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Case-control mother–offspring pair design has been widely adopted for
studying early-life and women’s pregnancy health. It allows assessment of
pre- and perinatal environmental risk factors as well as both maternal and off-
spring genetic risk factors. Data arising from this design is routinely analyzed
using standard prospective logistic regression. Such data has two unique fea-
tures: the offspring genotypes are not correlated with maternal environmental
risk factors given maternal genotypes, and offspring and maternal genotypes
are related through mendelian transmission. In this work, built upon a novel
regression model relating maternal genotypes to environmental risk factors,
we proposed a novel retrospective likelihood method that effectively utilized
the two data features to increase statistical efficiency for detecting maternal
and offspring genetic effects. The inference procedure was based on a pro-
file likelihood derived using the Lagrange multiplier method, but we replaced
the multipliers with their large sample limits to enable highly efficient and
computationally stable estimation. We showed that our proposed estimates of
odds ratio association parameters are consistent and asymptotically normally
distributed and demonstrated the finite sample performance through exten-
sive simulation studies and application to genetic association studies of birth
weight and gestational diabetes mellitus.

1. Introduction. Emerging evidence suggests that obstetrical and early life pheno-
types can be altered by environmental factors and genes of both the mother and offspring
(Kanayama et al. (2002), Saftlas, Beydoun and Triche (2005), Wangler et al. (2005), Goddard
et al. (2007)). For example, the Jerusalem Perinatal Study (JPS; Harlap et al. (2007)) recently
reported that maternal prepregnancy BMI and both maternal and offspring genes may be
implicated in the risk of low birth weight. Because offspring genotypes may affect mater-
nal physiology during pregnancy (Petry, Ong and Dunger (2007)), case-control studies of
maternal phenotypes, such as premature birth, preeclampsia and gestational diabetes melli-
tus (GDM), have started to routinely collect risk factor information from both mothers and
offspring. Cases and controls can be mothers, if the phenotype is maternal, or offspring, if
the phenotype is for an early-life condition. Standard prospective logistic regression analy-
sis (Prentice and Pyke (1979)) can be applied to analyze such case-control mother–offspring
pair data. Alternative statistical methods have recently become available that have increased
efficiency for estimating odds ratio (OR) association parameters. In a loglinear model frame-
work, efficiency improvement was achieved through incorporation of family information,
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including mendelian inheritance between maternal and offspring genotypes, genetic mating
symmetry and parental allelic exchangeability (Shi et al. (2008)). A retrospective likelihood
method was developed to fit logistic regression models of maternal-offspring genetic effects
with incorporation of mendelian inheritance and Hardy–Weinberg equilibrium (HWE) (Chen,
Zheng and Wilson (2009)) and later extended to allow assessment of environmental effects
and gene-environment interactions through a semiparametric maximum likelihood estima-
tion (MLE) method (Chen, Lin and Hochner (2012)). Improvement in efficiency for the
semiparametric MLE method was also due to an additional constraint reflecting that envi-
ronmental factors from the maternal source are naturally conditionally independent of the
offspring genotype given the maternal genotype. The power for testing genetic and gene-
environment interaction effects can be greatly improved by this method. This semiparametric
MLE method requires enumeration of case and control mother–offspring pairs in the cohort
from which subjects were sampled, and it can have numerical difficulty because maximiza-
tion of the likelihood involves escape of saddle points, which is often unsuccessful.

In the current work we propose a novel restrospective likelihood method for analyzing
case-control mother–offspring pair data. Our method is statistically efficient, computation-
ally stable and widely applicable to any case-control studies without requiring that cases and
controls be selected from a cohort that investigators can enumerate. The rest of the paper is
organized as follows. In Section 2 we describe a new retrospective likelihood function for
case-control mother–offspring pair data under a logistic penetrance model. A novel estima-
tion and testing method is developed using the profile likelihood method. We illustrate the
proposed method through simulation studies in Section 3 and apply it to two real datasets in
Section 4. We make some concluding remarks in Section 5.

2. Methods.

2.1. Notation, model and prospective likelihood. Let Y denote case-control status (Y =
1: case; Y = 0: control), X a vector of p risk factors (can include some covariates), Go

the offspring genotype of an autosomal single nucleotide polymorphism (SNP) and Gm the
maternal genotype of the same SNP. Let A and a denote the two alleles of the SNP with a

denoting the minor allele with frequency ≤ 0.5. Then, the genotype can be coded using two
dummy variables. The first takes value 1 if the genotype is Aa and 0 otherwise, and the second
one takes 1 if the genotype is aa and 0 otherwise. When a mode of inheritance is assumed,
a genotype can be coded using one single variable. For the additive mode of inheritance, a
genotype is coded as the minor allele count divided by 2 (0 for AA, 0.5 for Aa, and aa for 1).
For the dominant mode of inheritance, a genotype is coded as 1 if at least one copy of a is
present and 0 otherwise. For the recessive mode of inheritance, a genotype is coded as 1 if it is
aa and 0 otherwise. The data available for analysis, denoted as (Yi,G

o
i ,G

m
i ,Xi), is collected

from n1 cases and n0 controls, where subscript i indexes the ith subject (i = 1, . . . , n1 + n0).
Let n denote the total number of subjects, that is, n = n1 + n0. The relationship between Y

and (Go,Gm,X) is described by a logistic penetrance model

(2.1) pr
(
Y = 1|Go,Gm,X

) = expit
{
βT g

(
Go,Gm,X

)}
,

where T denotes the vector transpose, expit(·) is defined as e·/(1 + e·), g(Go,Gm,X) is a
user-specified function of risk factors (Go,Gm,X) and β denotes the vector of regression
parameters. Because the joint effect of risk factors (Go,Gm,X) can be complex, we use a
general functional form g(·). It may be of interest to consider only maternal or offspring
genetic effect. Maternal and offspring genes may interact with each other, and both mater-
nal and offspring genes may modify effects of environmental risk factors. When no mode
of inheritance is assumed, the most general penetrance model can involve four main genetic



effects, four gene-gene interaction effects, p main covariate effects and 4p gene-environment
interactions. Specification of a mode of inheritance effectively reduces the dimension of re-
gression parameters. For the dominant/additive/recessive mode of inheritance, some model
examples of βτ g(Go,Gm,X;β) are given as follows:

M1: βτ g
(
Go,Gm,X

) = β0 + βGoGo + βτ
XX,

M2: βτ g
(
Go,Gm,X

) = β0 + βGmGm + βτ
XX,

M3: βτ g
(
Go,Gm,X

) = β0 + βGoGo + βτ
XX + βτ

GoXGoX,

M4: βτ g
(
Go,Gm,X

) = β0 + βGmGm + βτ
XX + βτ

GmXGmX,

M5: βτ g
(
Go,Gm,X

) = β0 + βGoGo + βGmGm + βτ
XX

+ βτ
GoXGoX + βτ

GmXGmX.

(2.2)

Note that X, GoX and GoX are vectors of the same length since both Go and Gm are
scalars with the mode of inheritance incorporated. Models M1 and M2 involve only main
effects of environmental risk factors and the genotype of only the mother or offspring. Mod-
els M3 and M4 have additional terms for interaction effects between environmental risk
factors and the genotype. Model M5 allows full assessment of the joint effect of mater-
nal and offspring genotypes and their respective interaction with environmental risk factors.
Denote by βG the parameter vector consisting of all genetic related effects, for instance,
βG = (βGo,βGm,βτ

GoX,βτ
GmX)τ in model M5. This work considers efficient estimation of

βG and powerful testing of hypotheses on βG. For example, in model M5 one may test a
global null hypothesis of absence of any genetic effect, βG = 0, or absence of any interaction
effect, (βτ

GoX,βτ
GmX)τ = 0 or absence of the maternal genetic effect, (βGm,βGmX) = 0.

