
1932-4553 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSTSP.2020.2975610, IEEE Journal
of Selected Topics in Signal Processing

1

Accelerating Convolutional Neural Network via
Structured Gaussian Scale Mixture Models: a Joint

Grouping and Pruning Approach
Tao Huang, Weisheng Dong, Member, IEEE, Jinshan Liu , Fangfang Wu, Guangming Shi, Senior

member, IEEE, and Xin Li, Fellow, IEEE

Abstract—Despite the great success of deep convolutional
neural networks (DCNNs), their heavy computational complexity
remains a key obstacle to the wide use in practical applica-
tions. To meet this challenge, DCNN pruning has been recently
developed as a technique of compressing DCNNs to facilitate
their applications in the real world. In this paper, we propose
a hybrid network compression technique for exploiting the prior
knowledge of network parameters by Gaussian scale mixture
(GSM) models. Specifically, the collection of network parameters
are characterized by GSM models and network pruning is
formulated as a maximum a posteriori (MAP) estimation problem
with a sparsity prior. The key novel insight brought by this work
is that groups of parameters associated with the same channel are
similar, which is analogous to the grouping of similar patches
in natural images. Such observation inspires us to leverage
powerful structured sparsity prior from image restoration to
network compression - i.e., to develop a flexible filter-grouping
strategy that not only promotes structured sparsity but also
can be seamlessly integrated with the existing network pruning
framework. Extensive experimental results on several popular
DCNN models including VGGNet, ResNet and DenseNet have
shown that the proposed GSM-based joint grouping and pruning
method convincingly outperforms other competing approaches
(including both pruning and non-pruning based methods).

I. INTRODUCTION

In the past decade, deep convolutional neural networks (DC-
NNs) have achieved significant improvements over traditional
shallow networks in various computer vision tasks - e.g.,
image classification [19], object detection [29], video tracking
[25], and image super-resolution [20]. The success of those
DCNN-based approaches mainly attribute to the deep network
architecture with a large number of parameters, the availability
of large-scale training datasets and the affordability of com-
putational resources (i.e., powerful GPUs). For example, the
VGGNet network [30] typically has 16 or 19 layers; while
the ResNet [10] network has used 152 layers. From a real-
world application perspective, DCNNs with so many layers
often require prohibitive computational and memory resources,

This work was supported in part by the National Key R&D Program of
China under Grant 2018YFB1402603 and the Natural Science Foundation of
China under Grant 61991451, Grant 61632019, Grant 61621005, and Grant
61836008. Xin Li’s work is partially supported by the DoJ/NIJ under grant
NIJ 2018-75-CX-0032, NSF under grant OAC-1839909 and the WV Higher
Education Policy Commission Grant (HEPC.dsr.18.5).

Tao Huang, Weisheng Dong, Jinshan Liu, Fangfang Wu and Guangming
Shi are with the School of Artificial Intelligence, Xidian University, Xi’an,
710071, China. The corresponding author is Dr. Weisheng Dong (e-mail:
wsdong@mail.xidian.edu.cn).

Xin Li is with Lane Dep. of CSEE, West Virginia University, Morgantown
WV 26506-6109, USA.

limiting their deployment on resource constrained devices such
as mobile and Internet of Things (IoT) devices.

To meet this challenge, an emerging field of network
compression (a.k.a. model compression) has advanced rapidly.
The basic idea behind network/model compression is to obtain
a more compact representation of DCNN without sacrifice on
the classification accuracy. For instance, sparsity regularization
[15], [22] (i.e., thresholding operators) can be conveniently
enforced to the scaling factors during training for the purpose
of eliminating/pruning unimportant channels. Along this line
of reasoning, if a subset of inputs can produce similar outputs
to the whole, it implies that the rest of inputs have negligible
contributions to the outputs and therefore can be pruned
[24]; additionally, all filters corresponding to removable in-
puts can be pruned. In addition to direct pruning [8], other
network compression techniques include low-rank decompo-
sition [17],[35], Bayesian compression [50], [51], [52], weight
quantization [33], [4],[28], [53], sparse learning [1],[23],[36]
as well as direct design of efficient networks (e.g., MobileNet
[12], ShuffleNet [34]).

In this paper, we propose a hybrid approach toward network
compression by combining two most popular ideas in the
existing literature: network pruning [11] and filter grouping
[13]. A key novel insight brought by this work is that through
careful design of networks (e.g., from channel shuffling [34]
to filter grouping [13]), we can make a network more prunable
and therefore improve the efficiency of network compression.
Unlike [11] (based on LASSO regression [42]), we leverage
more powerful group/structured sparsity regularization [6] to
joint compress a group of similar parameters associated with
the same channel (conceptually analogous to a group of similar
patches in images). Unlike [34] (channel shuffle for group
convolutions), we propose a more flexible filter grouping
strategy to promote group sparsity which can be seamlessly
integrated with existing network pruning techniques.

Formally, we have implemented a hybrid network compres-
sion approach by the celebrated Gaussian Scale Mixture(GSM)
[27] model (please refer to Fig. 1). In our formulation, the
weights of convolutional filters are characterized by a GSM
model - i.e., the weights are decomposed into a Gaussian
vector α and a hidden scalar multiplier θ. In view of the
difficulty with optimizing a logarithmic function (the hidden
scalar multiplier θ for sparsity regularization) in CNN, we
propose to exploit an alternative reweighted `1 norm [2]
analogous to the logarithmic function in sparsity optimization.

Authorized licensed use limited to: West Virginia University. Downloaded on July 07,2020 at 18:35:12 UTC from IEEE Xplore. Restrictions apply.

1932-4553 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSTSP.2020.2975610, IEEE Journal
of Selected Topics in Signal Processing

2

0.0001

0.9522

0.6213

0.2346

0.0006

0.5661

lθ

C

2nk

Αl
W = diag(θ)Αl l l

Kernel Matrix

(a)

The Value of θ0.0001 A Feature Map A 2D Kernel Resizes to 21 k

A Scalar Pruning Operation The Correspondence between A and θ

Legend:

CONCAT

0.0009

0.8652

0.5365

0.0013

0.0008

0.7331

l ,1θ

C

2n 2()k

,1Αl
,,1 1 ,1W = diag(θ)Αl l l

0.0019

0.5642

0.6631

0.4658

0.0006

0.0021

l ,2θ

C

2n 2()k

,2 ,2 ,2W = diag(θ)Αl l l

Kernel Matrix

(b)

,2Αl

Fig. 1: The motivation behind the proposed GSM modeling and joint grouping and pruning approach. We decompose a filter
weight W into a Gaussian matrix A and scalar multiplier vector θ (we have borrowed the terminology “kernel matrix” from
Fig. 1 of [21]). (a) network pruning strategy with GSM model only; (b) joint grouping and pruning strategy (we only show a
toy example of G = 2 due to space limitation). Since both groups don’t select the first and fifth channels as the inputs, these
two channels will be pruned and the rest will be grouped together in the fine-tuning pruned network.

Our experimental results have shown that a reweighted `1
norm is more sparse than the original `1 norm and therefore
can prune network even better. Under the framework of GSM
modeling, We have designed an efficient network separating
filters of each layers into G similar groups through channel
shuffling [34] as shown in Fig. 1. Each group sharing similar
inputs are selected through comparing the values of hidden
scalar multipliers; by grouping and pruning similar filters, we
can achieve further improved model compression efficiency.

We have validated the proposed hybrid model compression
approach on several well-known datasets (CIFAR-10, CIFAR-
100, SVHN and ImageNet) and three popular architectures
(VGGNet, ResNet and DenseNet). Extensive experimental re-
sults demonstrate that our method can compress architectures
more efficiently and achieve better accuracy than most state-
of-the-art methods. For instance, on all datasets and for all
architectures in our experiments, we have achieved modest to
moderate gain over network slimming[22], networking pruning
[21], sparse structure selection [15], [37] and channel pruning
[41]. We have also observed convincing gain over non-pruning
based network compression methods (e.g., Automl for model
compression [44] and Cascaded Projection [45]) on selected
dataset and architecture.

