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Abstract

We study the geometry of the Thurston metric on the Teichmiiller space of hyperbolic structures on
a surface S. Some of our results on the coarse geometry of this metric apply to arbitrary surfaces
S of finite type; however, we focus particular attention on the case where the surface is a once-
punctured torus. In that case, our results provide a detailed picture of the infinitesimal, local, and
global behavior of the geodesics of the Thurston metric, as well as an analogue of Royden’s theorem.

2010 Mathematics Subject Classification: 57M50 (primary); 30F60 (secondary)

1. Introduction

Let S be a surface of finite type, i.e. the complement of a finite set in a compact
surface. Let J(S) denote the Teichmiiller space of finite area hyperbolic structures
on S.

Thurston’s metric. Recall that Thurston’s metric dy, : T(S) x T(S) — Ris
defined by
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Figure 0. In-envelopes in Teichmiiller space; see Remark 5.5.

0, (Y
dm(X,Y) = suplog (e EXD , )

where the supremum is over all simple closed curves « in S and ¢,(X) denotes
the hyperbolic length of the curve « in X. This function defines a forward-
complete asymmetric Finsler metric introduced by Thurston in [Thu86c]. In the
same paper, Thurston introduced two key tools for understanding this metric
which will be essential in what follows: stretch paths and maximally stretched
laminations.

The maximally stretched lamination A(X, Y) is a chain-recurrent geodesic
lamination which is defined for any pair of distinct points X,Y € T(S).
Typically, A(X,Y) is just a simple curve, in which case that curve uniquely
realizes the supremum defining dp,. In general, A(X,Y) can be a more
complicated lamination that is constructed from limits of sequences of curves
that asymptotically realize the supremum. The precise definition is given
in Section 2.6 (or [Thu86¢, Section 8], where the lamination is denoted as
n(X, Y)).

Stretch paths are geodesics constructed from certain decompositions of the
surface into ideal triangles. More precisely, given a hyperbolic structure X € T(S)
and a complete geodesic lamination A, one obtains a parameterized stretch path,
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stretch(X, A, *) : R — T(S), with stretch(X, A, 0) = X and which satisfies
dr (stretch(X, A, 5), stretch(X, A, 1)) =t — s 2)

forall s, € Rwiths < r.

Thurston showed that there also exist geodesics in T(S) that are concatenations
of segments of stretch paths along different geodesic laminations. The abundance
of such ‘chains’ of stretch paths is sufficient to show that dy, is a geodesic metric
space and also that it is not uniquely geodesic—some pairs of points are joined
by more than one geodesic segment.

Envelopes. The first problem we consider is to quantify the failure of
uniqueness for geodesic segments with given start and end points. For this
purpose, we consider the set E(X, Y) C T(S) that is the union of all geodesics
from X to Y. We call this the envelope (from X to Y).

Based on Thurston’s construction of geodesics from chains of stretch paths, it
is natural to expect that the envelope would admit a description in terms of the
maximally stretched lamination A(X, Y) and its completions. We focus on the
punctured torus case because, here, the set of completions is always finite.

In fact, a chain-recurrent lamination on S; ; (such as A(X, Y),forany X #Y €
J(S1.1)) is any one of the following:

(a) asimple closed curve;
(b) the union of a simple closed curve and a spiral geodesic; or
(c¢) a measured lamination with no closed leaves.

These possibilities are depicted in Figure 1. See [BZ04] for more details.

We show that the geodesic from X to Y is unique when A(X, Y) is of type (b)
or (c), and when it has type (a), the envelope has a simple, explicit description.
More precisely, we have the following.

THEOREM 1.1 (Structure of envelopes for the punctured torus).
(1) Forany X, Y € T(S1,1), the envelope E(X, Y) is a compact set.

(i) E(X,Y) varies continuously in the Hausdorff topology as a function of X
and Y.

(i) If A(X,Y) is not a simple closed curve, then E(X,Y) is a segment on a
stretch path (which is then the unique geodesic from X to Y ).

@v) If A(X,Y) = « is a simple closed curve, then E(X,Y) is a geodesic
quadrilateral with X and Y as opposite vertices. Each edge of the
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Figure 1. The three types of chain-recurrent laminations on S ;.

quadrilateral is a stretch path along a completion of a chain-recurrent
geodesic lamination properly containing .

In the course of proving the theorem above, we write explicit equations for the
edges of the quadrilateral-type envelopes in terms of Fenchel-Nielsen coordinates
(see (21)—(22)). Also note that in part (iv) of the theorem, a chain-recurrent
lamination properly containing « has multiple completions, but they all give the
same stretch path (see Corollary 2.3).

This theorem also highlights a distinction between two cases in which the
dry,-geodesic from X to Y is unique—the cases (b) and (c) discussed above. In
case (b), the geodesic to Y is unique, but some of its initial segment can be chained
with another stretch path and remain geodesic: the boundary of a quadrilateral-
type envelope from X with maximally stretched lamination o furnishes an
example of this. In case (c), however, a geodesic that starts along the stretch path
from X to Y is entirely contained in that stretch path (see Proposition 5.2).

Figure O can also be seen as an illustration of this theorem: it shows regions
in J(S;,;) bounded by pairs of stretch rays from rational points on the circle at
infinity to the hexagonal punctured torus. Such in-envelopes are limiting cases
of the envelopes of type (iv) where X is replaced by a lamination. These are
defined precisely and studied in Section 5. Figure O is discussed in more detail in
Remark 5.5.
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Short curves. Returning to the case of an arbitrary surface S of finite type, in
Section 3, we establish results on the coarse geometry of Thurston metric geodesic
segments. This study is similar in spirit to the one of Teichmiiller geodesics in
[Raf05], in that we seek to determine whether or not a simple curve o becomes
short along a geodesic from X to Y. As in that case, a key quantity to consider is
the amount of twisting along « from X to Y, denoted as d, (X, Y) and defined in
Section 2.8.

For curves that interact with the maximally stretched lamination A(X,Y),
meaning they belong to the lamination or intersect it essentially, we show that
becoming short on a geodesic with endpoints in the thick part of T(S) is equivalent
to the presence of large twisting.

THEOREM 1.2. There exists a constant €, such that the following statement holds.
Let X, Y lie in the €y-thick part of T(S) and let a be a simple curve on S that
interacts with A(X,Y). Then the minimum length £, of a along any Thurston
metric geodesic from X to Y satisfies

1 1
—Log —%d,(X,Y
o g£a+ (X,Y)

with implicit constants that depend only on €, and where Log(x) = max(l,
log(x)).

Here % means equality up to an additive and multiplicative constant; see
Section 2.1. The theorem above and additional results concerning length functions
along geodesic segments are combined in Theorem 3.1.

In Section 4, we specialize once again in the Teichmiiller space of the punctured
torus in order to say more about the coarse geometry of Thurston geodesics. Here
every simple curve interacts with every lamination; so Theorem 1.2 is a complete
characterization of short curves in this case. Furthermore, in this case, we can
determine the order in which the curves become short.

To state the result, we recall that the pair of points X, Y € T(S;) determine a
geodesic in the dual tree of the Farey tesselation of H> ~ T(S) ;). Furthermore,
this path distinguishes an ordered sequence of simple curves—the pivots—and
each pivot has an associated coefficient. These notions are discussed further in
Section 4.

We show that pivots for X, Y and short curves on a dr,-geodesic from X to Y
coarsely coincide in an order-preserving way, once again assuming that X and Y
are thick.

THEOREM 1.3. Let X, Y € T(S1.1) lie in the thick part, and let G: I — T(S1)
be a geodesic of dry, from X to Y. Let £, denote the minimum of £,(G(t)) fort € I.
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We have the following:
(1) If a is short somewhere in G, then o is a pivot.
(1) If o is a pivot with large coefficient, then o becomes short somewhere in G.

(iii) If both o and B become short in G, then they do so in disjoint intervals
whose ordering in I agrees with that of «, B in Pivot(X, Y).

@iv) There is an a priori upper bound on £, for « € Pivot(X, Y).

In this statement, various constants have been suppressed (such as those required
to make short and large precise). We show that all of the constants can be taken
to be independent of X and Y, and the full statement with these constants is given
as Theorem 4.3.

We have already seen that there may be many Thurston geodesics from X to Y,
and due to the asymmetry of the metric, reversing parameterization of a geodesic
from X to Y does not give a geodesic from Y to X. On the other hand, the notion
of a pivot is symmetric in X and Y. Therefore, by comparing the pivots to the
short curves of an arbitrary Thurston geodesic, Theorem 4.3 establishes a kind of
symmetry and uniqueness for the combinatorics of Thurston geodesic segments,
despite the failure of symmetry or uniqueness for the geodesics themselves.

Rigidity. A Finsler metric on T(S) gives each tangent space Tx7T(S) the
structure of a normed vector space. Royden showed that for the Teichmiiller
metric, this normed vector space uniquely determines X up to the action of the
mapping class group [Roy71]. That is, the tangent spaces are isometric (by a
linear map) if and only if the hyperbolic surfaces are isometric.

We establish the corresponding result for the Thurston’s metric on J(S; ;) and
its corresponding norm ||* ||, (the Thurston norm) on the tangent bundle.

THEOREM 1.4. Let X,Y € T(S1.1). Then there exists an isometry of normed
vector spaces

(TxT(S1.1), ™) —> (TyT(S1.1),
ifand only if X and Y are in the same orbit of the extended mapping class group.

Th)

The idea of the proof is to recognize lengths and intersection numbers of curves on
X from features of the unit sphere in TxT(S). Analogous estimates for the shape
of the cone of lengthening deformations of a hyperbolic one-holed torus were
established in [Guél5]. In fact, Theorem 1.4 was known to Guéritaud and can be
derived from those estimates [Gué16]. We present a self-contained argument that
does not use Guéritaud’s results directly, though [Guél5, Section 5.1] provided
inspiration for our approach to the infinitesimal rigidity statement.
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A local rigidity theorem can be deduced from the infinitesimal one, much as
Royden did in [Roy71].

THEOREM 1.5. Let U be a connected open set in T(Sy1), considered as
a metric space with the restriction of dt,. Then any isometric embedding
(U, d) — (T(S1.1), dm) is the restriction to U of an element of the extended
mapping class group.

Intuitively, this says that the quotient of T(S; ;) by the mapping class group
is ‘totally unsymmetric’; each ball fits into the space isometrically in only one
place. Of course, applying Theorem 1.5 to U = T(S;,1), we have the immediate
corollary.

COROLLARY 1.6. Every isometry of (T(S1.1), dm) is induced by an element of

the extended mapping class group; hence, the isometry group is isomorphic to
PGL(2, Z).

Here we have used the usual identification of the mapping class group of S; ; with
GL(2, Z), whose action on T (S, ;) factors through the quotient PGL(2, Z).

The analogue of Corollary 1.6 for Thurston’s metric on higher-dimensional
Teichmiiller spaces was established by Walsh in [Wal14] using a characterization
of the horofunction compactification of T(S). Walsh’s argument does not apply
to the punctured torus, however, because it relies on Ivanov’s characterization (in
[Iva97]) of the automorphism group of the curve complex (a result which does
not hold for the punctured torus).

Passing from the infinitesimal (that is norm) rigidity to local or global
statements requires some preliminary study of the smoothness of the Thurston
norm. In Section 6.1, we show that the norm is locally Lipschitz continuous on
TT(S) for any finite type hyperbolic surface S. By a recent result of Matveev and
Troyanov [MT17], it follows that any dr,-preserving map is differentiable with
norm-preserving derivative. This enables the key step in the proof of Theorem 1.5,
where Theorem 1.4 is applied to the derivative of the isometry.

Additional notes and references. In addition to Thurston’s paper [Thu86c],
an exposition of Thurston’s metric and a survey of its properties can be found in
[PTO7]. Prior work on the coarse geometry of the Thurston metric on Teichmiiller
space and its geodesics can be found in [CR07, LRT12, LRT15]. The notion of
the maximally stretched lamination for a pair of hyperbolic surfaces has been
generalized to higher-dimensional hyperbolic manifolds [Kas09, GK17] and to
vector fields on H? equivariant for convex cocompact subgroups of PSL(2, R)
[DGK16].
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2. Background

2.1. Approximate comparisons. We use the notation a X b to mean that
quantities a and b are equal up to a uniform multiplicative error, that is, that
there exists a positive constant K such that K ~la < b < Ka. Thus, for example,
a1 means that a is bounded above and below by positive constants. Similarly,
the notation a %5 means that a < Kb for some K.

The analogous relations up to additive error are a < b, meaning that there exists
Csuchthata — C < b < a+ C, and a Xb which means a < b + C for some C.
Hence, a X0 means that a is bounded above and below by constants.

For equality up to both multiplicative and additive error, we write a %b. That is,
a %b means that there exist constants K, C such that K'a — C < b < Ka + C.

Unless otherwise specified, the implicit constants depend only on the
topological type of the surface S. When the constants depend on the Riemann
surface X, we use the notationZy and <y instead.

For functions f, g of a real variable x, we write f ~ g to mean that

lim, o (f(x)/g(x)) = 1.

2.2. Surfaces, curves, and laminations. Throughout this paper, S denotes an
oriented surface of finite type, that is, the complement of a finite subset P of the
interior of S, a compact oriented surface with boundary. Elements of P are the
punctures.

A multicurve is a closed 1-manifold on S defined up to homotopy such that no
connected component is homotopic to a point, a puncture, or boundary of S. A
connected multicurve will just be called a curve. Note that with our definition,
there are no curves on the two- or three-punctured sphere; so we will ignore
those cases henceforth. The geometric intersection number i(a, B) between two
curves is the minimal number of intersections between representatives of o
and B. If we fix a hyperbolic metric on S, then every (multi)curve has a unique
geodesic representative, and i(«, B) is just the number of intersections between
the geodesic representative of o and the geodesic representative of 8. For any
curve @ on S, we denote by D, the left Dehn twist about «.

