
Lower Bounds for (Non-Monotone) Comparator
Circuits
Anna Gál
University of Texas at Austin, Austin TX, United States of America
panni@cs.utexas.edu

Robert Robere
Institute for Advanced Study, Princeton NJ, United States of America
rrobere@ias.edu

Abstract
Comparator circuits are a natural circuit model for studying the concept of bounded fan-out
computations, which intuitively corresponds to whether or not a computational model can make
“copies” of intermediate computational steps. Comparator circuits are believed to be weaker than
general Boolean circuits, but they can simulate Branching Programs and Boolean formulas. In this
paper we prove the first superlinear lower bounds in the general (non-monotone) version of this
model for an explicitly defined function. More precisely, we prove that the n-bit Element Distinctness
function requires Ω((n/ log n)3/2) size comparator circuits.

2012 ACM Subject Classification Theory of computation → Circuit complexity

Keywords and phrases comparator circuits, circuit complexity, Nechiporuk, lower bounds

Digital Object Identifier 10.4230/LIPIcs.ITCS.2020.58

Funding Robert Robere: Funding provided by an NSERC Postdoctoral Fellowship and the Charles
Simonyi Endowment.

Acknowledgements Some of this work was done while the authors were visiting the Simons Institute
for the Theory of Computing in Berkeley, and while R.R. was at DIMACS.

1 Introduction

One of the central open problems in circuit complexity is to prove superlinear lower bounds
on the size of general Boolean circuits for explicitly defined functions. While theorists have
been outstandingly successful at analyzing some restricted circuit models – for instance,
exponential lower bounds are known when the circuit is monotone [22], or bounded-depth
[11] – the progress remains modest for less restricted classes of circuits:
1. The best lower bounds for the Boolean formula size of explicit functions over n variables

are of the form Ω(n3−o(1)) [12, 18, 26, 5, 7, 19, 27, 4, 8]. The first such bound is due to
Håstad [12] and the current largest bound (improving lower order terms) is due to Tal
[27].

2. The best lower bounds for branching programs, which capture small-space computation
and can simulate formulas, are Ω((n/ log n)2) for the deterministic model by Nechiporuk
[21] and Ω(n3/2/ log n) for the non-deterministic- and parity- models by Pudlák1 [15],
and Karchmer and Wigderson [15], respectively.

3. The best lower bounds for span programs over GF (2), which can simulate all of the
above models, is Ω(n3/2/ log n) by Beimel, Gál, and Paterson [3], following the initial
Ω(n log log log∗ n) lower bounds by Karchmer and Wigderson [15].

4. Finally (and, perhaps, most notoriously) the best lower bounds for general Boolean
circuits are 5n− o(n), due to Iwama and Morizumi [13].

1 Pudlák’s result is unpublished, and referenced by Karchmer and Wigderson in their paper [15].
© Anna Gál and Robert Robere;
licensed under Creative Commons License CC-BY

11th Innovations in Theoretical Computer Science Conference (ITCS 2020).
Editor: Thomas Vidick; Article No. 58; pp. 58:1–58:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:panni@cs.utexas.edu
mailto:rrobere@ias.edu
https://doi.org/10.4230/LIPIcs.ITCS.2020.58
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


58:2 Lower Bounds for (Non-Monotone) Comparator Circuits

Improving any of these lower bounds is an outstanding open problem; however, the
problem of proving any superlinear lower bound on general Boolean circuits is perhaps the
most interesting. Span programs form a remarkable model here, since they can simulate all
models above for which we have superlinear lower bounds – this means that improving the
lower bounds for span programs is one of the outstanding open question at the “frontier” of
current techniques for proving lower bounds in general non-monotone circuit models.

In this paper we identify a new problem at the frontier: the complexity of non-monotone
comparator circuits. A comparator circuit is a circuit composed purely of comparator gates,
each of which maps a pair of bits (x, y) to (x ∧ y, x ∨ y). It is known that, just like span
programs, comparator circuits can efficiently simulate non-deterministic branching programs
[6], and thus lower bounds for comparator circuits imply lower bounds on branching programs
and formulas. However, like branching programs, comparator circuits are known to be
stronger than boolean formulas, as it is easy to construct comparator circuits computing
Parity in O(n) size (unlike formulas, which require Ω(n2) size [16]). Similarly, like span
programs, comparator circuits are believed to be weaker than general non-monotone circuits
[6, 24]. However, it appears that comparator circuits may be incomparable to, or possibly
even stronger than span programs: the class of functions computable by polynomial-size
comparator circuits is conjectured to be incomparable to NC [25], and this conjecture is
supported by oracle separations [6]. In contrast, the class of functions computable by
polynomial-size span programs over finite fields is contained in NC2. Furthermore, while
we already had superlinear lower bounds for span programs [3, 15], there have been no
superlinear lower bounds known for the comparator circuit size of any explicit function.

Continuing the line of work proving superlinear lower bounds for formulas, branching
programs, and span programs, we prove the first superlinear lower bounds on the size of
comparator circuits computing an explicit Boolean function. Let n = 2m logm, and let
EDn : {0, 1}n → {0, 1} be the n-bit Element Distinctness function, which takes m integers
in the range {1, 2, . . . ,m2} as input (each encoded as 2 logm bits) and outputs 1 iff all of
the integers are distinct. Our main result is the following:

I Theorem 1. The size of any comparator circuit computing the n-bit Element Distinctness
function EDn is at least Ω((n/ log n)3/2).

In fact, we prove the stronger statement, that the number of wires of any comparator
circuit computing EDn is at least Ω((n/ log n)3/2). (See Section 2 for definitions.)

