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Abstract

We study the geometry of the Thurston metric on the Teichmüller space of hyperbolic structures on

a surface S. Some of our results on the coarse geometry of this metric apply to arbitrary surfaces

S of finite type; however, we focus particular attention on the case where the surface is a once-

punctured torus. In that case, our results provide a detailed picture of the infinitesimal, local, and

global behavior of the geodesics of the Thurston metric, as well as an analogue of Royden’s theorem.

2010 Mathematics Subject Classification: 57M50 (primary); 30F60 (secondary)

1. Introduction

Let S be a surface of finite type, i.e. the complement of a finite set in a compact

surface. Let T(S) denote the Teichmüller space of finite area hyperbolic structures

on S.

Thurston’s metric. Recall that Thurston’s metric dTh : T(S) × T(S) → R is

defined by
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Figure 0. In-envelopes in Teichmüller space; see Remark 5.5.

dTh(X, Y ) = sup
α

log

(
ℓα(Y )

ℓα(X)

)
, (1)

where the supremum is over all simple closed curves α in S and ℓα(X) denotes

the hyperbolic length of the curve α in X . This function defines a forward-

complete asymmetric Finsler metric introduced by Thurston in [Thu86c]. In the

same paper, Thurston introduced two key tools for understanding this metric

which will be essential in what follows: stretch paths and maximally stretched

laminations.

The maximally stretched lamination Λ(X, Y ) is a chain-recurrent geodesic

lamination which is defined for any pair of distinct points X, Y ∈ T(S).

Typically, Λ(X, Y ) is just a simple curve, in which case that curve uniquely

realizes the supremum defining dTh. In general, Λ(X, Y ) can be a more

complicated lamination that is constructed from limits of sequences of curves

that asymptotically realize the supremum. The precise definition is given

in Section 2.6 (or [Thu86c, Section 8], where the lamination is denoted as

µ(X, Y )).

Stretch paths are geodesics constructed from certain decompositions of the

surface into ideal triangles. More precisely, given a hyperbolic structure X ∈ T(S)

and a complete geodesic lamination λ, one obtains a parameterized stretch path,
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stretch(X, λ, �) : R → T(S), with stretch(X, λ, 0) = X and which satisfies

dTh(stretch(X, λ, s), stretch(X, λ, t)) = t − s (2)

for all s, t ∈ R with s < t .

Thurston showed that there also exist geodesics in T(S) that are concatenations

of segments of stretch paths along different geodesic laminations. The abundance

of such ‘chains’ of stretch paths is sufficient to show that dTh is a geodesic metric

space and also that it is not uniquely geodesic—some pairs of points are joined

by more than one geodesic segment.

Envelopes. The first problem we consider is to quantify the failure of

uniqueness for geodesic segments with given start and end points. For this

purpose, we consider the set E(X, Y ) ⊂ T(S) that is the union of all geodesics

from X to Y . We call this the envelope (from X to Y ).

Based on Thurston’s construction of geodesics from chains of stretch paths, it

is natural to expect that the envelope would admit a description in terms of the

maximally stretched lamination Λ(X, Y ) and its completions. We focus on the

punctured torus case because, here, the set of completions is always finite.

In fact, a chain-recurrent lamination on S1,1 (such asΛ(X, Y ), for any X 6= Y ∈
T(S1,1)) is any one of the following:

(a) a simple closed curve;

(b) the union of a simple closed curve and a spiral geodesic; or

(c) a measured lamination with no closed leaves.

These possibilities are depicted in Figure 1. See [BZ04] for more details.

We show that the geodesic from X to Y is unique when Λ(X, Y ) is of type (b)

or (c), and when it has type (a), the envelope has a simple, explicit description.

More precisely, we have the following.

THEOREM 1.1 (Structure of envelopes for the punctured torus).

(i) For any X, Y ∈ T(S1,1), the envelope E(X, Y ) is a compact set.

(ii) E(X, Y ) varies continuously in the Hausdorff topology as a function of X

and Y .

(iii) If Λ(X, Y ) is not a simple closed curve, then E(X, Y ) is a segment on a

stretch path (which is then the unique geodesic from X to Y ).

(iv) If Λ(X, Y ) = α is a simple closed curve, then E(X, Y ) is a geodesic

quadrilateral with X and Y as opposite vertices. Each edge of the
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Figure 1. The three types of chain-recurrent laminations on S1,1.

quadrilateral is a stretch path along a completion of a chain-recurrent

geodesic lamination properly containing α.