2.2. A novel restrospective likelihood function. We base our inference on maximizing the
retrospective likelihood function

n∏
i=1

pr
(
Go

i ,G
m
i ,Xi |Yi

)
,

under the constraints of external information on phenotype prevalence, pr(Y = 1) = f ,
mendelian relationship between maternal and offspring genotypes Go and Gm and condi-
tional independence between Go and X given Gm, pr(X|Go,Gm) = pr(X|Gm). The second
and third constraints, which reflect unique features of case-control mother–offspring pair
data, were also adopted in Chen, Lin and Hochner (2012). By Bayes’ theorem the inference
problem is equivalent to maximizing the likelihood function

∏n
i=1 pr(Yi,G

o
i ,G

m
i ,Xi)/f un-

der the same constraints. Note that f is specified a priori, so that this likelihood function is
equivalent to

n∏
i=1

pr
(
Yi,G

o
i ,G

m
i ,Xi

)

under the same constraints.
Let πi denote pr(Xi), the probability mass of X placed at the observed value Xi and let

π denote the vector of πi ’s, π = (π1, . . . , πn). The joint probability pr(Go
i ,G

m
i ,Xi) can be

written as

pr
(
Go

i ,G
m
i ,Xi

) = pr
(
Go

i |Gm
i

)
pr

(
Gm

i |Xi

)
πi

under the conditional independence between Go and X given Gm. When the mendelian in-
heritance law and random mating hold in the parental population, the conditional distribution
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TABLE 1
The distribution of the offspring genotype conditional on the

maternal genotype under various modes of inheritance (additive,
dominant and recessive). Here, θ is the MAF, and D = F/(1 − F)

with F being the fixation index parameter

Additive

Go

Gm 0 1
2 1

0 1 − θ θ 0
1
2

1−θ
2

1
2

θ
2

1 0 1 − θ θ

Dominant

Go

Gm 0 1

0 1 − θ θ

1 (1−θ)2

2−θ+D
1 − (1−θ)2

2−θ+D

Recessive

Go

Gm 0 1

0 1 − θ2

1+θ+D
θ2

1+θ+D

1 1 − θ θ

pr(Go
i |Gm

i ) is a function of the MAF θ and fixation index parameter F (Table 1). Here, F

is a measure of deviation from HWE in the maternal population, and F equals zero if and
only if HWE holds. To fully specify our likelihood function, we propose a novel parametric
regression model to quantify the relationship between Gm and X, where Gm adopts the same
numerical coding as above (2.1):

(2.3) pr
(
Gm = k|X) = ξk(θ,F ) exp{kητX)}∑

l ξl(θ) exp{lητX)} .

We will specify function ξk(θ,F ) shortly, and η is a vector of regression parameters. We
call model (2.3) a “double-additive” logistic regression (“daLOG”) model because the loga-
rithm of OR function is additive in both k and X. That is, for an increment �X in X and an
increment �k in k, the OR function

pr(Gm = k + �k|X + �X)pr(Gm = k|X)

pr(Gm = k|X + �X)pr(Gm = k + �k|X)

is equal to exp{�kη
τ�X} which is free of both X and k. The function ξk(θ,F ) is determined

by the MAF θ and fixation index parameter F , and we give the forms of ξk(θ,F ) in Table 2.
For example, under the recessive mode of inheritance, ξ1(θ,F ) = pr(Gm

i = 1) = (1−F)θ2 +
Fθ and ξ0(θ,F ) = pr(Gm

i = 0 or Gm
i = 0.5) = 1 − pr(Gm

i = 1) = 1 − (1 −F)θ2 −Fθ . Note
that the model (2.3) has no intercept, and pr(Gm = k|X = 0) = ξk(θ,F ) = pr(Gm = k). That
is, pr(Gm = k|X = 0) reduces to the marginal probability pr(Gm = k).

Let 	 denote the vector of all unknown model parameters (θ,F,βτ , ητ )τ . The empirical
likelihood function under the above-mentioned constraints can be written as

(2.4) L(	,π) =
n∏

i=1

pr
(
Yi |Go

i ,G
m
i ,Xi

)
pr

(
Go

i |Gm
i

)
pr

(
Gm

i |Xi

)
πi.

In the next subsection we derive the profile likelihood function for 	 and discuss the chal-
lenge in maximizing it to obtain an estimate of 	. Then, we describe a modification to the



 TABLE 2

Specification of ξk(θ,F ) in the daLOG model for various mode of inheritance. Here, θ is the MAF, θ̃ = 1 − θ ,
and F is the fixation index parameter

k = 0 k = 1/2 k = 1

Recessive 1 − (1 − F)θ2 − Fθ – (1 − F)θ2 + Fθ

Additive (1 − F)θ̃2 + F(1 − θ) 2(1 − F)θθ̃ (1 − F)θ2 + Fθ

Dominant (1 − F)θ̃2 + F θ̃ – 1 − (1 − F)θ̃2 − F θ̃

profile likelihood function that leads to a computationally simple but efficient estimation pro-
cedure.

It is noted that the daLOG model is applicable to any genetic mode of inheritance (re-
cessive, additive or dominant) specified at the beginning of Section 2.1. The daLOG model
bears resemblance to the baseline logit (Agresti (2013)) and proportional odds model for a
polytomous outcome, but it is more parsimonious in specifying the effect of X with the “in-
tercept” parameter(s) being a function of the MAF θ . The daLOG model involves one single
log-OR parameter vector η and the MAF θ as a nuisance parameter which can be estimated
by utilizing information from both pr(Gm

i |Xi) and pr(Go
i |Gm

i ). Under the additive mode of
inheritance where k takes values 0, 0.5 and 1, the baseline logit model would involve two
intercept parameters and two log-OR parameter vectors for the X effect, and the proportional
odds model would involve two intercept parameters and one log-OR parameter vector for the
X effect. Therefore, statistical inference on the parameter vector βG is expected to be less
efficient under these two existing models. Under the dominant or recessive mode of inheri-
tance, the daLOG model reduces to a logistic regression model form but with the intercept
being a function of θ . Therefore, our daLOG model can be seen as a generalization of the
conventional logistic regression model for relating Gm and X. As we make clear later, fac-
torization of the nuisance distribution pr(X,Gm) as pr(Gm|X)pr(X) and application of the
daLOG model (2.3) to pr(Gm|X) are the key innovation for us to modify the profile likelihood
function to avoid similar computation difficulty as experienced by the semiparametric MLE
of Chen, Lin and Hochner (2012). Note the latter factorized pr(X,Gm) as pr(X|Gm)pr(Gm)

and kept pr(X|Gm) as nonparametric.

2.3. A semiparametric method based on a modified profile likelihood. Using the La-
grange multiplier method, we first profile π out of the likelihood function L(	,π) given
in (2.4) under the constraint pr(Y = 1) = f . As derived in Appendix A (Zhang et al. (2020)),
the log profile likelihood function of 	 is equal to

(2.5) lp(	) ≡ l(	,λ	),

where l(	,λ) is defined as

l(	,λ) =
n∑

i=1

log pr
(
Yi |Go

i ,G
m
i ,Xi

) +
n∑

i=1

log pr
(
Go

i |Gm
i

) +
n∑

i=1

log pr
(
Gm

i |Xi

)

−
n∑

i=1

log
[
n
{
1 + λ

(
Hi(	) − f

)}]
,

and λ	 is the solution to the following equation with respect to λ,

(2.6)
n∑

i=1

Hi(	) − f

1 + λ(Hi(	) − f )
= 0.



Here,

Hi(	) = ∑
j

∑
k

{
pr

(
Y = 1|Go = j,Gm = k,Xi

)

× pr
(
Go = j |Gm = k

)
pr

(
Gm = k|Xi

)}
.

Note that equation (2.6) is equivalent to the “score” equation

∂l(	,λ)

∂λ
= 0.

Thus, the maximum profile likelihood estimator of 	 can be obtained by jointly solving the
“score” equations

(2.7)
∂l(	,λ)

∂λ
= 0 and

∂l(	,λ)

∂	
= 0.

However, l(	,λ) is not a true log likelihood function since λ is a constructed parameter.
In the special scenario of standard case-control genetic association studies where no genetic
data from family members is available, the current profile likelihood function (2.5) coincides
with that derived in Zhang et al. (2018) which was shown to be convex with respect to λ.
In general, it is computationally unstable to solve the “score” equations since the solution
is a saddle point of l(	,λ). To resolve the numerical problem, we propose to modify the
profile likelihood function (2.5) by replacing λ	 with its limiting value, λ0, following an idea
developed in Zhang et al. (2018). Denote by 	0 the true value of 	. The “true” value λ0 is
defined as the solution to the equations

(2.8) E

[
∂l(	,λ)

∂	

]∣∣∣∣
	=	0,λ=λ0

= 0, E

[
∂l(	,λ)

∂λ

]∣∣∣∣
	=	0,λ=λ0

= 0.