The above result provides a new and natural class of circuits for which we can obtain
superlinear size lower bounds, and thus represents progress towards the goal of proving
superlinear lower bounds for general non-monotone circuits. We believe that the techniques
we employ are also interesting. The current best Ω(n3−o(1)) lower bounds for formulas follow
by restriction based techniques, which we do not use for our lower bounds. In fact, as we
discuss in Section 5, there seem to be obstacles to obtaining superlinear lower bounds for
comparator circuits this way. Instead, we use a generalized version of the classic Nechiporuk
method [21], which was used for obtaining the current best lower bounds for branching
programs and span programs stated above. However, it is not possible to apply Nechiporuk’s
method directly to estimate the number of gates of comparator circuits, because the partial
computations corresponding to subcircuits over disjoint subsets of inputs may significantly
overlap (see Remark 8 and Section 1.2 for more details.) Instead, we need to exploit some
interesting structure of comparator circuits to enable a more general version of the method.
For these reasons we believe that our above lower bound (and comparator circuits more
generally) are particularly interesting.



A. Gál and R. Robere 58:3

1.1 Comparator Circuits and Bounded Fanout Computation
Let us first describe comparator circuits more formally. As stated above, a comparator gate
computes the map (x, y) 7→ (x ∧ y, x ∨ y) where x, y ∈ {0, 1}; that is, the gate outputs both
the AND and the OR of its input bits. A comparator circuit is a Boolean circuit whose
inputs are labeled by input literals (i.e. either variables xi or their negations xi), and is
composed entirely of comparator gates; the comparator circuit is said to be monotone if no
input literal is negated. We emphasize here that every comparator gate in the circuit has
exactly two inputs and two outputs, and the (Boolean) output of the circuit is obtained by
fixing some designated output of a comparator gate in the circuit.

The definition of a comparator gate suggests a convenient method of visualizing such
circuits, depicted in Figure 1. We draw m lines from left-to-right – we call these lines wires2
– that are initially labeled with input literals or the Boolean constants 0, 1. We connect wires
together with comparator gates: each gate is drawn connecting a pair of wires; one of the
inputs is drawn with a circle (representing the output of the ∧ gate) and the other with an
arrow (representing the output of the ∨ gate).

Figure 1 Examples of comparator circuits, with outputs designated. The left is a simple monotone
comparator circuit, the right is a non-monotone comparator circuit for parity.

The most studied examples of comparator circuits in the literature are sorting networks,
which are typically studied in a more general (i.e. non-Boolean) setting. A sorting network
is a mathematical model of a sorting algorithm which is input-oblivious: the algorithm
performs the same sequence of compare-and-swap operations on its input sequence of integers
for all possible inputs. There are n wires traveling from left to right, each labeled with a
distinct input variable, and a sequence of comparator gates connecting the wires. (Note that
a comparator gate, intuitively, just sorts its inputs in order, with the larger input sent to the
∨ output and the smaller to the ∧ output.) The goal is to construct the fastest network –
where fastest can mean “shallowest”, with the smallest depth connecting inputs to outputs,
or with the fewest possible comparator gates – that sorts all n inputs. Shallow sorting
networks have many applications in theory and practice, and thus have been extensively
studied in theoretical computer science, with much effort spent on finding the shallowest
possible networks (see [1, 2, 17, 9]). A restricted version of comparator circuits appeared
implicitly in a paper by Graham [10]. His model is equivalent to read once comparator
circuits, where each literal is used on at most one wire. Graham [10] showed that there
exists a Boolean function on 11 variables that cannot be computed by this model, and it
was proved by Robere [23] that the s, t- connectivity problem cannot be solved by read once
monotone comparator circuits.

2 We note that this differs from the standard usage of the word “wires” in circuit complexity, which is
usually used to mean the edges in the underlying directed graph of the circuit.

ITCS 2020



58:4 Lower Bounds for (Non-Monotone) Comparator Circuits

Studying comparator circuits as a circuit model for general computation arguably began
with the work of Subramanian [25], who showed that comparator circuits are a natural model
for extending the study of bounded fan-out circuits beyond Boolean formulas. Subramanian
considered different classes of circuits depending on whether or not the gates in the circuit
could simulate a COPY gate: that is, the gate that takes some input x and outputs two
copies of x. For example, when a gate can “fan-out” its output then we are allowing the gate
to implicitly copy its output many times over. On the other hand, it is easy to see that a
circuit constructed of comparator gates can not simulate a COPY gate, as the Hamming
weight of the output of a comparator gate is always the same as the Hamming weight of the
input of a comparator gate. Thus comparator circuits form an interesting intermediate class
between Boolean formulas and Boolean circuits: they cannot create copies of intermediate
computations, and so are apparently weaker than Boolean circuits; but, the ability to compute
AND and OR simultaneously makes them apparently more powerful than Boolean formulas.

Let CC denote the class of languages computable by AC0-uniform polynomial-size com-
parator circuits. This complexity class has an interesting characterization as the class of
problems reducible to the stable marriage problem [25]. Closer to our purposes, Subramanian
showed that if a circuit composed from gates chosen from a set S has “bounded fanout”, in
the sense that the gates from S cannot simulate a COPY gate, and all the gates in S compute
monotone functions, then the corresponding circuit value problem for circuits with gates
from S is either in NC or is CC-hard [25]. Despite their inability to copy, polynomial-size
comparator circuits can compute everything in NL [20, 6] (which is conjectured to be strictly
more powerful than polynomial-size Boolean formulas), and appear to be incomparable
with NC [25]. Therefore, CC is a natural class to continue the study of bounded fan-out
computation past NC1, along with being a candidate for a class C satisfying NL ⊂ C ⊂ P
and C 6= NC. The computational complexity of the class CC was recently analyzed by
Cook, Filmus and Le [6] where, among other things, the question of uniformity and oracle
separations with other classes was addressed.

