 ( 0.04 ) 1.22 ( 0.02 ) 0.66 ( 0.02 ) 0.33 ( 0.03 )
4000 0.33 ( 0.03 ) 1.29 ( 0.02 ) 0.72 ( 0.03 ) 0.36 ( 0.03 )

XIII

100 0.38 ( 0.07 ) 1 ( 0.05 ) 0.6 ( 0.08 ) 1.06 ( 0.02 )
1000 0.39 ( 0.07 ) 1.73 ( 0.01 ) 1.17 ( 0.04 ) 1.08 ( 0.02 )
2000 0.39 ( 0.06 ) 1.84 ( 0.01 ) 1.29 ( 0.03 ) 1.09 ( 0.03 )
4000 0.42 ( 0.08 ) 1.88 ( 0.01 ) 1.34 ( 0.03 ) 1.11 ( 0.03 )
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Table 14

Estimation error: Σ = Σ1 and ρ = 0.8.

p Lasso-SIR DT-SIR M-Lasso Lasso

X

100 0.27 ( 0.06 ) 1.37 ( 0.04 ) 1 ( 0.06 ) 0.26 ( 0.04 )
1000 0.46 ( 0.08 ) 1.41 ( 0 ) 0.91 ( 0.06 ) 0.39 ( 0.06 )
2000 0.53 ( 0.09 ) 1.41 ( 0.01 ) 0.82 ( 0.09 ) 0.45 ( 0.07 )
4000 0.64 ( 0.13 ) 1.41 ( 0 ) 0.76 ( 0.08 ) 0.53 ( 0.1 )

XI

100 0.39 ( 0.1 ) 1.38 ( 0.04 ) 0.81 ( 0.32 ) 0.39 ( 0.09 )
1000 0.7 ( 0.17 ) 1.41 ( 0 ) 1.03 ( 0.12 ) 0.7 ( 0.18 )
2000 0.88 ( 0.17 ) 1.41 ( 0.01 ) 1.1 ( 0.08 ) 0.86 ( 0.17 )
4000 1.01 ( 0.17 ) 1.41 ( 0 ) 1.17 ( 0.08 ) 1.01 ( 0.17 )

XII

100 0.36 ( 0.06 ) 1.37 ( 0.06 ) 1.18 ( 0.04 ) 0.31 ( 0.05 )
1000 0.63 ( 0.11 ) 1.41 ( 0.02 ) 1.17 ( 0.04 ) 0.52 ( 0.08 )
2000 0.8 ( 0.14 ) 1.41 ( 0 ) 1.14 ( 0.04 ) 0.66 ( 0.11 )
4000 1.03 ( 0.09 ) 1.41 ( 0 ) 1.1 ( 0.05 ) 0.92 ( 0.11 )

XIII

100 0.51 ( 0.12 ) 1.93 ( 0.05 ) 0.88 ( 0.25 ) 1.11 ( 0.04 )
1000 0.55 ( 0.09 ) 1.99 ( 0.02 ) 1.11 ( 0.09 ) 1.12 ( 0.04 )
2000 0.56 ( 0.11 ) 2 ( 0.01 ) 1.2 ( 0.08 ) 1.14 ( 0.04 )
4000 0.61 ( 0.12 ) 2 ( 0 ) 1.3 ( 0.05 ) 1.15 ( 0.04 )

Table 15

Estimation error: Σ = Σ2 and ρ = 0.2.

p Lasso-SIR DT-SIR M-Lasso Lasso

X

100 0.19 ( 0.03 ) 1.23 ( 0.16 ) 0.28 ( 0.04 ) 0.19 ( 0.03 )
1000 0.24 ( 0.04 ) 1.41 ( 0.01 ) 0.61 ( 0.03 ) 0.26 ( 0.04 )
2000 0.24 ( 0.04 ) 1.41 ( 0 ) 0.68 ( 0.03 ) 0.27 ( 0.04 )
4000 0.26 ( 0.04 ) 1.41 ( 0 ) 0.73 ( 0.03 ) 0.3 ( 0.04 )