II. RELATED WORKS

Low rank decomposition uses several low rank matrices
to approximate the weight matrix in the network. In [5], the
SVD method was used to decompose the matrix to reduce the
parameters of the weight matrix. This method compresses the
convolution layer by 2-3 times and the fully connected layer by
5-13 times. In [31], an algorithm based on a structured matrix
was proposed for low rank decomposition, which employed
a Toeplitz matrix to approximate the original weight matrix.
Such low-rank approximation can achieve the compression
ratio of 2-3 times on some small data sets. The final accuracy
can even exceed that of the network without the compression.
Most recently, cascaded projection using low-rank method was
proposed for network compression in [45].

Weight quantization selects several representatives from
the weight matrix, and these representatives are used to

represent the specific values of a certain type of weight. The
representative is stored in the codebook, while the original
weight matrix stores the corresponding index, which greatly
reduces the storage space. In [9], the weight parameter is
quantized to 8 bits, which not only saves model storage space
but also obtains a fairly good acceleration with negligible loss
on accuracy. In [7], K-Means method is used to cluster all
the weights to obtain k cluster centers. The original weight
matrix only stores the cluster index. This method compresses
the model storage space of Alexnet and VGGNet by 35 times
and 49 times respectively. Although this method saves a lot
of storage space, it does not bring acceleration during the
testing stage. In BinaryNet [3], XNOR-Net [28], the single
precision weight is quantized to binary, which greatly saves
model storage and memory footprint. However, the downside
of this approach is lacking of effective training algorithms,
which leads to the loss of precision.

Designing compact model achieves the goal of reducing
model parameters and calculations by designing a lightweight
network structure. Squeezenet [16] uses 1 × 1 convolution
to design a small network. MobileNet [12] architecture is
based on depth-wise separable convolution which factorize
a standard convolution into a depth-wise convolution and
a 1 × 1 (point-wise) convolution. Shufflenet [34] combined
group convolution, channel shuffle, skip connections which
achieves 13× actual speedup over AlexNet while maintaining
comparable accuracy. The bottleneck structure in ResNet [10]
has been proposed to reduce the number of parameters.

Network pruning has recently received increasingly more
attention. The key lies in how to measure the importance of
neurons, filters, etc. A neuron-level pruning algorithm was
proposed in [7]; but the network structure is destroyed so that
special hardware equipment is needed to achieve theoretical
speedup ratio, which seriously limits the versatility of the
model after pruning. Therefore, the filter-level pruning method
becomes an important research direction in recent years. [21]
calculates the sum of the absolute values of the weight matrix
to prune the filter. [22] uses the parameters of the BN layer and
add sparse constraints to select the channel. [15] introduces

Authorized licensed use limited to: West Virginia University. Downloaded on July 07,2020 at 18:35:12 UTC from IEEE Xplore. Restrictions apply.

1932-4553 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSTSP.2020.2975610, IEEE Journal
of Selected Topics in Signal Processing

3

a scaling factor to the output of specific structures, such as
neurons, groups or residual blocks. More recent works such
as [41], [39] have mostly focused on smarter ways of pruning.

III. GROUPING AND PRUNING FILTERS

Network compression aims at throwing away most redun-
dant parameters and reducing computations without sacrifice
on the accuracy. Although both strategies of grouping and
pruning have been successfully applied for model compres-
sion, they have not been combined in the open literature to
the best of our knowledge. In this section, we propose to
progressively combine the strategies of grouping and pruning
filters, which exploit the best of both worlds.

A. DCNN Learning with Gaussian Scale Mixture Modeling

Pruning is a direct and effective method that eliminates
unimportant connections and redundant parameters. It is usu-
ally composed of a pipeline - i.e., train, prune and fine-tune.
The key to effective pruning is how to estimate the importance
of connections and weights. Several effective methods have
been developed recently. In [21], network pruning is based on
the sum of absolute values of each filter’s weights (pruned
filters have small sums). In [22] and [15], the `1 norm is
used to enforce the sparsity on scaling factors in the batch
normalization layers. While these methods are heuristic in
exploiting the sparsity of model parameters, we propose a
principled approach of leveraging Gaussian scale mixture
(GSM) models [27], [6] to DCNN pruning under a maximum
a posterior (MAP) estimation framework.

For a given dataset D = {(x1,y1), · · · , (xN ,yN)}, we aim
to optimize network parameters by maximizing the posterior

log p(W|D) ∝ log p(D|W) + log p(W)

=
N∑
i=1

log p(yi|xi,W) + log p(W),
(1)

where p(D|W) denotes a DCNN model with parameters W,
which maps an input image xi to its corresponding output yi,
and p(W) denotes the prior distribution of W. If a Gaussian
model is adopted for p(W), the corresponding MAP estimation
becomes the commonly used DCNN objective function

W = argmin
W

N∑
i=1

L1(yi, f(W,xi)) + λ
L∑
l=1

||Wl||2F , (2)

where L1 is the data loss, f(·) is the function of the DCNN,
Wl = [w>l,1; · · · ;w>l,C] ∈ RC×nk2 is the parameters of the l-
th layer, C and n are the number of input channels and filters
for the l-th layer respectively, k is the spatial size of filters,
and L is the number of total layers.

In this paper, we propose to characterize the weight ma-
trix with GSM models. The GSM model decomposes each
coefficient wl,c,j of Wl into the product of a zero-mean
Gaussian variable αl,c,j with unitary variance and a hidden
scalar multiplier θl,c - i.e., wl,c,j = αl,c,jθl,c, where θl,c
is the positive scaling variable with probability p(θl,c) and

j = 1, 2, ..., nk2. Thus, the GSM prior of p(wl,c,j) can be
expressed as

p(wl,c,j) =

∫ ∞
0

p(wl,c,j |θl,c)p(θl,c)dθl,c. (3)

For most of p(θl,c), there is no analytical expression of
p(wl,c,j). However, we can still use the MAP to estimate
wl,c,j by jointly estimating wl,c,j and θl,c, as will be described
later. Considering that the filter coefficients corresponding to
the same channel (i.e., wl,c ∈ Rnk2 , c = 1, · · · , C) have
strong correlations, they should be characterized by the same
distribution with the same θl,c. Thus, we decompose wl,c as
wl,c = θl,cαl,c, where αl,c ∈ Rnk2 . The GSM modeling of
Wl can then be written as

Wl = ΛlAl, (4)

where Λl = diag(θl) ∈ RC×C is a diagonal matrix, and
Al = [α>l,1; · · · ;α>l,C] ∈ RC×nk2 . Considering that each wl,c
is i.i.d., the GSM prior of Wl can be written as

p(Wl) =

C∏
c=1

p(wl,c) =

C∏
c=1

∫ ∞
0

p(wl,c|θl,c)p(θl,c) dθl,c,

(5)

where p(wl,c) is the Gaussian model with standard deviation
θl,c. For p(θl,c), we use the noninformative Jeffrey’s prior for
p(θl,c), which is given by

p(θl,c) ∝
1

θl,c + ε
, (6)

where ε is introduced for numerical stability.
Since it is difficult to obtain an analytical form of p(Wl),

we propose to pursue a joint estimation of (Wl,θl) through
MAP estimation, where θl = [θl,1, · · · , θl,C]>. By substituting
p(Al,θl) into Eq. (1), we obtain the following GSM-based
objective function for DCNN

(Al,θl) = argmin
Ω

N∑
i=1

L1(yi, f(xi;Ω))

+ 4λ
L∑
l=1

log(θl + ε) + λ
L∑
l=1

||Al||2F ,

(7)

where Ω = {Al,θl}Ll=1 denotes the set of network parameters
and Wl = ΛlAl.