In the course of proving the theorem above, we write explicit equations for the

edges of the quadrilateral-type envelopes in terms of Fenchel–Nielsen coordinates

(see (21)–(22)). Also note that in part (iv) of the theorem, a chain-recurrent

lamination properly containing α has multiple completions, but they all give the

same stretch path (see Corollary 2.3).

This theorem also highlights a distinction between two cases in which the

dTh-geodesic from X to Y is unique—the cases (b) and (c) discussed above. In

case (b), the geodesic to Y is unique, but some of its initial segment can be chained

with another stretch path and remain geodesic: the boundary of a quadrilateral-

type envelope from X with maximally stretched lamination α furnishes an

example of this. In case (c), however, a geodesic that starts along the stretch path

from X to Y is entirely contained in that stretch path (see Proposition 5.2).

Figure 0 can also be seen as an illustration of this theorem: it shows regions

in T(S1,1) bounded by pairs of stretch rays from rational points on the circle at

infinity to the hexagonal punctured torus. Such in-envelopes are limiting cases

of the envelopes of type (iv) where X is replaced by a lamination. These are

defined precisely and studied in Section 5. Figure 0 is discussed in more detail in

Remark 5.5.
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Short curves. Returning to the case of an arbitrary surface S of finite type, in

Section 3, we establish results on the coarse geometry of Thurston metric geodesic

segments. This study is similar in spirit to the one of Teichmüller geodesics in

[Raf05], in that we seek to determine whether or not a simple curve α becomes

short along a geodesic from X to Y . As in that case, a key quantity to consider is

the amount of twisting along α from X to Y , denoted as dα(X, Y ) and defined in

Section 2.8.

For curves that interact with the maximally stretched lamination Λ(X, Y ),

meaning they belong to the lamination or intersect it essentially, we show that

becoming short on a geodesic with endpoints in the thick part of T(S) is equivalent

to the presence of large twisting.

THEOREM 1.2. There exists a constant ǫ0 such that the following statement holds.

Let X, Y lie in the ǫ0-thick part of T(S) and let α be a simple curve on S that

interacts with Λ(X, Y ). Then the minimum length ℓα of α along any Thurston

metric geodesic from X to Y satisfies

1

ℓα
Log

1

ℓα

∗≍
+

dα(X, Y )

with implicit constants that depend only on ǫ0 and where Log(x) = max(1,

log(x)).

Here ∗≍
+

means equality up to an additive and multiplicative constant; see

Section 2.1. The theorem above and additional results concerning length functions

along geodesic segments are combined in Theorem 3.1.

In Section 4, we specialize once again in the Teichmüller space of the punctured

torus in order to say more about the coarse geometry of Thurston geodesics. Here

every simple curve interacts with every lamination; so Theorem 1.2 is a complete

characterization of short curves in this case. Furthermore, in this case, we can

determine the order in which the curves become short.

To state the result, we recall that the pair of points X, Y ∈ T(S1,1) determine a

geodesic in the dual tree of the Farey tesselation of H2 ≃ T(S1,1). Furthermore,

this path distinguishes an ordered sequence of simple curves—the pivots—and

each pivot has an associated coefficient. These notions are discussed further in

Section 4.

We show that pivots for X, Y and short curves on a dTh-geodesic from X to Y

coarsely coincide in an order-preserving way, once again assuming that X and Y

are thick.

THEOREM 1.3. Let X, Y ∈ T(S1,1) lie in the thick part, and let G : I → T(S1,1)

be a geodesic of dTh from X to Y . Let ℓα denote the minimum of ℓα(G(t)) for t ∈ I .
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We have the following:

(i) If α is short somewhere in G, then α is a pivot.

(ii) If α is a pivot with large coefficient, then α becomes short somewhere in G.

(iii) If both α and β become short in G, then they do so in disjoint intervals

whose ordering in I agrees with that of α, β in Pivot(X, Y ).

(iv) There is an a priori upper bound on ℓα for α ∈ Pivot(X, Y ).

In this statement, various constants have been suppressed (such as those required

to make short and large precise). We show that all of the constants can be taken

to be independent of X and Y , and the full statement with these constants is given

as Theorem 4.3.

