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A B S T R A C T

Efficiency corrected single ratios of neutron and proton spectra in central 112Sn+112Sn and
124Sn+124Sn collisions at 120 MeV/u are combined with double ratios to provide constraints on the

density and momentum dependencies of the isovector mean-field potential. Bayesian analyses of these

data reveal that the isoscalar and isovector nucleon effective masses, m∗
s −m∗

v are strongly correlated.

The linear correlation observed in m∗
s − m∗

v yields a nearly independent constraint on the effective

mass splitting Δm∗
np = (m∗

n − m∗
p)∕mN = −0.05+0.09

−0.09
�. The correlated constraint on the standard

symmetry energy, S0 and the slope, L at saturation density yields the values of symmetry energy

S(�s) = 16.8+1.2
−1.2

MeV at a sensitive density of �s∕�0 = 0.43+0.05
−0.05

.

Connecting the properties of matter within neutron stars

to the properties of nuclei on earth presents both opportu-

nities and challenges. The ability to study the symmetry

energy by nuclear measurements in the laboratory presents

a definite opportunity. On the other hand, the large differ-

ence between the asymmetry of matter within nuclei and

that of neutron stars presents a definite challenge. In nu-

clei, the Coulomb forces shift the energy minimum to more

neutron-rich isotopes in heavy nuclei, but the symmetry en-

ergy shifts the energy minimum to more symmetric isotopes.

Consequently, the interplay of Coulomb and symmetry en-

ergies limit the neutron number N available for elements of

proton number Z to a narrow range about N and the asym-

metries � = (N − Z)∕(N + Z) of nuclei remain less than

0.25. However, inside neutron stars, the neutron fraction can

reach above 90% at normal density under � equilibrium con-

ditions. This vastly increases the importance of probing the

symmetry energy and understanding its effects in the labo-

ratory over wide range of densities and asymmetries.

Recent observation of a neutron star-merger event [1]

yields the first glimpse of neutron-star properties such as

tidal deformability that are governed by the nuclear equa-

tion of state (EoS). The EoS at zero temperature is the sum

of the symmetry energy and the energy for symmetric mat-

ter with equal neutron and proton density, �n = �p. For

neutron stars, the density dependence of the symmetry en-

ergy, Esym = S(�)�2, strongly influences the relationship

between pressure and the density, � = �n+�p, of stellar mat-

ter and thus, the neutron star mass-radius relationship [2, 3]
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as well as the nuclear lattice and nucleonic gas within the in-

ner crust, the boundary between the core and the inner crust

and the nature of lattice or pasta structures of nuclei. Labo-

ratory constraints have been obtained on the EoS [4] and on

the momentum dependence of the mean-field potentials for

symmetric matter [5, 6]. Present efforts to constrain S(�)

have focused on the first two coefficients S0 and L in the

Taylor expansion of S(�) around the saturation density �0,

S(�) = S0 +
L

3�0
(� − �0) + O((� − �0)

2) (1)

Information about S0 and L have been obtained from anal-

yses of the masses [7, 8], Pygmy Dipole Resonances (PDR)

[9, 10, 11], Electric dipole polarizability [12, 13], neutron

skin thickness [14], Isobaric Analog States (IAS) [15] and

isospin diffusion in heavy-ion collisions [16]. These analy-

ses result in positively-correlated constraints on S0 and L.

Depending on the experimental condition, the slope of the

correlation between S0 and L are different. That is because

the slope is a signature of the sensitive density being probed

by a given laboratory experiment [17].

In addition to the density dependence of the symmetry

potential, the nuclear mean-field potential has momentum

dependencies from the Fock exchange term, finite range and

correlation effects [18, 19, 20, 21, 25, 22, 23, 24, 26]. The

neutron and proton effective masses associated with these ef-

fects influence many of the thermal properties of hot proto-

neutron stars formed in core-collapse supernovae [2, 3, 27,

28]. The mean-field potential contains an isoscalar effective

mass m∗
s that is reduced in nuclei from the nucleon mass mN

by approximately
m∗
s

mN
≈ 0.65 − 0.75 [18, 20, 21]. Further-

more, momentum dependencies in the isovector (symmetry)
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Figure 1: Single neutron over proton ratio for 124Sn+124Sn and 112Sn+112Sn at 120 MeV/u. The open blue circles show the ratio
before correction and the full red points show the ratio after correction due to multiple scattering and nuclear reaction losses.
The brown shaded area corresponds to the prior 2� region of the 49 sets of ImQMD calculation spanning the parameters space
while the blue colored area correspond to the posterior 2� region.

mean-field potential will cause the neutron and proton effec-

tive masses to differ [19]. This effect strongly modifies the

cooling of neutron stars via neutrino emission [29].