It turns out that λ0 has a closed form,

(2.9) λ0 = n1

nf
− n0

n(1 − f )
.

The readers are referred to Appendix B (Zhang et al. (2020)) for the detailed proof. These
results were obtained by extending the proof of Theorem 1 in Zhang et al. (2018), where the
maternal genotype Gm was not involved and Go and X were assumed to be independent.
Specifically, the current proof needed to account for the correlation between maternal and
offspring genotypes and between Gm and X.

The two equations in (2.8) are essential for deriving a computationally simple and sta-
ble inference method involving λ0, as stated below. Note that the second equation in (2.8)
corresponds to (2.6) which holds under the likelihood function (2.4). On the other hand, no
analogue to (2.6) exists that can make (2.8) hold when the nuisance distribution pr(X,Gm)

is factorized into pr(X|Gm)pr(Gm) as in Chen, Lin and Hochner (2012). This theoretically
motivated the daLOG model and the corresponding likelihood function (2.4). We define the
modified profile likelihood function as

(2.10) lmp(	) := l(	,λ0),

where λ(	) in (2.5) was replaced by λ0, the limit value of λ(	). We propose a new estimator
of 	, denoted by 	̂p, by solving the corresponding score equation

(2.11)
∂lmp(	)

∂	
= 0.



Because 	 is of finite dimension, 	̂p can be obtained by simply using the Newton–Raphson
algorithm. Its asymptotic properties can be established using the standard large sample theory
for Z-statistic. Define matrices A(	0) and �(	0) as

A(	0) = 1

n
E

[
∂2lmp(	)

∂	∂	τ

]∣∣∣∣
	=	0

and �(	0) = 1

n
cov

(
∂lmp(	)

∂	

)∣∣∣∣
	=	0

.

We can show that with a probability tending to one as n → ∞, a solution 	̂p to equation

(2.11) exists, and 	̂p is a consistent estimator of 	 (i.e., 	̂p
P→ 	). In addition, 	̂p is asymp-

totically normally distributed,
√

n(	̂p − 	)
D→ N

{
0,A−1(	0)�(	0)A

−1(	0)
}
.

Obviously, A(	0) can be consistently estimated by the empirical counterpart

Â := 1

n

∂2lmp(	)

∂	∂	τ

∣∣∣∣
	=	̂

.

Note that ∂lmp(	)/∂	 is the summation of two sets of independent random vectors sepa-
rately for the case and control mother–offspring pairs, and the random vectors in each set are
identically distributed. Therefore, �(	0) can be consistently estimated by �̂, the summa-
tion of two corresponding sample variance-covariance matrices multiplied by the respective
numbers of cases and controls divided by the total sample size n. Now, the limiting vari-
ance of

√
n	̂p can be consistently estimated by Â−1(	̂)�̂(	̂)Â−1(	̂), and Wald tests can

be consequently constructed for testing the genetic effects. Furthermore, following Zhang
et al. (2018), we can show that 	̂ has the same efficiency as the MLE that maximizes the
profile likelihood function (2.5) (Zhang et al. (2020), Appendix C).

Our method exploited a natural fact in studies of obstetrical and early-life outcomes where
offspring genotypes are uncorrelated with maternal environmental risk factors given mater-
nal genotypes. In line with the literature on exploiting gene-environment independence to
increase statistical efficiency for assessing gene-environment interaction effects (Piegorsch,
Weinberg and Taylor (1994), Umbach and Weinberg (1997), Chatterjee and Carroll (2005)),
a special case of our method is to enforce independence also between maternal genotypes and
environmental risk factors. This can be achieved by simply setting η = 0 in the daLOG model.
While this additional constraint may lead to further efficiency improvement, the correspond-
ing estimator is biased when this additional constraint is not satisfied (Chatterjee and Carroll
(2005)). We will assess the bias and variance tradeoff of this estimator below in simulation
studies.

2.4. Implementation of the proposed method. We have developed an R package called
“CCMO,” which is abbreviation for “case-control mother–offspring,” to implement our new
method. CCMO has been made available at GitHub (http://github.com/zhanghfd/CCMO), a
free web-based Git repository hosting service. CCMO provides three main functions. The
first function, singleSNP, estimates and/or tests unknown parameters (log-odds ratios β

and η, MAF θ and fixation index parameter F ) for a single SNP; The second function, Om-
nibusTest, simultaneously tests multiple effects with a Wald statistic; The third function,
multipleSNP, analyzes multiple SNPs by allowing utilization of multiple CPU cores to
reduce computation time. The input of CCMO includes genotypes of mother–offspring pairs,
case-control status of mothers or offspring and covariates of the mother. Users can flexibly
specify the design matrices associated with the penetrance function and the daLOG model.
Three modes of inheritance (additive, dominant and recessive) can be incorporated. HWE
(F = 0) and/or independence between genotypes and covariates (η = 0) can be enforced in
this R package.

http://github.com/zhanghfd/CCMO


3. Simulation studies. For convenience, we henceforth refer to our modified profile
likelihood method under model (2.3) as “DEP,” where “DEP” is abbreviation for “depen-
dence” to emphasize that our method allows dependence between maternal genotype Gm

and environmental risk factors X. Similarly, we refer to the semiparametric maximum likeli-
hood method proposed by Chen, Lin and Hochner (2012) as “DEP-CLH” and to an analogue
of DEP with an additional constraint of independence between Gm and X (i.e., set η = 0 in
the daLOG model) as “IND” (abbreviation for “independence”). DEP and DEP-CLH are not
strictly comparable, because one requires known phenotype prevalence and the other requires
enumeration of the underlying sampling cohort. But some comparison would inform pros and
cons of our method related to specification of the daLOG model and modification of the pro-
file likelihood. To this end, we here consider DEP-CLH as a slightly modified version of the
Chen, Lin and Hochner (2012) method as follows. Consider case-control mother–offspring
pair data collected from an enumerated cohort for which the case-control status is known for
all subjects in a prospective cohort of size N (N > n). The likelihood function in Chen, Lin
and Hochner (2012) was written as

(3.1)

{
n∏

i=1

pr
(
Yi |Go

i ,G
m
i ,Xi

)
pr

(
Xi |Gm

i

)
pr

(
Go

i ,G
m
i

)}

× {
pr(Y = 0)M0 pr(Y = 1)M1

}
,

where M1 and M0 denote the respective number of cases and controls in the cohort who
were not included in the case-control sample (M1 + M0 = N − n). Note that pr(Y = 1) =
1 − pr(Y = 0) is related to the unknown parameters through the relationship pr(Y = 1) =∑

j,k,l pr(Y = 1|Go = j,Gm = k,X = l)pr(X = l|Gm = k)pr(Go = j,Gm = k) by impos-
ing conditional independence between Go and X given Gm. In this model T − 1 unknown
parameters are involved for each possible Gm value, where T is the number of distinct values
of X1, . . . ,Xn which can be large. In our method DEP, under the daLOG model, the total
number of nuisance parameters related to the distribution pr(Gm,X) is reduced to T − 1
plus the dimension of η. DEP-CLH maximized (3.1) using the same data as DEP. But, in the
absence of an enumerated cohort, it specified a large number for N , say, 20k, and the total
number of cases in the “cohort” as Nf .

In all simulation scenarios we also considered the standard prospective logistic regression
analysis as implemented in the R function “glm” which is referred to as “LOGIT.” LOGIT
used the same design matrix as DEP. When the phenotype is on the health status of the off-
spring and no covariates are involved, the method implemented in the standalone software
EMIM (version 3.22), which was designed for evaluating maternal, imprinting, and inter-
action genetics effects using multinomial modelling (Ainsworth et al. (2011a), Howey and
Cordell (2012)), can also be used to analyze case-control mother–offspring pair data. Hap-
lin, an R package, can also be used to detect the above effects based on a log-linear model
(Gjessing and Lie (2006)). We note that EMIM and Haplin have comparable powers in detect-
ing child and mother genetic effects through extensive simulations (Gjerdevik et al. (2019)).
EMIM has been more often employed in practice, and it can be considerably faster than Hap-
lin as the former was written in FORTRAN 77 while the latter was written in R. We therefore
compared DEP with EMIM for testing main and interactive genetic effects, but EMIM can-
not be applied to test gene-environment interactions due to lack of capacity to incorporate
covariates.