We have already seen that there may be many Thurston geodesics from X to Y ,

and due to the asymmetry of the metric, reversing parameterization of a geodesic

from X to Y does not give a geodesic from Y to X . On the other hand, the notion

of a pivot is symmetric in X and Y . Therefore, by comparing the pivots to the

short curves of an arbitrary Thurston geodesic, Theorem 4.3 establishes a kind of

symmetry and uniqueness for the combinatorics of Thurston geodesic segments,

despite the failure of symmetry or uniqueness for the geodesics themselves.

Rigidity. A Finsler metric on T(S) gives each tangent space TXT(S) the

structure of a normed vector space. Royden showed that for the Teichmüller

metric, this normed vector space uniquely determines X up to the action of the

mapping class group [Roy71]. That is, the tangent spaces are isometric (by a

linear map) if and only if the hyperbolic surfaces are isometric.

We establish the corresponding result for the Thurston’s metric on T(S1,1) and

its corresponding norm ‖�‖Th (the Thurston norm) on the tangent bundle.

THEOREM 1.4. Let X, Y ∈ T(S1,1). Then there exists an isometry of normed

vector spaces

(TXT(S1,1), ‖�‖Th) → (TYT(S1,1), ‖�‖Th)

if and only if X and Y are in the same orbit of the extended mapping class group.

The idea of the proof is to recognize lengths and intersection numbers of curves on

X from features of the unit sphere in TXT(S). Analogous estimates for the shape

of the cone of lengthening deformations of a hyperbolic one-holed torus were

established in [Gué15]. In fact, Theorem 1.4 was known to Guéritaud and can be

derived from those estimates [Gué16]. We present a self-contained argument that

does not use Guéritaud’s results directly, though [Gué15, Section 5.1] provided

inspiration for our approach to the infinitesimal rigidity statement.
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A local rigidity theorem can be deduced from the infinitesimal one, much as

Royden did in [Roy71].

THEOREM 1.5. Let U be a connected open set in T(S1,1), considered as

a metric space with the restriction of dTh. Then any isometric embedding

(U, dTh) → (T(S1,1), dTh) is the restriction to U of an element of the extended

mapping class group.

Intuitively, this says that the quotient of T(S1,1) by the mapping class group

is ‘totally unsymmetric’; each ball fits into the space isometrically in only one

place. Of course, applying Theorem 1.5 to U = T(S1,1), we have the immediate

corollary.

COROLLARY 1.6. Every isometry of (T(S1,1), dTh) is induced by an element of

the extended mapping class group; hence, the isometry group is isomorphic to

PGL(2,Z).

Here we have used the usual identification of the mapping class group of S1,1 with

GL(2,Z), whose action on T(S1,1) factors through the quotient PGL(2,Z).

The analogue of Corollary 1.6 for Thurston’s metric on higher-dimensional

Teichmüller spaces was established by Walsh in [Wal14] using a characterization

of the horofunction compactification of T(S). Walsh’s argument does not apply

to the punctured torus, however, because it relies on Ivanov’s characterization (in

[Iva97]) of the automorphism group of the curve complex (a result which does

not hold for the punctured torus).

Passing from the infinitesimal (that is norm) rigidity to local or global

statements requires some preliminary study of the smoothness of the Thurston

norm. In Section 6.1, we show that the norm is locally Lipschitz continuous on

TT(S) for any finite type hyperbolic surface S. By a recent result of Matveev and

Troyanov [MT17], it follows that any dTh-preserving map is differentiable with

norm-preserving derivative. This enables the key step in the proof of Theorem 1.5,

where Theorem 1.4 is applied to the derivative of the isometry.

Additional notes and references. In addition to Thurston’s paper [Thu86c],

an exposition of Thurston’s metric and a survey of its properties can be found in

[PT07]. Prior work on the coarse geometry of the Thurston metric on Teichmüller

space and its geodesics can be found in [CR07, LRT12, LRT15]. The notion of

the maximally stretched lamination for a pair of hyperbolic surfaces has been

generalized to higher-dimensional hyperbolic manifolds [Kas09, GK17] and to

vector fields on H2 equivariant for convex cocompact subgroups of PSL(2,R)

[DGK16].
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2. Background

2.1. Approximate comparisons. We use the notation a ∗≍ b to mean that

quantities a and b are equal up to a uniform multiplicative error, that is, that

there exists a positive constant K such that K −1a 6 b 6 K a. Thus, for example,

a ∗≍1 means that a is bounded above and below by positive constants. Similarly,

the notation a ∗≺b means that a 6 K b for some K .