Fix a complete hyperbolic metric of finite area on S so that the boundary
components (if any) are geodesic. A geodesic lamination A on S is a closed
subset which is a disjoint union of simple complete geodesics. These geodesics
are called the leaves of A. Two different hyperbolic metrics on S determine
canonically isomorphic spaces of geodesic laminations, so the space of geodesic
laminations G£(S) depends only on the topology of S. This is a compact metric
space equipped with the metric of Hausdorff distance on closed sets. The closure
of the set of multicurves in GL(S) is the set of chain-recurrent laminations.
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We will call a geodesic lamination maximal chain-recurrent if it is chain-
recurrent and not properly contained in another chain-recurrent lamination. A
geodesic lamination is complete if its complementary regions in S are ideal
triangles. Note that all chain-recurrent laminations are necessarily compactly
supported. Thus, when S has punctures, a chain-recurrent lamination can never be
complete. For a given geodesic lamination A, we refer to any complete lamination
containing A as a completion (of 1).

In the case of the punctured torus S, ;, the maximal chain-recurrent laminations
are types (b) and (c) in Figure 1. Case (b), that is, a curve and a spiraling geodesic,
will be especially important in the sequel, and so we introduce the following
notation for these laminations: given a curve o, let of = o U§ where the geodesic
§ spirals toward « in each direction, turning to the left as it does so. Similarly, we
define «, to be the union of o and a spiraling leaf that turns right. (Adding a leaf
that turns opposite ways on its two ends yields a non-chain-recurrent lamination.)

The motivation for this sign convention for « is that it is compatible with a
common way to describe simple curves on S | in terms of slope while regarding o
as vertical. More precisely, consider an oriented curve 77 with i(n, &) = 1, and let
a denote the orientation of « so that the homology classes [7], [@] give a positive
ordered basis of H,(S; ;) with respect to the orientation of S, ;. If a simple curve
y # a has homology class ¢[17] + p[a] for some orientation, then p/q € Q is
the slope of y (relative to that basis). We consider « itself to have slope 1/0 =
oo € QP! and this exhibits a bijection between QP! and the set of simple curves
on S 1,1-

Now, a sequence of simple curves distinct from o whose slopes go to +o0o have
Hausdorff limit ], while a sequence with slopes going to —oo has Hausdorff
limit o, . Thus, o (respectively o, ) is approximated by curves of large positive
(respectively negative) slope.

All of the maximal chain-recurrent laminations on S;; have a single
complementary region, which is a punctured bigon. Such a lamination, therefore,
has exactly three completions, corresponding to the three ways to add leaves
that cut the bigon into ideal triangles shown in Figure 2. (For more details on
classifying laminations on the punctured torus, we refer the reader to [BZ04].)

A convenient way to distinguish among the completions of a maximal chain-
recurrent lamination A on the punctured torus is to use the hyperelliptic involution.
This is an involutive orientation-preserving isometry ¢ that preserves every simple
closed geodesic and, thus, every chain-recurrent lamination. The action of ¢ on
the complementary bigon of a maximal chain-recurrent lamination exchanges the
two spikes, and, therefore, the only completion which is ¢-invariant is the one with
leaves going to both spikes, that is, type (i) in Figure 2. We call this the canonical
completion of A.
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(4) (i) (i)

Figure 2. The three ways to complete a maximal chain-recurrent lamination on
S1.1 by adding two leaves in its complementary bigon.

4]

Figure 3. Leaves of o (the canonical completion of «j') shown in the torus cut
open along «.

We denote the canonical completion of o by @™ and that of &y by o~ Thus,

at = oni U w U w’ where w and w’ are leaves emanating from the puncture and

spiraling into «. For example, o is shown in Figure 3.
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The stump of a geodesic lamination (in the terminology of [Thé07]) is its
maximal compactly supported sublamination that admits a transverse measure
of full support.

2.3. Teichmiiller space. Let J(S) be the Teichmiiller space of complete finite-
area hyperbolic structures on S. We will only consider T(S) in cases where S has
no boundary. The space T(S) is homeomorphic to R®~6+2" if S has genus g and n
punctures. Given X € J(S) and a curve o on S, we denote by £, (X) the length of
the geodesic representative of o on X. For brevity, we refer to £, (X) as the length
ofx on X.

For any € > 0, we will denote by T, (S) the set of points in T(S) on which every
curve has length at least €; this is the e-thick part of Teichmiiller space.

A positive real number € is called a (two-dimensional) Margulis number if
two distinct curves on a hyperbolic surface of length less than € are necessarily
disjoint. Fix a Margulis number €,, < 1 such that for any curve « of length less
than €,,, the shortest curve g that intersects « has i(«, 8) < 2. It follows from the
collar lemma that any sufficiently small €,, has this property.

2.4. Shearing of ideal triangles. Let H denote the upper half-plane model of
the hyperbolic plane, with ideal boundary 0H = R U {oo}. In this section, we will
define the shearing of two ideal triangles in H which share an ideal vertex. This is
a specific case of the more general shearing defined in [Bon96, Section 2].

Two distinct points x, y € 0H determine a geodesic [x, y] and three distinct
points x, y, z € 0H determine an ideal triangle A(x, y, z). Recall that an ideal
triangle in H has a unique inscribed circle which is tangent to all three sides of
the triangle. Each tangency point is called the midpoint of the side.

Let y = [y™, ¥ 7] be a geodesic in H. Suppose two ideal triangles A and A’
lie on different sides of . We allow the possibility that y is an edge of A or A’
(or both). Suppose A is asymptotic to ¥ and the A’ is asymptotic to y~. Let m
be the midpoint along the side of A closest to y. The pair y ™ and m determine a
horocycle that intersects y at a point p. Let m’ and p’ be defined similarly using
A’ and y~. We say p’ is to the left of p (relative to A and A’) if the path along
the horocycle from m to p and along y from p and p’ turns left; p’ is to the right
of p otherwise. Note that p’ is to the left of p if and only if p is to the left of p’.
The shearing s, (A, A’) along y relative to the two triangles is the signed distance
between p and p’, where the sign is positive if p’ is to the left of p and negative
otherwise. Note that this sign convention gives s, (A, A") =5, (A’, A).

2.5. Shearing coordinates in Teichmiiller space. Given any complete
geodesic lamination A, there is an embedding s, : T(S) — R" by the shearing
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coordinates relative to A, where N = dim J(S). The image of this embedding is
an open convex cone. Details of the construction of this embedding can be found
in [Bon96] and [Thu86¢, Section 9].

Using the shearing of ideal triangles discussed above, we will define the
shearing coordinates in the case where A is the canonical completion of a maximal
chain-recurrent lamination on S ; with finitely many leaves. That is, we consider
A =at or A = o~ for a simple curve o and describe the map s, : T(S;;) — R

We begin with an auxiliary map s : 7(S; ;) — R* which records a shearing
parameter for each leaf of A, and then we identify the two-dimensional subspace
of R* that contains the image in this specific situation.

Let/ be aleaf of A and fix alift/ of [ to X = H.If [ is a noncompact leaf, then
[ bounds two ideal triangles in X, which admit lifts A and A" with common side 1.
If | = « is the compact leaf, then we choose A and A’ to be lifts of the two ideal
triangles complementary to A that lie on different sides of T and which are each
asymptotic to one of the ideal points of 1. Now define 5;(X) = s7(A, A'), and let
the s : T(S;,1) — R* be the map defined by

S)?(X) = (SB(X)a Sa(X)v Sw(X)v Sw’(X))'

We claim that, in fact, s,,(X) = 5,,(X) = 0 and that s5(X) = F£,(X) for A = o™.
It will then follow that s? takes values in a two-dimensional linear subspace of R*,
allowing us to equivalently consider the embedding s, : T(S;,;) — R? defined by

5,(X) = (la(X), 52(X)).

To establish the claim, cut the surface X open along « to obtain a pair of
pants which is further decomposed by w, w’, § into a pair of ideal triangles. The
boundary lengths of this hyperbolic pair of pants are ¢,, £,, and 0. Gluing a pair
of ideal triangles along their edges but with their edge midpoints shifted by signed
distances a, b, ¢ gives a pair of pants with boundary lengths |a+b|, |b+c|, |a+c|,
and with the signs of a + b, b + ¢, a + ¢ determining the direction in which the
seams spiral toward those boundary components (this is discussed in more detail
in [Thu86a, Section 3.9]). Specifically, a positive sum corresponds to the seam
turning to the right while approaching the corresponding boundary geodesic, and
a negative sum corresponds to the seam turning to the right. Applying this to
our situation and recalling that for A = % all spiraling leaves turn left when
approaching the boundary of the pair of pants, we obtain

Sw(X) +55(X) = 50/ (X) + 55(X) = Lo

and
5w (X) + s, (X) = 0.
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Coarse and fine geometry of the Thurston metric 13

This gives s, (X) = s,(X) = 0 and s5(X) = —£,(X). For the case . = o™,
the equations are the same except that —¢, is replaced by ¢,, and the solution
becomes 5, (X) = s5,,(X) = 0 and 55(X) = £,.

Finally, we consider the effect of the various choices made in the construction
of 5, (X). The coordinate ¢,(X) is of course canonically associated with X and
independent of any choices. For s,(X), however, we had to choose a pair of
triangles A, A" on either side of the lift &. In this case, different choices differ
by finitely many moves in which one of the triangles is replaced by a neighbor
on the other side of a lift of w, w’, or §. Each such move changes the value of
s, (X) by adding or subtracting one of the values s,,(X), s,/(X), or s5(X); this is
the additivity of the shearing cocycle established in [Bon96, Section 2]. By the
computation above, each of these moves actually adds 0 or ¢, (X). Hence, s, (X)
is uniquely determined up to addition of an integer multiple of £, (X).

2.6. The Thurston metric. For a pair of points X, ¥ € T(S), in Section 1, we
defined the quantity

Lo (Y)

£y (X)

where the supremum is taken over all simple curves. Another measure of the
difference of hyperbolic structures, in some ways dual to this length ratio, is

dm(X,Y) =suplog

L(X,Y)= irflflog Ly,

where L ; is the Lipschitz constant and where the infimum is taken over Lipschitz
maps f : X — Y in the preferred homotopy class. Thurston showed the following.

THEOREM 2.1. For all X,Y € T(S), we have dr,(X,Y) = L(X,Y), and this
function is an asymmetric metric, that is, it is positive unless X = Y and it obeys
the triangle inequality.

Denote by dm(X,Y) = max{dm(X,Y), dm(Y, X)}. The topology of T(S) is
compatible with d,, so by X; — X, we will mean dr,(X;, X) — 0. When we
refer to the Hausdorff distance between closed sets of T(S), we always mean the
one induced by the metric dry, on T(S).

Thurston showed that the infimum Lipschitz constant is realized by a
homeomorphism from X to Y. Any map which realizes the infimum is called
optimal.

Further, Thurston constructs a chain-recurrent lamination A(X, Y) such that
there exists a e!™X-Y)_Lipschitz map in the preferred homotopy class from a
neighborhood of A(X, Y) in X to a neighborhood of the same lamination in Y,
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D. Dumas, A. Lenzhen, K. Rafi and J. Tao 14

multiplying arc length along A(X, Y) by a factor of e?™*-¥) and so that A(X,Y)
is the largest chain-recurrent lamination with this property. We call A(X,Y)
the maximally stretched lamination (from X to Y). The same lamination is also
characterized in terms of optimal maps: A(X, Y) is the largest chain-recurrent
lamination such that every optimal map from X to Y multiplies arc length on
A(X, Y) by a factor of e/m*-1),

The length ratio for simple curves extends continuously to PML(S), which
is compact. Therefore, the length-ratio supremum is always realized by some
measured lamination. Any measured lamination that realizes the supremum has
support contained in the stump of A(X, Y).

Suppose that a parameterized path G: [0, d] — T(S) is a geodesic from X to
Y (parameterized by unit speed). Then the following holds: for any s, ¢ € [0, d]
with s < ¢ and for any arc w contained in the geometric realization of A(X,Y)
on X, the arc length of w is stretched by a factor of ¢'~* under an optimal map
from G(s) to G(¢). We will sometimes denote A(X, Y) by Ag.

2.7. Stretch paths. Certain geodesics of Thurston’s metric can be described
using shearing coordinates. Let A be a complete geodesic lamination and X €
T(S). For any t € R, let stretch(X, A, ¢) be the unique point in T(S) such that

855 (stretch(X, A, 1)) = €'s,(X).

Letting ¢ vary, we have that stretch(X, A, t) is a parameterized path in J(S) that
maps to an open ray from the origin in RY under the shearing coordinates. This is
the stretch path along A from X.

Thurston showed that the path ¢ +— stretch(X, A, ¢) is a geodesic in J(S) in
the sense of (2). Note that we always consider the stretch path to be oriented in
the direction of increasing ¢, which is natural since the asymmetry of the metric
implies that the same path parameterized in the opposite direction may not be
geodesic.

Also, if Ay C A is the largest chain-recurrent sublamination, then A, is
the maximally stretched lamination for any pair of points stretch(X, A, s) and
stretch(X, A, t) withs < ¢.

Removing the point X from a stretch path from X leaves two (open) stretch
rays; of these, the one corresponding to ¢ > 0 is a stretch ray starting at X and
that with ¢ < 0O is the one ending at X.

Thurston used stretch paths to show that T(S) equipped with the Thurston
metric is a geodesic metric space. We summarize his results below. See the
statement and proof of [Thu86¢, Theorem 8.5] for more details.
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Coarse and fine geometry of the Thurston metric 15

THEOREM 2.2 [Thu86¢]. For any X,Y € T(S), let A(X,Y) be the maximally
stretched lamination from X to Y. Let X be any completion of A(X, Y). Then there
exists a geodesic G from X to Y consisting of a finite concatenation of stretch path
segments

9:91"'9117

where Gy is a segment of stretch(X, A, t), and all other G;’s stretch along some
complete lamination containing A(X,Y). Furthermore, such a geodesic can be
chosen so that if X; is the initial point of G;, then for all i > 1, we have A(X;,
Y) D A(Xi_1, Y). In particular, we can always take n < 2|x (S)|.

In general, geodesics of the Thurston metric from X to Y are not unique. But
when A(X, Y) is maximal chain-recurrent, then there is a unique geodesic. This
statement follows from Theorem 2.2, but it is not explicitly stated in [Thu86c].
For completeness, we provide a proof.

COROLLARY 2.3. Given X,Y € T(S), suppose A(X,Y) is maximal chain-
recurrent. Let ). be a completion of A(X,Y). Then stretch(X, A, t) is the unique
geodesic from X to Y. In particular, for the punctured torus S, ., the three
completions of A(X, Y) give rise to the same stretch path in T (S ).