In Section 3.1 results from a small-scale simulation study were presented for demonstrat-
ing the advantage of DEP. In Section 3.2 extensive simulation results were presented on the
performance of DEP relative to IND and LOGIT. In Section 3.3 DEP was compared with
EMIM in the absence of maternal covariates. In all simulation scenarios data were generated



under HWE (fixation index parameter F = 0) and each of the three modes of inheritance.
HWE and correctly specified mode of inheritance and disease prevalence were implemented.
Section 3.4 presented results on the robustness of DEP with respect to misspecification of the
mode of inheritance, phenotype prevalence and deviation from HWE (F > 0).

3.1. The performance of DEP relative to DEP-CLH. We first compared DEP and
DEP-CLH in terms of bias, statistical efficiency, robustness to mis-specification of model
pr(X,Gm,Gc) and computation feasibility. Phenotype data Y was generated from model
M5, where both genotypes were coded as the minor allele count divided by 2. We adjusted
the intercept parameter in the penetrance model so that the population prevalence f was equal
to 0.01 and fixed the MAF θ to be 0.2. A single environmental risk factor X was used. X was
related to the maternal genotype Gm through either the daLOG model (2.3) with η = log(3.0)

and X ∼ N(0,1) or the linear model

(3.2) X = η × {
Gm − E

(
Gm)} + e,

where the error term e is a standard normal random variable independent of Gm. We centered
Gm at its mean and, consequently, X at zero in model (3.2) to reduce potential bias in the
estimation of any considered method due to multicollinearity. Here, the linear model (3.2)
guarantees that nonparametric specification of the conditional distribution of X, Pr(X|Gm),
conforms with the model required by DEP-CLH but not with the daLOG model required
by DEP. On the other hand, the daLOG model conforms with the conditional distribution of
Gm, Pr(Gm|X), required by DEP but not with the model required by DEP-CLH. Our setup
therefore permitted evaluation of robustness of the two methods with respect to misspecifying
the relationship between X and Gm. The correlation between Gm and X characterized by η

was set to be log(1.2) or log(3), mimicking moderate or strong association, respectively.
The same penetrance model as that for generating case-control status Y was adopted. We
generated a population of 107 mother–offspring pairs, from which 500 datasets with each
consisting of n1 = 1000 cases and n0 = 1000 controls were selected. The true prevalence
of Y , f = 0.01, was assumed known a priori and fixed in all subsequent analyses, except
in the sensitivity study latter. To implement DEP-CLH, we set cohort size N artificially as
200,000 and specified the total numbers of ungenotyped case and control offspring as M1 =
f N − n1 = 1000 and M0 = (1 − f )N − n0 = 197,000, respectively.

Among the 500 repetitions, DEP-CLH failed to converge for 13 datasets when data were
generated under the linear model and three when data were generated under the daLOG model
(η = log(3), nonzero genetic effects). DEP always converged and at a much faster rate. It took
a laptop with a 2.29 GHz CPU no more than one second on average for DEP analyzing each
simulated dataset, compared with 89 seconds for DEP-CLH. Table 3 and Table S1 (Zhang
et al. (2020)) summarize the estimates. With moderate association between Gm and X (Ta-
ble S1, Zhang et al. (2020)), the estimation biases of DEP were minor even if the Gm vs.
X model was misspecified. DEP was comparable with DEP-CLH under model (2.3). With
strong association (Table 3) the performance of DEP and DEP-CLH appeared to depend on
the underlying model that generated data. Under the linear model DEP was slightly biased
in regression parameter estimates, and the inflation of type-I error rates was minor. On the
other hand, the empirical standard error of DEP-CLH (“SE”) was visibly larger than the es-
timated one (“SEE”) when the genetic effect was not zero, indicating that the algorithm for
DEP-CLH might have difficulty in convergence in this situation. Under the daLOG model
DEP had nearly unbiased estimates and well controlled type-I error rates, but DEP-CLH ap-
peared to have large biases, inflated type-I error rates and sometimes lower power, especially
for the interaction parameter. In all situations DEP had smaller standard errors. In summary,
DEP was more efficient than DEP-CLH in terms of both increased computation speed and



reduced standard error. DEP was much more robust to misspecification of the distribution
pr(Gm,Go,X). DEP-CLH may experience computation difficulty. We therefore did not con-
sider DEP-CLH further in the simulation study.

3.2. The performance of DEP relative to IND and LOGIT. We then assessed the per-
formance of DEP and IND with respect to bias, statistical efficiency, type-I error rate and
power for testing genetic effects and assessing robustness with respect to misspecification of
phenotype prevalence f . We also included results from LOGIT for comparison. Data were
generated similarly as above, except that the daLOG model (2.3) was used to generate Gm

and that all five penetrance models M1∼M5 were considered. The log-OR parameter for X,
βX , was fixed at log(1.5), and all the other parameters were set to be 0 under the null hypoth-
esis or log(1.2) under the alternative hypothesis. We used the same coding for Gm in (2.3) as
in the penetrance model, setting η equal to zero or log(3.0) corresponding to independence or
strong correlation between Gm and X. We fixed phenotype prevalence f at 0.01 by adjusting
the intercept parameter β0 under each of the 2 × 3 × 2 × 5 = 60 parameter combinations. We
analyzed each simulated dataset using all three methods.

Table 4 includes estimation bias and efficiency under the additive mode of inheritance,
where Gm and Go were independent of X. Results under the dominant and recessive modes
of inheritance were similar (not shown). The estimation bias (“BIAS”) for both DEP and IND
was virtually zero, the mean standard error estimates (“SEE”) was close to the empirical stan-
dard error (“SE”) and the coverage probabilities of the 95% confidence intervals (“CP”) were
all close to the nominal level. DEP and IND had nearly the same efficiency for estimating
genetic main effects, with asymptotic variance smaller than LOGIT by 20%∼ 36% across
the five penetrance models. For estimating the interaction effect between Gm and X, βGmX ,
the asymptotic variance of IND, was smaller than that of DEP by 53% when Go was not
involved in the penetrance model (model M4). Under other models IND and DEP had nearly
the same efficiency for estimating interaction parameters βGmX and βGoX , although IND was
slightly more efficient. Compared with LOGIT, IND and DEP had the largest efficiency gain
for estimating βGoX , with variance reduced by 50%∼60%. Results were largely similar when
log-ORs for all genetic effects were equal to zero (Table S2, Zhang et al. (2020)). When Gm

and X were correlated, the averaged estimates by DEP remained close to the true values and
had a much smaller variance than LOGIT, but IND appeared to be biased (Tables S3 and S4,
Zhang et al. (2020)).

Table 5 presents type I error rate and power for testing the joint genetic effect (H0 : βG = 0)
under additive mode of inheritance at the 0.05 significance level. DEP and LOGIT maintained
the nominal type-I error rate in all situations. But IND had dramatically inflated type-I error
rates when Gm and X were correlated. DEP was more powerful than LOGIT in all situations,
with the maximum power difference 26.7% when the combined effect of Go and Go ×X was
tested (model M3). When Gm and X were independent, IND was generally more powerful
than DEP, with the maximum power difference being 23.8% under model M4 where the
combined effects of Gm and Gm × X were tested. When the recessive or dominant mode of
inheritance was applied (Tables S5 and S6, Zhang et al. (2020)), the power improvement of
DEP over LOGIT became slightly larger, particularly for testing the main effect of Go under
model M1.

In the previous simulation studies the MAF θ was fixed at 0.2, and the sample size was
2000. We conducted additional simulations with a smaller MAF or a smaller sample size.
Table S7 (Zhang et al. (2020)) displays type-I error rates and power for θ = 0.1. The results
are similar as before, except that DEP is slightly conservative (the minimum type-I error rate
= 0.029). The conservative results might be due to slower weak convergence of the modified
MLE when the MAF is small. Table S8 (Zhang et al. (2020)) displays some test results with a
sample size of 400 (200 cases plus 200 controls), which exhibits a similar pattern as Table S7,
except that the power became lower as expected.