The analogous relations up to additive error are a
+≍b, meaning that there exists

C such that a − C 6 b 6 a + C , and a
+≺b which means a 6 b + C for some C .

Hence, a
+≍0 means that a is bounded above and below by constants.

For equality up to both multiplicative and additive error, we write a ∗≍
+

b. That is,

a ∗≍
+

b means that there exist constants K ,C such that K −1a − C 6 b 6 K a + C .

Unless otherwise specified, the implicit constants depend only on the

topological type of the surface S. When the constants depend on the Riemann

surface X , we use the notation ∗≍X and
+≍X instead.

For functions f, g of a real variable x , we write f ∼ g to mean that

limx→∞ ( f (x)/g(x)) = 1.

2.2. Surfaces, curves, and laminations. Throughout this paper, S denotes an

oriented surface of finite type, that is, the complement of a finite subset P of the

interior of S̄, a compact oriented surface with boundary. Elements of P are the

punctures.

A multicurve is a closed 1-manifold on S defined up to homotopy such that no

connected component is homotopic to a point, a puncture, or boundary of S. A

connected multicurve will just be called a curve. Note that with our definition,

there are no curves on the two- or three-punctured sphere; so we will ignore

those cases henceforth. The geometric intersection number i(α, β) between two

curves is the minimal number of intersections between representatives of α

and β. If we fix a hyperbolic metric on S, then every (multi)curve has a unique

geodesic representative, and i(α, β) is just the number of intersections between

the geodesic representative of α and the geodesic representative of β. For any

curve α on S, we denote by Dα the left Dehn twist about α.

Fix a complete hyperbolic metric of finite area on S so that the boundary

components (if any) are geodesic. A geodesic lamination λ on S is a closed

subset which is a disjoint union of simple complete geodesics. These geodesics

are called the leaves of λ. Two different hyperbolic metrics on S determine

canonically isomorphic spaces of geodesic laminations, so the space of geodesic

laminations GL(S) depends only on the topology of S. This is a compact metric

space equipped with the metric of Hausdorff distance on closed sets. The closure

of the set of multicurves in GL(S) is the set of chain-recurrent laminations.
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We will call a geodesic lamination maximal chain-recurrent if it is chain-

recurrent and not properly contained in another chain-recurrent lamination. A

geodesic lamination is complete if its complementary regions in S are ideal

triangles. Note that all chain-recurrent laminations are necessarily compactly

supported. Thus, when S has punctures, a chain-recurrent lamination can never be

complete. For a given geodesic lamination λ, we refer to any complete lamination

containing λ as a completion (of λ).

In the case of the punctured torus S1,1, the maximal chain-recurrent laminations

are types (b) and (c) in Figure 1. Case (b), that is, a curve and a spiraling geodesic,

will be especially important in the sequel, and so we introduce the following

notation for these laminations: given a curve α, let α+
0 = α∪δ where the geodesic

δ spirals toward α in each direction, turning to the left as it does so. Similarly, we

define α−
0 to be the union of α and a spiraling leaf that turns right. (Adding a leaf

that turns opposite ways on its two ends yields a non-chain-recurrent lamination.)

The motivation for this sign convention for α±
0 is that it is compatible with a

common way to describe simple curves on S1,1 in terms of slope while regarding α

as vertical. More precisely, consider an oriented curve Eη with i(η, α) = 1, and let

Eα denote the orientation of α so that the homology classes [Eη], [Eα] give a positive

ordered basis of H1(S1,1) with respect to the orientation of S1,1. If a simple curve

γ 6= α has homology class q[Eη] + p[Eα] for some orientation, then p/q ∈ Q is

the slope of γ (relative to that basis). We consider α itself to have slope 1/0 =
∞ ∈ QP1 and this exhibits a bijection between QP1 and the set of simple curves

on S1,1.

Now, a sequence of simple curves distinct from α whose slopes go to +∞ have

Hausdorff limit α+
0 , while a sequence with slopes going to −∞ has Hausdorff

limit α−
0 . Thus, α+

0 (respectively α−
0 ) is approximated by curves of large positive

(respectively negative) slope.