However, a natural question left open by [6] is that of lower bounds. In the monotone
case, since monotone comparator circuits are simulated by monotone circuits, exponential
lower bounds are implied by the known lower bounds for monotone circuits (for instance,
by Razborov [22]), and exponential separations between monotone comparator circuits and
monotone circuits have been proved in [24]. Lower bounds for general Boolean circuits imply
lower bounds for comparator circuits, but other than such implications, we are not aware of
any previous nontrivial lower bounds for general (non-monotone) comparator circuits. In
particular, before our work, no superlinear lower bounds have been obtained for comparator
circuits computing an explicit Boolean function.

1.2 Techniques
To prove Theorem 1 we recruit a classic tool from non-monotone circuit lower bounds: the
Nechiporuk method [21]. This method was invented by Nechiporuk to prove lower bounds on
the size of deterministic branching programs and formulas, and is currently one of the few
techniques capable of proving superlinear lower bounds against non-monotone computation.
The idea of the method is as follows, in the setting of branching programs (the argument for
formulas is identical, see e.g. [29]). Consider a branching program B computing a Boolean
function f on n variables. First, observe that fixing the values outside of a subset S ⊆ [n]
of the variables to constants results in a branching program that computes a subfunction
of the original function on the variables in the subset S. It follows that as we range over
all substitutions to [n] \ S, the number of different branching programs obtained must be



A. Gál and R. Robere 58:5

at least as large as the number of different subfunctions of f on S. Thus, to obtain a lower
bound, take any partition of the input variables [n] = Y1 ∪ Y2 ∪ · · · ∪ Yn and let hi be the
number of nodes of the branching program B labeled with variables from the set Yi. Recall
that the size of a deterministic branching program is the number of its nodes, and each
node is labeled by exactly one input variable. Thus, the size of the branching program B

is |B| =
∑
i hi and, in turn, we can lower-bound each hi by relating it to the number of

subfunctions of f on the variables Yi obtained by restricting [n] \ Yi in all possible ways.
This yields lower bounds for functions with large number of different subfunctions.

The Nechiporuk method works well for branching programs as the sets of nodes of the
program associated with disjoint subsets of inputs are disjoint. The situation is similar for
Boolean formulas: each leaf of the formula is labeled by a variable (or negated variable), and
again the sets of leaves associated with disjoint subsets of inputs are disjoint. In fact, this
property (that the subcircuits corresponding to disjoint subsets of inputs are disjoint) is true
for all prior applications of the method. For example, in the application to non-deterministic
and parity branching programs [15], the edges of the program are now labeled by variables,
and thus the sets of edges corresponding to disjoint subsets of variables are disjoint. Similarly,
in span programs over GF (2) [3], the rows are labeled by variables and so once again, subsets
of rows corresponding to disjoint subset of variables are disjoint.

In principle, one could imagine generalizing this method to other circuit models, as long
as the subcomputations corresponding to disjoint subsets of input variables do not overlap
much. On the negative side, the method can provably not be applied to general Boolean
circuits [28], which intuitively makes sense as circuits can copy intermediate computations as
many times as they like.

So: what about comparator circuits? At first glance it seems like the method should
not be applicable to comparator circuits either, since the circuits contain gates with fanout
two, and this implies that the computation of the circuits on disjoint sets of variables can
badly overlap, just like general Boolean circuits and unlike formulas, branching programs or
span programs. Indeed, as we discuss in Remark 8, the set of gates of a comparator circuit
contributing to the computation on a given subset of variables can potentially involve all the
gates of the original circuit.

We can, however, overcome this problem. Our key observation is the following: the idea
of Nechiporuk’s method may be still applicable in situations where the subcomputations
badly overlap, as long as we are able to bound the size of the computation by some (not
too fast growing) function of the number of occurrences of input literals. This is simply
because the occurrences of input literals (or in other words the input queries) made by the
computation will always be disjoint over disjoint subsets of variables.

Let us elaborate further in the case of comparator circuits. In comparator circuits, the
number of wires – which, we recall, refers to the number of distinct left-to-right lines in Figure
1 – corresponds exactly to the number of occurrences of input literals in the circuit. The fact
that comparator circuits cannot simulate COPY gates suggests the following question. If F
is a Boolean formula with ` leaves then it is easy to see that the number of internal gates
s of F is exactly s = `− 1. In other words, the size of the formula F is linearly related to
the number of its leaves, and this is a result of F having bounded fanout. Does a similar
relation hold for comparator circuits between gates and wires?

First, observe that since each gate in the comparator circuit connects two wires, in order
for each wire to be connected to the output gate we must have `−1 ≤ s, where s is the number
of gates, just like in formulas. However, is it the case that s = O(`)? Or even s = O(poly(`))?
Surprisingly, we are able to show that s ≤

(
`
2
)
assuming that none of the gates in the circuit

ITCS 2020



58:6 Lower Bounds for (Non-Monotone) Comparator Circuits

are “useless” in a specific technical sense and can be removed (cf. Section 3); furthermore,
we show that this relationship is sharp. For the special case of read once comparator circuits,
essentially this statement was proved implicitly by Graham [10].

I Theorem 2. Let C be any comparator circuit with ` wires and s gates such that every gate
in C is useful. Then s ≤ `(`− 1)/2.

It is precisely this relationship between wires and gates which allows us to overcome the
“overlapping subcomputations” issue in applying Nechiporuk’s method, and it seems to be a
remarkable property of this model. As far as we know, our results are the first generalization
of Nechiporuk’s method to such a scenario.