TABLE 3
Estimation results for comparing DEP and DEP-CLH with strong association between maternal genotype and covariate (additive mode of inheritance, f = 0.01, θ = 0.2,

η = log(3))

DEPa DEP-CLHb

Gm ∼ Xc log(OR) Trued Biase SEf SEEg CPh Poweri Biase SEf SEEg CPh Poweri

The linear model (3.2) βGo 0.000 0.055 0.164 0.159 0.932 0.068 −0.021 0.166 0.157 0.939 0.061
βGm 0.000 −0.069 0.167 0.161 0.924 0.076 0.027 0.179 0.172 0.933 0.067
βGoX 0.000 −0.004 0.133 0.132 0.950 0.050 0.002 0.137 0.130 0.935 0.065
βGmX 0.000 0.006 0.164 0.160 0.946 0.054 −0.003 0.177 0.167 0.949 0.051

βGo 0.182 0.045 0.159 0.157 0.936 0.316 −0.030 0.161 0.154 0.909 0.183
βGm 0.182 −0.087 0.158 0.157 0.910 0.108 0.018 0.175 0.171 0.945 0.237
βGoX 0.000 −0.004 0.135 0.129 0.934 0.066 0.001 0.140 0.127 0.919 0.077
βGmX 0.000 0.004 0.162 0.158 0.944 0.056 −0.007 0.187 0.165 0.939 0.057

βGo 0.182 0.044 0.158 0.151 0.932 0.336 −0.035 0.202 0.151 0.932 0.203
βGm 0.182 −0.074 0.146 0.152 0.924 0.098 0.036 0.169 0.166 0.940 0.242
βGoX −0.182 0.008 0.136 0.132 0.944 0.272 0.021 0.193 0.131 0.940 0.267
βGmX −0.182 0.004 0.158 0.161 0.956 0.198 −0.031 0.244 0.169 0.942 0.244



TABLE 3
(Continued)

DEPa DEP-CLHb

Gm ∼ Xc log(OR) Trued Biase SEf SEEg CPh Poweri Biase SEf SEEg CPh Poweri

The daLOG model (2.3) βGo 0.000 0.006 0.159 0.155 0.946 0.054 −0.064 0.166 0.153 0.923 0.077
βGm 0.000 −0.003 0.165 0.159 0.942 0.058 0.057 0.187 0.166 0.919 0.081
βGoX 0.000 −0.012 0.131 0.130 0.960 0.040 −0.009 0.135 0.129 0.960 0.040
βGmX 0.000 0.012 0.161 0.162 0.946 0.054 0.107 0.169 0.160 0.909 0.091

βGo 0.182 0.017 0.155 0.153 0.946 0.238 −0.066 0.174 0.151 0.909 0.147
βGm 0.182 −0.001 0.163 0.156 0.936 0.216 0.074 0.193 0.164 0.911 0.382
βGoX 0.000 −0.017 0.131 0.127 0.934 0.066 −0.011 0.132 0.126 0.932 0.068
βGmX 0.000 0.000 0.160 0.159 0.950 0.050 0.103 0.159 0.159 0.895 0.105

βGo 0.182 0.009 0.149 0.147 0.950 0.258 −0.064 0.145 0.145 0.930 0.124
βGm 0.182 −0.017 0.150 0.151 0.952 0.208 0.057 0.159 0.158 0.926 0.321
βGoX −0.182 −0.022 0.130 0.129 0.946 0.358 −0.012 0.128 0.128 0.948 0.333
βGmX −0.182 0.025 0.162 0.162 0.938 0.164 0.116 0.159 0.160 0.902 0.078

aOur proposed method allowing for dependence between X and Gm; b the estimator proposed by Chen, Lin and Hochner (2012); cmodel relating Gm and X; d true value of the

log-OR parameter; edifference between the mean estimate and true parameter value; f empirical standard error; gmean estimated standard error; hempirical coverage probability of
95% CI; i type-I error/power for testing genetic effect.



TABLE 4
Estimation results with nonzero genetic effects and unrelated Gm and X (βX = log(1.5), βGo = βGm = βGmX = βGoX = log(1.2), f = 0.01, θ = 0.2, η = 0)

DEPa INDb LOGITc

Model β Biasd SEe SEEf CPg REh Biasd SEf SEEh CPg REh Biasd SEe SEEf CPg

M1 βGo 0.000 0.137 0.138 0.951 1.35 0.000 0.137 0.138 0.950 1.35 0.003 0.159 0.160 0.948
βX −0.001 0.046 0.047 0.950 1.00 −0.001 0.046 0.047 0.951 1.00 −0.001 0.046 0.047 0.950

M2 βGm 0.008 0.141 0.141 0.951 1.30 0.006 0.137 0.138 0.954 1.39 0.009 0.161 0.160 0.953
βX 0.001 0.046 0.047 0.948 1.00 0.001 0.046 0.047 0.948 1.00 0.001 0.046 0.047 0.948

M3 βGo −0.002 0.145 0.146 0.951 1.30 −0.003 0.145 0.146 0.950 1.30 0.000 0.165 0.165 0.950
βX 0.005 0.053 0.053 0.954 1.17 0.003 0.052 0.053 0.952 1.21 0.003 0.057 0.058 0.954

βGoX −0.017 0.118 0.117 0.944 1.99 −0.014 0.111 0.109 0.945 2.25 −0.004 0.166 0.166 0.949

M4 βGm −0.007 0.147 0.147 0.949 1.25 −0.008 0.146 0.147 0.949 1.28 −0.005 0.165 0.165 0.947
βX 0.004 0.058 0.057 0.947 1.04 0.003 0.053 0.053 0.948 1.23 0.003 0.059 0.058 0.948

βGmX 0.008 0.158 0.157 0.946 1.14 0.011 0.109 0.110 0.956 2.40 0.012 0.169 0.166 0.948

M5 βGo −0.014 0.154 0.154 0.955 1.54 −0.015 0.154 0.154 0.955 1.54 −0.016 0.191 0.193 0.955
βGm 0.018 0.153 0.153 0.947 1.56 0.017 0.153 0.153 0.947 1.56 0.019 0.191 0.193 0.949
βX −0.002 0.059 0.059 0.954 1.06 −0.002 0.055 0.055 0.950 1.23 −0.003 0.061 0.062 0.955

βGoX 0.002 0.125 0.126 0.953 2.50 0.002 0.125 0.126 0.953 2.50 0.012 0.197 0.194 0.947
βGmX −0.002 0.168 0.169 0.953 1.39 −0.001 0.126 0.126 0.951 1.46 0.000 0.198 0.194 0.946

aOur proposed method allowing for dependence between X and Gm; bour proposed method with independence assumption between X and Gm; cthe conventional logistic regression

method; ddifference between the mean estimate and true parameter value; eempirical standard error; f mean estimated standard error; gempirical coverage probability of the 95%
confidence interval; hrelative efficiency defined as the asymptotic variance of LOGIT divided by that of the target method.



TABLE 5
Type-I error rates and powers for testing the joint genetic effect under the additive mode of inheritance

(f = 0.01, θ = 0.2). Under the null hypothesis, βGo = βGm = βGmX = βGoX = 0; under the alternative
hypothesis, βGo = βGm = βGmX = βGoX = log(1.2). The log-OR for X was βX = log(1.5)

Null hypothesis Alternative hypothesis

ηd Model DEPa INDb LOGITc DEPa INDb LOGITc

0 M1 0.054 0.054 0.056 0.258 0.260 0.208
M2 0.051 0.049 0.048 0.276 0.282 0.232
M3 0.048 0.050 0.045 0.541 0.582 0.319
M4 0.049 0.048 0.048 0.403 0.641 0.341
M5 0.056 0.060 0.050 0.831 0.954 0.713

log(3.0) M1 0.049 0.059 0.047 0.286 –e 0.210
M2 0.048 0.948 0.046 0.284 – 0.235
M3 0.053 0.997 0.049 0.648 – 0.381
M4 0.050 1.000 0.050 0.525 – 0.465
M5 0.050 1.000 0.048 0.900 – 0.818

aOur proposed method allowing for dependence between X and Gm; bour proposed method with independence

assumption between X and Gm; cthe conventional logistic regression method. dThe maternal genotype was either
independent of (η = 0) or strongly correlated with the environmental risk factor (η = log(3.0)), as specified in the
daLOG model. ePower not displayed because of inflated type-I error rates.