All of the maximal chain-recurrent laminations on S1,1 have a single

complementary region, which is a punctured bigon. Such a lamination, therefore,

has exactly three completions, corresponding to the three ways to add leaves

that cut the bigon into ideal triangles shown in Figure 2. (For more details on

classifying laminations on the punctured torus, we refer the reader to [BZ04].)

A convenient way to distinguish among the completions of a maximal chain-

recurrent lamination λ on the punctured torus is to use the hyperelliptic involution.

This is an involutive orientation-preserving isometry ι that preserves every simple

closed geodesic and, thus, every chain-recurrent lamination. The action of ι on

the complementary bigon of a maximal chain-recurrent lamination exchanges the

two spikes, and, therefore, the only completion which is ι-invariant is the one with

leaves going to both spikes, that is, type (i) in Figure 2. We call this the canonical

completion of λ.
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Figure 2. The three ways to complete a maximal chain-recurrent lamination on

S1,1 by adding two leaves in its complementary bigon.

Figure 3. Leaves of α+ (the canonical completion of α+
0 ) shown in the torus cut

open along α.

We denote the canonical completion of α+
0 by α+ and that of α−

0 by α−. Thus,

α± = α±
0 ∪ w ∪ w′ where w and w′ are leaves emanating from the puncture and

spiraling into α. For example, α+ is shown in Figure 3.
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The stump of a geodesic lamination (in the terminology of [Thé07]) is its

maximal compactly supported sublamination that admits a transverse measure

of full support.

2.3. Teichmüller space. Let T(S) be the Teichmüller space of complete finite-

area hyperbolic structures on S. We will only consider T(S) in cases where S has

no boundary. The space T(S) is homeomorphic to R6g−6+2n if S has genus g and n

punctures. Given X ∈ T(S) and a curve α on S, we denote by ℓα(X) the length of

the geodesic representative of α on X . For brevity, we refer to ℓα(X) as the length

of α on X .

For any ǫ > 0, we will denote by Tǫ(S) the set of points in T(S) on which every

curve has length at least ǫ; this is the ǫ-thick part of Teichmüller space.

A positive real number ǫ is called a (two-dimensional) Margulis number if

two distinct curves on a hyperbolic surface of length less than ǫ are necessarily

disjoint. Fix a Margulis number ǫM < 1 such that for any curve α of length less

than ǫM , the shortest curve β that intersects α has i(α, β) 6 2. It follows from the

collar lemma that any sufficiently small ǫM has this property.

2.4. Shearing of ideal triangles. Let H denote the upper half-plane model of

the hyperbolic plane, with ideal boundary ∂H = R ∪ {∞}. In this section, we will

define the shearing of two ideal triangles in H which share an ideal vertex. This is

a specific case of the more general shearing defined in [Bon96, Section 2].

Two distinct points x, y ∈ ∂H determine a geodesic [x, y] and three distinct

points x, y, z ∈ ∂H determine an ideal triangle ∆(x, y, z). Recall that an ideal

triangle in H has a unique inscribed circle which is tangent to all three sides of

the triangle. Each tangency point is called the midpoint of the side.

Let γ = [γ +, γ −] be a geodesic in H. Suppose two ideal triangles ∆ and ∆′

lie on different sides of γ . We allow the possibility that γ is an edge of ∆ or ∆′

(or both). Suppose ∆ is asymptotic to γ + and the ∆′ is asymptotic to γ −. Let m

be the midpoint along the side of ∆ closest to γ . The pair γ + and m determine a

horocycle that intersects γ at a point p. Let m ′ and p′ be defined similarly using

∆′ and γ −. We say p′ is to the left of p (relative to ∆ and ∆′) if the path along

the horocycle from m to p and along γ from p and p′ turns left; p′ is to the right

of p otherwise. Note that p′ is to the left of p if and only if p is to the left of p′.

The shearing sγ (∆,∆
′) along γ relative to the two triangles is the signed distance

between p and p′, where the sign is positive if p′ is to the left of p and negative

otherwise. Note that this sign convention gives sγ (∆,∆
′) = sγ (∆

′,∆).

2.5. Shearing coordinates in Teichmüller space. Given any complete

geodesic lamination λ, there is an embedding sλ : T(S) → RN by the shearing
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coordinates relative to λ, where N = dimT(S). The image of this embedding is

an open convex cone. Details of the construction of this embedding can be found

in [Bon96] and [Thu86c, Section 9].