XI

100 0.34 ( 0.09 ) 1.27 ( 0.16 ) 0.59 ( 0.17 ) 0.35 ( 0.09 )
1000 0.42 ( 0.09 ) 1.41 ( 0 ) 1.16 ( 0.04 ) 0.44 ( 0.11 )
2000 0.44 ( 0.12 ) 1.41 ( 0 ) 1.21 ( 0.03 ) 0.46 ( 0.11 )
4000 0.47 ( 0.12 ) 1.41 ( 0 ) 1.24 ( 0.03 ) 0.49 ( 0.12 )

XII

100 0.25 ( 0.04 ) 1.24 ( 0.16 ) 0.3 ( 0.04 ) 0.22 ( 0.02 )
1000 0.32 ( 0.04 ) 1.4 ( 0.01 ) 0.62 ( 0.03 ) 0.32 ( 0.03 )
2000 0.33 ( 0.04 ) 1.41 ( 0 ) 0.71 ( 0.03 ) 0.35 ( 0.04 )
4000 0.36 ( 0.05 ) 1.41 ( 0 ) 0.78 ( 0.03 ) 0.38 ( 0.04 )

XIII

100 0.4 ( 0.07 ) 1.75 ( 0.16 ) 0.68 ( 0.1 ) 1.06 ( 0.02 )
1000 0.43 ( 0.08 ) 1.99 ( 0.02 ) 1.21 ( 0.04 ) 1.09 ( 0.03 )
2000 0.47 ( 0.09 ) 2 ( 0 ) 1.31 ( 0.03 ) 1.1 ( 0.03 )
4000 0.48 ( 0.1 ) 2 ( 0 ) 1.37 ( 0.03 ) 1.11 ( 0.03 )
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Table 16

Compare Lasso-SIR and Sparse SIR: Σ = Σ1, ρ = 0, n = 1, 000.

Setting p Lasso-SIR Sparse SIR Setting Lasso-SIR Sparse SIR

I
100 0.09 ( 0.02 ) 0.16 ( 0.013 )

II
0.05 ( 0.01 ) 0.06 ( 0.006 )

1000 0.12 ( 0.02 ) 1.41 ( 0.001 ) 0.09 ( 0.01 ) 1.41 ( 0.001 )
2000 0.14 ( 0.02 ) 1.41 ( 0 ) 0.12 ( 0.02 ) 1.41 ( 0 )

III
100 0.17 ( 0.03 ) 0.35 ( 0.027 )

IV
0.35 ( 0.03 ) 0.39 ( 0.031 )

1000 0.27 ( 0.21 ) 1.43 ( 0.1 ) 0.59 ( 0.2 ) 1.44 ( 0.113 )
2000 0.35 ( 0.29 ) 1.45 ( 0.146 ) 0.72 ( 0.24 ) 1.46 ( 0.14 )

V
100 0.1 ( 0.02 ) 0.22 ( 0.016 )

VI
0.15 ( 0.03 ) 0.39 ( 0.021 )

1000 0.12 ( 0.03 ) 0.22 ( 0.016 ) 0.18 ( 0.06 ) 2 ( 0.002 )
2000 0.15 ( 0.09 ) 1.42 ( 0.032 ) 0.22 ( 0.13 ) 2 ( 0.045 )

VII
100 0.15 ( 0.03 ) 0.59 ( 0.033 )

VIII
0.87 ( 0.28 ) 0.45 ( 0.024 )

1000 0.18 ( 0.06 ) 2 ( 0.002 ) 0.6 ( 0.3 ) 1.92 ( 0.128 )
2000 0.22 ( 0.13 ) 2 ( 0.045 ) 0.78 ( 0.3 ) 1.88 ( 0.161 )

VIV
100 0.87 ( 0.28 ) 0.96 ( 0.149 )
1000 0.6 ( 0.3 ) 1.92 ( 0.128 )
2000 0.78 ( 0.3 ) 1.88 ( 0.161 )

Table 17

Compare Lasso-SIR and Sparse SIR: Σ = Σ1, ρ = 0.3, n = 1, 000.