2 Definitions

For any positive integer m let [m] := {1, 2, . . . ,m}, and if n is an integer satisfying m ≤ n
let [m,n] := {m,m+ 1, . . . , n}. If S is a set then ℘(S) denotes the power set of S.

Throughout we will be interested in Boolean functions f : {0, 1}n → {0, 1}. If x ∈ {0, 1}n
then xi is the value of the ith bit in x. If x, y ∈ {0, 1}n are binary strings then x ≤ y if
xi ≤ yi for all i ∈ [n]. If x ∈ {0, 1}n then |x| is the Hamming weight of x.

A comparator gate is the function C : {0, 1}2 → {0, 1}2 computing the map (x, y) 7→
(x ∧ y, x ∨ y). It is natural to think of a comparator gate C as “sorting” the input (x, y), as
the smaller input goes to the first coordinate and the larger input goes to the second. A
comparator circuit is a circuit composed of comparator gates with arbitrary Boolean literals
as input. For later convenience, we use the following, alternative definition of a comparator
circuit. A comparator circuit C is defined by a tuple (W,G, I, o), where

W is a set of elements called wires,
I : W → {x1, . . . , xn, x1, . . . , xn, 0, 1} is an initial labeling of each wire with an input
literal or Boolean constant,
G ⊆W 2 is an ordered list of comparator gates,
o ∈W is the designated output wire.

Each comparator gate g = (i, j) ∈ G is specified by the pair of wires the gate connects: the
AND output of the gate is interpreted as the first coordinate and the OR output of the gate
is interpreted as the second coordinate. A comparator circuit computes a Boolean function
in the natural way: given an assignment to the input literals, we evaluate the comparator
gates one by one in order according to G, and then output the Boolean value labeled on
the output wire, o. We define the size of the comparator circuit to be the number of gates
in the circuit, and note that the number of wires in the circuit will also be an interesting
complexity measure.

3 Wires vs. Gates in Comparator Circuits

I Definition 3. Let C be a comparator circuit with m wires, let g = (i, j) be a gate in C, and
let vi(x), vj(x) be the values of the wires i, j, respectively, on input x just before applying the
gate g. Then g is useful if there is a pair of inputs x, y to C such that (vi(x), vj(x)) = (1, 0)
and (vi(y), vj(y)) = (0, 1). If g is not useful then we say it is useless.

Equivalently, if a gate g is useless then for every pair of inputs (x, y) either (vi(x), vj(x)) =
(vi(y), vj(y)) or vi = vj for one of x, y. The next proposition states that gates that are not
useful can be removed without loss of generality.



A. Gál and R. Robere 58:7

I Proposition 4. Let C be a comparator circuit with ` wires and s gates computing some
Boolean function f . Then there exists a comparator circuit C ′ with (at most) ` wires and
s′ ≤ s gates computing f such that every gate in C ′ is useful. Moreover, the labels of the
wires that are not removed remain the same in C ′ as in C.

Proof. Let g = (i, j) be any gate in C such that g is not useful. Let vi(x), vj(x) be the
values of the wires i, j before applying g on input x. Since g is not useful, then it follows
that for every pair of inputs x, y to the circuit either (vi(x), vj(x)) = (vi(y), vj(y)) or one of
x, y satisfies vi = vj .

Let O ⊆ {0, 1}n be the set of inputs such that for all x ∈ O, exactly one of vi(x), vj(x)
is 1. Since g is useless, it follows that either (vi(x), vj(x)) = (0, 1) for every x in O or
(vi(x), vj(x)) = (1, 0) for every x in O.

Assume that the outputs of g are ordered so that g(0, 1) = (0, 1) and g(1, 0) = (0, 1). The
proof for the other type of gates is symmetric. Consider the following two cases.

Case 1: For all x ∈ O, (vi(x), vj(x)) = (0, 1).
We claim that for all x ∈ {0, 1}n, applying g does not change the value of any wire,
and so g can be removed without affecting the computation C. This is because for
every x ∈ {0, 1}n, either x ∈ O and so applying g does not change any value (since
g(0, 1) = (0, 1)), or x 6∈ O, and by the definition of the set O we must have vi(x) = vj(x),
and so applying g will not change the values of the wires.

Case 2: For all x ∈ O, (vi(x), vj(x)) = (1, 0).
By definition g(1, 0) = (0, 1), and so we perform the following operation: remove g, and
for each wire i, j find the first gate h using that wire as an input. If it is the same gate
for both wires, then h is redundant, so remove it and continue searching forward along
each wire. Otherwise, let hi = (k, `) where exactly one of k, ` is i and let hj = (k′, `′)
where exactly one of k′, `′ is j. Let the wire i feed into the gate hj and the wire j feed
into the gate hi. Switching the wires this way will simulate the action of the gate g that
we just eliminated.

Once you have found a non-redundant gate h for each of the two wires {i, j} (or if no
such gate exists), then stop.

To see that this operation does not affect the output of the circuit, consider the following
two cases:
1. vi(x) = vj(x). In this case, performing this operation will not affect the computation of

the circuit as either of the h gates will receive the same input, regardless of which wire
they are connected to.

2. vi(x) 6= vj(x). In this case, (vi(x), vj(x)) = (1, 0), and g(1, 0) = (0, 1), so by removing g
and switching the inputs of the h gates we ensure that in the new circuit the computation
will be the same.

By proceeding from the inputs of the circuit to the outputs we can apply this operation
to remove every useless gate in the circuit. In each case, the output of the circuit will not be
affected.

Finally, notice that if a wire is not connected to any remaining gate in C ′, we may remove
it, except if the wire is designated as the output of the circuit. The wires that are not
removed, retain the same label as in the original circuit C, and the proof of the proposition
is complete. J

Now we can prove the main theorem of this section, which we restate from the Introduction.