3.3. The performance of DEP relative to EMIM. EMIM can be used to infer genetic ef-
fects on offspring phenotypes using case-control mother–offspring data, but it cannot handle
maternal covariates. In both EMIM and DEP we considered testing single main genetic ef-
fects and joint genetic effect. The two methods differed in the joint genetic effect: EMIM
tested two main genetic effects jointly, while DEP involved two additional gene-envirnoment
interaction effects. In both methods we incorporated the HWE and additive mode of inher-
itance (the same as the multiplicative model for EMIM) for both maternal and offspring
genetic effects. Data were generated according to the penetrance model (2.1) and the daLOG
model (2.3). A single covariate X following the standard normal distribution was considered,
and η was set at zero in the daLOG model because, otherwise, EMIM would have inflated
type-I error rates due to the confounding effect of X. Phenotype prevalence f was set at 0.01,
the MAF at 0.2 and the covariate effect at βX = log(1.5). Three parameter combinations were
considered:

M00: βGo = βGm = βGoX = βGmX = 0;
M10: βGo = βGm = log(1.2), βGoX = βGmX = 0;
M11: βGo = βGm = log(1.2), βGoX = βGmX = − log(1.2).

For each parameter combination, 1000 case pairs and 1000 control pairs were generated, and
the hypothesis tests were carried out for the two main genetic effects and joint genetic effect.
Model M00 allowed assessment of type-I error rates, and models M10 and M11 allows power
comparison in the presence and absence of interaction effects. All tests were performed at
0.05 significance level, and the simulation was repeated 5000 times (Table S9, Zhang et al.
(2020)).

The type-I error rates appeared to be well controlled at the nominal level for both methods.
In the absence of gene-enviroment interaction effects (M10), EMIM could be much more
powerful than DEP when testing joint genetic effect. This was expected since the former
did not incorporate the covariate X, thus no gene-environment interation was considered, but
DEP involved two more interaction terms with zero effect. The power of the two methods was



similar when single main genetic effects were tested. On the other hand, DEP could be much
more powerful in testing joint genetic effect in the presence of interaction effects (models
M11).

3.4. Robustness of DEP with respect to misspecification of the fixation index parameter,
diesease prevalence, or mode of inheritance. First, we assessed the robustness of DEP and
IND by misspecifying the disease prevalence f . The true f value was low (0.01), but was
misspecified to be much larger (0.2), or was moderately high (0.2), but was misspecified
to be much smaller (0.01). We considered various association strength between Gm and X

(η = log(1.2) or log(3.0)). The underlying parameters and the corresponding estimation and
test results are presented in Table 6 and Table S10 (Zhang et al. (2020)). Interestingly, DEP
appeared to be unbiased except for the intercept parameter. The type-I error rates and power
were minimally affected (Table 6) unless the misspecification of f was severe (Table S10,
Zhang et al. (2020)). As shown in Table S10, the power of DEP with the f value biased
downward appeared to be more powerful than that with the f value biased upward, regardless
of the magnitude of the true f value. It was intriguing that IND was much less powerful than
DEP in spite of inflated type-I error rates (data not shown). For example, under model M5 the
bias was 0.197 by IND, compared with 0.014 by DEP and the corresponding power was 0.454
and 0.581, respectively. We consistently observed the inferior power of IND under different
parameter values.

Second, we assess the robustness of DEP with respect to HWE for maternal genotypes. We
generated data with nonzero fixation index parameter F (0.05, 0.1 or 0.2) so that HWE did not
hold for maternal genotypes but implemented DEP under HWE. The remaining parameters
were identical to those for Table 6. The misspecification of F appeared to have negligible
impact on the estimation and testing results for all regression parameters (Table S11, Zhang
et al. (2020)).

Lastly, we studied the impact of misspecifying the mode of inheritance on DEP. We gen-
erated data under one mode of inheritance but implemented DEP under a different mode
of inheritance in each simulation scenario. The remaining parameters were again identical to
those for Table 6. Using misspecified mode of inheritance did not lead to inflation in the type-
I error rates but could result in considerable loss in power (Table S12, Zhang et al. (2020)).
The additive mode of inheritance appeared to be the most robust in terms of the extent of
power loss.

4. Analysis of genetic association studies of GDM and birth weight. We analyzed
data from two genetic association studies, one on gestational diabetes mellitus which has
a maternal phenotype, and the other on infant birth weight which has an offspring phe-
notype. Both studies have paired mother–offspring genotype data and maternal covariate
oberservations. We applied all four methods, DEP, DEP-CLH, IND and LOGIT to fit pen-
etrance model M5 to analyze both studies under the additive mode of inheritance. Because
it was designed for offspring phenotypes, we also used EMIM to analyze the second study.
High prepregnancy BMI (pp-BMI) has been established to be associated with both maternal
pregnancy health and low birth weight (Abubakari, Kynast-Wolf and Jahn (2015), Frederick
et al. (2008), Mallia et al. (2017)). For both phenotypes we assessed selected candidate genes
through joint testing of their main effects and interactions with pp-BMI, as such joint tests
may be more powerful than testing the marginal genetic effect (Kraft et al. (2007)). For sig-
nificant SNPs we were also interested in testing whether they modified the effect of pp-BMI.
In both studies it was reasonable to consider pp-BMI as independent of the offspring geno-
type conditional on the maternal genotype. All SNPs that we assessed were common with
MAF above 0.05.



TABLE 6
Simulation results with moderatly misspecified prevalence (θ = 0.2, βGo = βGm = log(1.2) and βGoX = βGmX = − log(1.2)). The maternal genotype was moderately correlated
with the environmental risk factor (η = log(1.2) in the daLOG model). The phenotype prevalence f was specified either at the true value 0.01 or misspecified as 0.02. The other

parameters were the same as those in Table 5

DEPa DEPa,d INDb INDa,d LOGITc

Model Log-OR Truee Biasf Powerg Biasf Powerg Biasf Powerg Biasf Powerg Biasf Powerg

M3 β0 −4.699 0.001 0.315 0.704 0.316 0.005 0.180 0.708 0.181 4.596 0.236
βGo 0.182 −0.012 −0.011 −0.033 −0.032 −0.007
βX 0.405 0.002 0.003 −0.016 −0.016 0.003

βGoX 0.182 0.004 0.002 0.093 0.092 0.001

M4 β0 −4.698 0.000 0.251 0.703 0.250 −0.001 0.196 0.702 0.193 4.595 0.217
βGm 0.182 −0.007 −0.007 −0.011 −0.011 −0.008
βX 0.405 0.005 0.005 −0.033 −0.033 0.004

βGmX −0.182 0.007 0.006 0.191 0.190 0.010

M5 β0 −4.725 0.001 0.581 0.705 0.581 0.001 0.454 0.704 0.454 4.596 0.495
βGo 0.182 −0.018 −0.018 −0.021 −0.022 −0.013
βGm 0.182 0.007 0.007 0.004 0.005 0.009
βX 0.405 0.000 0.000 −0.038 −0.037 0.000

βGoX −0.182 0.000 −0.001 0.001 −0.001 0.002
βGmX −0.182 0.014 0.015 0.197 0.196 0.012

aOur proposed method allowing for dependence between X and Gm; bour proposed method with independence assumption between X and Gm; cthe conventional logistic regression

method; d the true prevalence was 0.01 but mis-specified as 0.02; etrue parameter value; f difference between the mean estimate and true parameter value; gpower for testing the joint
genetic effect.



4.1. The gestational diabetes mellitus study. We analyzed 1156 mother–offspring pairs
from Tianjin Gestational Diabetes Mellitus Prevention Program (Hu et al. (2012)), where 578
mothers had GDM and 578 were healthy during pregnancy. Maternal information, including
sociodemographic characteristics, pregnancy outcomes, and lifestyle in the past year was
collected by a selfadministered questionnaire. The main goal of the current analysis was
to assess whether the 15 SNPs that have been reported to predispose GDM (Radha et al.
(2016)) were also associated with the risk of GDM in the current study and whether the
association was driven by maternal or offspring genes. We analyed 14 SNPs because one had
an MAF smaller than 0.05, and used GDM prevalence 14% as observed in Tianjin women.
Results were nearly identical when lower (8%) or higher (20%) values of prevalence were
used (unreported). A p-value less than 0.05/14 was considered statistically significant which
accounted for multiplicity in testing 14 SNPs.