Proof. We first show that the stretch path for A connects X to Y, that is, stretch(X,
A, t) = Y for some ¢. By Theorem 2.2, there is a geodesic path G from X to Y
consisting of a concatenation of segments along stretch paths Gy, ..., G,, where
G is a segment of {stretch(X, A, t) : t > 0}. Let X; be the initial point of G;.
Ifn > 2,then A(X,Y) = A(X,,Y) € A(X,,Y) by Theorem 2.2. But this is
impossible since A(X, Y) is maximal chain-recurrent; son = 1 and Y lies on G.
Now suppose G is any geodesic from X to Y. Let Z be a point on G. We
have A(X,Y) C A(X, Z). Since A(X,Y) is maximal chain-recurrent, A(X,
Z) = A(X,Y). By the previous discussion, we can connect X to Z by a segment
of stretch(X, A, t). Since this is true for all Z in G, the geodesic § must be a
segment of stretch(X, A, t). O

2.8. Twisting. There are several notions of twisting which we will define
below. While these notions are defined for different classes of objects, in cases
where several of the definitions apply, they are equal up to an additive constant.
Let A be an annulus. Fix an orientation of the core curve « of A. For any simple
arc w in A with endpoints on different components of dA, we orient w so that
the algebraic intersection number w - « is equal to one. Given an ordered pair of
simple arcs w and &', the choice of the orientation above allows us to assign a sign
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to each intersection point in the interior of A between w and w’. The sum w - @’ of
these signed intersections is called the algebraic intersection number between w
and o'. Note that w - @’ is independent of the choice of the orientation of . Also
note that we do not consider intersections between w and @’ in the boundary of A.
With our choice, we always have o - D, (w) = 1, where, as above, D, denotes the
left Dehn twist about «. R

Now let S be a surface and « is a simple closed curve on S. Let S — S be
the covering space associated with 7, (o) < 7,(S). Then S has a natural Gromov
compactification that is homeomorphic to a closed annulus. By construction, the
core curve & of this annulus maps homeomorphically to « under this covering
map.

Let  and A’ be two geodesic laminations (possibly curves) on S, both
intersecting « transversely. We define their (signed) twisting relative to o as
twist, (A, 1)) = min® - @, where @ is a lift of a leaf of A and @' is a lift of a
leaf of A’, with both lifts intersecting @, and the minimum is taken over all such
leaves and their lifts. Note that for any two such lifts @ and o' (still intersecting @),
the quantity @ - @' exceeds twist, (A, 1") by at most 2.

Next we define the twisting of two hyperbolic metrics X and Y on S relative
to o. Let X , Y denote the lifts of these hyperbolic structures to s. Using the
hyperbolic structure X , choose a geodesic @ that is orthogonal to the geodesic
in the homotopy class of @. Let @ be a geodesic constructed similarly from Y.
We set twist, (X, Y) = min® - @, where the minimum is taken over all possible
choices for @ and @'. Similar to the previous case, this minimum differs from the
intersection number @ - @' for a particular pair of choices by at most 2.

Finally, we define twist, (X, 1), the twisting of a lamination A about a curve «
on X. This is defined if A contains a leaf that intersects « transversely. Let @ be
a geodesic of X orthogonal to the geodesic homotopic to @. Let o' be any leaf
of A intersecting «, and let @’ be a lift of this leaf to X which intersects @. Then
twist, (X, A) = min® - @, with the minimum taken over all choices of o', @,
and o.

Each type of twisting defined above is signed. In some cases, the absolute value
of the twisting is the relevant quantity; we use the notation d, (=, *) = [twist, (", *)
for the corresponding unsigned twisting in each case.

The following way to compute the unsigned twisting

do (X, A) = |twisty (X, A)]

will be useful in the sequel. Consider the universal cover X = H. Let & be a
lift of @ and let @' be a lift of a leaf of A intersecting a. Let L be the length
of the orthogonal projection of &' to & and let £ be the length of the geodesic
representative of & on X. Let @ be an orthogonal geodesic of &. There is a
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Coarse and fine geometry of the Thurston metric 17

loxodromic isometry T of H associated with « that preserves o, and applying
powers of this isometry to @ gives a family of orthogonal geodesics to & which
meet it at points spaced by distance £. Then d,(X, A) is the number of these
translates that intersect @' as each such translate gives one intersection in the
quotient X = H/(T) considered above. Therefore, this number is between
(IL/€] — 1) and |L/£], and d,(X, A) X L /¢ with additive error at most 2 (see
also [Min96, Section 3] for more details).

3. Twisting parameter along a Thurston geodesic

In this section, S is any oriented surface of finite type and T(S) is the associated
Teichmiiller space.

Recall that T.(S) denotes the e-thick part of T(S). Consider two points X,
Y € T.(S). Recall that we say a curve « inferacts with a geodesic lamination
A if o is a leaf of A or if « intersects A essentially. Suppose « is a curve that
interacts with A(X, Y). Let G: [0, T] — T be any geodesic from X to Y, and
let £, = min, £,(t). We are interested in curves which become short somewhere
along G. We call an interval of time [a, b] C [0, T'] the active interval for o along
G if [a, b] is the maximal such interval with ¢,(a) = £,(b) = €. Note that any
curve which is sufficiently short somewhere on G has a nontrivial active interval.

The main goal of this section is to prove the following theorem, which, in
particular, establishes Theorem 1.2. As in Section I, we use the notation Log(x) =
min(1, log(x)). Denote X, = G(¢).

THEOREM 3.1. There exists a constant €, such that the following statement holds.
Let X, Y € T, (S) and o be a curve that interacts with A(X,Y). Let G be any
geodesic from X to Y and £, = min, £,(t). Then

1 1
d,(X,Y)%—Log—.
(X,Y)x 7. og g
If €, < €y, then d,(X,Y) xd,(X,, X;), where [a, b] is the active interval for a.
Further, for all sufficiently small £, the twisting d,(X,, A(X,Y)) is uniformly
bounded for all t < a and £,(t) % e, (b) for all t > b. All errors in this
statement depend only on €.

Note that if « is a leaf of A(X,Y), then it does not have an active interval
because its length grows exponentially along G, and the theorem above says that
in this case d, (X, Y) is uniformly bounded. If « crosses a leaf of A(X, Y), then
d,(X,7Y) is large if and only if o gets short along any geodesic from X to Y.
Moreover, the minimum length of « is the same for any geodesic from X to Y, up
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Figure 4. Saccheri and Lambert quadrilaterals.

to a multiplicative constant. Further, the theorem says that, essentially, all of the
twisting about o occurs in the active interval [a, b] of .

Before proceeding to the proof of the theorem, we need to introduce a notion of
horizontal and vertical components for a curve that crosses a leaf of A(X, Y) and
analyze how their lengths change in the active interval. This analysis will require
some lemmas from hyperbolic geometry.

LEMMA 3.2. Let w and o' be two disjoint geodesics in H with no endpoint in
common. Let p € w and p’ € o' be the endpoints of the common perpendicular
between w and '. Let x € w be arbitrary and let x' € &' be the point on the same
side of [p, p'l as x such that dg(x, p) = dg(x’, p’). Then

dH(pv p/) dH(x7x,)

sinh s coshdyg(x, p) = sinh —s 3)

For any y € ', we have
sinhdy(p, p') coshdu(x, p) < sinhdy(x, y) @)
and
du(x',y) < du(x, y). &)
Proof. We refer to Figure 4 for the proof. Equation (3) is well known, as the four

points x, x’, p’, p form a Saccheri quadrilateral. The point y’ € @’ closest to x
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Coarse and fine geometry of the Thurston metric 19

has /xy'p’ = /2;s0x,y, p’, p form a Lambert quadrilateral and the following
identity holds:

sinhdy(p, p’) coshdy(x, p) = sinhdy(x, y').

Equation (4) follows since dy(x, y') < du(x, y). For (5), set A = /xx’ y and B =
/x'xy and consider the triangle Axx’y. Depending on which side of x’ the point
y is, A is obtuse or acute. In any case, A > B. It is a standard fact that the side
opposite the bigger angle in a triangle is longer. Hence, dy(x, y) > dy(x’, y). O

In this section, we will often use the following elementary estimates for
hyperbolic trigonometric functions. The proofs are omitted.

LEMMA 3.3.
1) If0 < x < 1or0 <sinh(x) < 1, we have sinh(x) < 2x
(i1) Forall x > 0, %ex < cosh(x) < e and x < sinh(x) < %

(ii1) For all x > 1, we have sinh(x) > i

@iv) Forall x > 1, we have
log(2) < arcsinh(x) — log(x) < log(3)

and
0 < arccosh(x) — log(x) < log(2).

Now consider X € J(S) and a geodesic lamination A on X. If o crosses a leaf
w of X, define Vy(w, ) to be the shortest arc with endpoints on w that, together
with an arc Hy(w, @) of w, form a curve homotopic to «. Thus, Vy(w, @) and
Hy (w, o) meet orthogonally and « passes through the midpoints of both of these
arcs (see Figure 5). If « is a leaf of A, then we set Hy (w, o) = « and let Vy(w, a)
be the empty set.

Define hy and vy to be the lengths of Hx(w, @) and Vy(w, o), respectively.
By considering the right triangles formed by these curves and « (which have
hypotenuse along «), it is immediate that

max(hy, vy) < lo(X) < hx + vx. (6)

The quantities 7y and vy can be computed in the universal cover X = H as
follows. Let @ and & be intersecting lifts of @ and « to H. Let ¢ be the hyperbolic
isometry with axis & and translation length £, (X). Set @' = ¢ () and let ¥ be the
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Figure 5. Estimating #,.

hyperbolic isometry taking @ to @’ with axis perpendicular to the two geodesics.
Since ¢ and ¥ both take w to ', their composition ¥ ~'¢ is a hyperbolic isometry
with axis @. The quantity vy is the translation length of v and hy is the translation
length of ¥ ~'¢. For the latter, this means that hx = dy(¥(q), ¢(g)) for any
q €.

In the following, let X, = G(¢) be a geodesic segment and let A = Ag. Let
a be a curve that interacts with A. We will refer to Vx,(w, o) and Hy,(w, o)
as the vertical and horizontal components of o at X,. We are interested in the
lengths &, = hy, and v, = vy, of the horizontal and vertical components of « as
functions of r. We will show that v, decreases super-exponentially, while %, grows
exponentially. These statements are trivial if « is a leaf of A, so we will always
assume that o crosses a leaf w of A.

LEMMA 3.4. Suppose « crosses a leaf w of A. Forany t > s,

hy > e (hy — vy).

Proof. In H, choose a lift & of the geodesic representative of & on X, and a lift @
of w that crosses @. Let @' = ¢, (@) where ¢ is the hyperbolic isometry with axis
@ and translation length £, (). Let v, be the hyperbolic isometry taking @ to o’
with axis perpendicular to the two geodesics. Let p € @ be the point lying on the
axis of ;. By definition,

vy =du(p, ¥s(p)) and  h; =du(¥;(p), ds(p)).
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The configuration of points and geodesics in H constructed above is depicted in
Figure 5; it may be helpful to refer to this figure in the calculations that follow.
Note that for brevity, the subscript s is omitted from the labels involving i, ¢ in
the figure. _

Let f : X; — X, be an optimal map and let f : H — H be a lift of f. Since
f is an ¢'~*-Lipschitz map such that distances along leaves of A are stretched by
a factor of exactly ¢'™*, the images f (@) and f(@') are geodesics and

du(fYs(p), fo,(p)) =€ hy and  du(f(p), F,(p)) < e~

Let v, be the hyperbolic isometry taking ]7 (@) to ]7 (@) with axis their common
perpendlcular Let ¢, be the hyperbohc 1sometry corresponding to f« taking f (@)

to f (@'). Note that ¢, f = f ¢, since f is a lift of f. But ¥ and v, do not
necessarily correspond to a conjugacy class of m;(S), so f need not conjugate v,

to ;.
By definition,
he = da(, f(p), ¢ F(P)) = du(¥, F(p), fés(p)).
By Lemma 3.2(5),

du( Yo (p). ¥ F () < du(F ¥, (p). F(p)).

Using the triangle inequality and the above equations, we obtain the conclusion.

he = du(p F (), Frs(p)) — du(Frs(p), ¥ F(p))
> du(¢: f(p), FU(p) — du(FY,(p), F(p))
= du(Fés(p), FY,(P) — du(f Y5 (D), F(p))
> e h, —e' ;. O

LEMMA 3.5. Suppose o crosses a leaf @ of A. There exists €, > 0 such that if
v, < €, then forallt > a, we have

_ 1
v, <e ", where A > 0and Aklog —
Vg

and where the additive error is at most log4 + 1.

Proof. We refer to Figure 6. As before, choose a lift @ to H of the geodesic
representative of & on X, and a lift @ of w that crosses &. Let @' = ¢ (@) where
¢ is the hyperbolic isometry with axis & and translation length £(«). Let p € @
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Figure 6. Bounding v, from above.

and p’ € @' be the endpoints of the common perpendicular between @ and @'; so
Vo = du(p, p).

We assume v, < % Let [x, y] C @ and [x/, y'] C @ be segments of the same
length with midpoints p and p’ such that [x, x'] and [y, y'] have length 1 and are
disjoint from [p, p’]. By (3) from Lemma 3.2,
sinh1/2

dy(x, p) = arccosh sinh, /2

We can apply Lemma 3.3(i) and (iv), which give

1
dg(x,y) —2log —| < 2log4. (7)
v

a

In particular, v, is small if and only if dg(x, y) is large. Let €, be small enough so
that dg(x, y) > 4.

Let f: X, — X, be an optimal map and f H — Haliftof f. Letr € f(a))
and r’ € f (@) be the endpoints of the common perpendicular between f (@) and
f (@); s0 v, = dy(r, r'). Without a loss of generality, assume that r is farther away
from f~ (x) than f(y). This means

du(F(x), ) = Ldu(F o), ). ®)
We also have
du(f(x), f(y)) = e “du(x,y) and du(f(x), f(x) <™. (9)
By (4) from Lemma 3.2,
sinh dy (r, #') cosh dg( f(x), ) < sinhdu(f(x), £(x)).
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Incorporating (8) and (9) to the above inequality yields

sinh e’
cosh (3e'~“dy(x, y))

sinhdy(r, r') <

Now use Lemma 3.3(ii) to obtain
di(r, 1) < e~ “@n/=1)

Setting A = (du(x, y)/2) — 1 and applying (7), we have that A > 0 and
|A —log (1/v,)] < log4 + 1. This finishes the proof. 0

LEMMA 3.6. Suppose o crosses a leaf w of A. Let €, be the constant from
Lemma 3.5. If [a, b] is an interval of times with £,(a) = £,(b) = € < €,, then
Lo (1) %€ forallt € [a, b] with the multiplicative error at most 12e.