This way, the original optimization problem with respect
to Wl has been translated into the joint estimation of Al
and θl through the adopted GSM model. Under the context
of model compression, we expect Wl to be sparse because
most unimportant filters can be eliminated. It follows that the
sparsity constraint can be enforced on θl instead of Wl in
Eq. (7). Note that the slope of the logarithmic function is
steeper than that of the `1 norm regularization, consequently it
is often more challenging to work with the logarithmic penalty
function than the conventional `1-regularization.

Fortunately, the above difficulty can be resolved by con-
sidering a surrogate function proposed in [2]. Let g(θl) =

Authorized licensed use limited to: West Virginia University. Downloaded on July 07,2020 at 18:35:12 UTC from IEEE Xplore. Restrictions apply.

1932-4553 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSTSP.2020.2975610, IEEE Journal
of Selected Topics in Signal Processing

4

∑C
c=1 log(θl,c + ε). g(θl) can be approximated by the first

order Taylor expansion, as

g(θl) = g(θtl) +∇g(θtl) · (θl − θtl). (8)

where θtl denote the solution obtained in the t-th iteration.
Thus, we can solve Eq. (7) by iteratively minimizing

(At+1
l ,θt+1

l) = argmin
Ω

N∑
i=1

L1(yi, f(xi;Ω))

+ 4λ
L∑
l=1

C∑
c=1

θl,c
θtl,c + ε

+ λ
L∑
l=1

||Al||2F ,

(9)

where we have used ∇g(θtl) =
∑C
c=1

1
θtl,c+ε

and ignored the
constant in Eq. (8). As shown in [2], we can get more sparse
θl by using the reweighted `1 norm than the original `1 norm.
Experimental comparison is referred to Table III. Different
from [22] scaling the outputs of convolution layers, we have
characterized the weights of convolution filters by the paramet-
ric GSM model as shown in Fig. 1 (a). When compared against
previous method [22], our GSM-based approach is arguably
more principled and powerful.

B. Filter Pruning and Fine-tuning

By training the DCNN with GSM-based regularization,
we can obtain a model with sparse multipliers θl,c. Those
channels with multipliers θl,c close to zero can then be pruned
- i.e., the associated filter weights in both the current layer
and the previous layer can be pruned. The pruned channels
can be selected by applying a hard-thresholding operation to
the multiplier with a threshold. The threshold is obtained by
first sorting all the multiplier and selecting the threshold as
a percentile (e.g., 80%) of all the multiplier values. After
pruning the filter weights, a compact DCNN with much fewer
parameters can be obtained, which can be further fine-tuned
to compensate the loss of prediction accuracy due to pruning
(e.g., the weights of the compact DCNN can be updated via
the common DCNN objective function Eq. (2) which does not
have any sparsity constraint).

C. Learning Grouped Convolutions with GSM Model

Enforcing the constraint on connection patterns is tight for
one group because all output features are generated by the
same inputs. By contrast, multiple groups have more flexibility
with selecting appropriate filter inputs. ShuffleNet[34] is the
representative of efficient lightweight models where pointwise
group convolution is introduced to reduce computational com-
plexity. Based on the observation that not all inputs have
equally significant contributions to outputs, CondenseNet [13]
proposed a learned group convolution method to automatically
select different inputs for multiple groups on DenseNet. The
key idea behind CondenseNet is to split the filters of a layer
into multiple groups and gradually prune the connections to
less important features for each group during the training.

In this subsection, we propose to extend the proposed
structured GSM model by a new strategy called filter grouping.
In the proposed GSM-based modeling of Wl, we assume that
all the filter coefficients corresponding to the same channel

in each layer share the same distribution prior (i.e., the same
θl,c). This assumption may be too strong and can be relaxed
by dividing the filters of each layer into several groups
and modeling the weights with different θl,c for different
groups. Let G be the number of divided groups, and there are
m = [n/G] filters in each group. Then, the weights in each
group can be modeled by the GSM model as Wl,g = Λl,gAl,g ,
Al,g ∈ RC×mk2 , Λl,g = diag(θl,g) ∈ RC×C , g = 1, · · · , G. It
can be easily verified that DCNN learning based on a grouped
GSM prior can be expressed by

(Al,θl) = argmin
Ω

N∑
i=1

L1(yi, f(xi;Ω))

+ 4λ
L∑
l=1

G∑
g=1

log(θl,g + ε) + λ
L∑
l=1

G∑
g=1

||Al,g||2F ,

(10)

Similar to Eq. (7), the above objective function can be itera-
tively solved using the reweighted `1-norm trick.

During the training, the scalar multiplier θ serves as a
natural candidate of progressively selecting varying inputs
for different groups. There are two key differences between
ours and CondenseNet [13]. First, CondenseNet learns the
group convolution through grouping filter weights of 1 × 1
convolutional layer directly and pruning small weights in each
group; while we opt to characterize the filters’ weights by the
GSM model and conduct network pruning based on scalar
multiplier θ instead. Second, CondenseNet adopts a multi-
stage process in which training and pruning operations have
to be repeated for multiple times which requires a lot of
computations. Our strategy only needs to train and prune once
during the process of network compression, which is more
computationally efficient. In summary, exploiting the group
strategy can learn multiple connection patterns and reduce
more parameters and computing operations to produce more
efficient networks.

Putting things together, the proposed network compression
algorithm based on GSM model and joint grouping and
pruning is summarized in Algorithm 1. Note that by simply
replacing the objective function Eq. (10) in Algorithm 1 with
Eq. (9), we can obtain a network pruning algorithm based on
GSM only (without grouping). As a toy example, Fig. 1 shows
the difference between conventional pruning (with GSM only)
and our joint grouping and pruning strategy (G = 2). During
the training process, we train all parameters without pruning
and enforce the sparsity constraint with scalar multipliers θ.
After training is done, we sort all θ and prune those small
values. Accordingly, the useless entries in Gaussian matrix A
are pruned too. Finally, the pruned network will be fine-tuned
to reach a higher accuracy (similar to Step 3 of Algorithm 1).

IV. EXPERIMENT RESULTS

We have implemented the proposed compression method
using PyTorch and evaluated it on popular datasets such as
CIFAR-10, CIFAR-100 [18], SVHN [26] and ImageNet [43].
The network architectures in our experiments include VGGNet
[30], ResNet [10] and DenseNet [14].

Authorized licensed use limited to: West Virginia University. Downloaded on July 07,2020 at 18:35:12 UTC from IEEE Xplore. Restrictions apply.

1932-4553 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSTSP.2020.2975610, IEEE Journal
of Selected Topics in Signal Processing

5

(a). Test Errors on CIFAR-10
Network Method Params Params Pruned FLOPs FLOPs Pruned Test error (%)

VGGNet-16

Baseline 14.77M - 6.27×108 - 6.21
Pruned [21] 5.40M 64.0% 4.12×108 34.2% 6.60
Pruned [39] 2.35M 84.0% 2.74×108 56.2% 7.26

SSS [15] 8.19M 44.5% 4.44×108 29.8% 6.24
Pruned [46] 3.92M 73.3% 3.80×108 39.1% 6.82

GAL 0.1 [47] 2.67M 82.2% 3.44×108 45.2% 6.58
Ours 1.64M 88.9% 3.23×108 48.5% 6.06

VGGNet-19
Baseline 20.05M - 7.97×108 - 6.24

Slimming [22] 2.30M 88.5% 3.91×108 51.0% 6.20
Ours 1.80M 91.0% 3.16×108 60.4% 6.02

ResNet-20

Baseline 0.27M - 0.82×108 - 8.66
SSS [15] 0.15M 44.4% 0.35×108 57.3% 9.17

Pruned [41] 0.18M 33.3% - - 9.10
Ours 0.14M 48.1% 0.41×108 50.0% 8.81

ResNet-56

Baseline 0.86M - 2.52×108 - 6.61
Pruned [11] - - 1.26×108 50.0% 8.20
Pruned [21] 0.73M 13.7% 1.82×108 27.6% 6.94
TPRD [38] - - 1.49×108 40.9% 6.86