Parameter range

25.7 ≤ S0 ≤ 36 (MeV)
32 ≤ L ≤ 120 (MeV)
0.6 ≤ m∗

s
∕mN ≤ 1.0

0.6 ≤ m∗
v
∕mN ≤ 1.2

Table 1

Model parameter values for prior distribution. 49 sets of calcu-
lation have been performed within this 4D model space using
a Latin hyper-cube sampling.

Theoretical calculations and commonly used effective in-

teractions differ regarding the sign and magnitude of the effective-

mass splitting Δm∗
np =

m∗
n−m

∗
p

mN
. Positive values for the mass

splitting are expected from Landau Fermi liquid theory [30]

and this sign appears to be consistent with recent fits to the

energy dependence of the nucleon elastic scattering that ob-

tain Δm∗
np = (0.27 ± 0.25)� [5]. Calculations predict the

effective-mass splitting to increase strongly with density, an

effect that becomes increasingly important in astrophysical

environments such as neutron stars and in central heavy-ion

collisions [31, 33, 34].

In this paper, we probe both the density and the mo-

mentum dependence of the symmetry energy via measure-

ments of neutron and light charged particle spectra in cen-

tral 124Sn+124Sn and 112Sn+112Sn collisions at E/A=120

MeV. Details about this experiment can be found in ref. [35].

Light-charged particles were measured in the Large-Area Sil-

icon Strip Array (LASSA) [38] placed 20 cm from the target

covering the polar angle range of 23◦ < �lab < 57◦ with a

0.9◦ angular resolution. Neutrons were measured by the two

walls of the MSU Large-Area Neutron Array (LANA) [39]

at 5 and 6 m from the reaction target. The LANA spanned

polar angles of 15◦ < �lab < 58◦ with an angular resolution

of 0.8◦ to 0.9◦. Neutrons were distinguished from 
 rays

by pulse shape discrimination and from charged particles by

use of a charged-particle veto array of BC-408 plastic scin-

tillator detectors placed between the target and the neutron

walls. In order to avoid systematic uncertainties associated

with the single ratios, ref. [35] reported only spectral double

ratios described below. In this work, we carefully correct the

charged-particle spectra for reaction and scattering losses in

the CsI(Tl) crystals causing a mis-identification of charged

particles in the LASSA with an estimated accuracy of ±2%

[40], while the neutron efficiency has been carefully esti-

mated in Ref. [35] by using the SCINFULQMD Monte Carlo

code [41]. In general, most transport models have difficulty

reproducing the relative abundances of light isotopes pro-

duced as the system expands and disassembles. Following

ref. [35] we calculated the coalescence invariant (CI) neu-

tron and proton spectra by combining the free nucleons with

those bound in light isotopes with 1 < A < 5.

The open blue circles in the left and middle panel of

Fig. 1 show the uncorrected ratios of the coalescence-invariant

neutron spectra divided by the coalescence-invariant proton

spectra for the 124Sn+124Sn and 112Sn+112Sn. The solid

red points show the corresponding efficiency-corrected sin-

gle ratios. Both spectra have been transformed to the center

of mass as described in ref. [35]. The right panel shows the

double ratios obtained by taking the single ratios in the left

panel and dividing by the corresponding ratios in the middle

panel. The efficiency corrected double ratios are consistently

lower than the uncorrected double ratios but still within the

experimental uncertainties. The residual differences in the

double ratios come from different admixtures of the various

isotopes, each with its own detection efficiency in each reac-

tion.

The availability of the new single ratio data allows multi-

parameter analysis to extract both the density and momen-

tum dependencies of the mean-field potentials [31, 32]. We

perform these evaluations with the ImQMD transport model

Morfouace et al.: Preprint submitted to Elsevier Page 2 of 6



26 28 30 32 34

0
S

0

0.5

1

40 60 80 100 120

L

30

35

0
S

0.6 0.7 0.8
*

sm

30

35

0
S

0.6 0.7 0.8 0.9
*

vm

30

35

0
S

30 35

0
S

40

60

80

100

120

L

40 60 80 100 120

L

0

0.5

1

0.6 0.7 0.8
*

sm

40

60

80

100

120

L

0.6 0.7 0.8 0.9
*

vm

40

60

80

100

120

L

30 35

0
S

0.6

0.7

0.8

* s
m

40 60 80 100 120

L

0.6

0.7

0.8

* s
m

0.6 0.7 0.8
*

sm

0

0.5

1

0.6 0.7 0.8 0.9
*

vm

0.6

0.7

0.8

* s
m

30 35

0
S

0.6

0.7

0.8

0.9

* v
m

40 60 80 100 120

L

0.6

0.7

0.8

0.9

* v
m

0.6 0.7 0.8
*

sm

0.6

0.7

0.8

0.9

* v
m

0.6 0.7 0.8 0.9
*

vm

0

0.5

1

Figure 2: The posterior likelihood for two parameters showing the constrains on those parameters. The projections of those
plots correspond to the one-dimensional spectrum illustrating how a given parameter is constrained by the data.