Table S13 (Zhang et al. (2020)) displays the estimated MAFs, p-values for testing HWE
and p-values for testing independence between pp-BMI and maternal genotypes. All MAFs
were greater than 0.1. None of the SNPs showed evidence of deviation from HWE, there-
fore, we incorporated HWE in all the analysis where applicable. The p-values for testing the
joint genetic effects are displayed in Figure 1. SNP rs2237895, which is in the voltage-gated
potassium channel gene, was found to be statistically significant, and the effect appeared to
be mainly driven by the maternal SNP, as confirmed by the marginal analysis of maternal
and offspring SNPs (OR 1.89; 95% CI [1.38, 2.62]). Two other SNPs, rs1387153 in gene
Melatonin receptor 1B and rs4406920 in gene Insulin-like Growth Factor 2 had p-values less
than 0.05 but did not reach significance after Bonferroni correction. The results suggested
that both maternal SNPs may be associated with the risk of GDM, and offspring SNPs may
also be associated but through modifying the effect of pp-BMI. These results may be worth
exploring in studies of larger sizes. The estimated OR parameters for these three SNPs are
included in Table 7. IND yielded the three smallest p-values which was reasonable since
pp-BMI appeared to be uncorrelated with the three corresponding maternal genotypes. Ta-
bles S14∼S17 (Zhang et al. (2020)) include the estimation and test results of the main effects
and interactions effects for all SNPs.

FIG. 1. P-values for testing the joint effect of maternal and offspring genotypes on the risk of GDM. DEP-CLH,
the method proposed by Chen, Lin and Hochner (2012); DEP, our proposed method allowing for dependence
between X and Gm; IND, our proposed method with independence assumption between X and Gm; LOGIT, the
standard logistic regression method.



TABLE 7
Genetic effect estimates for the three SNPs that were significantly (nominal level = 0.05 without Bonferroni correction) associated with the risk of GDM in the Tianjin Gestational

Diabetes Mellitus Prevention Program

SNP DEPa INDb LOGITc

rs2237895 Log-OR ̂Log-OR
d

SEe P-valuef
̂Log-OR

d
SEe P-valuef

̂Log-OR
d

SEe P-valuef

βGo −0.04 0.184 0.835 −0.04 0.183 0.851 0.06 0.236 0.809
βGm 0.45 0.181 0.013 0.45 0.180 0.013 0.45 0.238 0.059
βGoX 0.30 0.149 0.042 0.30 0.150 0.043 0.43 0.249 0.084
βGmX −0.12 0.226 0.603 −0.06 0.150 0.695 −0.16 0.240 0.493

P-jointd 0.043 0.028 0.052

rs2237895 Log-OR ̂Log-OR
a

SEb P-valuec
̂Log-OR

a
SE P-value ̂Log-OR

a
SE P-value

βGo −0.41 0.185 0.028 −0.41 0.184 0.025 −0.42 0.228 0.063
βGm 0.77 0.170 6.4e−6 0.76 0.170 7.0e−6 0.83 0.228 2.8e−4
βGoX 0.14 0.136 0.291 0.14 0.136 0.292 0.28 0.249 0.269
βGmX −0.20 0.211 0.340 −0.29 0.136 0.034 −0.29 0.234 0.222

P-joint 1.6e−4 4.9e−5 4.2e−3

rs1387153 Log-OR ̂Log-OR
a

SEb P-valuec
̂Log-OR

a
SE P-value ̂Log-OR

a
SE P-value

βGo −0.02 0.165 0.882 −0.03 0.164 0.859 0.15 0.222 0.489
βGm 0.43 0.165 0.009 0.43 0.164 0.010 0.25 0.217 0.252
βGoX 0.31 0.129 0.016 0.31 0.129 0.016 0.58 0.233 0.013
βGmX 0.05 0.197 0.807 −0.031 0.14 0.819 −0.07 0.222 0.743

P-joint 0.008 0.007 0.017

aOur proposed method allowing for dependence between X and Gm; bour proposed method with independence assumption between X and Gm; cthe conventional logistic regression

method; destimated log-OR parameters; easymptotic standard error; f p-value of the Wald test for each single effect; gp-value of the Wald test for the joint genetic effect.



4.2. The Jerusalem perinatal study. We analyzed a case-control mother–offspring pair
study nested within the JPS (Harlap et al. (2007)) to assess the association between gene
PPARGC1A and low birth weight. The JPS was a prospective cohort study that included
17,003 births to residents of Jerusalem between years 1974 to 1976. Between years 2007
and 2009, a subsample of 1250 offspring in the JPS and their mothers were interviewed and
genotyped in a follow-up study for assessing cardio-metabolic traits (Hochner et al. (2012)).
Offspring whose birth weight was below 2500 grams or above 4000 grams or whose mothers’
pp-BMI was above 27 were over-represented in this subsample. We analyzed a subset of 691
pairs with pp-BMI less than 25, consisting of 125 pairs with low birth weight (<2500 grams)
and 566 control pairs with normal or high birth weight (>2500 grams). The gene PPARGC1A
encodes a protein that regulates genes involved in energy metabolism and, therefore, may be
associated with birth weight and could modify the effect of pp-BMI. We considered both
offspring and maternal genes, as both may be implicated in the risk of low birth weight
(Lunde et al. (2007), Infanterivard (2007)). The additive mode of inheritance was assumed
for all the SNPs. Among the 8238 eligible offspring in the JPS cohort (mothers’ pp-BMI <

25), 297 had low birth weight. Therefore, we estimated the prevalence of low birth weight as
297/8238 ≈ 0.036. A significance level of 0.05/24 ≈ 0.002 instead of 0.05 was considered
statistically significant in order to account for multiplicility in testing 24 SNPs. Table S18
(Zhang et al. (2020)) displays the estimated MAFs, p-values for testing HWE, p-values for
testing joint genetic association and p-values for testing independence between pp-BMI and
maternal genotypes. All MAFs were greater than 0.1. None of the SNPs had a p-value less
than 0.05 for testing HWE; therefore, we incorporated HWE in all methods where applicable.

The p-values for testing the joint genetic effect are displayed in Figure 2, where EMIM
had two degrees of freedom because the interaction term was not able to be incorporated
and the other tests all had four degrees of freedom. Except for one SNP, the p-value of DEP
was smaller than or similar to that of DEP-CLH, suggesting higher efficiency of DEP. Two
SNPs were found significant by at least one method. SNP rs3774921 was found significant

FIG. 2. P-values for testing the joint effect of maternal and offspring genes PPARGC1A (24 SNPs) on the risk
of low birth weight in the Jerusalem Perinatal Study. DEP-CLH, the method proposed by Chen, Lin and Hochner
(2012); DEP, our proposed method allowing for dependence between X and Gm; IND, our proposed method
with independence assumption between X and Gm; LOGIT, the standard logistic regression method; EMIM, the
method developed by Ainsworth et al. (2011a) and Howey and Cordell (2012).



by DEP, DEP-CLH and LOGIT but not by IND and EMIM, with corresponding p-values
0.0008, 0.002, 0.001 and 0.005, respectively. SNP rs3755863 was found significant by DEP
(p-value 0.001) but not by the other methods. The detailed results of DEP, IND, and LOGIT
for the two SNPs are presented in Table 8. The significance of the joint genetic effect for
both SNPs appeared to be driven by their interactions with pp-BMI. In fact, the p-value by
DEP for testing the null hypothesis of no interaction with maternal SNPs, βGmX = 0, was
0.002 for SNP rs3774921 and <0.001 for SNP rs3755863. Interestingly, the direction of
this interaction effect was opposite for the two SNPs, with corresponding log-ORs equal
to 1.04 and −1.19, respectively. DEP and LOGIT yielded similar interaction test p-values,
and IND yielded much larger p-values for both SNPs. The estimated interaction effect by
IND was weaker for both SNPs. The interaction log-OR, β̂GmX , was estimated to be 1.04 by
DEP and 0.79 by IND for SNP rs3774921 and −1.19 by DEP and −0.91 by IND for SNP
rs3755863. The apparent difference can be explained by the significant correlation between
Gm and pp-BMI, as the parameter η in the daLOG model for the two SNPs was estimated to
be −0.149 (p-value = 0.023) and 0.166 (p-value = 0.004), respectively (Table S18, Zhang
et al. (2020)). The estimate of the maternal genotype main effect βGm by LOGIT differed
from those by DEP and IND, but the three corresponding confidence intervals were wide
and largely overlapped. Results for the remaining SNPs are included in Tables S19∼S22
(Zhang et al. (2020)). The p-value of DEP tended to be smaller than that of IND as the
association between pp-BMI and maternal genotype became stronger (Figure S1, Zhang et al.
(2020)). There was no evidence that any of the offspring SNPs modified the effect of pp-BMI
(Table S21, Zhang et al. (2020)).