Proof. Lett € [a, b].
Suppose first that v, > %ht. Here, one can replace % by any other number in
(0, 1). Then £,(¢) < 3v,. By Lemma 3.5,

where the multiplicative error is at most 4¢, and since v, is bounded above by ¢,
we have £, (1) X e, with error at most 12e.

Now suppose v, < %h,. Then by Lemma 3.4,
eb—lht 2

hy > eb_t(ht —v) = h;.

1 1
2 2

Hence,
Ca(t) < hy + v, < 3y < 3hy < 3e

This finishes the proof. O

For our purposes, an important consequence of Lemma 3.6 is that if the curve
is short enough at the endpoints of an interval, then its length will be below €,
throughout that interval. Specifically, fix €y > 0 so that

. ( €M )
€ <min|—,¢€,]),
12e
where €,, is the Margulis number chosen in Section 2.3 and €, is the constant
from Lemma 3.5. Then as an immediate corollary of Lemma 3.6, we have the
following.
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COROLLARY 3.7. If [a, b] is an interval such that £,(a) = £,(b) = €, then
L,(t) < ey forallt € [a,b].

Next we study the relationship between the relative twisting d, (X, A) and the
length of Vy(w, o) and £, (X).

LEMMA 3.8. Suppose o crosses a leaf w of . Fix X = X, and let £ = £,(X) and
v be the length of Vx(w, «). Then the following statements hold:
(1) Ift < €y, then
14
Ldy (X, )%2log —.
v

(1) Ifdy(X, L) = (4ey /L) + 2, then

v < Qe UHdaXD)

Proof. The reader may find it helpful to look at Figure 5 for this proof.

Let B be the angle between o and @. Let L be the length of the projection of
o to o. Recall that d, (X, 1) % % with additive error at most 2. Since £ < €y, this
implies

Ld, (X, \)XL (10)

with additive error at most 2¢,,. By hyperbolic geometry, L satisfies
L .
1 =cosh§ - sin B. (11)

To find sin B, denote by ¢ the hyperbolic isometry with axis & and with translation
length £. Let @ = ¢ (@). Denote by x the intersection of & and @ and set x” = ¢ (x).
Let p € @ and p’ € @ be the points on the common perpendicular between @
and o'. That is, p’ = ¥ (p) where  is the translation along an axis perpendicular
to @ such that ¥ (&) = @'. By construction, dy(x, x") = £ and dy(p, p') = v.
Then the intersection point of [p, p’] and [x, x'] is the midpoint of both. Thus,
sin B can be found from

l
sin B sinh — = sinh E (12)
2 2

Combining (11) and (12), we obtain

sinh £/2
sinhv/2’

13)

L = 2 arccosh

Downloaded from https://www.cambridge.org/core. IP address: 76.243.192.146, on 08 Jul 2020 at 04:18:54, subject to the Cambridge Core
terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/fms.2020.3



Coarse and fine geometry of the Thurston metric 25
When ¢ < €, < 1, we can apply Lemma 3.3(i) and (iv) to simplify (13), obtaining
14
L*x2log —
v
which in combination with (10) gives
N 12
td, (X, 1)=2log —,
v

with the additive error in the latter estimate at most 2 log 4 + 2¢,.
Now we consider the upper bound on v under the assumption d,(X, 1) >
(4€y/€) + 2. By (10), we have L > £d,(X,A) — 2¢€ and incorporating this

with (13) gives
inh £/2 £
SR E/2 o cosh ( Ly (X, 2) —en ).
sinhv/2 2
Therefore,
v v sinh £/2 e'? «
— i _ — /2D +em—(/2)do (X, 1)
2 5°™7 S o (Sdu(X, 1) — €n) S i = ¢

where the third inequality above uses the fact that (£/2)d,(X,A) — €y > 0 to
apply Lemma 3.3(ii). Furthermore, our assumed lower bound on d,, (X, A) gives

K+ Ed(x 2) < Ed(X 2)
Y € - L Uu P} X T Uy P}
2 M) 4

and substituting this in the previous bound on v/2, we find

v < e~ E/da(X 1)
which completes the proof. 0

The following lemma implies that the length of the vertical component does
not decrease too quickly along a geodesic ray if the curve starts out being
approximately vertical and remains short throughout the ray.

LEMMA 3.9. Suppose o crosses a leaf @ of A. There exists A > 0 with A %
log (1/€g) such that the following holds. If £,(a) = €y and v, > €y/4, and if
L,(t) < €y forallt > a, then we have

_ A t—a
v, £ e
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Proof. Let B be a shortest curve at time a that intersects «. Recall that €,, was
chosen so that £,(a) < €, implies i(«, B) € {1, 2}. We will give the proof in the
case i(«, B) = 1, with the other case being essentially the same. Since « is short
for all + > a, the part of B in a collar neighborhood of « has length that can be
estimated in terms of the length of o and the relative twisting of X, and B (see
[CRS08, Lemma 7.3]), giving a lower bound for the length of g itself:

Lp(t)>=dy (X, B)Ly(t) + 2log A0

On the other hand, since ¢,(a) = ¢y and v, > €;/4, applying Lemma 3.8 to X,
tells us that d, (X, 1) is bounded. Hence, |d, (X;, A)—d,(X,, B)| <1 which means
that we can write

Lp (1) dy(X,, X)Ly (1) 4 21og

INGE

The length of B cannot grow faster than the length of A; therefore,

dy (X, M), (t) + 2log

"0 <e'"g(a).

Applying Lemma 3.8 again, now to X,, we have

£, (1) [N 1
+ 2log t)xda(X,,k)(iu(t)+210g€

Vs Ly o

2log <e' " Ug(a)

which implies

v, £ e~ (1Dt

The claim now follows from the fact that £4(a) <2 log (1/¢). ]

THEOREM 3.10. Suppose a crosses a leaf w of A. Let [a, b] be an interval such
that £,(a) = £,(b) = €. Then

doz (Xas Xb) % ebia-
The length of a is minimum in the interval [a, b] at a time t, € |a, b] satisfying
ty —a < Log(b — 1), (14)
and the minimum length is £, (t,) % e~ =),
Furthermore, if (b — a) is sufficiently large, then log(b — t,) > 1 and so (14)
also holds with Log replaced by log.
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In some of the preceding lemmas, we indicated the dependence of multiplicative
and additive errors on €,. However, since ¢, is a fixed constant, we will ignore
such dependence in most cases from now on.

Proof. We split the proof into two cases, depending on whether the interval
[a, b] is ‘short’ or ‘long’. More precisely, we consider the cases (b — a) < Q
and (b — a) > Q for some positive real Q, the threshold. The implicit constants
in the approximate comparisons we derive in each case will depend on Q, and at
various points in the long-interval case, it will be necessary to assume that Q is
sufficiently large (that is, greater than some universal constant). At the end, we
can fix any Q large enough to satisfy all of those assumptions.

First, we consider the short-interval case, (b — a) < Q. Here, all of the claims
of approximate equality in the theorem will hold because all of the quantities
in question are bounded. Since ¢, € [a, b], both (¢, — a) and Log(b — ¢,) are
nonnegative and bounded above, that is, ¢, — a < Log(b — t,) 0.

The surface X,, admits maps from X, and to X, with bounded Lipschitz
constant (at most e?). Since o has length €; on both X, and X, this shows that
£,(t) is bounded above and below by positive constants depending on Q for all
t € [a, b], that is, that £,(t,) % 1. Since 1 > e ¢ > ¢~ > ¢=C we also
have e~ ¢~ £ 1, and, thus, £, (t,) e~ ¢,

To obtain the bound on d,(X,, X;) in the short-interval case, we recall from
[Min96] that the rate at which d,(X,, =) can change is bounded with the bound
depending on the length of «. As noted above, we have upper and lower bounds
for the length of  along the geodesic between X, and X,; hence, d, (X, X,) %0.
We are assuming an upper bound on (b — a); so this implies d,, (X,, X;) X e’

Now we turn to the long-interval case, (b — a) > Q. First, we require Q >
log(2) so that e’=® > 2. It follows that h, — v, < € /2; to see this, assume for
contradiction that 4, — v, > €p/2. Then Lemma 3.4 gives

while (6) gives
hy < £,(b) = €,
a contradiction.
Now, since h, — v, < €p/2 and h, + v, = £,(a) = €y, we find €p/4 < v, < €;
that is, at time ¢ = a, the curve is nearly perpendicular to A, and £,(a)/v, X 1.
Applying Lemma 3.8, we obtain

€0dy(Xy, 1) = Lo(a)dy(X,, 1) X0.
Dividing by €j, we obtain d, (X,, 1) X0.
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By Corollary 3.7, we have £,(t) < €, for all ¢ € [a, b]. Using this, the bounds
of Lemma 3.5 and Lemma 3.9 show that there are A, B > 0 such that

o B 2y, < e 2™ forallt e [a, D]. (15)

(And, in fact, those lemmas show A, BXlog (1/¢,).) Taking the logarithm of (15)
gives
logvl%e"“ forallt € [a, b], (16)
t
where the additive error comes from the multiplicative error in (15) and the
multiplicative error from the constants A, B.

We claim that for Q sufficiently large, there exists s € [a, b] such that h; = 2v;.
Indeed, if h, < 2v, for all s € [a, b], then, since h; + v, > €y, we have %eo <
v, < €. Using (16) with t = b, this gives an upper bound on ¢’~¢, which is a
contradiction if Q is large enough. On the other hand, if 4, > 2v, for all s € [a, b],
then Lemma 3.4 implies that 4, is large if (b —a) is sufficiently large. Specifically,
by taking Q larger than a universal constant, we would have £, > €, contradicting
that €y = £,(b) > hy,. Thus, by requiring Q to be large enough so that both of these
arguments apply, we have h; = 2v, for some s € [a, b]. For the rest of the proof,
let s denote any such point in the interval.

Since v, and h, are comparable, it follows from (6) that v, %€, (s). Since ¢*
is the Lipschitz constant from X, to X,, we have £,(s)e’™ > £,(b) = €. In
particular, €y % v;e”~*. On the other hand, Lemma 3.4 gives

b—s

hy > Lhe™ = ve

N —=

Thus, v,e?™ < hy, < £y (b) = €. All together, we obtain
vy e ), (17)
Now using (16) with t = s and (17) together, we find
e X (b —s). (18)
From this, it follows that
Log(b — s) % (s — a). 19)

Indeed, if log(b — s) > 1, then log(b — s) = Log(b — s) and (19) is the result of
taking the logarithm of (18). Otherwise, log(b — s5) < 1, in which case Log(b —
s) = 1 and (18) gives a uniform upper bound on (s — a); so (19) holds simply
because both sides are nonnegative and bounded.
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Finally, since v, is essentially decreasing double-exponentially, /, is increasing
exponentially and £, () > max{uv;, i}, it follows that r, = s. This gives us the
order of the minimal length of «, which is approximated by £,(s) X v,. Also,
using 7, X s, we find that Equation (19) also holds if we replace s by f,, which

gives (14).
To complete the long-interval case, we estimate d,(X,, X;). By Lemma 3.8
and (16),
€0 dy (X, M) %21log G—Oieb*“,

Up
and we can absorb the additive error in the multiplicative error since the
expression on the right is bounded away from 0. Since v, decreases double-
exponentially, v, is very small compared to €, for (b — a) large; so €y d, (X, 1) is
bounded away from 0. Dividing by €, (and absorbing this into the multiplicative
error as well), we find d,(X,, 1) %e”~¢. Since d,(X,, A) <0, this is the desired
estimate.

Fixing a value for the threshold Q large enough to satisfy all of the conditions
derived in the long-interval analysis above, the estimates in both parts of the proof
become uniform (that is, no longer depend on an additional parameter).

It only remains to prove the final claim from the statement of the theorem. For
this, we show that (b — t,) can be made larger than a given constant just by
assuming that (b — a) is sufficiently large. Suppose for contradiction that (b —1,),
and hence also (b — s), can be bounded with (b — a) arbitrarily large. Then e°~%%
e’~% is large while (b — s) is bounded, contradicting (18). I

Note that Theorem 3.10 highlights an interesting contrast between the behavior
of Thurston metric geodesics and that of Teichmiiller geodesics: along a
Teichmiiller geodesic, a curve « achieves its minimum length near the midpoint
of the interval in which « is short (see [Rafl4, Section 3]), and this minimum
is on the order of d,(X,Y)'. However, for a Thurston metric geodesic, the
minimum length occurs much closer to the start of the interval (assuming the
interval is sufficiently long) since (f, — a) is only on the order of log(b — t,). In
addition, the minimum length on the Thurston geodesic is larger than that in the
Teichmiiller case, though only by a logarithmic factor.

To exhibit this difference, Figure 7 shows a Teichmiiller geodesic segment and
a stretch path segment (for lamination 8*) joining the same pair of points in the
upper half-plane model of T(S; ;). Here B is a simple closed curve. In this model,
the imaginary part of a point z € H is approximately /¢, (z), where « is a curve
which has approximately the same length at both endpoints but which becomes
short somewhere along each path. Thus, the expected (and observed) behavior
of the Thurston geodesic is that its maximum height is lower than that of the
Teichmiiller geodesic, but that this maximum height occurs closer to the starting
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Figure 7. A Teichmiiller geodesic (blue) and a stretch path (red) in the Teichmiiller
space T(S1;) =~ H of the punctured torus. Both geodesic segments start at
X = —16.302 +i and end at Y = i, and each has its midpoint marked.

point for the Thurston geodesic. Further properties of the Thurston geodesics in
the punctured torus case are explored in the next section.
Continuing toward the proof of Theorem 3.1, we show the following.