ITCS 2020



58:8 Lower Bounds for (Non-Monotone) Comparator Circuits

I Theorem 2. Let C be any comparator circuit with ` wires and s gates such that every gate
in C is useful. Then s ≤ `(`− 1)/2.

Proof. For j = 1, 2, . . . , s let gj denote the jth gate of C, and let Cj be the subcircuit
of C consisting of the first j gates of C. Let C0 be the circuit C with all of its gates
removed. We say that two inputs x, y ∈ {0, 1}n are useful with respect to the pair (i, j) if
wi(x) = 1, wi(y) = 0 and wj(x) = 0, wj(y) = 1, where wi, wj are the outputs of wires i and
j of the comparator circuit C. If there exist two inputs x, y ∈ {0, 1}n that are useful with
respect to (i, j) then we say that (i, j) is a useful pair.

Let Uj denote the collection of all useful pairs in the circuit Cj . We show that the size
of Uj decreases by at least one after applying each gate: that is |Uj | ≤ |Uj−1| − 1 for all j.
Since |U0| ≤

(
ell
2
)
, it follows that the number of gates in C is at most

(
`
2
)
.

Let 1 ≤ j ≤ s be an integer, and suppose the gate gj connects two wires (a, b). Since gj is
useful we have that (a, b) is a useful pair in Uj−1. It is also clear that (a, b) 6∈ Uj , as applying
the gate gj removes all useful inputs with respect to (a, b). However, we are not finished,
as applying the gate gj could have introduced a new useful pair (c, d): so, (c, d) ∈ Uj and
(c, d) 6∈ Uj−1. The proof will be complete once we prove the following claim, which states
that if such a new useful pair is introduced, then there must exist another distinct useful
pair that was removed.

B Claim 5. Suppose there exists a useful pair (c, d) ∈ Uj such that (c, d) 6∈ Uj−1. Then
there is another useful pair (α, β), uniquely associated with (c, d), such that (α, β) 6= (a, b),
(α, β) ∈ Uj−1, and (α, β) 6∈ Uj .

Proof of Claim. It is clear that while (c, d) 6= (a, b), it cannot be the case that c, d 6∈ {a, b}:
that is, at least one of c or d must be equal to a or b. This is because applying the gate gj
only modifies the outputs of wires a and b, and so any new useful pair must include one of
these modified outputs.

First assume that c = a (and we note that the other cases (c = b, d = a, d = b) follow
by nearly identical proofs). It follows that (a, d) ∈ Uj and (a, d) 6∈ Uj−1. We show that
this implies that (b, d) ∈ Uj−1 and (b, d) 6∈ Uj . For any wire t let vt denote the output
of the tth wire before applying the gate gj , and let wt denote the output of the tth wire
after applying the gate gj . Since (a, d) is a useful pair it follows that there exists a pair of
inputs x, y ∈ {0, 1}n such that wa(x) = 1, wd(x) = 0 and wa(y) = 0, wd(y) = 1. Now, since
(a, d) 6∈ Uj−1 we can deduce the values of va, vb, and vd on inputs x and y. It is obvious
that vd(x) = wd(x) and vd(y) = wd(y) as the gate gj is not connected to the wire d. We can
also conclude that va(x) = vb(x) = 1, as the gate gj connects a to b and wa(x) = 1 (for if
vb(x) = 0, then wa(x) 6= 1, as the 1 would have been moved to the ∨ output of gj). Finally,
since (a, d) 6∈ Uj−1 we know that va(y) = 1 and vb(y) = 0. For if va(y) = 0, it would follow
that (a, d) is a useful pair in Uj−1 (a contradiction). Thus va(y) = 1, and since wa(y) = 0,
the only possibility is that the gate gj moved a 1 from wire a to wire b on input y. We now
record the values of va, vb, vd and wa, wb, wd on inputs x and y:

x y

va 1 1
vb 1 0
vd 0 1

wa 1 0
wb 1 1
wd 0 1



A. Gál and R. Robere 58:9

By examining the table it is easy to see that (b, d) is a useful pair in Uj−1, as vb(x) =
1, vd(x) = 0 and vb(y) = 0, vd(y) = 1. We show that (b, d) 6∈ Uj , proving the claim in
this case.

To see this, suppose that (b, d) ∈ Uj . Then there must exist an input z such that
wb(z) = 0, wd(z) = 1, on which we can similarly deduce the values of va, vb, vd. Clearly
vd(z) = 1 since the gate gj connects the two wires (a, b). Since wb(z) = 0, it must be that
va(z) = vb(z) = 0. However, this means that va(z) = 0, vd(z) = 1, and from the table we can
see that va(x) = 1, vd(x) = 0. This means that (a, d) is a useful pair in Uj−1, a contradiction!

C

We make a final remark on the uniqueness property. We technically have four cases to prove
here, as the new useful pair must be in one of the following forms:
1. (a, d)
2. (b, d)
3. (c, a)
4. (c, b)
In the proof above we showed that if the new useful pair is of the form (a, d), then this
implies that (b, d) ∈ Uj−1 and (b, d) 6∈ Uj . In the other three cases (which proceed by
identical proofs), other uniquely associated pairs are introduced. In general, if α ∈ {a, b}
and β ∈ {a, b}, β 6= α, and the new useful pair is of the form (α, d) then the same proof
shows that (β, d) is in Uj−1 and not in Uj . Similarly, if the new useful pair is of the form
(c, α) then a similar proof shows that (c, β) is in Uj−1 and not in Uj . These facts together
prove uniqueness. J

To see that the upper bound given in the previous theorem is sharp, consider the following
comparator circuit Cn which sorts its n inputs via the “bubblesort” method: the circuit
incrementally bubbles the largest value from the top wire down as far as it can go, and then
the second wire, and so on. This circuit has n wires and

(
n
2
)
gates, and it is not hard to see

that every gate is useful.