KSE (G=5) [49] 0.36M 58.1% 1.00×108 60.3% 7.12
AMC[44] - - 1.26×108 50.0% 8.10
NISP [48] 0.49M 42.4% 1.62×108 35.5% 6.99
CaP [45] - - 1.27×108 49.8% 6.78

Ours 0.35M 59.3% 1.23×108 51.2% 6.83

ResNet-110

Baseline 1.73M - 4.98×108 - 6.08
Pruned [21] 1.68M 2.3% 4.26×108 15.9% 6.45

GAL 0.5 [47] 0.95M 44.8% 2.60×108 48.5% 7.26
Ours 0.57M 67.2% 2.37×108 53.3% 6.23

ResNet-164

Baseline 1.74M - 5.07×108 - 5.81
Slimming [22] 1.44M 14.9% 3.81×108 23.7% 5.08

SSS [15] 1.62M 6.9% 3.88×108 23.1% 5.25
Ours 0.95M 45.1% 3.00×108 39.8% 4.93

DenseNet-40

Baseline 1.08M - 5.68×108 - 5.99
Slimming [22] 0.66M 35.7% 3.81×108 28.4% 5.19

Pruned [46] 0.42M 59.7% 3.12×108 44.8% 6.84
GAL 0.01 [47] 0.67M 35.6% 3.66×108 35.3% 5.39
KSE (G=3) [49] 0.63M 41.7% 3.40×108 40.1% 5.19

Ours 0.66M 39.3% 3.93×108 30.9% 5.23

(b). Test Errors on CIFAR-100
Network Method Params Params Pruned FLOPs FLOPs Pruned Test error (%)

VGGNet-16

Baseline 14.77M - 6.27×108 - 26.81
Pruned [39] 4.50M 69.5% 3.82×108 39.1% 27.99

SSS [15] 2.50M 83.1% 3.08×108 50.6% 27.05
Ours 2.50M 83.1% 3.51×108 44.2% 26.41

VGGNet-19

Baseline 20.09M - 7.97×108 - 27.15
Slimming [22] 5.00M 75.1% 5.01×108 37.1% 26.52

Compressed [40] - - 4.78×108 40.0% 26.35
Ours 4.72M 76.5% 4.96×108 37.8% 25.82

ResNet-164

Baseline 1.75M - 4.99×108 - 24.51
SSS [15] 1.63M 6.3% 3.90×108 21.8% 23.71

Slimming [22] 1.21M 29.7% 2.47×108 50.6% 23.91
Ours 1.15M 34.3% 3.26×108 34.7% 23.59

DenseNet-40
Baseline 1.13M - 5.68×108 - 25.95

Slimming [22] 0.66M 37.5% 3.71×108 30.3% 25.28
Ours 0.61M 45.6% 3.47×108 39.0% 25.22

TABLE I: Results without grouping filters on CIFAR-10/100, using VGGNet-16/19, ResNet-20/56/110/164 and DenseNet-40.

A. Datasets

The CIFAR-10 and CIFAR-100 datasets both have 50,000
images for training and 10,000 images for testing (all sized
by 32 × 32). The CIFAR-10 dataset has 10 independent
classes; while the CIFAR-100 dataset has 100 different classes.
Before training, we pre-process images with a standard data-
augmentation scheme (i.e., zero-padding, cropping and ran-
dom flipping along horizontal/vertical/diagonal, and normal-
ization). The Street View House Number (SVHN) dataset
has a large number of color images of size 32 × 32. The

SVHN dataset consists of 604,388 training images including
all the extra set and 26,032 testing images. The ImageNet
dataset consists of over 1.2 million training images and 50,000
validation images drawn from 1000 classes. A standard pre-
processing procedure is adopted. The input images are first
resized to 256×256. Then the training set is created by random
cropping to 224 × 224 patches followed by random flipping;
the testing set adopts a similar 224×224 cropping at the center.

Authorized licensed use limited to: West Virginia University. Downloaded on July 07,2020 at 18:35:12 UTC from IEEE Xplore. Restrictions apply.

1932-4553 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSTSP.2020.2975610, IEEE Journal
of Selected Topics in Signal Processing

6

Algorithm 1 Network compression based on GSM model and
Joint Grouping and Pruning
• Initialization:

(a) Set parameters A, θ and λ;
(b) Set basic configurations: mini-batch size(bs), training

epochs (T1), fine-tune epochs (T2), pruning ratio(pr).
• Input: D = {(x1,y1), · · · , (xN ,yN)}.
• Output: A compact DCNN with comparable accuracy.
• Step-1: TRAIN

for t = 1, 2, . . . , T1
for k = 1, 2, . . . ,

⌊
N
bs

⌋
Update parameters A, θ via Eq. (10);

• Step-2: PRUNE
(a) Sort all multipliers θ and obtain the pruning threshold

according to the pruning ratio pr;
(b) Prune the unimportant A and θ;
(c) Compute W via Eq. (4) and feed it to the new compact

DCNN.
• Step-3: FINE-TUNE

for t = 1, 2, . . . , T2
for k = 1, 2, . . . ,

⌊
N
bs

⌋
Update weights W of the new compact DCNN via

Eq. (2);

1x1 Conv, a

3x3 Conv, b

1x1 Conv, 6Ch
an

ne
l

Se
lec

tio
n

6-d 4-d 6-d

Fig. 2: The structure of the residual block (note that the values
of “a” and “b” are not fixed).

B. Network Architectures and Configurations

We have evaluated the proposed model compression method
on both CIFAR and SVHN datasets with several variations of
three popular networks. We pruned two kinds of VGGNet (i.e.,
VGGNet-16 and VGGNet-19) with only one fully connected
layer. We also pruned ResNet with 20/56/110/164 layers and
DenseNet with 40 layers. On the ImageNet dataset, we have
evaluated our compression method on VGGNet-A which has
three fully connected layers. For the grouping strategy, we
have only conducted experiments with VGGNet so far. In our
implementation, we have trained randomly initialized networks
from the scratch: θ is initialized to be 1; α is initialized to
a normal distribution with zero mean and standard deviation
of
√
2/n where n denotes the number of elements in α.

We trained all models using similar basic configurations to
previous work of [22]. Note that network slimming [22]
represents the current state-of-the-art in the open literature;
other benchmark methods such as filter pruning [21] and
Structured Sparsity Learning (SSL) [32] were less competitive
as shown in [22]).

In our experiments, we have also pruned the parameters
of the residual block. Similar to [22], we add a channel
selection layer before the first convolutional layer of residual

block as shown in Fig. 2. The channel selection layer can
mask out insignificant channels. The number of parameters in
the channel selection layer is equal to the number of input
channels of the residual block and is negligible. Thanks to
the introduction of the channel selection layer, we can further
prune the convolutional layers in the residual block. To protect
the structure of ResNet, we have fixed the number of output
channels in the last convolutional layers of the residual block.
We have also added the channel selection layer to the dense
block for DenseNet, which shares a similar observation.

C. Sparsity of the Reweighted `1-norm

In Eq. (9) and (10), we have replaced the original logarith-
mic penalty function by a surrogate function of reweighted `1
norm. Each θl,c has a different regularization parameter. The
regularization parameter is given by

λtl,c =
η

θtl,c + ε
. (11)

In our experiments, λtl,c is related to both sparsity and accu-
racy. In Eq. (11), there are two parameters (η, ε) affecting the
value of λtl,c: ε is a small positive value assuring the stability
of implemented algorithm; η is related to λtl,c controlling
the sparsity of θ directly. Fig. 3 shows the distributions of
θ with different η on VGGNet. It can be observed that the
distributions of θ are indeed more and more skewed with the
increasing of η. Note that the frequency of updating batch
sizes or λtl,c also has an effect on sparsity and accuracy. In
our experiments, we update the regularization parameters at
the first epoch and then update it every 30 epochs on CIFAR
dataset and every 4 epochs on SVHN dataset. We have selected
η in the range of [5e − 6, 5e − 5], where higher values of η
lead to larger pruning ratios.