LEMMA 3.11. Suppose a crosses a leaf o of A. There exists a constant C > 0
such that if €,(s) > ey and do(X,, %) > C, then £,(t) % e, (s) for all t > s.

Proof. By Lemma 3.8, if d, (X, A) > (4€) /24 (5)) + 2, then

vy < e~ Ca(®)/Ddu(X;s,0)

Since £,(s) > € in this case, there is a universal constant C so that this estimate
applies when d,, (X, A) > C. Furthermore, we can choose C so that the inequality
above gives

v, < 1y (s)

and so hy > %Za (s) and 2v; < h;. Incorporating Lemma 3.4, we have that for all
t>s,
L(1) = hy = 3" hy > 1e ™ L (s).

On the other hand, £, (t) < ¢'~*£,(s). This finishes the proof. I

LEMMA 3.12. Suppose « interacts with A. If £,(t) = €y for all t € [a, b), then
d,(X,, Xp)%0.
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Proof. We first show that for any s < 1, if £,(r) Xe'™5¢,(s), then d, (X,, X,) X0.
Let B be the shortest curve at X that intersects «. At time ¢, the length of g
satisfies

Lp(t) = Lo (1)do (B, X:) — Do (1),

where D > 0 is universal. Also, d, (8, X;) is bounded by the choice of 8. Hence,
we can write
Ly (1)

£, (1)
Therefore, since £5(1) < e'*£z(s) and £, (¢)=e' L, (s), we have

Ls(s)
lo(s)

Let €5 be the Bers constant. If £, (s) > €g, then £5(¢) < €p and so £5(s) /€y (s) < 1.

If £,(s) < €g, then £4(s) is, up to a bounded multiplicative error, the width of the
collar about «. So in this case, since £, (s) > €, we have

14 1 1

p6) o 1 yoe Loy

Ly(s) € €

;dot(xsv Xt)

doz(Xs’ Ale‘)2

If « is a leaf of A, then £,(b) = e"~*£,(a); so the conclusion follows from the
paragraph above. Now suppose that o crosses a leaf of L. Let C be the constant
of Lemma 3.11. If d,(X,, A) < C forall t € [a, b], then we are done. Otherwise,
there is an earliest time ¢ € [a, b] such that d,(X,, A) > C. It is immediate that
dy(X, X,;)%0. By Lemma 3.11, £,(b)%e"~"£,(t), so d,(X,, X;) %0 by the above
paragraph. The result follows. O

We will now prove the theorem stated at the beginning of this section.

Proof of Theorem 3.1. If £, > €;, then by Lemma 3.12,

d,(X,Y)x0x% ! Lo !
e
Now suppose ¢, < ¢, and let [a,b] be the active interval for «. From

Theorem 3.10, the minimal length £, occurs at ¢, € [a,b] satisfying
t, —axLog(b —t,), and £, %e~»~") We then have

b—ty eta —a

da(xav Xb)ﬁeb ¢

=e
% eb ty eLog(bfta)'
If (b — a) is large enough so that Theorem 3.10 gives Log(b — ¢t,) = log(b — t,),

then this shows d, (X,, X,) %e"~«(b — t,) % (1/£,)log(1/£,), and since £, < €,
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we have (1/£,)log (1/£,) % (1/¢,) Log (1/£,) with equality for £, small enough.
By Lemma 3.12, d,(X, X,) and d,(X,, Y) are both uniformly bounded. Thus,
d,(X,Y)%d,(X,, X,) and the estimate on d, (X, Y) from Theorem 3.10 follows
in this case.

Otherwise, (b — a) is bounded above by a universal constant, in which case we
will show d, (X, Y)%(1/¢,) Log (1/£,) by showing that both sides are uniformly
bounded. First, the upper bound on (b — a) gives a positive lower bound on £,
(which is already bounded above by €;) and so (1/£,) Log(1/£,) % 0. On the
other hand, using the bound on (b — a), Theorem 3.10 gives d,(X,, X;) %0, and
as before, d, (X, Y)xd,(X,, X,). We conclude d, (X, Y) X0, as required.

For the last statement of Theorem 3.1, let C be the constant of Lemma 3.11.
By assumption, £,(t) > €, for all ¢+ < a. If there exists ¢ < a such that d,(X,,
A) = C, then £, (t,) X e~ "£,(t), where t, is the time of the minimal length of
£,. This is impossible for all sufficiently small ¢,. Finally, since d,(X,, X;) X
(1/¢4) Log (1/£,), for all sufficiently small £, we can guarantee that d, (X,, A) >
C. The final conclusion follows by Lemma 3.11. O

Recall that two curves that intersect cannot have lengths less than €, at the
same time. Therefore, if o and B intersect and £, < €, and £ < €, then their
active intervals must be disjoint. This defines an ordering of @ and § along G. In
the next section, we will focus on the torus S ; and show that the order of o and
B along G will always agree with their order in the projection of G(¢) to the Farey
graph.

4. Coarse description of geodesics in J(51,1)

4.1. Farey graph. See [Min99] for background on the Farey graph.

Let S;; be the once-punctured torus and represent its universal cover by the
hyperbolic plane H. Identify the ideal boundary dH with RU{oc}. The point co is
considered an extended rational number with reduced form 1/0. As in Section 2.2,
fix a positive ordered basis for H;(S; ;) and use this to associate a slope p/q €
QP! = Q U {c0} to every simple curve. In this section, we pass freely between a
rational number and the associated simple curve.

Given two curves @ = p/q and § = r/s in reduced fractions, their geometric
intersection number is |ps — rq|. Form a graph with vertex set QP! as follows:
connect p/q and r/s by an edge if | ps — rq| = 1. The resulting graph J is called
the Farey graph, which is also the curve graph of S; ;. This graph embeds naturally
in H U 0H, with its edges realized as hyperbolic geodesics (see Figure 8). These
geodesics cut H into ideal triangles; this is the Farey tesselation. In this tesselation,
each edge bounds exactly two ideal triangles with zero relative shearing. Thus,
each edge of J is equipped with a well-defined midpoint.
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|
INITJETETTN

Figure 8. The Farey graph.

Let « denote the curve with slope 1/0. The action of D,, on curves distinct from
a corresponds to the mapping of slopes m +— m + 1. Let By € JF be any curve
withi(e, By) = 1. The associated Dehn twist family about « is B, = D (). Then
{B,}ncz is exactly the set of vertices of J that are connected to « by an edge or,
equivalently, the set of curves with slope in Z.

4.2. Markings and pivots. A marking on S; is an unordered pair of curves
{or, B} such thati(e, B) = 1. Given a marking {«, 8}, there are four markings that
are obtained from p by an elementary move, namely:

{o. Du(B)).  {a. D'(B)).  {B.Ds(@)}. {B. D5 (@)}

Note that the set of markings on S ; can be identified with the set of edges of J,
and two edges differ by an elementary move if and only if they bound a common
triangle in the Farey tesselation of H. Denote by MG the graph with markings as
vertices and an edge connecting two markings that differ by an elementary move.
Then MG has the following property.

LEMMA 4.1. For any u, W' € MG, there exists a unique geodesic connecting
them.
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Proof. Each edge of J separates H into two disjoint half-spaces. Let E(u, u’) be
the set of edges in J that separate the interior of wu from the interior of . Set
E(u, ) = E(u, ') U {u, w'}. Every v € E(u, ') disconnects  from p and,
thus, must appear in every geodesic from p and u’. Conversely, any v € MG lying
on a geodesic from p to p’ must lie in E(u, ). For each v € E(u, i), let H,
be the half-space in H containing the interior of u'. There is a linear order on
E(u, i) ={u) < o < -+ < p,} induced by the relation u; < w;4 if and only
it H,, D H,,, . The sequence i = py, ia, ..., 4, = p’ is the unique geodesic

path in MG from u to . O

Given two markings ¢ and p’ and a curve «, let n,, be the number of edges in
E(u, ') containing . We say « is a pivot for y and ' if n, > 2, and n, is the
coefficient of the pivot. Let Pivot(u, ') be the set of pivots for p and u'. This set
is naturally linearly ordered as follows. Given o € Pivot(u, i), let e, be the last
edge in E (i, ') containing «. Then for o, B € Pivot(u, '), we set a < B if e,
appears before eg in g.

Recall that in Section 2.8, we defined the unsigned twisting (along «) for a pair
of curves g, 8’; this is denoted by d,, (8, B8’). Generalizing this, we define unsigned
twisting for the pair of markings u, i’ by

d,(u, ') = min dy(B, B),
BCu.p'c

where § is a curve in p and g’ is a curve in u’. Similarly, we define d, (8, u') =
mingc,y dy, (B, B'). In terms of these definitions, we have the following.

LEMMA 4.2 [Min99]. For any 1, ' € MS and curve a, we have n, <d,, (i, ().
Fora, B € Pivot(u, 1), ifae < B, then d, (B, W')<1 and dg (i, o) < 1. Conversely,
if ng is sufficiently large and d, (B, ') X1, then a < B.

Identify T(S;;) with H in the usual way. Under this identification, if e is an
edge of F with endpoints « and 8, then the set points along e correspond to
the set of surfaces on which « and § are the shortest curves and they intersect
perpendicularly. The midpoint of e corresponds to the hyperbolic structure in
this family where the two curves have the same length. This length is a uniform
constant independent of the edge e.

For any X € T(S].1), there exists an ideal triangle A in the Farey tessellation of
H containing X. The three vertices of A correspond to the three shortest curves
on X. We will define a short marking on X as follows. If X has at least two
systoles, then let A be the set of systoles on X. If X has a unique systole, then
let A be the set consisting of the systole plus the second shortest curves on X. In
either case, A is a subset of the vertices of A; so A has cardinality at most 3 and
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every pair of curves in A corresponds to an edge in A. A short marking on X is any
pair of curves in A. Note that in our definition, there is either a unique marking or
three short markings on X. This implies that, given X, Y € J(S, ), there are well-
defined short markings wy and wy on X and Y such that dp¢G(ux, (y) is minimal
among all short markings on X and Y. By Lemma 4.1, the geodesic from px to
Wy is unique. Note that any edge of E(uyx, iy) separates uy from py, and, hence,
it separates X from Y. We will denote by Pivot(X, Y) = Pivot(uy, py) and refer
to Pivot(X, Y) as the set of pivots for X and Y.

Given X, Y € T(S;,), we have that d, (X, Y) Xd, (ux, iy).

Let €, be the constant of the previous section. The following statements
establish Theorem 1.3 of Section 1.

THEOREM 4.3. Suppose X,Y € T, (S1,1) and let G(t) be any geodesic from X
to Y, parameterized by an interval I C R. Let £, = inf, £,(t). There are positive
constants €, Cy, and C, such that we have the following:

(G) Ift, < €, thena € Pivot(X,Y) and d,(X,Y) > C,.
(1) Ifd(X,Y) = Cy, then £, < €; and o € Pivot(X, Y).

(iii) Suppose o and B are distinct curves such that there exist s,t € I with
Ly(s) <€ and lg(t) < €. Thena < B in Pivot(X, Y) if and only if s < t.

(iv) For any a € Pivot(X,Y), £, X 1.

Proof. The proof will show that any sufficiently small €, works. We first require
€, < €y where ¢ is the constant selected in the previous section.

Let A = A(X, Y). On the torus, every curve « interacts with A. If A contains «,
then £,(t) = e'€,(X). But this implies £, = €x(a) > € and d,(X,Y) X0 by
Lemma 3.12. Thus, we may assume that « crosses a leaf of A. By Theorem 3.1,
dy,(X,Y)X(1/¢,)1og (1/¢,). Since d (X, Y) xd,(ux, py) X n, (the latter by
Lemma 4.2), we can select €; small enough and C; > 0 so that £, < €; implies
that d, (X, Y) > C, and that n, > 2; that is, « is a pivot. This gives (i). Using the
same approximate equalities, if d, (X, Y) is large, we find that £, is small, and we
can select C, satisfying (ii).

We now fix our constants €;, C;, and C, so that (i) and (ii) are satisfied. By
fixing these constants, we can now ignore the dependence of any additive or
multiplicative errors on them.

For (iii), suppose £, < €; and €5 < €;. By (i), they are both pivots. Let [a,
b] be the active interval for «. Recall that this is the longest interval such that
Ly(a) = €g(b) = €. Recall that by Corollary 3.7, we have £,(t) < €, for all
t € [a, b]. Similarly, let [c, d] be the active interval for 8. On the torus, two curves
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always intersect; so & and 8 cannot be simultaneously shorter than €,,, so [a, b]
and [c, d] must be disjoint. By Lemma 4.2, « < B if and only if d,(8, uy) X 1.
By Theorem 3.1 and Lemma 3.12, b < c if and only if d,(X., Y) < 1. Since B is
€o—short on X, we have d, (B, uy)=<d,(X., Y). This finishes (iii).

Before we prove (iv), we introduce some notation. For each curve «, let H, C
T(S1.1) be the set of hyperbolic structures where ¢,(X) < €;. Since €; < €y,
the sets H, and Hj are disjoint if o # B. Let e be an edge of J and denote
its endpoints by o and 8. The segment of e outside of H, and Hpg is a closed
interval containing the midpoint of e. Along this interval, the length of o and S is
uniformly bounded (by a constant that depends only on €).

To prove (iv), let « € Pivot(X, Y) and assume ¢, > €. Lete € E(ux, iy) be
an edge containing «. Let 8 be the other curve of e. The edge e separates X and Y
so any geodesic §(f) from X to Y must cross e at some point X,. If £4(t) > €,
then neither « nor B is €;—short on X,; so X, lies in the segment of e outside of H,
and Hyg. Hence, ¢, (1) <1 by the discussion in the previous paragraph. On the other
hand, if £4(¢) < €;, then g is a pivot by (i). Either ¢ < g or 8 < « in Pivot(X, Y).
If @« < B, then dg(X, ) < 1 by Lemma 4.2. Let [a, b] be the active interval for .
By Theorem 3.1, we have dg(X, X,) < 1, and dg satisfies the triangle inequality
up to additive error (by [MMO00, Equation 2.5]); so we conclude dg (o, X,) X 1.
This, together with £5(a) = €, yields £, (a)X1.If B < «, then the same argument
using X, and Y in place of X, and X also yields ¢, (b) % 1. This concludes the
proof. 0

5. Envelopes in J(S;,1)

5.1. Fenchel-Nielsen coordinates along stretch paths in J(S;,;). We now
focus on the once-punctured torus S ; and on the completions a® of the maximal
chain-recurrent laminations containing a simple closed curve « discussed in
Section 2.2.