4 Lower Bound for Element Distinctness

Let n = 2m logm, and recall the definition of the Element Distinctness function EDn: it
takes n = 2m logm input bits divided into m blocks of 2 logm bits each, interpreted as m
integers in the range {1, . . . ,m2}, and decides whether all m numbers are distinct.

In this section we prove our main lower bound, restated here for convenience:

I Theorem 1. The size of any comparator circuit computing the n-bit Element Distinctness
function EDn is at least Ω((n/ log n)3/2).

We note that the lower bound holds for any function with a similar number of subfunctions;
for instance, the Indirect Storage Access function [29].

We will need the following Lemma. Recall that in a comparator circuit, each of the wires
is labeled with either a constant 0, 1, some input variable or its negation.

I Lemma 6. Let ` ≥ 1 be an integer. For any fixed labeling of ` wires, the number of
different Boolean functions that can be computed by comparator circuits with ` wires with the
given labeling is at most ``2 .

ITCS 2020



58:10 Lower Bounds for (Non-Monotone) Comparator Circuits

Proof. By Proposition 4, every comparator circuit C with ` wires is equivalent to another
comparator circuit C ′ with (at most) ` wires that has no useless gates. By Theorem 2 the
number of gates of C ′ is at most

(
`
2
)
. Recall also that C ′ keeps the same labeling of the wires

(that are not removed) as C; and if a wire is not connected to any remaining gate in C ′, we
may remove it, except if the wire is designated as the output of the circuit.

To prove the lemma it is enough to estimate the number of different comparator circuits
with at most ` wires of a given labeling and at most

(
`
2
)
gates. For each gate, there are at

most
(
`
2
)
choices for the pair of wires it takes as inputs, and two choices for the ordering of

the ∧ output and ∨ output of the gate. In addition, we have at most ` choices to designate
one of the wires as the output. Thus the number of possible such comparator circuits is at
most ` · (2

(
`
2
)
)(

`
2) ≤ (`)(`2). J

I Remark 7. We can also bound the number of different Boolean functions on n variables
that are computed by comparator circuits with s gates by (2(n + 1)s)2s using a similar
counting argument. Note that here we do not assume a fixed labeling, and we use that the
number of wires is at most the number of gates, assuming that each wire is connected to the
output gate.

If the subsets of gates used in subcircuits over disjoint subsets of inputs would not overlap
much, then a straightforward application of Nechiporuk’s method seemingly would yield
nearly quadratic lower bounds using this counting argument. However, as we discuss in
some more details in Remark 8, the subsets of gates can badly overlap. Thus, even though a
counting argument in terms of gates is available, Nechiporuk’s argument is not applicable
directly to the gates of comparator circuits.

Note that we could have also stated a similar bound for comparator circuits with ` wires
and n input variables, without considering a fixed labeling of the wires. We find the current
version of Lemma 6 more convenient for our purposes. We are now ready to prove Theorem 1.

Proof of Theorem 1. We prove the stronger statement, that the number of wires of any
comparator circuit computing EDn is at least Ω((n/ log n)3/2). Recall that the size of a
comparator circuit is the number of its gates, and the number of gates in a comparator
circuit with w wires, where each wire is connected to the output gate, is at least w− 1. Thus,
a lower bound on the number of wires implies lower bounds on the size of the comparator
circuit.

Partition the n = 2m logm input variables into m groups of 2 logm variables each, such
that the variables in the i-th group represent the i-th integer in the input. For i = 1, . . . ,m
let Si be the set of variables in the i-th group. Let Ni denote the number of different
subfunctions over the variables in Si that can be obtained by fixing all variables outside Si
to constants. It is known (see e.g. [14]) that Ni = 2Ω(n) for each i = 1, . . . ,m.

Let C be a comparator circuit computing EDn with w wires. Let wi denote the number
of wires of C labeled by a variable from the i-th group. Then w =

∑m
i=1 wi.

For a given i ∈ [m], consider a fixed assignment α of constants 0 or 1 to all variables outside
of Si. Consider the resulting comparator circuit Ci,α over the variables in Si. Applying
Proposition 4 to Ci,α we can obtain a comparator circuit C ′i,α over variables from Si with no
useless gates. Notice that if a wire is labeled by constant 0 or 1 then any gate directly using
this wire must be useless (in the formal sense of Definition 3). Note also that after removing
all useless gates, wires with constant label are not connected to any remaining gates. Thus,
they can be removed, except when designated as the output wire. Note however, that if a
wire with constant label that is not connected to any gate is designated as the output wire,
then the function computed is constant 1 or 0. Thus, unless the function computed by C ′i,α
is constant, all wires in C ′i,α are labeled by variables or their negation from Si, regardless of
the particular assignment α.



A. Gál and R. Robere 58:11

This fact has two important consequences for us. First, it means that the number of
wires of C ′i,α is at most wi. Second, it means that for given i, unless the function computed
by C ′i,α is constant, the wires of C ′i,α have the same labels (by variables or negated variables
from Si) regardless of the particular assignment α. (To see this, recall that in Proposition 4
the labels of the wires that are not removed remain the same as in the original circuit.)

This allows us to conclude using Lemma 6 that Ni ≤ 2 + w
(w2

i )
i for i = 1, . . . ,m. Thus,

we have for i = 1, . . . ,m that

w2
i ≥

log(Ni − 2)
logwi

≥ Ω(n)
logwi

.