It should be noted that we have pruned all convolutional
layers including the first layer and the last layer according
to the value of θ. How much weights of the first layer and
the last layer are pruned depends on the value of θ and the
set threshold. Table II shows the architecture of our pruned
VGGNet on CIFAR-10. It can be observed from Table II that
512 feature map layers are heavily pruned and the first 5
convolutional layers are slightly pruned. The first layer and the
last layer also have redundant parameters. Thanks to structured
sparsity constraints, the information and features of the inputs
can be efficiently learned by our pruned network.

In order to show that our pruning method benefits from
the strong sparsity of reweighted `1-norm, we have also
compared reweighted `1-norm and conventional `1-norm on
Cifar-10 dataset with VGGNet-19 and ResNet-56. For a
fair comparison, we have included the pruning results of
reweighted `1-norm vs. `1-norm under various pruning ratios
with η = 5e− 5. From Table III, we can see that the pruning
results by reweighted `1-norm have fewer parameters, less
FLOPs and higher accuracies than `1-norm counterpart. For
the pruning ratio 0.8 with VGGNet-19 and 0.6 with ResNet-
56, several layers of the model are pruned completel by `1-
norm (i.e., failure); while reweighted `1-norm still achieves
good performance.

Authorized licensed use limited to: West Virginia University. Downloaded on July 07,2020 at 18:35:12 UTC from IEEE Xplore. Restrictions apply.

1932-4553 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSTSP.2020.2975610, IEEE Journal
of Selected Topics in Signal Processing

7

Pruned
Ratio Architecture (VGGNet) Params

Pruned
Flops

Pruned
Test

error (%)
0 [64, 64, M, 128, 128, M, 256, 256, 256, 256, M, 512, 512, 512, 512, M, 512, 512, 512, 512] - - 6.24

0.1 [63, 64, M, 126, 128, M, 253, 249, 242, 232, M, 455, 444, 460, 455, M, 445, 454, 443, 440] 20.80% 12.30% 6.05
0.2 [62, 64, M, 126, 128, M, 251, 243, 225, 214, M, 399, 379, 389, 403, M, 381, 387, 370, 376] 39.16% 23.17% 6.17
0.3 [62, 64, M, 126, 126, M, 248, 236, 208, 191, M, 343, 318, 321, 336, M, 313, 319, 319, 322] 55.01% 33.12% 5.97
0.4 [56, 64, M, 126, 126, M, 246, 229, 190, 172, M, 283, 261, 264, 264, M, 252, 259, 243, 267] 67.98% 42.28% 5.97
0.5 [53, 63, M, 126, 126, M, 238, 220, 176, 150, M, 229, 206, 199, 199, M, 183, 189, 189, 205] 78.30% 49.81% 6.11
0.6 [49, 63, M, 125, 126, M, 234, 216, 162, 131, M, 173, 140, 120, 132, M, 121, 123, 137, 149] 86.03% 56.09% 5.95
0.7 [43, 63, M, 124, 126, M, 234, 208, 151, 112, M, 108, 69, 57, 75, M, 59, 58, 72, 92] 91.07% 59.85% 6.02
0.8 [39, 63, M, 122, 126, M, 231, 198, 123, 64, M, 36, 11, 9, 4, M, 2, 2, 16, 55] 93.87% 64.87% 6.18

TABLE II: The architecture of the pruned network under different pruned ratios. “M” denotes the max pooling layer.

C
ou

nt

The value of θ

41 10   51 10   61 10   0 

Fig. 3: The distributions of θ with different η on VGGNet. The x and y axis denote the values and counts of θ respectively.

VGGNet-19

PR
Norm `1 Reweighted `1

Error Params FLOPs Error Params FLOPs
0.5 6.13% 4.82M 0.51B 6.11% 4.35M 0.40B
0.6 5.93% 3.40M 0.47B 5.95% 2.80M 0.35B
0.7 6.24% 2.47M 0.44B 6.02% 1.79M 0.32B
0.8 - - - 6.18% 1.23M 0.28B

ResNet-56

PR
Norm `1 Reweighted `1

Error Params FLOPs Error Params FLOPs
0.3 7.05% 0.44M 0.17B 6.59% 0.47M 0.16B
0.4 7.06% 0.39M 0.14B 6.73% 0.37M 0.14B
0.5 6.98% 0.34M 0.12B 6.76% 0.32M 0.12B
0.6 - - - 7.06% 0.28M 0.10B

TABLE III: Performance comparison between reweighted `1-
norm and `1-norm on CIFAR-10, using VGGNet-19 and
ResNet-56. “PR” denotes the ratio of the pruned number to
the total number of θ. M/B means (106/109), respectively.

D. Results of one-group GSM modeling

In Table I, we have compared our method with existing
network pruning techniques [11], [15], [21], [22], [38], [39],
[41], [46], [47], [48] and non-pruning techniques [49], [44],
[45], [40] on CIFAR datasets. Tables IV and VII are the com-
pression results on SVHN and ImageNet dataset, respectively.
CIFAR. From Table I (a) and (b), we can observe that, when
compared with other methods, our method can prune more
parameters, save more FLOPs and still achieve lower testing
errors. On VGGNet-16/19, we can prune 88.9%/91.0% param-
eters on CIFAR-10 and 83.1%/76.5% on CIFAR-100 without
accuracy loss. The testing error of the pruned VGGNet-19 by
our method is 0.7% lower than that of [22] on CIFAR-100
with even smaller number of parameters and FLOPs. With
30.2% fewer parameters and 16.1% less FLOPs, our pruned
ResNet-164 achieves 0.15% lower testing error than [22] on
CIFAR-10. Compared with [15], our pruned VGGNet-16 and
ResNet-164 respectively obtain 0.18% and 0.32% decrease

in testing error on CIFAR-10 with 44.4% and 38.2% fewer
parameters and 18.7% and 16.7% fewer FLOPs. Compared
with [21], our pruned ResNet-56 and ResNet-110 respectively
obtain 0.11% and 0.22% decrease in testing error on CIFAR-
10 with 45.6% and 64.9% fewer parameters and 23.6% and
37.4% fewer FLOPs. With 8.1% fewer parameters and 8.7%
fewer FLOPs, our pruned DenseNet achieves nearly the same
testing accuracy with [22] on CIFAR-100. As shown in Table
I (a) and (b), when compared to [11], [38], [39], [40], [41],
our pruned models achieve the best results on CIFAR dataset.

SVHN. Table IV shows the results on SVHN dataset. As
shown in Table IV, the testing accuracies on SVHN dataset
can reach to 98% and near saturation. Our testing errors are
almost same as [22] and [49], but with much fewer parameters
and FLOPs. For the SVHN dataset, our pruned VGGNet-
19 obtains comparable performance with that pruned by [22]
with 6.9% fewer parameters and 29.4% fewer FLOPs. With
38.9% fewer parameters and 29.9% fewer FLops, our pruned
ResNet obtains same test error as the ResNet pruned by [22].
When compared to [49], our pruned DenseNet-40 saved more
than 13.2% parameters and 15.4% FLOPs with only 0.06%
accuracy degradation. In Table V, we have compared our
method with [22] on a mini-version of SVHN dataset, which
only 73,257 training images without the extra set and 26,032
testing images. From Table V, we can see that our pruned
VGGNet-19 achieves comparable test accuracy with [22] using
7.6% less parameters and 39.4% less FLOPs. For ResNet,
with 25% less parameters and 18.3% less FLOPs, our pruned
ResNet also achieves similar accuracy to [22]. With 9.3%
less parameters and 9.8% less FLOPs, our pruned DenseNet
obtains 0.11% lower test errors than that pruned by [22].

ImageNet. Table VI and Table VII have shown the top-1
results on ImageNet dataset using VGGNet-A with different
experimental settings (e.g., whether to distinguish between
FC and Conv layers, high vs. low compression ratios). The

Authorized licensed use limited to: West Virginia University. Downloaded on July 07,2020 at 18:35:12 UTC from IEEE Xplore. Restrictions apply.