Using the shearing of ideal triangles discussed above, we will define the

shearing coordinates in the case where λ is the canonical completion of a maximal

chain-recurrent lamination on S1,1 with finitely many leaves. That is, we consider

λ = α+ or λ = α− for a simple curve α and describe the map sλ : T(S1,1) → R2.

We begin with an auxiliary map s0
λ : T(S1,1) → R4 which records a shearing

parameter for each leaf of λ, and then we identify the two-dimensional subspace

of R4 that contains the image in this specific situation.

Let l be a leaf of λ and fix a lift l̃ of l to X̃ = H. If l is a noncompact leaf, then

l bounds two ideal triangles in X , which admit lifts∆ and∆′ with common side l̃.

If l = α is the compact leaf, then we choose ∆ and ∆′ to be lifts of the two ideal

triangles complementary to λ that lie on different sides of l̃ and which are each

asymptotic to one of the ideal points of l̃. Now define sl(X) = s̃l(∆,∆
′), and let

the s0
λ : T(S1,1) → R4 be the map defined by

s0
λ(X) = (sδ(X), sα(X), sw(X), sw′(X)).

We claim that, in fact, sw(X) = sw′(X) = 0 and that sδ(X) = ∓ℓα(X) for λ = α±.

It will then follow that s0
λ takes values in a two-dimensional linear subspace of R4,

allowing us to equivalently consider the embedding sλ : T(S1,1) → R2 defined by

sλ(X) = (ℓα(X), sα(X)).

To establish the claim, cut the surface X open along α to obtain a pair of

pants which is further decomposed by w,w′, δ into a pair of ideal triangles. The

boundary lengths of this hyperbolic pair of pants are ℓα, ℓα, and 0. Gluing a pair

of ideal triangles along their edges but with their edge midpoints shifted by signed

distances a, b, c gives a pair of pants with boundary lengths |a+b|, |b+c|, |a+c|,
and with the signs of a + b, b + c, a + c determining the direction in which the

seams spiral toward those boundary components (this is discussed in more detail

in [Thu86a, Section 3.9]). Specifically, a positive sum corresponds to the seam

turning to the right while approaching the corresponding boundary geodesic, and

a negative sum corresponds to the seam turning to the right. Applying this to

our situation and recalling that for λ = α+ all spiraling leaves turn left when

approaching the boundary of the pair of pants, we obtain

sw(X)+ sδ(X) = sw′(X)+ sδ(X) = −ℓα

and

sw(X)+ sw′(X) = 0.
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This gives sw(X) = sw′(X) = 0 and sδ(X) = −ℓα(X). For the case λ = α−,

the equations are the same except that −ℓα is replaced by ℓα, and the solution

becomes sw(X) = sw′(X) = 0 and sδ(X) = ℓα.

Finally, we consider the effect of the various choices made in the construction

of sλ(X). The coordinate ℓα(X) is of course canonically associated with X and

independent of any choices. For sα(X), however, we had to choose a pair of

triangles ∆,∆′ on either side of the lift α̃. In this case, different choices differ

by finitely many moves in which one of the triangles is replaced by a neighbor

on the other side of a lift of w, w′, or δ. Each such move changes the value of

sα(X) by adding or subtracting one of the values sw(X), sw′(X), or sδ(X); this is

the additivity of the shearing cocycle established in [Bon96, Section 2]. By the

computation above, each of these moves actually adds 0 or ±ℓα(X). Hence, sα(X)

is uniquely determined up to addition of an integer multiple of ℓα(X).

2.6. The Thurston metric. For a pair of points X, Y ∈ T(S), in Section 1, we

defined the quantity

dTh(X, Y ) = sup
α

log
ℓα(Y )

ℓα(X)

where the supremum is taken over all simple curves. Another measure of the

difference of hyperbolic structures, in some ways dual to this length ratio, is

L(X, Y ) = inf
f

log L f ,

where L f is the Lipschitz constant and where the infimum is taken over Lipschitz

maps f : X → Y in the preferred homotopy class. Thurston showed the following.

THEOREM 2.1. For all X, Y ∈ T(S), we have dTh(X, Y ) = L(X, Y ), and this

function is an asymmetric metric, that is, it is positive unless X = Y and it obeys

the triangle inequality.

Denote by dTh(X, Y ) = max{dTh(X, Y ), dTh(Y, X)}. The topology of T(S) is

compatible with dTh, so by X i → X , we will mean dTh(X i , X) → 0. When we

refer to the Hausdorff distance between closed sets of T(S), we always mean the

one induced by the metric d̄Th on T(S).