Note that if logwi > 1
2 log n then wi ≥

√
n. On the other hand, if logwi ≤ 1

2 log n
then we get w2

i ≥
Ω(n)
logn . Thus, for i = 1, . . . ,m we have wi ≥ Ω(

√
n√

logn
), which yields

w ≥ Ω((n/ log n)3/2). J

I Remark 8. It is crucial in the above argument that the set of wires used by the subcircuits
C ′i,α is the same for fixed i regardless of the assignment α, and that these sets do not overlap
for different values of i. One could try to consider a similar argument directly for gates
instead of wires. For instance, one could define Gi,α as the set of gates participating in the
circuit C ′i,α, and consider Gi = ∪Gi,α. But for different assignments α, the circuits C ′i,α may
retain different gates of the original circuit, and the sets Gi may badly overlap. In particular,
for some values of i, Gi may contain all gates of the original circuit.

5 Conclusion and Future Work

In this paper we have proved the first superlinear lower bound on the size of comparator
circuits computing an explicit Boolean function. As we have remarked above, we actually
prove a superlinear lower bound on the number of wires, or equivalently, input queries, of
any comparator circuit for EDn, which is stronger than a lower bound on the number of
gates. Furthermore, by our Theorem 2, there is at most a quadratic separation between the
number of wires and the number of gates in any minimal comparator circuit. A natural
problem is to try and prove a lower bound on the number of gates directly. However, as we
discuss above in Remark 8 this would require a different technique.

We remark that it seems quite difficult to apply restriction techniques to obtain wire
lower bounds for comparator circuits. This is for a simple reason: observe that restricting
one input to a single comparator will restrict exactly one output of the gate and re-wire the
other input to the other output. This implies that if we have a comparator circuit with m
wires, and we restrict values to t of them, then we are left with a new comparator circuit
with exactly m− t unrestricted wires after propagating this rewiring process. Note that some
wires could possibly be removed if they are “separated” from the output gate, but, if the
topology of the circuit is highly connected (e.g. is an expander) then we should expect this
to be very unlikely.

Finally, we remark on a second natural open problem. As we discuss in the introduction,
the key structural property of comparator circuits that enabled us to apply Nechiporuk’s
method to comparator circuits is Theorem 2, relating the number of wires to the number of
gates. The crucial intuition in the proof of this Theorem is that comparator circuits cannot
copy intermediate computations. There is a rich structure of circuit classes extending com-
parator circuits which cannot copy intermediate computations, as explored by Subramanian
[25]. Can one extend any of our results to these more general classes?

ITCS 2020



58:12 Lower Bounds for (Non-Monotone) Comparator Circuits

References
1 Miklós Ajtai, János Komlós, and Endre Szemerédi. An O(n log n) Sorting Network. In

Proceedings of the 15th Annual ACM Symposium on Theory of Computing, 25-27 April, 1983,
Boston, Massachusetts, USA, pages 1–9, 1983. doi:10.1145/800061.808726.

2 Kenneth E. Batcher. Sorting Networks and Their Applications. In American Federation
of Information Processing Societies: AFIPS Conference Proceedings: 1968 Spring Joint
Computer Conference, Atlantic City, NJ, USA, 30 April - 2 May 1968, pages 307–314, 1968.
doi:10.1145/1468075.1468121.

3 Amos Beimel, Anna Gál, and Mike Paterson. Lower Bounds for Monotone Span Programs.
Computational Complexity, 6(1):29–45, 1997. doi:10.1007/BF01202040.

4 Andrej Bogdanov. Small Bias Requires Large Formulas. In 45th International Colloquium
on Automata, Languages, and Programming, ICALP 2018, July 9-13, 2018, Prague, Czech
Republic, pages 22:1–22:12, 2018. doi:10.4230/LIPIcs.ICALP.2018.22.

5 Ruiwen Chen, Valentine Kabanets, Antonina Kolokolova, Ronen Shaltiel, and David Zuckerman.
Mining Circuit Lower Bound Proofs for Meta-Algorithms. Computational Complexity, 24(2):333–
392, 2015. doi:10.1007/s00037-015-0100-0.

6 Stephen A. Cook, Yuval Filmus, and Dai Tri Man Le. The complexity of the comparator
circuit value problem. TOCT, 6(4):15:1–15:44, 2014. doi:10.1145/2635822.

7 Irit Dinur and Or Meir. Toward the KRW Composition Conjecture: Cubic Formula Lower
Bounds via Communication Complexity. Computational Complexity, 27(3):375–462, 2018.
doi:10.1007/s00037-017-0159-x.

8 Anna Gál, Avishay Tal, and Adrian Trejo Nuñez. Cubic Formula Size Lower Bounds Based on
Compositions with Majority. In 10th Innovations in Theoretical Computer Science Conference,
ITCS 2019, January 10-12, 2019, San Diego, California, USA, pages 35:1–35:13, 2019.
doi:10.4230/LIPIcs.ITCS.2019.35.

9 Michael T. Goodrich. Zig-zag sort: a simple deterministic data-oblivious sorting algorithm
running in O(n log n) time. In Symposium on Theory of Computing, STOC 2014, New York,
NY, USA, May 31 - June 03, 2014, pages 684–693, 2014. doi:10.1145/2591796.2591830.

10 RL Graham. A mathematical study of a model of magnetic domain interactions. Bell System
Technical Journal, 49(8):1627–1644, 1970.

11 Johan Håstad. Almost Optimal Lower Bounds for Small Depth Circuits. In Proceedings
of the 18th Annual ACM Symposium on Theory of Computing, May 28-30, 1986, Berkeley,
California, USA, pages 6–20, 1986. doi:10.1145/12130.12132.

12 Johan Håstad. The Shrinkage Exponent of de Morgan Formulas is 2. SIAM J. Comput.,
27(1):48–64, 1998. doi:10.1137/S0097539794261556.