1932-4553 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSTSP.2020.2975610, IEEE Journal
of Selected Topics in Signal Processing

8

Network Method Params Params Pruned FLOPs FLOPs Pruned Test error (%)

VGGNet-19
Baseline 20.04M - 7.97×108 - 2.21

Slimming [22] 3.04M 84.8% 3.98×108 50.1% 2.06
Ours 1.66M 91.7% 1.64×108 79.5% 2.09

ResNet-164
Baseline 1.74M - 4.98×108 - 1.91

Slimming [22] 1.46M 14.5% 3.44×108 31.1% 1.85
Ours 0.81M 53.4% 1.94×108 61.0% 1.85

DenseNet-40

Baseline 1.08M - 5.68×108 - 1.80
Slimming [22] 0.44M 56.6% 2.67×108 49.8% 1.81
KSE (G=5)[49] 0.42M 61.1% 2.60×108 54.2% 1.75

Ours 0.28M 74.3% 1.73×108 69.6% 1.81

TABLE IV: Results without grouping filters on SVHN, using VGGNet-19, ResNet-164 and DenseNet-40.

Network Method Params Params Pruned FLOPs FLOPs Pruned Test error (%)

VGGNet-19
Baseline 20.04M - 7.97×108 - 3.89

Slimming [22] 3.04M 84.8% 4.31×108 45.9% 3.86
ours 1.52M 92.4% 1.17×108 85.3% 3.85

ResNet-164
Baseline 1.74M - 4.99×108 - 3.35

Slimming [22] 0.98M 43.4% 2.36×108 52.7% 3.07
ours 0.55M 68.4% 1.45×108 71.0% 3.13

DenseNet-40
Baseline 1.09M - 5.70×108 - 3.46

Slimming [22] 0.47M 56.2% 2.96×108 48.1% 3.32
ours 0.38M 65.5% 2.39×108 57.9% 3.21

TABLE V: Results without grouping filters on mini-SVHN dataset, using VGGNet-19, ResNet-164 and DenseNet-40.

VGGNet-A has 8 convolutional layers and 3 fully connected
layers without dropout layers. The parameters are concen-
trated in the fully connected layers, while the computations
are concentrated in the convolutional layers. The number of
parameters of the first fully connected layer is nearly 103
million, which is 77.5% of the total parameters. The number
of FLOPs of the fourth and sixth convolutional layers add
up to 7.4 billion, which is nearly 48.7% of the total FLOPs.
In our experiments, we also modeled the parameters of fully
connected layers through the GSM model. We sorted all θ
and pruned all layers. From Table VII, we can see that our
pruned VGGNet-A achieved 0.14% lower testing error than
[22] with 8.47% fewer parameters. Note that the FLOP results
of baseline and slimming for VGGNet-A in Table VII are
directly cited from [22]; according to our own calculation, the
baseline FLOP of VGGNet-A is around 15.2B (rather than
45.7B) which is more consistent with the well-known 30.9B
baseline result for VGGNet-16 given by [8](since VGGNet-A
has 5 fewer convolutional layers than VGGNet-16).

E. Results of multi-groups GSM modeling

For multi-groups GSM modeling, we have obtained the
network compression results for VGGNet-19 on CIFAR and
SVHN datasets. The filters in each layer were divided into G
groups (G = 2, 4 in our experiment). The results are reported
in Table VIII. The two rows for group=2,4 represent different
pruning ratio results of the same model. From Table VIII,
it can be seen that the multi-groups GSM modeling method
can prune more parameters than its one-group counterpart.
For CIFAR10, with 3.2% fewer parameters and 11.7% fewer
FLOPs, the VGGNet pruned by the proposed method with
4-groups achieves slightly better accuracy than its one-group
counterpart. For CIFAR100, the 2-groups GSM method saved
more than 6.2% parameters and 11.6% FLOPs over one-group,
with only 0.43% accuracy degradation. For the SVHN dataset,

the multi-groups GSM method also leads to better network
pruning performance.

F. Comparison against other competing approaches
Finally, we want to demonstrate the superiority of the

proposed approach to other competing methods such as non-
pruning based and variational Bayesian (VB) based network
compression. Table IX includes the compression performance
comparison against three non-pruning based approaches: ad-
versarial network compression (ANC) [54], Automl for model
compression (AMC)[44] and Cascaded Projection (CaP) [45]
- on ResNet-56 and CIFAR-10. It can be observed that out
joint-grouping-and-pruning convincingly outperforms the two
benchmark schemes (higher pruning ratio and comparable
error performance). Table X includes the compression perfor-
mance comparison against several VB-based methods ([55],
[56] and [57]). In order to compare to [50], [55] and [57],
we have pruned LeNet-300-100, LeNet-5-Caffe on MNIST
and VGGNet on CIFAR-10. It can be seen from Table X
that our proposed method can prune more parameters, save
more FLOPs and still achieve lower testing errors than other
VB-based methods, especially VGGNet on CIFAR-10. With
18.14% and 12.71% less FLOPs, our pruned VGGNet achieves
2% and 2.4% lower testing errors than BC-GNJ and BC-GHS
(VB-based method [50] with two different priors) respectively.

V. CONCLUSION

In this paper, we have proposed a hybrid approach of
compressing DCNNs by joint pruning and grouping based
on structured GSM models. To effectively exploit the high
dependencies among network parameters, we have developed
a principled solution to model a group of parameters sharing
the same GSM prior by structured GSMs. Under this new
structured sparsity framework, a collection of less important
parameters associated with the same channel can be grouped
first and then effectively pruned together. On several well-
known benchmark datasets and network architectures, our

Authorized licensed use limited to: West Virginia University. Downloaded on July 07,2020 at 18:35:12 UTC from IEEE Xplore. Restrictions apply.

1932-4553 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSTSP.2020.2975610, IEEE Journal
of Selected Topics in Signal Processing

9

Model Total
Param & FLOPs

Conv
Param & FLOPs

FC
Param & FLOPs Top-1 Errors

Baseline 132.9M 15.2B 9.22M 14.97B 123.63M 0.25B 36.75%

Pruned t 12.0M
90.97%

11.7B
23.03%

6.86M
25.60%

11.68B
21.98%

5.10M
95.87%

0.01B
96.00% 36.52%

Pruned s 14.58M
89.03%

6.39B
57.96%

3.28M
64.43%

6.37B
57.45%

11.26M
90.89%

0.02B
92.00% 39.82%

Pruned h 6.14M
95.38%

4.00B
73.68%

1.95M
78.85%

3.99B
73.34%

4.16M
96.63%

0.01B
96.00% 44.20%

TABLE VI: Results on ImageNet (1-group) using VGGNet-A. Here, M/B means (106/109), respectively. “Pruned t” denotes
the method where we pruned the FC and Conv layers together, “Pruned s” denotes the method where we pruned FC and Conv
separately, and ‘Pruned h” denotes the method where we pruned the FC and Conv together on high compression ratio.

Method Params Pruned FLOPs Pruned Errors
Baseline [22] 132.9M - 45.7B - 36.69%

Slimming [22] 23.2M 82.50% 31.8B 30.40% 36.66%
Baseline (Ours) 132.9M - 15.2B - 36.75%

Ours 12.0M 90.97% 11.7B 23.03% 36.52%

TABLE VII: Results without grouping filters on ImageNet,
using VGGNet-A. Here, M/B means (106/109), respectively.