Consider the curve o as a pants decomposition of S; ; and define 7, (X) to be
the Fenchel-Nielsen twist coordinate of X relative to «. Note that 7, (X) is well
defined up to a multiple of £,(X), and after making a choice at some point, 7,(X)
is well defined. The Fenchel-Nielsen theorem states that the pair of functions
(log £,(*), T,(+)) define a diffeomorphism of T(S; ;) — R

Each a* defines a foliation £ on T(S) ;) whose leaves are the a*-stretch paths.
In the o* shearing coordinate system, the image of T(S) ;) in R? is a convex cone,
and the foliation F* are by open rays from the origin.

In this section, we denote a point on the o stretch path through X by X;* =
stretch(X, o™, t). The function log £, (X;") = log ¢, (X) + ¢ is smooth in 7. Our
first goal is to establish the following theorem.
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THEOREM 5.1. For any simple closed curve o on S, 1 and any point X = X, €
J(S1.1), the functions T, (Xri) are smooth in t. Further,

d _
> —1,(X;)

B d
(X)) > t0(X7) and —1, (X))
= At

dt

=0
That is, the pair of foliations F} and F, are smooth and transverse.

We proceed to prove smoothness of 7,(X;). Recall that the o™ shearing
embedding is s,+(X) = (€, (X), 5,(X)) where s,(X) was defined in Section 2.5
and that like 7, the function s, is defined only up to adding an integer multiple
of ¢,(X). To further lighten our notation, we will often write £,(¢) instead of
£, (X;1), and s, (¢) for s, (X;").

We also denote 7, (0) and ¢, (0) by 1 and ¢, respectively. Note that the values
of 7, and ¢, do not depend on the choice of at or a~, but the values of the
shearing coordinates do.

We know, from the description of stretch paths in Section 2.7, that

Sq(t) = 54(0)e" and  £,(t) = Lye'.

We can now compute 7, (X,") as follows, referring to Figure 9. Fix a lift & of «
to be the imaginary line (shown in blue in Figure 9) in the upper half-plane H.
Now develop the picture on both sides of @. Since we are considering o, all the
triangles on the left of & are asymptotic to 0o and all the triangles on the right of &
are asymptotic to 0. Below, we will choose some normalization, but first note that
the hyperelliptic involution exchanges the two complementary triangles 7 and T’
of @t while preserving « as a set. Let :: H — H be a lift of this involution chosen
to preserve o, which, therefore, has the form ¢(z) = —e¢/z for some ¢ = ¢; € R.
Note that ¢ exchanges the two sides of @ and that it fixes a unique point ie¢/? in H.
To fix the shearing coordinate s,(¢), we make the choice of triangles in H
required by the construction of Section 2.4. Choose two triangles A; and A, in H
separated by @ so that one is a lift of 7" and the other is a lift of 7" and ((A,) = A,.
Let w be the edge of A, that is a lift of w, namely, w = [x, oo] for some x < 0.
Let ¢ (z) = €'z be the isometry associated with & oriented toward oo. The image
¢ (W) = [e*x, 00] is another lift of w. Let $ be the lift of § that is asymptotic
to w and ¢, (w). By applying a further dilation to the picture if necessary, we can
assume that § = [x — 1, o0]. Now, the geodesic W’ = [x, x — 1] is a lift of w’'.
With our normalization, the midpoint of [x, co] associated with A, is the point
(x, 1). Recall that s = —£, in this case, which is the shearing between triangles
A; = [x,x — 1,00] and [x — 1, e‘*x, 0o]. This means that their midpoints on S
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Pa(W) 5 @ @

A

Figure 9. Computing the Fenchel-Nielsen twist along the o™ stretch path.

have y-coordinates with ratio e‘, that is

lefx —(x =D
=D —x

from which it follows that
x = —coth(€,/2).

Let h; be the endpoint on & of the horocycle based at infinity containing the
midpoint of w considered as an edge of A;. Let h, = «(h;). By construction,
h; =1 and h, = e°. We can normalize so that s, = c.

To visualize the Fenchel-Nielsen twist parameter 7, (¢) at X, about «, consider
the shortest geodesic arc f with both endpoints on « intersecting perpendicularly
(so B only intersects « twice). By symmetry, this arc intersects é at a point ¢ that
is equidistant to the midpoints of § associated with 7' and 7’. We choose a lift ,E
that passes through g = (x — 1, e‘/?). Let p; be the endpoint on & of the lift of
B that passes through 5. Since E is perpendicular to &, we have ¢ and p, lie on a
Euclidean circle centered at the origin. Using the Pythagorean theorem, we obtain

>
pr=+(x — D2+ (el/2)? = ¢'/* coth >

Letip, = t(ip;)) = —e°/ip, = ie°/p;. Up to an integral multiple of £,, the twisting
7, (¢) is the signed distance between ip; and ip,; that is,

7, = log b mod £,
pi
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eC
= IOg m mod Za

Lo
= ¢ — 2logcoth > mod £,
Lo
= s, — 2logcoth > mod £,,.
In particular, at r = 0, we obtain
£
7o = 54(0) — 2log coth 30 mod . (20)

As we mentioned previously, s, () = 5,(0)e’ and £,(¢) = £ye’. Hence,

e’ﬂo

7, (1) = €'s,(0) — 21log coth mod £,.

Solving for 7, using (20), we obtain

e KO

Y4
7, (X;") = e'1y + 2¢' log coth 50 — 2log coth mod £,,. 2D

Now let X be the stretch path starting from X associated with o~. The
computation in this case is similar; in fact, 2t = s} 4+ 5, mod £,. Thus,

€t€0

L
7,(X;) = €'1y — 2¢' log coth EO + 2log coth mod £,. (22)

This shows that 7(X;") and 7(X,) are both smooth functions of 7. Note that
(X)) — t(X;) is well defined. By a simple computation, we see that 7(X,") —
7(X;) > 0, and

d L L L
E(IQ(X:’) — (X)) » = 4log coth 50 + 24, tanh 50 csch? 50 > 0.

This finishes the proof of Theorem 5.1.

5.2. Structure of envelopes in general. For any surface S of finite type and a
chain-recurrent lamination A on S and X € J(S), define

Out(X, 1) = {Z € T(S) : A = A(X, Z)}

and
In(X,A) ={Z TS : 1= A(Z, X)}.

We call these the out-envelope and in-envelope of X (respectively) in the
direction A.
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PROPOSITION 5.2. The out-envelopes and in-envelopes have the following
propetrties:

(1) If A is maximal chain-recurrent, then for any completion A of A, the set
Out(X, A) is the stretch ray starting at X associated with A, and the set
In(X, X) is the stretch ray associated with A ending at X.

(i1) The closure of Out(X, L) consists of points Y with . C A(X,Y). Similarly,
the closure of In(X, )) is the set of points Y with A C A(X,Y).

(iii) If X is a simple closed curve, then Out(X, A) and In(X, L) are open sets.

Proof. First, assume that A is maximal chain-recurrent and let A be a completion
of it. By Corollary 2.3, if A(X,Y) = A, then there exists + > 0 such that
Y = stretch(X, A, #), and this is the only geodesic from X to Y. That is, any
point in Out(X, 1) can be reached from X by following the stretch ray along n
starting at X. Similarly, if Y € In(X, A), then the stretch ray along x starting at ¥
contains X or, equivalently, the stretch ray along x ending at X contains Y. This
is (1).

For the other statements, we use [Thu86c, Theorem 8.4], which shows that
if ¥; converges Y, then any limit point of A(X, Y;) in the Hausdorff topology
is contained in A(X, Y). Applying this to a point Y in the closure of Out(X, A)
and a sequence Y; € Out(X, 1) converging to Y, we obtain A C A(X,Y). For
the other direction of (ii), let Y be any point such that A C A(X, Y). To show
Y is in the closure of Out(X,A), we find a point Z € Out(X, A) such that
dm (Y, Z) = €, for any €. Let A’ be any maximal chain-recurrent lamination such
that L = A" N A(X,Y), and let Z = stretch(Y, )/, €). We have dm,(Y, Z) = €.
Since A =1 N A(X,Y), we must have A(X,Z) = A. This shows (ii) for
Out(X, A). The analogous statement for In(X, A) is proven similarly.

To obtain (iii), let A be a simple closed curve, ¥ € Out(X, 1), and Y; is any
sequence converging to Y, then any limit point of A(X, Y;) is contained in A.
Since A is a simple closed curve, A(X, Y;) = A for all sufficiently large i. This
shows Out(X, 1) is open. The same proof also applies to In(X, A). O

Let X, Y € T(S), and denote A = A(X, Y). We define the envelope of geodesics
from X to Y to be the set

Env(X,Y) ={Z: Z € [X, Y] for some geodesic [ X, Y]}.

PROPOSITION 5.3. Forany X, Y € T(S), Env(X, Y) = Out(X, A) N In(Y, 1).

Proof. For any Z € Env(X, Y), since Z lies on a geodesic from X to Y, A must
be contained in A(X, Z) and in A(Z, Y). This shows Env(X, Y) C Out(X, A) N
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In(Y, 1). On the other hand, if Z € Out(X, A) NIn(Y, 1), then A C A(X, Z) and
A C A(Z,Y). Thatis, if p is the stump of A, then dm (X, Z) =log (£,(Z)/£,(X))
anddm(Z,Y) =log (£, (Y) /£, (Z));sodm(X, Y) =dm(X, Z)+dm(Z, Y). Thus,
the concatenation of any geodesic from X to Z and from Z to Y is a geodesic from
XtoY. O

5.3. Structure of envelopes in J(S;,;). In this section, we specialize our study
of envelopes to the case of S = S ; and prove Theorem 1.1 of Section 1. The proof
is divided into several propositions.

PROPOSITION 5.4. Let « be a simple closed curve on S, ;. For any X € T(S1.1),
the set Out(X, a) is an open region bounded by the stretch rays along a™ starting
at X. Similarly, In(X, &) is an open region bounded by the stretch rays along a®
ending at X.

Proof. Set X = stretch(X, a*, ). By Theorem 2.2, for any surface S and any
two points X, Y € T(S), Thurston constructed a geodesic from X to Y that is
a concatenation of stretch paths, where the number of stretch paths needed in
the concatenation is bounded by 2|x (S)|, that is, the number of triangles in an
ideal triangulation of S. In our setting where S = §;, for ¥ € Out(X, «), this
would be either a single stretch path or a union of two stretch paths [X, Z] and
[Z, Y] where both A(X, Z) and A(Z, Y) contain «. By Corollary 2.3, each one
of these is a stretch path along either ot or @~. The initial path can be chosen to
stretch along o™ or o~ arbitrarily. Assuming that we first stretch along «~, then
there are ¢, and f, such that Z = stretch(X, o™, 1,), Y = stretch(Z, a™, 1,), and
dm(X,Y) =1, +t,. Set Z_ = stretch(Z, ¢, t) and Z;" = stretch(Z, a*, ). By
the calculations of the previous section, 7,(Z;) < 7,(Z;"). Since Z; = X, and
Z;“ =Y, we have
(X, ) =4(Y) and 7,(X, ) < 7.(Y).

H+n

Similarly, if we stretch along ot first, then there are s; and s, such that W =
stretch(X, o™, 51), Y = stretch(W, a™, s,), and s + s, = t; + 1,. Then X =

ti+0
+
X{ ., and by the same argument as above,

Lo (Xt ) =4£,(Y) and 1,(Y) < (X' ).

t+t i+t

That is, Y is inside of the sector bounded by the stretch rays X' and X, forz > 0.
By replacing geodesics from X to Y by geodesics from Y to X, we obtain the
statement for In(X, o). O
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REMARK 5.5 (Visualization of envelopes). Figure 0 (on page 2) illustrates
Proposition 5.4 by showing the sets In(X, o) in the Poincaré disk model of
T(S),1) for X the hexagonal punctured torus and for several simple curves «,
including the three systoles. In the figure, the disk model is normalized so
that the origin corresponds to the hexagonal punctured torus. This figure was
produced as follows: the Fenchel-Nielsen coordinate computations of (21)—(22)
make it straightforward to compute stretch paths passing through a given point in
the relative SL(2, R) character variety of m;(S; ). The software package CP1
[Dum13] allows the computation of the uniformization map from the disk to
the relative character variety; this map was numerically inverted using Newton’s
method to transport the computed stretch paths to the disk.

By the results of [Thé07], the stretch lines appearing as boundaries of in-
envelopes for J(S;,1) are exactly those which limit on rational points on the circle
at infinity as t — —oo. Thus, Figure 0 can be alternatively described as showing
regions bounded by the pairs of stretch rays joining several rational points at
infinity to the hexagonal punctured torus.

COROLLARY 5.6. Given X, Y € T(S1.1), if A(X,Y) is a simple closed curve,
then Env(X, Y) is a compact quadrilateral.

Proof. The statement follows from Proposition 5.4 and the fact that Env(X, Y) =
Out(X, o) NIn(Y, o). L]

PROPOSITION 5.7. In T(Sy.,), the set Env(X,Y) varies continuously as a
function of X and Y with respect to the topology induced by the Hausdorff
distance on closed sets.

Proof. First, suppose A(X,Y) is a simple closed curve «. By [Thu86c,
Theorem 8.4], if X; - X and ¥; — Y, then A(X, Y) contains any limit point of
A(X;, Y;); thus, A(X;, Y:) = o for all sufficiently large i. That is, for sufficiently
large i, Env(X;, Y;) is a compact quadrilateral bounded by segments in the
foliations ffj. Let Z be the left corner of Env(X, Y), that is, the intersection point
of the leaf of F through X and the leaf of F, through Y. For any neighborhood
U of Z, by smoothness and transversality of F, there is a neighborhood Uy of
X and a neighborhood Uy of Y such that for all sufficiently large i, X; € Uy,
Y; € Uy, and the leaf of I through X; and the leaf of F through Y; will intersect
in U. That is, for all sufficiently large i, the left corner of Env(X;, Y;) lies close
to the left corner of Env(X, Y). A similar argument holds for the right corners.
This shows that Env(X;, Y¥;) converges to Env(X, Y).
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Figure 10. Env(X;, ¥;) is sandwiched between G; and G.