Setting p Lasso-SIR Sparse SIR Setting Lasso-SIR Sparse SIR

I
100 0.1 ( 0.02 ) 0.18 ( 0.015 )

II
0.06 ( 0.01 ) 0.07 ( 0.006 )

1000 0.15 ( 0.02 ) 1.41 ( 0.001 ) 0.11 ( 0.02 ) 1.41 ( 0.001 )
2000 0.18 ( 0.02 ) 1.41 ( 0.001 ) 0.14 ( 0.02 ) 0 ( 0 )

III
100 0.19 ( 0.03 ) 0.36 ( 0.031 )

IV
0.38 ( 0.04 ) 0.45 ( 0.042 )

1000 0.29 ( 0.17 ) 1.43 ( 0.082 ) 0.56 ( 0.13 ) 1.43 ( 0.062 )
2000 0.35 ( 0.27 ) 1.41 ( 0.001 ) 0.65 ( 0.21 ) 1.45 ( 0.12 )

V
100 0.1 ( 0.02 ) 0.24 ( 0.02 )

VI
0.19 ( 0.04 ) 0.52 ( 0.037 )

1000 0.14 ( 0.03 ) 1.41 ( 0.001 ) 0.24 ( 0.05 ) 2 ( 0.001 )
2000 0.17 ( 0.04 ) 1.41 ( 0.002 ) 0.26 ( 0.11 ) 2 ( 0.024 )

VII
100 0.28 ( 0.04 ) 0.61 ( 0.039 )

VIII
0.22 ( 0.03 ) 0.45 ( 0.027 )

1000 0.41 ( 0.12 ) 2 ( 0.033 ) 0.3 ( 0.04 ) 2 ( 0.001 )
2000 0.58 ( 0.29 ) 2.03 ( 0.091 ) 0.34 ( 0.14 ) 2.01 ( 0.05 )

VIV
100 0.31 ( 0.07 ) 0.77 ( 0.042 )
1000 0.35 ( 0.1 ) 2 ( 0.001 )
2000 0.43 ( 0.24 ) 2.02 ( 0.08 )
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Table 18

Compare Lasso-SIR and Sparse SIR: Σ = Σ1, ρ = 0.5, and n = 1, 000.

Setting p Lasso-SIR Sparse SIR Setting Lasso-SIR Sparse SIR

I
100 0.12 ( 0.02 ) 0.21 ( 0.019 )

II
0.07 ( 0.01 ) 0.08 ( 0.008 )

1000 0.18 ( 0.02 ) 1.41 ( 0.001 ) 0.12 ( 0.02 ) 1.41 ( 0.001 )
2000 0.2 ( 0.02 ) 1.41 ( 0 ) 0.15 ( 0.02 ) 1.41 ( 0.001 )

III
100 0.21 ( 0.03 ) 0.4 ( 0.037 )

IV
0.46 ( 0.05 ) 0.55 ( 0.05 )

1000 0.28 ( 0.04 ) 1.41 ( 0.002 ) 0.62 ( 0.22 ) 1.44 ( 0.146 )
2000 0.35 ( 0.17 ) 1.43 ( 0.07 ) 0.71 ( 0.34 ) 1.49 ( 0.217 )

V
100 0.12 ( 0.02 ) 0.28 ( 0.024 )

VI
0.26 ( 0.06 ) 0.68 ( 0.047 )

1000 0.2 ( 0.03 ) 1.41 ( 0.001 ) 0.33 ( 0.07 ) 2 ( 0.001 )
2000 0.38 ( 0.34 ) 1.47 ( 0.145 ) 0.36 ( 0.11 ) 2 ( 0.024 )

VII
100 0.32 ( 0.04 ) 0.68 ( 0.046 )

VIII
0.25 ( 0.03 ) 0.5 ( 0.034 )

1000 0.6 ( 0.28 ) 2.02 ( 0.113 ) 0.34 ( 0.05 ) 2 ( 0.002 )
2000 0.98 ( 0.44 ) 2.08 ( 0.206 ) 0.54 ( 0.35 ) 2.04 ( 0.12 )

VIV
100 0.43 ( 0.06 ) 0.94 ( 0.053 )
1000 0.47 ( 0.1 ) 2 ( 0.001 )
2000 0.58 ( 0.25 ) 2.03 ( 0.101 )

Table 19

Compare Lasso-SIR and Sparse SIR: Σ = Σ1, ρ = 0.8, and n = 1, 000.