Thurston showed that the infimum Lipschitz constant is realized by a

homeomorphism from X to Y . Any map which realizes the infimum is called

optimal.

Further, Thurston constructs a chain-recurrent lamination Λ(X, Y ) such that

there exists a edTh(X,Y )-Lipschitz map in the preferred homotopy class from a

neighborhood of Λ(X, Y ) in X to a neighborhood of the same lamination in Y ,
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multiplying arc length alongΛ(X, Y ) by a factor of edTh(X,Y ), and so thatΛ(X, Y )

is the largest chain-recurrent lamination with this property. We call Λ(X, Y )

the maximally stretched lamination (from X to Y ). The same lamination is also

characterized in terms of optimal maps: Λ(X, Y ) is the largest chain-recurrent

lamination such that every optimal map from X to Y multiplies arc length on

Λ(X, Y ) by a factor of edTh(X,Y ).

The length ratio for simple curves extends continuously to PML(S), which

is compact. Therefore, the length-ratio supremum is always realized by some

measured lamination. Any measured lamination that realizes the supremum has

support contained in the stump of Λ(X, Y ).

Suppose that a parameterized path G : [0, d] → T(S) is a geodesic from X to

Y (parameterized by unit speed). Then the following holds: for any s, t ∈ [0, d]
with s < t and for any arc ω contained in the geometric realization of Λ(X, Y )

on X , the arc length of ω is stretched by a factor of et−s under an optimal map

from G(s) to G(t). We will sometimes denote Λ(X, Y ) by λG.

2.7. Stretch paths. Certain geodesics of Thurston’s metric can be described

using shearing coordinates. Let λ be a complete geodesic lamination and X ∈
T(S). For any t ∈ R, let stretch(X, λ, t) be the unique point in T(S) such that

sλ(stretch(X, λ, t)) = et sλ(X).

Letting t vary, we have that stretch(X, λ, t) is a parameterized path in T(S) that

maps to an open ray from the origin in RN under the shearing coordinates. This is

the stretch path along λ from X .

Thurston showed that the path t 7→ stretch(X, λ, t) is a geodesic in T(S) in

the sense of (2). Note that we always consider the stretch path to be oriented in

the direction of increasing t , which is natural since the asymmetry of the metric

implies that the same path parameterized in the opposite direction may not be

geodesic.

Also, if λ0 ⊂ λ is the largest chain-recurrent sublamination, then λ0 is

the maximally stretched lamination for any pair of points stretch(X, λ, s) and

stretch(X, λ, t) with s < t .

Removing the point X from a stretch path from X leaves two (open) stretch

rays; of these, the one corresponding to t > 0 is a stretch ray starting at X and

that with t < 0 is the one ending at X .

Thurston used stretch paths to show that T(S) equipped with the Thurston

metric is a geodesic metric space. We summarize his results below. See the

statement and proof of [Thu86c, Theorem 8.5] for more details.
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THEOREM 2.2 [Thu86c]. For any X, Y ∈ T(S), let Λ(X, Y ) be the maximally

stretched lamination from X to Y . Let λ be any completion ofΛ(X, Y ). Then there

exists a geodesic G from X to Y consisting of a finite concatenation of stretch path

segments

G = G1 · · ·Gn,

where G1 is a segment of stretch(X, λ, t), and all other Gi ’s stretch along some

complete lamination containing Λ(X, Y ). Furthermore, such a geodesic can be

chosen so that if X i is the initial point of Gi , then for all i > 1, we have Λ(X i ,

Y ) ) Λ(X i−1, Y ). In particular, we can always take n 6 2|χ(S)|.

In general, geodesics of the Thurston metric from X to Y are not unique. But

when Λ(X, Y ) is maximal chain-recurrent, then there is a unique geodesic. This

statement follows from Theorem 2.2, but it is not explicitly stated in [Thu86c].

For completeness, we provide a proof.

COROLLARY 2.3. Given X, Y ∈ T(S), suppose Λ(X, Y ) is maximal chain-

recurrent. Let λ be a completion of Λ(X, Y ). Then stretch(X, λ, t) is the unique

geodesic from X to Y . In particular, for the punctured torus S1,1, the three

completions of Λ(X, Y ) give rise to the same stretch path in T(S1,1).