Now suppose A(X,Y) = A is a maximal chain-recurrent lamination and
Xi—> XandY; — Y. Let A be the canonical completion of A, and let G be the
stretch path along x passing through X and Y. Also let §; and §; be the stretch
paths along x through X; and Y}, respectively. Since stretch paths along 2 foliate
J(S1,1), G and G; elther coincide or are disjoint. In the backward direction, all
stretch paths along x converge to A (the stump of A) in PML [Pap91]. If they
coincide, then A(X;,Y;) = A and Env(X;, Y;) is a segment of G;. If they are
disjoint, then they divide J(S; ;) into three disjoint regions. Let M; be the closure
of the region bounded by §; U G;; see Figure 10. In the case that §; = G, set
M; = G,. For any geodesic L from X; to Y;, since X;, Y; € M;, if L leaves M;,
then it must cross either G; or G; at least twice. But two points on a stretch path
cannot be connected by any other geodesic in the same direction; so L must be
contained entirely in M;. Therefore, Env(X;, ¥;) C M, (see Figure 10). Since ;
and G converge to G, M; also converges to G. Therefore, Env(X;, ¥;) converges to
a subset of §. For any Z; € Env(X,, Y}), dm(X;, Z;) + dm(Z;, Y;) = dm(X;, Y3),
so by continuity of dry,, Z; must converge to a point Z € G with d,(X, Z)+dm(Z,
Y) = dm(X, Y). In other words, Z lies on the geodesic from X to Y. This shows
that Env(X;, ¥;) converges to Env(X, Y). L]

We can now assemble the proof of Theorem 1.1: part (ii) is Proposition 5.7,
part (iii) is Proposition 5.2(i), and part (iv) is Corollary 5.6. Part (i) is immediate
by Corollary 5.6 for simple closed curves and by part (iii) for the remaining case.
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6. Thurston norm and rigidity

In this section, we introduce and study Thurston’s norm, which is the
infinitesimal version of the metric dry,, and prove Theorems 1.4 and 1.5.

6.1. The norm. Thurston showed in [Thu86c] that the metric dyy, is Finsler,
that is, it is induced by a norm || * ||, on the tangent bundle. This norm is naturally
expressed as the infinitesimal analogue of the length ratio defining dry:

dxl,(v)
|[V||th = sup % =supdx(logl,)(v), veTxT(S). (23)

The following regularity of the norm will be needed in our study of isometries of
Thurston’s metric.

THEOREM 6.1. Let S be a surface of finite hyperbolic type. Then the Thurston
norm function TT(S) — R is locally Lipschitz.

The Thurston norm is defined as a supremum of a collection of 1-forms; we will
deduce its regularity from that of the forms. In preparation for stating a result to
that effect, we must introduce some terminology.

Let M be a smooth manifold, let 7 : V — M be a vector bundle over M, and
let € be a collection of sections of V. We say that € is locally uniformly bounded
if for each x € M, there exists a neighborhood U of x and a compact set K C V
such that for each y € U and e € &, we have e(y) € K. We say that € is locally
uniformly Lipschitz if for each x € M, there exists a neighborhood U of x, a local
trivialization ¢ : 7~ (U) = U x R*, and a constant M so that for each e € &, if
we use the local trivialization ¢ to regard the section e as a map U; — R”, then
this function is M-Lipschitz. Here we fix any background norm on R” in order to
define Lipschitz functions to that space; because all such norms are bi-Lipschitz
equivalent, the definition of locally uniformly Lipschitz does not depend on that
choice.

LEMMA 6.2. Let M be a smooth manifold and &€ a collection of 1-forms on M.
Suppose that &, considered as a collection of sections of T*M, is locally uniformly
bounded and locally uniformly Lipschitz. Then the function E : T M — R defined
by

E(v) :=supe(v)

ecl

is locally Lipschitz (assuming it is finite at one point).
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Note that ‘locally Lipschitz’ is a well-defined property of a function on a
smooth manifold or a section of a vector bundle; it is equivalent to saying that
the collection consisting of only that section (or function) is locally uniformly
Lipschitz.

Proof. Any linear function R” — R is Lipschitz; however, the Lipschitz constant
is proportional to its norm as an element of (R")*. Thus, for example, a family
of linear functions is uniformly Lipschitz only when the corresponding subset of
(R™)* is bounded.

For the same reason, if we take a family of 1-forms on M (sections of T*M)
and consider them as fiberwise-linear functions 7 M — R, then in order for these
Junctions on T M to be locally uniformly Lipschitz, we must require the sections
of T*M to be both locally uniformly Lipschitz and locally uniformly bounded.
Here, the compact set K in the definition of locally uniformly bounded ensures
that the pointwise norms of the sections in 7*M are bounded in a neighborhood
of any point.

Thus, the hypotheses on € are arranged exactly so that the family of functions
TM — R of which E is the supremum is locally uniformly Lipschitz.

The supremum of a family of locally uniformly Lipschitz functions is locally
Lipschitz or identically infinity. Since the function E is such a supremum, we find
that it is locally Lipschitz once it is finite at one point. O

Proof of Theorem 6.1. By (23), the Thurston norm is a supremum of the type
considered in Lemma 6.2. Therefore, it suffices to show that the set

dlogC := {dlog¥, : @ a simple curve}

of 1-forms on T(S) is locally uniformly bounded and locally uniformly Lipschitz.

To see this, first recall that length functions extend continuously from curves
to the space ML (S) of measured laminations (see, for example, [Thu86b],
[Bon86, Proposition 4.6]) and also that they extend from real-valued functions
on Teichmiiller space to holomorphic functions on the complex manifold QF(S)
of quasi-Fuchsian representations (see [Bon96, page 292]) in which T(S) is a
totally real submanifold. The resulting length function ¢, : QF(S) — C depends
continuously on A in the locally uniform topology of functions on QF(S) [Bon98,
pages 20-21].

For holomorphic functions, locally uniform convergence implies locally
uniform convergence of derivatives of any fixed order; so we find that the
derivatives of £; also depend continuously on A.

Restricting to T(S) C QF(S) and noting that the length of a nonzero measured
lamination does not vanish on T(S), we see that the 1-form dlog(¢;) on T(S) is
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real-analytic and that the map A — dlog(¢,) is continuous from ML (S) \ {0} to
the C! topology of 1-forms on any compact subset of T(S).

Since the 1-form dlog ¢; is invariant under scaling A, it is naturally a function
(still C! continuous) of [A] € PML(S) = (ML(S) \ {0})/R*. Because PML(S)
is compact, this implies that the collection of 1-forms

dlogPML := {dlog¥; : [A] € PML(S)}

is locally uniformly bounded in C'!. In particular, it is locally uniformly Lipschitz,
and since this collection contains dlog €, we are done. O

6.2. Shape of the unit sphere. Fix X € T(S) for the rest of this section. Let
T; TJ(S) denote the unit sphere of Thurston’s norm, that is,

Ty T(S) = {v € TxT(S) : [vllm = 1}.

Similarly, let TX@TT(S) denote the unit ball of Thurston’s norm.
The dual of the convex set TX@‘T(S) has a convenient description in terms of
measured laminations.

THEOREM 6.3 (Thurston [Thu86c]). The map PML(S) — TxT(S) given by
w +— dxlogt, embeds PNL(S) as the boundary of a convex neighborhood of
the origin. This convex neighborhood is the dual convex set of Tfl‘J'(S ).

Unlike this dual set, a typical point in the boundary of Tfl‘T(S) does not have a
canonical description in terms of a lamination on S. However, certain points in the
sphere arise from stretch paths. Specifically, let C£ denote the set of all complete
geodesic laminations on S. We have a map

vy: CL — T;‘J‘(S),

where vy (A) is the tangent vector at ¢ = 0 to the stretch path 7 — stretch(X, A, 1).
This map is ‘dual’ to the map dx log £, in the weak sense that dy log £, (vx (1)) = 1
if u is a measured lamination whose support is contained in A.

For later use, it will be important to note the continuity of the map vy, which
follows easily from the results of [Bon98].

LEMMA 6.4. The map vy is continuous with respect to the Hausdorff topology
on CL.

Proof. Let A, € CL be a sequence that converges in the Hausdorft topology. In
[Bon98, pages 20-21], Bonahon shows that the associated shearing embeddings
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Figure 11. At left, the unit sphere 74T (S; 1) of the Thurston norm on the tangent
space at the point X = 0.35 + 1.8 in the upper half-plane model of T(S; ). At
right, the unit sphere of the dual norm on the cotangent space.

53, - T(S) — RY converge in the C* topology to s, on any compact subset of
T(S). (More precisely, Bonahon shows locally uniform convergence of a sequence
of holomorphic embeddings that complexify the shearing coordinates. Locally
uniform convergence of holomorphic maps implies local C* convergence.) Since
stretch paths are rays from the origin in the shearing coordinates, this shows that
the tangent vectors vy (%,) to such stretch paths converge to vy (A). O]

Now we specialize in the punctured torus case. That is, for the rest of this
section, we assume S = S, ;. An example of the Thurston unit sphere (circle) and
its dual are shown in Figure 11. We will show that in this case, the shape of the
unit sphere determines the hyperbolic structure X up to the action of the mapping
class group.

In [Thu86c], Thurston studies the facets of the unit ball in 7T (S), showing, in
particular, that they correspond to simple curves on the surface. We will require a
slight extension of the result about these facets given by Thurston in Theorem 10.1
of that paper. While a corresponding result for any surface is suggested by
Thurston’s work, here we will use an ad hoc argument specific to the punctured
torus case.

Let RL C CL be the set of canonical completions of maximal chain-recurrent
geodesic laminations on S ;. Thus, for any simple curve @ on S ;, we have o™,
a” € RL, and any A € RL is either of this form or is a completion of a measured
lamination without closed leaves.
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THEOREM 6.5. Let L be a support line of the unit ball of ||*||tn. Then either

(i) L N TyT(Sy.1) is a line segment with endpoints vx(a™) and vx(a™) for a
simple curve o, in which case L = {v : (dylog,)(v) = 1} or

(i) L N TLT(S11) is a point and is equal to {vx(M)} for X the canonical
completion of a measured lamination A with no closed leaves.

Proof. First, note that Theorem 5.1 implies that vy (a™) # vx(a™); so case (i)
always yields a (nondegenerate) line segment.
By the duality between the embedding of PML(S) in T T(S;,1) and the norm

ball Txgl‘I(Su), the support lines of the latter are exactly the sets
L, ={u: (dxlogt,)(v) = 1)
for nonzero u € ML(S; ;). Thus, it suffices to characterize the set
L) =L, NTgT(S11)

for such p. Since L, is a support line of Tflﬂ'(Sl,l), we have that L, is a compact
convex subset of a line, that is either a point or a segment. If L), is a segment, then
at any interior point p of this segment, the line L, is the unique support line of
Txgl‘J'(SH) through p.

Suppose « is a simple curve. Then vy (a¢®) € L/ since @ C a*. By convexity
of L/, the closed segment with endpoints vy (a*) is also a subset of L'.

If L/, properly contained this segment, then at least one of vy(a™) or vy (a™)
would be an interior point of L', and, hence, there would be a neighborhood of
that point in 74 J(S; ;) in which L, is the unique support line.

To see that this is not the case, choose A € RL that does not contain « (such
as A = B* for B a simple curve that intersects o). Then the sequence of Dehn
twists A, = D’ (A) converges to a® in the Hausdorff topology as n — 400, and
the stump w, of A, has [u,] # [a] € PML(S,,) for all n. By Lemma 6.4, the
sequence vy (A,) converges (again as n — £00) to vy (a®). Also, vy(A,) lies on
the support line L, . Since PML(S; ;) embeds in T5T(S; 1) (Theorem 6.3), the
lines L, are all distinct from L,. This shows that L, is not the unique support
line in any neighborhood of vy («*) and that (i) holds in this case.

Now consider L), for 1 a measured lamination with no closed leaves. Let 1 €
RL be the canonical completion of 1. Then vy (1) € L),. To complete the proof,
we show L, = {vx ()} so that these support lines give case (ii).

Suppose for contradiction that L), contains a nontrivial segment. Then L, is the
unique support line of 74T (S, ;) in the interior of that segment, which has vy (/)
in its closure.
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We can approximate /i in the Hausdorff topology by completions «;" of simple
curves «, and can furthermore do so with [«,] € PML(S) converging to [u] €
PML(S) from either side (recalling that PML(S) ~ S! so that removing [1]
separates a small neighborhood in PMAL(S) into two sides). Thus, the directions
of the support lines L+ can be taken to converge to that of L, from a given side.
As in the previous case, Lemma 6.4 shows that vy (") converges to vy (ft), and
since vy(e) lies on L,,, this convergence can be taken to be from either side
of vx(ft). Since the support lines L,, are distinct from L, this shows that the
support line is not unique in any interval whose closure contains vy (1), which is
the desired contradiction. O

Having established that the maximal line segments in T4J (S ;) are exactly
those with endpoints vy (a®) for a a simple curve, we now study the geometry of
these segments. From now on, we refer to these simply as facets. Let | F (X, o)|
denote the length of the facet corresponding to a curve o with respect to |* ||y,
that is

|F(X, @) = [lox(@™) — vx (@)l

To estimate this length, we first need the following lemma.

LEMMA 6.6. Let EQ, (X, t) be the earthquake path along o with EQ, (X, 0) = X.
Let EQ, = (d/dt) EQ,(t)|;—. Then we have

IEQq llmnZx £o(X).

Proof. In fact, this is true for arbitrary measured laminations, for the Teichmiiller
space of any surface S, and for any norm on 7xJ(S). It is essentially just a
rephrasing of [Thu86¢, Theorem 5.2] and the subsequent discussion.

The map A — EQA is a homeomorphism ML (S) — TxT(S) (compare [Gar9s,
Theorem 5.1]), and, in particular, the tangent vector to the earthquake path of a
nonzero lamination is always nonzero. The function A +— EQA /£, (X) is invariant
under scaling of A and hence gives a well-defined continuous map PML(S) —
TxT \ {0}. By compactness of PML(S), the function ||EQ,\/€A(X)|| is bounded
above and below by positive constants, which is equivalent to the claim of the
lemma. (|

PROPOSITION 6.7. For every curve o, we have
|F(X, )| &y £a(X)? e,

Proof. Let X;" and X, be as in Section 5.1. These are paths with X; = X, = X
and with tangent vectors vy (1) and vy (o ™), respectively, at # = 0. Note that the
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length of « is the same in X" and X, ; hence,
X =EQ,(X;, A®), (24)
where as before EQ,, is the earthquake map along o and A is the function

£, (X "oy (X
(2)—4logcothe 2( ).