of ref. [31], which parameterizes the mean fields in terms of

standard Skyrme parameterizations. We focus on four quan-

tities: S0 and L, which describe the density dependence of

the mean-field potential, the isoscalar effective mass m∗
s and

the isovector effective mass m∗
v. Using a Bayesian Markov

Chain Monte Carlo statistical analysis software, we explored

the four-dimensional parameter space as listed in Tab. 1. Other

parameters in the Skyrme interactions, the in-medium nucleon-

nucleon cross section and Pauli blocking algorithm were kept

at the default values given in Ref. [31, 42, 43, 44].

All calculations were performed at impact parameter b =

2 fm, corresponding to central collisions. That choice is jus-

tified because the calculated values for the single ratio Rn∕p

are relatively insensitive to impact parameter, changing neg-

ligibly (< 3%) over the range b = 2−6 fm. For each system

(124Sn+124Sn and 112Sn+112Sn at 120 MeV/u), 49 parame-

ter sets have been selected on a Latin hyper-cube to span the

parameter space listed in Tab. 1. The itℎ set of parameter

values in our parameter space can be represented by a 4D

vector x⃗i = {S0, L, m
∗
s , m

∗
v}. For each of these 49 sets we

run the full ImQMD model and the results of those calcula-

tion will serve to train the emulator that models the ImQMD

calculations [47]. Partly due to the steep decrease in high en-

ergy particle, our empirical studies indicate that a minimum
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Figure 3: Prior of the fI distribution when using only the double ratio DRn∕p in the Bayesian analysis (left), only the single ratio
Rn∕p (center) and the double and single ratio combined (right).

of 200000 events per set is needed to stabilize the current

results.

From Bayes theorem the probability post(x⃗i, yexp), for

theoretical values x⃗i to be correct is given bypost(x⃗i, yexp) ∝

likeliℎood(yexp, x⃗i)prior(x⃗i), whereprior is the assumed prob-

ability distribution of the parameter set x⃗i determined from

other information prior to comparing to the experiment. We

take the conditional probability of getting a measured set of

data given x⃗i to be the likelihood function (x⃗i):

(x⃗i) ≈ exp
(

−
∑

a

(yMa (x⃗i) − y
exp
a )2

2�2a

)

. (2)

In this approach, we compare the model value yMa (x⃗i) for the

experimental measurement y
exp
a , and the uncertainties incor-

porate both the experimental and the theoretical ones.

The prior probability distributions for S0, L and m∗
v are

assumed to be uniform within the model space. Form∗
s which

has been shown to have a value close to 0.7, we assume a

Gaussian distribution centered as 0.7 with a width of 0.05.

We then use the efficiency corrected experimental data shown

in Fig. 1 to evaluate the post probability distribution using

Markov Chain Monte Carlo sampling (MCMC) which is im-

plemented in the PyMC library [45]. The AutoGrad package

[46] is used in order to train the emulator by minimizing the

emulated error. The brown shaded area in the three pan-

els of Fig. 1 show the extreme values for the 49 sets of the

ImQMD calculation corresponding to the prior distribution

of the theoretical parameters, while the blue area show the

posterior 2� region for the four fitted parameters. The diag-

onal panels in Fig. 2 show the posterior distribution for the

four parameters. Some of the parameters are highly corre-

lated. For example, the two-dimensional plot in the upper

left panels show that there is a strong correlation between

S0 and L, that has been observed in previous studies [48].

There is also a strong correlation between m∗
s and m∗

v with

m∗
s∕mN = 0.67±0.03 and m∗

v∕mN = 0.69±0.04. Using the

following relationship for the effective mass splitting Δm∗
np

fI =
(

mN

m∗
s

−
mN

m∗
v

)

=
1

2�

(

mN

m∗
n

−
mN

m∗
p

)

fI ≈ −
1

2�
Δm∗

np

(

mN

m∗
s

)2

,
(3)