Dataset Groups Params Pruned FLOPs Pruned Errors

C-10

1 1.80M 91.0% 0.32B 60.4% 6.02%
1.23M 93.9% 0.28B 64.9% 6.52%

2 1.80M 91.0% 0.23B 71.4% 6.38%
0.89M 95.6% 0.19B 76.5% 6.50%

4 1.77M 91.2% 0.25B 68.3% 6.05%
1.17M 94.2% 0.22B 72.1% 5.99%

C-100

1 4.72M 76.5% 0.50B 37.8% 25.82%
3.64M 81.9% 0.47B 41.0% 26.56%

2 5.24M 73.9% 0.45B 44.0% 26.10%
3.48M 82.7% 0.40B 49.6% 26.25%

4 4.71M 76.6% 0.40B 50.4% 26.04%
3.63M 82.0% 0.36B 55.1% 26.47%

SVHN

1 1.66M 91.7% 0.16B 79.5% 2.09%
0.90M 95.5% 0.13B 83.7% 2.25%

2 2.01M 90.0% 0.28B 64.5% 2.01%
0.87M 95.7% 0.16B 79.5% 2.15%

4 1.93M 90.4% 0.24B 69.6% 2.03%
0.79M 96.1% 0.13B 83.7% 2.08%

TABLE VIII: Results of Multi-Group GSM modeling for
VGGNet-19 pruning. Here, M/B means (106/109), respec-
tively.

proposed method have achieved improved tradeoff between
computational savings and classification accuracy (sometimes
the acceleration is significant without noticeable sacrifice on
accuracy). We will report additional experimental results on
other datasets and network architectures (e.g., ResNet on
ImageNet) in the future.

REFERENCES

[1] J. M. Alvarez and M. Salzmann. Learning the number of neurons in
deep networks. In Advances in Neural Information Processing Systems,
pages 2270–2278, 2016. 1

Method Params Pruned FLOPs Pruned Errors
ANC[54] 0.27M 68.6% - - 8.08%
AMC[44] - - 1.26×108 50.0% 8.10%
CaP [45] - - 1.27×108 49.8% 6.78%

Ours 0.35M 59.3% 1.20×108 51.2% 6.83%

TABLE IX: Comparison of ResNet-56 with other accelerating
non-pruning approaches on CIFAR-10.

[2] E. J. Candes, M. B. Wakin, and S. P. Boyd. Enhancing sparsity
by reweighted l1 minimization. Journal of Fourier analysis and
applications, 14(5-6):877–905, 2008. 1, 3, 4

[3] M. Courbariaux and Y. Bengio. Binarynet: Training deep neural
networks with weights and activations constrained to+ 1 or- 1. arxiv:
1602.02830, 2016, 2017. 2

[4] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Bengio.
Binarized neural networks: Training deep neural networks with weights
and activations constrained to+ 1 or-1. arXiv preprint arXiv:1602.02830,
2016. 1

[5] E. L. Denton, W. Zaremba, J. Bruna, Y. LeCun, and R. Fergus.
Exploiting linear structure within convolutional networks for efficient
evaluation. In Advances in neural information processing systems, pages
1269–1277, 2014. 2

[6] W. Dong, G. Shi, Y. Ma, and X. Li. Image restoration via simultaneous
sparse coding: Where structured sparsity meets gaussian scale mixture.
International Journal of Computer Vision, 114(2-3):217–232, 2015. 1,
3

[7] S. Han, H. Mao, and W. J. Dally. Deep compression: Compressing deep
neural networks with pruning, trained quantization and huffman coding.
arXiv preprint arXiv:1510.00149, 2015. 2

[8] S. Han, J. Pool, J. Tran, and W. Dally. Learning both weights
and connections for efficient neural network. In Advances in neural
information processing systems, pages 1135–1143, 2015. 1, 8

[9] S. J. Hanson and L. Y. Pratt. Comparing biases for minimal network
construction with back-propagation. In Advances in neural information
processing systems, pages 177–185, 1989. 2

[10] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 770–778, 2016. 1, 2, 4

[11] Y. He, X. Zhang, and J. Sun. Channel pruning for accelerating very
deep neural networks. In International Conference on Computer Vision
(ICCV), volume 2, 2017. 1, 5, 7

[12] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam. Mobilenets: Efficient convo-
lutional neural networks for mobile vision applications. arXiv preprint
arXiv:1704.04861, 2017. 1, 2

[13] G. Huang, S. Liu, L. van der Maaten, and K. Q. Weinberger. Con-
densenet: An efficient densenet using learned group convolutions. group,
3(12):11, 2017. 1, 4

[14] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger. Densely
connected convolutional networks. In CVPR, volume 1, page 3, 2017.
4

[15] Z. Huang and N. Wang. Data-driven sparse structure selection for deep
neural networks. arXiv preprint arXiv:1707.01213, 2017. 1, 2, 3, 5, 7

[16] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally,
and K. Keutzer. Squeezenet: Alexnet-level accuracy with 50x fewer
parameters and¡ 0.5 mb model size. arXiv preprint arXiv:1602.07360,
2016. 2

[17] M. Jaderberg, A. Vedaldi, and A. Zisserman. Speeding up convo-
lutional neural networks with low rank expansions. arXiv preprint
arXiv:1405.3866, 2014. 1

[18] A. Krizhevsky. Learning multiple layers of features from tiny images.
Master’s thesis, University of Tront, 2009. 4

[19] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification
with deep convolutional neural networks. In Advances in neural
information processing systems, pages 1097–1105, 2012. 1

[20] C. Ledig, L. Theis, F. Huszár, J. Caballero, A. Cunningham, A. Acosta,
A. Aitken, A. Tejani, J. Totz, Z. Wang, et al. Photo-realistic single image
super-resolution using a generative adversarial network. arXiv preprint
arXiv:1609.04802, 2016. 1

[21] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf. Pruning

Authorized licensed use limited to: West Virginia University. Downloaded on July 07,2020 at 18:35:12 UTC from IEEE Xplore. Restrictions apply.

1932-4553 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSTSP.2020.2975610, IEEE Journal
of Selected Topics in Signal Processing

10

Model & size & (Params,FLOPs) & Error Method Pruned architecture Params Params pruned FLOPs FLOPs pruned Error

LeNet-300-100
784-300-100

(266610, 533220)
1.6%

Sparse VD (impl. by [50]) 512-114-72 67492 74.69% 134984 74.69% 1.8%
SBP 245-160-55 48775 81.71% 97550 81.71% 1.6%

BC-GNJ 278-98-13 28769 89.21% 57538 89.21% 1.8%
BC-GHS 311-86-14 28200 89.42% 56400 89.42% 1.8%

OURS 251-94-33 27163 89.81% 54326 89.81% 1.8%

LeNet-5-Caffe
20-50-800-500

(431520, 4.586M)
0.6%

Sparse VD (impl. by [50]) 14-19-242-131 40292 90.66% 1.320M 71.22% 1.0%
SBP 3-18-284-283 84684 80.38% 0.436M 90.49% 0.9%

BC-GNJ 8-13-88-13 4186 99.03% 0.566M 87.66% 1.0%
BC-GHS 5-10-76-16 2806 99.35% 0.301M 93.44% 1.0%

OURS 4-14-74-11 2424 99.44% 0.296M 93.55% 1.0%

VGG
(2 x 64)-(2 x 128)-
-(3 x 256)-(8 x 512)
(19.43M, 720.78M)

6.1%

SBP (impl. by [56]) 47-50-91-115-227-160-50-
-72-51-12-34-39-20-20-272 0.94M 95.16% 199.20M 72.36% 9.0%

BC-GNJ 63-64-128-128-245-155-63-
-26-24-20-14-12-11-11-15 1.00M 94.85% 283.08M 60.73% 8.6%

BC-GHS 51-62-125-128-228-129-38-
-13-9-6-5-6-6-6-20 0.82M 95.78% 243.91M 66.16% 9.0%

RBP 50-63-123-108-104-57-23-
-14-9-8-6-7-11-11-12 0.39M 97.99% 179.21M 75.14% 9.0%

OURS 24-57-100-106-148-114-86-
-57-18-11-12-4-4-12-34 0.60M 96.91% 152.30M 78.87% 6.6%

TABLE X: The pruning results for our method and other Variational Bayesian methods (Sparse VD [55], SBP [57], BC-GNJ
[50], BC-GHS [50] and RBP [56]). Here, M means 106. BC-GNJ and BC-GHS denote the Bayesian Compression (BC) with
group normal-Jeffreys (BC-GNJ) and group horseshoe (BC-GHS) priors proposed by [50], respectively.