5. Discussion. The case-control mother–offspring pair design has been popularly used
for identifying genes that are associated with obstetrical and early-life phenotypes. It allows
investigation on joint effects of both maternal and offspring genes and environmental risk
factors. Our new method overcomes the computation difficulty of the Chen, Lin and Hochner
(2012) method and is fast enough to allow genomewide investigations. It is, generally, sta-
tistically more efficient than the other considered methods as shown in simulation studies.
A key to success of our method is a novel regression model relating the maternal genotype
and environmental factors which makes it plausible to obtain closed forms for the limiting
Lagrange multipliers involved in derivation of the profile likelihood function. The resultant
modified profile likelihood function is generally concave with unknown parameters so that
its maximizer can be numerically obtained using any optimization algorithm designed for
finding global or local maximizers. Our modified profile likelihood method is more efficient
than the standard prospective logistic regression analysis and was able to identify the ge-
netic effects that other methods would have missed in the analysis of the real data examples.
We also considered a variant of our method that additionally requires independence between
environmental risk factors and maternal genotypes, in the same spirit as the literature on
exploiting gene-environment independence to increase efficiency for making inference on
gene-environment interaction effects (Chatterjee and Carroll (2005), Piegorsch, Weinberg
and Taylor (1994), Umbach and Weinberg (1997)). The estimation bias and inflation in the
type-I error rate could be severe should the independence constraint be violated. Enforcing
the additional constraint of independence led to meaningful efficiency gain for assessing the
interaction effect between a maternal SNP and an environmental factor. But the gain was
largely marginal except for under the simplest model involving only the main and interaction
effects of the two variables. The conditional independence requirement most likely holds
true in the setting of obstetrical and early-life outcomes. Therefore, our method is attrac-
tive because of its robustness and high efficiency. For analyzing offspring phenotypes, in the
absence of confounding covariates and gene-environment interactions, existing methods as



TABLE 8
Genetic effect estimates for the two SNPs that were significantly associated with the risk of low birth weight in the Jerusalem perinatal study

SNP DEPa INDb LOGITc

rs3774921 Log-OR ̂Log-OR
d

SEe P-valuef
̂Log-OR

d
SEe P-valuef

̂Log-OR
d

SEe P-valuef

βGo 0.68 0.323 0.036 0.68 0.323 0.035 0.65 0.343 0.058
βGm −0.23 0.347 0.510 −0.23 0.345 0.507 −0.17 0.349 0.635
βGoX 0.25 0.336 0.463 0.25 0.334 0.461 0.17 0.340 0.615
βGmX 1.04 0.338 1.98E−3 0.79 0.315 0.012 1.06 0.355 2.84E−3

P-jointd 7.74E−4 4.67E−3 1.16E−3

rs3755863 Log-OR ̂Log-OR
a

SEb P-valuec
̂Log-OR

a
SE P-value ̂Log-OR

a
SE P-value

βGo −0.46 0.304 0.127 −0.47 0.304 0.124 −0.41 0.337 0.223
βGm −0.05 0.320 0.884 −0.04 0.320 0.889 −0.21 0.345 0.539
βGoX 0.34 0.323 0.295 0.33 0.320 0.297 0.27 0.339 0.426
βGmX −1.19 0.345 5.44E−4 −0.91 0.333 6.31E−3 −1.19 0.339 4.25E−4

P-joint 1.45E−3 0.012 4.11E−3

aOur proposed method allowing for dependence between X and Gm; bour proposed method with independence assumption between X and Gm; cthe conventional logistic regression

method; destimated log-OR parameters; easymptotic standard error; f p-value of the Wald test for each single effect; gp-value of the Wald test for the joint genetic effect.



implemented in EMIM (Ainsworth et al. (2011a), Howey and Cordell (2012)) can be more
powerful for testing genetic effects.

We note that, under model (2.3), maternal and offspring genotypes may have different dis-
tributions. When Gm is independent of X as indicated by η = 0, the marginal distribution
of Gm is the same as that of the offspring genotype Go. With nonzero η, the two marginal
distributions are not the same any more (see Table S23 in Appendix (Zhang et al. (2020)) for
some examples). However, in our simulation studies presented in Section 3, the estimation
bias based on the proposed modified profile likelihood method appeared to be minor even
when the correlation between Gm and X was strong. Under the daLOG model the distribu-
tions of maternal and offspring genotypes were somewhat different, as mentioned previously.
As a result, DEP-CLH was biased, as it requires a linear model between X and Gm, which is
not satisfied under the daLOG model.

Our method requires known phenotype prevalence. Fortunately, its misspecification, while
leading to biased estimates of the intercept parameter β0 in models M1∼M5, appeared to have
negligible impact on estimation and testing of genetic effects unless the misspecification is
severe. This aligns with the well-known result that incorporating known disease prevalence
only has impact on estimating the intercept parameter in standard logistic regression analysis.
We leave theoretical exploration of this observation in broader scenarios to future work. As
shown in Table S10, the power of testing genetic association is higher when the bias in the
specified prevalence is downward than that when the bias is upward. Therefore, we suggest
that a conservative value of prevalence be used when applying our method for analysis.

Under the case-control mother–offspring pair design, it is feasible to assess parent-of-
origin effects owing to the pairing of mother–offspring genotype data. Parent-of-origin effects
of the APOB gene were recently reported for adiposity in early adulthood (Hochner et al.
(2012)). With mother–offspring paired genotype data, the parental source of the two offspring
alleles is unknown when both genotypes are heterozygous. Statistical methods are available
for accommodating ambiguity in parental sources (Ainsworth et al. (2011b), Shi et al. (2008),
Weinberg and Umbach (2005), Weinberg, Wilcox and Lie (1998), Yang and Lin (2013)). But
none of them allows incorporation of covariates, which is nontrivial due to the retrospective
case-control sampling and incomplete information on parental origins of offspring alleles.
For offspring phenotypes it would be very interesting to extend our method to accommodate
X-chromosome data. In addition, it would be interesting to extend the method for studying
haplotype effects, where haplotype phases can be inferred from multimarker genotype data
for both the mother and offspring. We will pursue this topic in future work.

Our dyad design has been specifically adopted for studying obstetrical complications
which are maternal phenotypes. In this sense the dyad design is unique in its own way.
For studying offspring phenotypes, failure to consider paternal information in the mother–
offspring paired design may lead to paternal confounding bias. Readers are referred to
Umbach and Weinberg (2000) and Kistner, Shi and Weinberg (2009) for more discussions. In
practice, it is difficult to imagine a situation that one would intentionally design such a dyad
study for studying offspring phenotypes, and at least attempts would be made to obtain triads.
Just as in the example JPS study, one scenario that a study of offspring phenotypes would in-
clude exclusively dyads would be a secondary analysis of a study on maternal phenotypes,
where paternal information may not have been collected. When both case-parent and control-
parent triad data are available, our current method can be applied for analysis with paternal
genotype data ignored. But paternal genotype data can be incorporated by straightforward
extension. It can contribute to more precise estimation of the minor allele or haplotype fre-
quencies (Wilcox, Weinberg and Lie (1998)), thereby leading to increased power for testing
genetic associations and alternative hypotheses such as maternal-fetal genotype interactions.
We will explore the merit of such extension relative to existing case- and control-triad meth-
ods in future work (Dudbridge (2008), Gjessing and Lie (2006), Skare et al. (2012)).



When genetic data are available only for case-parent trios, methods are available for test-
ing gene-environent interaction effects (e.g., Shi, Umbach and Weinberg (2011)). However,
methods for testing gene-environment interaction effects are largely unexplored when pater-
nal genetic data is not available. We will pursue this issue in the future.
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SUPPLEMENTARY MATERIAL

Supplement to “An efficient and computationally robust statistical method for ana-
lyzing case-control mother–offspring pair genetic association studies”: (
 Figure S1, Tables S1–S23, derivation of the log profile
likelihood function (2.5) and equations (2.8), and proof of the asymptotic equivalence 
ofprofile MLE and modified profile MLE mentioned in Section 2.3.
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