13 Kazuo Iwama and Hiroki Morizumi. An Explicit Lower Bound of 5n - o(n) for Boolean Circuits.
In Mathematical Foundations of Computer Science 2002, 27th International Symposium,
MFCS 2002, Warsaw, Poland, August 26-30, 2002, Proceedings, pages 353–364, 2002. doi:
10.1007/3-540-45687-2_29.

14 Stasys Jukna. Boolean Function Complexity - Advances and Frontiers, volume 27 of Algorithms
and combinatorics. Springer, 2012. doi:10.1007/978-3-642-24508-4.

15 Mauricio Karchmer and Avi Wigderson. On Span Programs. In Proceedings of the Eigth
Annual Structure in Complexity Theory Conference, San Diego, CA, USA, May 18-21, 1993,
pages 102–111, 1993. doi:10.1109/SCT.1993.336536.

16 Valeriy M Khrapchenko. Method of determining lower bounds for the complexity of P-schemes.
Mathematical Notes, 10(1):474–479, 1971.

17 Donald Ervin Knuth. The art of computer programming, , Volume III, 2nd Edition. Addison-
Wesley, 1998. URL: http://www.worldcat.org/oclc/312994415.

18 Ilan Komargodski and Ran Raz. Average-case lower bounds for formula size. In Symposium
on Theory of Computing Conference, STOC’13, Palo Alto, CA, USA, June 1-4, 2013, pages
171–180, 2013. doi:10.1145/2488608.2488630.

https://doi.org/10.1145/800061.808726
https://doi.org/10.1145/1468075.1468121
https://doi.org/10.1007/BF01202040
https://doi.org/10.4230/LIPIcs.ICALP.2018.22
https://doi.org/10.1007/s00037-015-0100-0
https://doi.org/10.1145/2635822
https://doi.org/10.1007/s00037-017-0159-x
https://doi.org/10.4230/LIPIcs.ITCS.2019.35
https://doi.org/10.1145/2591796.2591830
https://doi.org/10.1145/12130.12132
https://doi.org/10.1137/S0097539794261556
https://doi.org/10.1007/3-540-45687-2_29
https://doi.org/10.1007/3-540-45687-2_29
https://doi.org/10.1007/978-3-642-24508-4
https://doi.org/10.1109/SCT.1993.336536
http://www.worldcat.org/oclc/312994415
https://doi.org/10.1145/2488608.2488630


A. Gál and R. Robere 58:13

19 Ilan Komargodski, Ran Raz, and Avishay Tal. Improved Average-Case Lower Bounds for
DeMorgan Formula Size. In 54th Annual IEEE Symposium on Foundations of Computer
Science, FOCS 2013, 26-29 October, 2013, Berkeley, CA, USA, pages 588–597, 2013. doi:
10.1109/FOCS.2013.69.

20 Ernst W. Mayr and Ashok Subramanian. The Complexity of Circuit Value and Network
Stability. J. Comput. Syst. Sci., 44(2):302–323, 1992. doi:10.1016/0022-0000(92)90024-D.

21 Edward I Nechiporuk. A Boolean function. Engl. transl. in Sov. Phys. Dokl., 10:591–593,
1966.

22 Alexander A Razborov. Lower bounds for the monotone complexity of some Boolean functions.
In Soviet Math. Dokl., volume 31, pages 354–357, 1985.

23 Robert Robere. Notes on Comparator Circuits. Unpublished manuscript, 2014.
24 Robert Robere, Toniann Pitassi, Benjamin Rossman, and Stephen A. Cook. Exponential

Lower Bounds for Monotone Span Programs. In IEEE 57th Annual Symposium on Foundations
of Computer Science, FOCS 2016, 9-11 October 2016, Hyatt Regency, New Brunswick, New
Jersey, USA, pages 406–415, 2016. doi:10.1109/FOCS.2016.51.

25 Ashok Subramanian. The computational complexity of the circuit value and network stability
problems. PhD thesis, Stanford University, 1990.

26 Avishay Tal. Shrinkage of De Morgan Formulae by Spectral Techniques. In 55th IEEE Annual
Symposium on Foundations of Computer Science, FOCS 2014, Philadelphia, PA, USA, October
18-21, 2014, pages 551–560, 2014. doi:10.1109/FOCS.2014.65.

27 Avishay Tal. Formula lower bounds via the quantum method. In Proceedings of the 49th
Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017, Montreal, QC,
Canada, June 19-23, 2017, pages 1256–1268, 2017. doi:10.1145/3055399.3055472.

28 Dietmar Uhlig. Boolean functions with a large number of subfunctions and small complexity
and depth. In International Symposium on Fundamentals of Computation Theory, pages
395–404. Springer, 1991.

29 Ingo Wegener. The complexity of Boolean functions. Wiley-Teubner, 1987. URL: http:
//ls2-www.cs.uni-dortmund.de/monographs/bluebook/.

ITCS 2020

https://doi.org/10.1109/FOCS.2013.69
https://doi.org/10.1109/FOCS.2013.69
https://doi.org/10.1016/0022-0000(92)90024-D
https://doi.org/10.1109/FOCS.2016.51
https://doi.org/10.1109/FOCS.2014.65
https://doi.org/10.1145/3055399.3055472
http://ls2-www.cs.uni-dortmund.de/monographs/bluebook/
http://ls2-www.cs.uni-dortmund.de/monographs/bluebook/

	Introduction
	Comparator Circuits and Bounded Fanout Computation
	Techniques

	Definitions
	Wires vs. Gates in Comparator Circuits
	Lower Bound for Element Distinctness
	Conclusion and Future Work