one gets fI = 0.06 ± 0.06 or Δm∗
np = (−0.05 ± 0.09)�. If

the single ratio data are removed from the Bayesian anal-

ysis, only the correlation between m∗
s and m∗

v remains and

the fI distribution becomes broader but still centers closer

to 0 (� = 0.037 and � = 0.164) as shown in the left panel

of Fig. 3. Within the uncertainties, this is consistent with

the double ratio analysis [35]. Inclusion of the single ratio

data allows the extraction of the S0 and L correlation and

the tightening of the effective mass splitting constraint for

fI (� = 0.063 and � = 0.057) as shown in the right panel of

Fig. 3. This uncertainty reflects the relatively small influence

of the effective mass splitting on the single and double ratios

for nucleon energies less than Ec.m. = 100 MeV. We note

that a much larger sensitivity is expected for nucleons emit-

ted at higher incident energies; measurements such higher

energies should lead to more definite result [31, 32, 33]. The

current results are consistent with the lower bound on Δm∗
np

obtained from elastic scattering in ref. [6], but lower than the

result obtained by a statistical analysis of values published

for S0 and L in ref. [5]. As discuss below, such S0 and L

values require model dependent extrapolations of S0 and L

from measurements that are sensitive for S(�) at much lower

densities. It is unlikely that the theoretical uncertainties of

those extrapolations are fully reflected in the error bars of

ref. [6].

We use the overlap method described in [17] to deter-

mine the sensitive density and symmetry energy from our

analysis. First we choose three points (black crosses in Fig-

ure 2) along the best-fit linear correlation between S0 and

L. The three black curves plotted in Fig. 4 represent S(�)

calculated as a function of density. S(�) corresponds to the

homogenous hadron EoS that require the symmetry energy

to be zero at zero density. The value of the parameters to

calculate those three curves are listed in Table. 2. The three

Morfouace et al.: Preprint submitted to Elsevier Page 4 of 6



black curves cross over at �s∕�0 = 0.43+0.05
−0.05

with S(�s) =

16.8+1.2
−1.2

MeV which is plotted as the open red star in Fig. 4.

This may indicates that even though we can obtain the den-

sity dependence of the symmetry energy over a very large

range of density regions using the Bayesian analysis, the re-

gion best explored by the experiment is limited. The other

symbols are the extracted symmetry energy obtained in ref.[17]

from masses [7, 8] and isobaric analog sates [15] around

0.67�0. The dipole polarizability measurements [13] and the

isospin diffusion data sit at 0.32�0 and 0.25�0, respectively.

To exploit the full potential of the Bayesian analysis to

extract multi-parameters in the Equation of state, both the

data and the theoretical model need to be improved. The

Bayesian analysis depends highly on the theoretical model

used. Specifically, the current ImQMD model and most trans-

port models have trouble reproducing the shape of the single

ratio especially for low energy particles less than 40 MeV/u.

There is also a discrepancies in the single ratios at high nu-

cleon energy. Data with better quality and extended to high

energy explore the region with higher sensitivity to the ef-

fective mass [35]. While this analysis considers uncertain-

ties in the predictions for the double and single ratios due to

uncertainties in values for S0, L, m∗
s and m∗

v, other model

uncertainties in the functional form for the effective mass

terms [36, 37] are more difficult to define and therefore are

not explored in this paper. We note that if any effect leads

to a renormalization of the calculations of the order of 5%,

the correlation between m∗
v and m∗

s is significantly altered

while the correlation between S0 and L and their associated

constraints remain. This is partly because the effects of ef-

fective mass splitting are much smaller than the effect of the

density dependence of the symmetry energy. Obtaining ac-

curate data at higher nucleon energies are the main goals of

a series of recent experiments [50].

S0 (MeV) L (MeV) m∗
s
∕mN m∗

v
∕mN fI

28 48.0 0.67 0.72 0.098
30 61.8 0.65 0.69 0.080
32 75.6 0.63 0.66 0.076

Table 2

Parameter value used to calculate the three symmetry energy
represented by the three black curves in Fig. 4, that correspond
to the three black crosses in Fig. 2.

In summary, we have presented new results for the single

ratios of coalescence invariant neutron/proton spectra from

central 124Sn+124Sn and 112Sn+112Sn collisions at 120 MeV/u.

We have shown that the Bayesian analyses can be used for

multivariable analysis. However, the results from the anal-

ysis is model dependent. Nonetheless, the analysis show a

strong correlation between the values for S0 and L, which

is absent if the single ratio data is not included in the analy-

sis. Together with the double ratio, these data also provide

significant constraints on the effective-mass splitting around

half saturation density which is near the crust-core transi-

tion density in neutron star [49]. This region also serves as a

bridge between the density regions investigated with nuclear
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Figure 4: The three black lines correspond to the symmetry
energy S(�) versus the density for different values of S0 and
L following the slope shown by the black crosses in Fig. 2.
The open red star corresponds to the cross-over point of the
black lines shown in the left plot corresponding to the sensitive
density �s∕�0 = 0.43+0.05

−0.05
with S(�s) = 16.8 ± 1.2 MeV.

structure experiments (≈ 0.7�0) and very-low-energy heavy-

ion collisions (≤ 0.3�0) which is important for the question

of clustering at very low density that corresponds to density

relevant for the neutrino sphere physics.
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