A1) = 1(X) — 7,(X;) = 4€' log coth

Note that A(0) = 0, and define A= (d/dt) A(t)|,=o- Differentiating (24) at t = 0,
we find

v+l —(D,EQ) -
dt t o - 1 «/(X,0) dt t

) + (D, EQ)x0(4).  (25)

=0

Here, D, and D, denote the derivatives of EQ, with respect to its first and second
arguments, respectively. Now, as observed above, the left-hand side of (25) is
vy (a™). Also, since EQ,(Y,0) = Y for all Y, we have that (D, EQ,)x.o) is the
identity map, and the first term on the right-hand side of (25) becomes vy (™).
Recalling that EQa = (d/dt)EQ, (X, t)|;—9, the second term on the right-hand
side of (25) is equal to A EQa.
Thus, we have )
vx(a) = vy(a) + AEQ,

and, hence,
|F(X, )| = lvx(@™) — vx(@ ) llm = |A] [EQ, [l (26)
Using the formula for A(¢) given above, we compute

£a(X)
2

A = 4log coth + 4£,(X) csch(£, (X)) > 0.

For large values of x, we have

2x

log coth(x) ~ 2e~ and csch(x) ~ 2e™".

Hence, for large values of ¢, (X), we have
|Al = A ~ 8e X 44, (X)e ™M £, (X)e X,

and by Lemma 6.6, )
IEQq lImh Zx £a(X).

Substituting these estimates for A and ||E'Q0t||ﬂ1 into (26) gives the proposition.
O
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Figure 12. The train track structure of a neighborhood of o (shown in a collar
about o).

THEOREM 6.8. Let a and 8 be curves withi(a, B) = 1. Let B, = D.(B). Then

lim HoglF(X. Bl
m —--—--
n

n—o00

= €,(X).

Proof. For large values of n,
Lg, (X)=nly(X).
The theorem now follows from Proposition 6.7. O

Using the results above, we can now show that the shape of the unit sphere in
TyT(S;1) determines X up to the action of the mapping class group.

Proof of Theorem 1.4. Within the convex curve Ty T(S) 1), let U, denote an open
arc disjoint from F (X, a) which has vy (o) as one endpoint. We use ‘interval
notation’ to refer to open arcs within Uy, where (x, y) refers to the open arc in Uj
with endpoints x, y. Thus, for example, Uy itself is (vx(a™), y) for some y.

Let S(Uy) denote the set of curves y such that F (X, y) C U,. Thus, S(Uy)
corresponds to the rational points of an interval in PML(S; ;) with « as one of its
endpoints. Any sequence of simple closed geodesics in this interval converging to
o in PML(S; 1) also converges in the Hausdorff topology, to o .

Thus, for any € > 0, by choosing U, small enough, we can assume that all
of the curves y € 8(U,) have geodesic representative in X that is contained in
an e-neighborhood of the geodesic lamination o . This neighborhood has the
structure of a thickened train track t with three branches (as shown in Figure 12):
along «, there is a ‘thick’ branch and a ‘thin’ branch, and there is a third branch «
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which connects one side of « to the other. Such a curve y is therefore determined
by a pair of coprime nonnegative integers (p, q), where p is the weight of the
thin branch along « and ¢q is the weight of k. (By the switch relations, these two
weights determine the weight of the thick branch to be p + ¢). We call (p, g) the
coordinates of y. In terms of these coordinates, g is the geometric intersection
number of the curve with «.

Let £, denote the length of the branch «, which we define to be the minimum
length of a path in the rectangle joining its short sides, and let €y;ck, £imin denote the
lengths of the branches along «. Note that £, increases without bound as € — 0;
so we assume from now on that £; is much larger than £,(X). Also, since the
union of the thick and thin branches gives a small neighborhood of «, we have
Linick + Linin = £o(X) + O(€).

The point of this train track representation for curve in 8(Uy) is that it gives a
simple estimate for hyperbolic length. Specifically, the simple curve carried by t
with coordinates (p, ¢) breaks into p arcs in k, g arcs in the thin branch and p+g¢
arcs in the thick branch. Each arc has length equal to that of its branch, up to an
error proportional to €. Thus, the overall length is

L(p,q) = q i+ pLlpin+ (P +q) lnieck + O(p + g)€)
= g + Lpick) + p Cnin + Linic) + O((p + q)€)
= ql; + Lpick) + p Lo (X) + O((p + q)e),

where the factor of € accounts for the difference between the length of the branch
and the length of a segment of y contained in the branch.

The quantity p/q (the slope of the curve, for a suitable homology basis) is
an affine coordinate for a neighborhood of o in PML(S;;) ~ RP! in which «
corresponds to 1/0; thus, S(Uy) corresponds to curves with coordinates satisfying
p/q > m for some constant m € R. By the length estimate above, after shrinking
U, so that € is much smaller than ¢,(X) and ¢;, we find that the minimum
length of a curve in 8(Uy) is attained for ¢ = 1 and the smallest integer p
with that p > m. Denote these length minimizing coordinates by (pog, 1) and
the corresponding curve by yy. Note that any other curve in S(U,) has length
exceeding this minimum by at least a fixed positive multiple of £, (X).

By Proposition 6.7, the length of a facet corresponding to a curve whose
hyperbolic length is bounded below is exponentially decreasing in length of
the curve, up to a fixed multiplicative error. (Here, assuming a lower bound
on the length allows us to ignore the factor ¢,(X)? in that proposition as
it is overwhelmed by the exponential decay.) Therefore, long curves with a
sufficiently large difference in hyperbolic length have associated facets whose
lengths compare in the opposite way. By taking £,(X) to be large enough and
U, small enough so that all curves in $(Uy) are long, the hyperbolic length gap
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between the minimizer y, and any other curve in 8(U,) noted above implies that
F (X, yp) is the longest facet in Uj,.

Now, we can shrink U, to exclude F (X, yy), find the new longest facet, and
iterate this construction. That is, we apply the argument above to the arc (vy(a™),
vx (¥, ) and find hyperbolic length minimizer and facet length maximizer y,.
Taking vx (y, ) as the endpoint means that the coordinates (p, g) of curves whose
facets lie in this arc now satisfy p/q > po, so arguing exactly as above, we
find that the coordinates of y; are (py + 1, 1). Continuing inductively, we obtain
a sequence y; of curves, each corresponding to the longest facet in (vy(a™),
vx (y,~,)) and having coordinates (po + i, 1). We call this the sequence of longest
facets.

Recall that the Dehn twist about « acts in these coordinates by adding 1 to the
slope of the curve. Thus, in more invariant terms, we have shown that the sequence
of longest facets to one side of ™t corresponds to the sequence of all sufficiently
large positive powers of the Dehn twist about « applied to a curve intersecting o
once. This is the sort of collection considered in Theorem 6.8, which shows that
the hyperbolic length of « is determined by the asymptotic behavior of these facet
lengths.

An argument very similar to the one above shows that the sequence of longest
facets in a small neighborhood of vy (a™) corresponds to large negative powers
of the Dehn twist about « applied to a curve intersecting « once, and that through
the asymptotics of their lengths, the geometry of the norm sphere near vy (o™)
also determines the length of «. As before, this applies to any simple curve o
that is sufficiently long on X. Collectively, we refer to the arguments above as the
longest facet construction.

Now for X, Y € T(S) ), assume that there is a norm-preserving linear map

L: TxT(S1.1) = TyT(S1)).

Since L is linear, it maps the facets in Ty T(S; ;) bijectively to those in Ty T(Sy ;).
By Theorem 6.5, this induces some permutation on the simple curves that label
the facets: for a simple curve y, we denote by y* the simple curve such that

L(F(X,y) =F({X,y").

Choose a simple curve « so that £x () and £y (a*) are large enough so that the
longest facet construction applies to both of them. Then we obtain a sequence of
curves y; = D(’;,B which satisfy i(y;, ®) = 1 and whose facets F (X, y;) approach
one endpoint of F (X, o) with each being longest in some neighborhood of that
endpoint. As L is an isometry, the image facets F' (X, y;*) approach some endpoint
of F(X, o*) and are locally longest in the same sense. Thus, the curves y;* are also
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obtained by applying powers (positive or negative) of a Dehn twist about o* to a
fixed curve and they satisfy i(y;*, «*) = 1. Since |F(X, ;)| = |F (Y, y")|, we
conclude £y () = £x(a™).

Now choose an integer N so that £x (yy) and £y (y,) are large enough to apply
the longest facet construction (to yy and yy, respectively). Proceeding as in the
previous paragraph, we find £x(yny) = £y (¥y).

At this point, we have two pairs of simple curves intersecting once, (¢, yn)
and (a*, yy), and the lengths of the first pair on X are equal to those of the
second pair on Y. This implies that X and Y are in the same orbit of the extended
mapping class group: take a mapping class ¢ with ¢ () = o* and ¢ (yn) = vy.
Then o has the same length on X and ¢~!(Y); so these points differ only in
the Fenchel-Nielsen twist parameter (relative to pants decomposition «). Since
the length of y is the same as well, either the twist parameters are equal and
X = ¢~ '(Y) or the twist parameters differ by a sign and X = r(¢~'(Y)) where
r is the orientation-reversing mapping class which preserves both « and yy while
reversing orientation of yy. O

6.3. Local and global isometries. Before proceeding with the proof of
Theorem 1.5, we recall some standard properties of the extended mapping
class group action on T(S; ;). (For further discussion, see, for example, [Kee74,
Section 2] [FM12, Section 2.2.4].)

The mapping class group Mod(S; ;) = Homeo™ (S, ;)/Homeoy(S; ;) of the
punctured torus is isomorphic to SL(2, Z), and identifying T(S; ;) with the upper
half-plane H in the usual way, the action of Mod(S; ;) becomes the action of
SL(2,Z) by linear fractional transformations. Similarly, the extended mapping
class group Modi(Su) = Homeo(S},;)/Homeoy(S;,;) can be identified with
GL(2, Z), where an element (f‘_ 3) of determinant —1 acts on H by the conjugate-
linear map z +— (az + b)/(cz + d). Neither of these groups acts effectively on H
since in each case the elements 37 act trivially; thus, when considering the action
on J(S},1), it is convenient to work with the quotients PSL(2, Z) and PGL(2, Z)
which act effectively.

The properly discontinuous action of PGL(2, Z) on H preserves the standard
(2, 3, 0o) triangle tiling of H (see Figure 13), with the cells of each dimension in
this tiling corresponding to different types of isotropy; specifically, we have the
following:

e A point in the interior of a triangle has trivial stabilizer in PGL(2, Z).

e A point in the interior of an edge has stabilizer in PGL(2, Z) isomorphic to Z /2
and generated by a reflection, that is, an element conjugate to either z — —Z or
Z —Z+ L
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Figure 13. The standard (2, 3, co) triangle tiling of the upper half-plane. The
marked point is the imaginary unit i.

While vertices of the tiling have larger stabilizers, the only property of such points
we will use is that they form a discrete set.

Proof of Theorem 1.5. Let U be an open connected set in T(S; ;) and let f : (U,
dr) — (T(S1.1), dm) be an isometric embedding.

By Theorem 6.1, the Thurston norm is locally Lipschitz (locally Cl(z,cl ). By
[MT17, Theorem A], an isometry of such Finsler spaces is C.! and its differential

loc
is norm-preserving. Therefore, for each X € U, the differential

dx f: TxT(Si1) = Tf(X)T(Sl,l)

is an isometry for the Thurston norm, and by Theorem 1.4, there exists @ (X) €
PGL(2, Z) such that
fX)=o(X) - X. 27

This property may not determine @ (X) € PGL(2, Z) uniquely; however, choosing
one such element for each point of U, we obtain amap @ : U — PGL(2, Z).

Let Xy € U be a point with trivial stabilizer in PGL(2, Z). Using proper
discontinuity of the PGL(2, Z) action, we can select neighborhoods V of X, and
W of f(X,) so that

{¢p €PGLQ2,Z):¢-VNW #£ @} = {&(Xo)).

However, by continuity of f and (27), we find that the @ (X) is an element of this
set for all X near X,. That is, the map @ is locally constant at X,. More generally,
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this shows that @ is constant on any connected set consisting of points with trivial
stabilizer.

Now we consider the behavior of @ and f in a small neighborhood V of a point
X, with Z /2 stabilizer—that is, a point in the interior of an edge e of the (2, 3, c0)
triangle tiling. Taking V to be a sufficiently small disk, we can assume V \ e has
two components, which we label by V., and that each component consists of
points with trivial stabilizer (equivalently, V does not contain any vertices of the
tiling). By the discussion above, @ is constant on V, and on V_, and we denote the
respective values by ¢, and ¢_. By continuity of f, the element qb;lqb, € PGL(2,
Z) fixes e N V pointwise and is therefore either the identity or a reflection. In the
latter case, f would map both sides of e (locally, near X) to the same side of the
edge f(e), and, hence, it would not be an immersion at X . This is a contradiction,
for we have seen that the differential of f is an isomorphism at each point. We
conclude ¢, = ¢_, and f agrees with this extended mapping class on V \ e. By
continuity of f, the same equality extends over the edge e.

Let U" C U denote the subset of points with trivial or Z/2 stabilizer. We
have now shown that for each X € U’, there exists a neighborhood of X on
which f is equal to an element of PGL(2,Z). An element of PGL(2,Z) is
uniquely determined by its action on any open set; so this local representation of
f by a mapping class is uniquely determined and locally constant. Thus, on any
connected component of U’, we have that f is equal to a mapping class. However,
U’ is connected since U is connected and open and the set of points in T(S; ;)
with larger stabilizer (that is, the vertex set of the tiling) is discrete.

We have therefore shown f = ¢ on U’, for some ¢ € PGL(2, Z). Finally,
both f and ¢ are continuous, and U’ is dense in U; equality extends to U, as
required. O
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