Setting p Lasso-SIR Sparse SIR Setting Lasso-SIR Sparse SIR

I
100 0.18 ( 0.02 ) 0.34 ( 0.032 )

II
0.1 ( 0.01 ) 0.13 ( 0.013 )

1000 0.24 ( 0.02 ) 1.41 ( 0.001 ) 0.16 ( 0.01 ) 1.41 ( 0.002 )
2000 0.27 ( 0.03 ) 1.41 ( 0 ) 0.19 ( 0.02 ) 1.41 ( 0 )

III
100 0.28 ( 0.04 ) 0.59 ( 0.048 )

IV
0.74 ( 0.07 ) 0.95 ( 0.069 )

1000 0.45 ( 0.08 ) 1.41 ( 0.001 ) 0.75 ( 0.07 ) 1.41 ( 0 )
2000 0.54 ( 0.11 ) 1.41 ( 0 ) 0.79 ( 0.16 ) 1.44 ( 0.102 )

V
100 0.19 ( 0.04 ) 0.44 ( 0.04 )

VI
0.52 ( 0.12 ) 1.1 ( 0.049 )

1000 0.31 ( 0.1 ) 1.42 ( 0.032 ) 0.79 ( 0.11 ) 2 ( 0.027 )
2000 0.5 ( 0.34 ) 1.46 ( 0.135 ) 0.96 ( 0.2 ) 2.01 ( 0.1 )

VII
100 0.8 ( 0.34 ) 1.13 ( 0.138 )

VIII
0.35 ( 0.12 ) 0.72 ( 0.093 )

1000 1.09 ( 0.2 ) 1.82 ( 0.136 ) 1 ( 0.41 ) 2.06 ( 0.176 )
2000 1.13 ( 0.19 ) 1.83 ( 0.165 ) 1.14 ( 0.36 ) 2.02 ( 0.175 )

VIV
100 0.78 ( 0.1 ) 1.46 ( 0.052 )
1000 0.91 ( 0.12 ) 2.01 ( 0.04 )
2000 0.97 ( 0.14 ) 2.02 ( 0.061 )
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Table 20

Compare Lasso-SIR and Sparse SIR: Σ = Σ2, ρ = 0.2, and n = 1, 000.

Setting p Lasso-SIR Sparse SIR Setting Lasso-SIR Sparse SIR

I
100 0.13 ( 0.03 ) 0.18 ( 0.014 )

II
0.1 ( 0.02 ) 0.07 ( 0.006 )

1000 0.33 ( 0.25 ) 1.45 ( 0.1 ) 0.25 ( 0.06 ) 1.41 ( 0.001 )
2000 0.3 ( 0.16 ) 1.43 ( 0.063 ) 0.3 ( 0.1 ) 1.41 ( 0 )

III
100 0.24 ( 0.12 ) 0.39 ( 0.102 )

IV
0.54 ( 0.05 ) 0.64 ( 0.05 )

1000 0.55 ( 0.33 ) 1.5 ( 0.148 ) 0.63 ( 0.05 ) 1.41 ( 0 )
2000 0.59 ( 0.33 ) 1.41 ( 0.01 ) 0.64 ( 0.05 ) 1.41 ( 0 )

V
100 0.23 ( 0.29 ) 0.33 ( 0.259 )

VI
0.27 ( 0.21 ) 0.56 ( 0.129 )

1000 1.03 ( 0.24 ) 1.61 ( 0.154 ) 1.01 ( 0.01 ) 1.73 ( 0.001 )
2000 1.09 ( 0.2 ) 1.61 ( 0.156 ) 1.01 ( 0.01 ) 1.73 ( 0 )

VII
100 0.39 ( 0.24 ) 0.69 ( 0.149 )

VIII
0.24 ( 0.03 ) 0.47 ( 0.027 )

1000 1.03 ( 0.06 ) 1.73 ( 0.027 ) 0.97 ( 0.21 ) 1.76 ( 0.081 )
2000 1.04 ( 0.02 ) 1.74 ( 0.071 ) 1.03 ( 0.08 ) 1.74 ( 0.062 )

VIV
100 1 ( 0.12 ) 1.07 ( 0.064 )
1000 1.03 ( 0.01 ) 1.73 ( 0.001 )
2000 1.03 ( 0.01 ) 1.73 ( 0 )
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