filters for efficient convnets. arXiv preprint arXiv:1608.08710, 2016. 2,
3, 5, 6, 7

[22] Z. Liu, J. Li, Z. Shen, G. Huang, S. Yan, and C. Zhang. Learning efficient
convolutional networks through network slimming. In Computer Vision
(ICCV), 2017 IEEE International Conference on, pages 2755–2763.
IEEE, 2017. 1, 2, 3, 4, 5, 6, 7, 8, 9

[23] B. Liu, M. Wang, H. Foroosh, M. Tappen and M. Pensky. Sparse
convolutional neural networks. Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 806–814. IEEE,
2015. 1

[24] J.-H. Luo, J. Wu, and W. Lin. Thinet: A filter level pruning method for
deep neural network compression. arXiv preprint arXiv:1707.06342,
2017. 1

[25] C. Ma, J.-B. Huang, X. Yang, and M.-H. Yang. Hierarchical con-
volutional features for visual tracking. In Proceedings of the IEEE
international conference on computer vision, pages 3074–3082, 2015. 1

[26] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng.
Reading digits in natural images with unsupervised feature learning. In
NIPS workshop on deep learning and unsupervised feature learning,
number 2, page 5, 2011. 4

[27] J. Portilla, V. Strela, M. Wainwright, and E. Simoncelli. Image denoising
using scale mixtures of gaussians in the wavelet domain. IEEE Trans.
Signal Process., 12(11):1338–1351, Nov. 2003. 1, 3

[28] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi. Xnor-net:
Imagenet classification using binary convolutional neural networks. In
European Conference on Computer Vision, pages 525–542. Springer,
2016. 1, 2

[29] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards real-time
object detection with region proposal networks. In Advances in neural
information processing systems, pages 91–99, 2015. 1

[30] K. Simonyan and A. Zisserman. Very deep convolutional networks for
large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.
1, 4

[31] V. Sindhwani, T. Sainath, and S. Kumar. Structured transforms for small-
footprint deep learning. In Advances in Neural Information Processing
Systems, pages 3088–3096, 2015. 2

[32] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li. Learning structured
sparsity in deep neural networks. In Advances in Neural Information
Processing Systems, pages 2074-2082, 2016. 6

[33] J. Wu, C. Leng, Y. Wang, Q. Hu, and J. Cheng. Quantized convolutional
neural networks for mobile devices. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 4820–
4828, 2016. 1

[34] X. Zhang, X. Zhou, M. Lin, and J. Sun. Shufflenet: an extremely efficient
convolutional neural network for mobile devices (2017). arxiv preprint.
arXiv preprint arXiv:1707.01083. 1, 2, 4

[35] X. Zhang, J. Zou, X. Ming, K. He, and J. Sun. Efficient and accurate
approximations of nonlinear convolutional networks. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 1984–1992, 2015. 1

[36] H. Zhou, J. M. Alvarez, and F. Porikli. Less is more: Towards compact
cnns. In European Conference on Computer Vision, pages 662–677.
Springer, 2016. 1

[37] Y. Li, S. Lin, B. Zhang, J. Liu, D. Doermann, Y. Wu, F. Huang and
R. Ji. Exploiting Kernel Sparsity and Entropy for Interpretable CNN
Compression. arXiv preprint arXiv:1812.04368, 2018. 2

[38] S. Kang, J. Yu and K. Choi. Tapered-Ratio Compression for Residual
Network. In 2018 International SoC Design Conference (ISOCC),
pages=72–73, IEEE, 2018. 5, 7

[39] Y. Hu, S. Sun, J. Li, X. Wang and Q. Gu. A novel channel prun-
ing method for deep neural network compression. arXiv preprint
arXiv:1805.11394, 2018. 3, 5, 7

[40] B. Peng, W. Tan, Z. Li, S. Zhang, D. Xie, S. Pu. Extreme network
compression via filter group approximation. In European Conference
on Computer Vision (ECCV), pages 300–316, 2018. 5, 7

[41] J. Ye, X. Lu, Z. Lin, J. Wang. Rethinking the smaller-norm-less-
informative assumption in channel pruning of convolution layers. In
arXiv preprint arXiv:1802.00124, 2018. 2, 3, 5, 7

[42] Robert. Tibshirani, Regression shrinkage and selection via the lasso. In
Journal of the Royal Statistical Society: Series B (Methodological), 58.1
(1996): 267-288. 1

[43] Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet
classification with deep convolutional neural networks. Advances in
neural information processing systems, 2012. 4

[44] Y. He, J. Lin, Z. Liu, H. Wang, L. Li, and S. Han. Amc: Automl for
model compression and acceleration on mobile devices. In Proceedings
of the European Conference on Computer Vision (ECCV), pages 784–
800, 2018. 2, 5, 7, 8, 9

[45] M. Breton, and A. Savakis. Cascaded Projection: End-to-End Network
Compression and Acceleration. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2019. 2, 5, 7, 8, 9

[46] C. Zhao, B. Ni, J. Zhang, Q. Zhao, W. Zhang, and Q. Tian. Variational
Convolutional Neural Network Pruning. In The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2019. 5, 7

[47] S. Lin, R. Ji, C. Yan, B. Zhang, L. Cao, Q. Ye, F. Huang, and
D. Doermann. Towards Optimal Structured CNN Pruning via Generative
Adversarial Learning. In The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2019. 5, 7

[48] R. Yu, A. Li, C. Chen, J. Lai, V. Morariu, X. Han, M. Gao, C. Lin, and
L. Davis. NISP: Pruning Networks Using Neuron Importance Score
Propagation. In The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2018. 5, 7

[49] Y. Li, S. Lin, B. Zhang, J. Liu, D. Doermann, Y. Wu, F. Huang and
R. Ji. Exploiting Kernel Sparsity and Entropy for Interpretable CNN
Compression. In The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2019. 5, 7, 8

[50] C. Louizos, K. Ullrich, and M. Welling. Bayesian compression for deep
learning. In Neural Information Processing Systems (NIPS), 2017. 1,
8, 10

[51] C. Louizos and M. Welling. Multiplicative normalizing flows for

Authorized licensed use limited to: West Virginia University. Downloaded on July 07,2020 at 18:35:12 UTC from IEEE Xplore. Restrictions apply.

1932-4553 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSTSP.2020.2975610, IEEE Journal
of Selected Topics in Signal Processing

11

variational bayesian neural networks. In International Conference on
Machine Learning (ICML), 2017. 1

[52] M. Federici, K. Ullrich, and M. Welling. Improved bayesian compres-
sion. In arXiv:1711.06494, 2017. 1

[53] J. Achterhold, J. M. Kohler, A. Schmeink and T. Genewein. Variational
network quantization. In Inter. Conf. on Learning Representation
(ICLR), 2018. 1

[54] V. Belagiannis, A. Farshad, and F. Galasso. Adversarial network
compression. In Proceedings of the European Conference on Computer
Vision (ECCV), 2018. 8, 9

[55] M. Dmitry, A. Arsenii and V. Dmitry. Variational dropout sparsifies deep
neural networks. In Proceedings of the 34th International Conference
on Machine Learning-Volume 70, pages 2498–2507, 2017 8, 10

[56] Y. Zhou, Y. Zhang, Y. Wang, and Q. Tian. Accelerate CNN via Recursive
Bayesian Pruning. In The IEEE International Conference on Computer
Vision (ICCV). IEEE, 2019. 8, 10

[57] N. Kirill, M. Dmitry, A. Arsenii and V. Dmitry P. Structured bayesian
pruning via log-normal multiplicative noise In Advances in Neural
Information Processing Systems, pages 6775–6784, 2017. 8, 10

Authorized licensed use limited to: West Virginia University. Downloaded on July 07,2020 at 18:35:12 UTC from IEEE Xplore. Restrictions apply.