Proof. We first show that the stretch path for λ connects X to Y , that is, stretch(X,

λ, t) = Y for some t . By Theorem 2.2, there is a geodesic path G from X to Y

consisting of a concatenation of segments along stretch paths G1, . . . ,Gn , where

G1 is a segment of {stretch(X, λ, t) : t > 0}. Let X i be the initial point of Gi .

If n > 2, then Λ(X, Y ) = Λ(X1, Y ) ( Λ(X2, Y ) by Theorem 2.2. But this is

impossible since Λ(X, Y ) is maximal chain-recurrent; so n = 1 and Y lies on G.

Now suppose G is any geodesic from X to Y . Let Z be a point on G. We

have Λ(X, Y ) ⊂ Λ(X, Z). Since Λ(X, Y ) is maximal chain-recurrent, Λ(X,

Z) = Λ(X, Y ). By the previous discussion, we can connect X to Z by a segment

of stretch(X, λ, t). Since this is true for all Z in G, the geodesic G must be a

segment of stretch(X, λ, t).

2.8. Twisting. There are several notions of twisting which we will define

below. While these notions are defined for different classes of objects, in cases

where several of the definitions apply, they are equal up to an additive constant.

Let A be an annulus. Fix an orientation of the core curve α of A. For any simple

arc ω in A with endpoints on different components of ∂A, we orient ω so that

the algebraic intersection number ω · α is equal to one. Given an ordered pair of

simple arcs ω and ω′, the choice of the orientation above allows us to assign a sign
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to each intersection point in the interior of A between ω and ω′. The sum ω ·ω′ of

these signed intersections is called the algebraic intersection number between ω

and ω′. Note that ω · ω′ is independent of the choice of the orientation of α. Also

note that we do not consider intersections between ω and ω′ in the boundary of A.

With our choice, we always have ω · Dα(ω) = 1, where, as above, Dα denotes the

left Dehn twist about α.

Now let S be a surface and α is a simple closed curve on S. Let Ŝ → S be

the covering space associated with π1(α) < π1(S). Then Ŝ has a natural Gromov

compactification that is homeomorphic to a closed annulus. By construction, the

core curve α̂ of this annulus maps homeomorphically to α under this covering

map.

Let λ and λ′ be two geodesic laminations (possibly curves) on S, both

intersecting α transversely. We define their (signed) twisting relative to α as

twistα(λ, λ
′) = min ω̂ · ω̂′, where ω̂ is a lift of a leaf of λ and ω̂′ is a lift of a

leaf of λ′, with both lifts intersecting α̂, and the minimum is taken over all such

leaves and their lifts. Note that for any two such lifts ω and ω′ (still intersecting α̂),

the quantity ω̂ · ω̂′ exceeds twistα(λ, λ
′) by at most 2.

Next we define the twisting of two hyperbolic metrics X and Y on S relative

to α. Let X̂ , Ŷ denote the lifts of these hyperbolic structures to Ŝ. Using the

hyperbolic structure X̂ , choose a geodesic ω̂ that is orthogonal to the geodesic

in the homotopy class of α̂. Let ω̂′ be a geodesic constructed similarly from Ŷ .

We set twistα(X, Y ) = min ω̂ · ω̂′, where the minimum is taken over all possible

choices for ω̂ and ω̂′. Similar to the previous case, this minimum differs from the

intersection number ω̂ · ω̂′ for a particular pair of choices by at most 2.

Finally, we define twistα(X, λ), the twisting of a lamination λ about a curve α

on X . This is defined if λ contains a leaf that intersects α transversely. Let ω̂ be

a geodesic of X̂ orthogonal to the geodesic homotopic to α̂. Let ω′ be any leaf

of λ intersecting α, and let ω̂′ be a lift of this leaf to X̂ which intersects α̂. Then

twistα(X, λ) = min ω̂ · ω̂′, with the minimum taken over all choices of ω′, ω̂′,

and ω̂.

Each type of twisting defined above is signed. In some cases, the absolute value

of the twisting is the relevant quantity; we use the notation dα(�, �) = |twistα(�, �)|
for the corresponding unsigned twisting in each case.

The following way to compute the unsigned twisting

dα(X, λ) = |twistα(X, λ)|

will be useful in the sequel. Consider the universal cover X̃ ∼= H. Let α̃ be a

lift of α and let ω̃′ be a lift of a leaf of λ intersecting α̃. Let L be the length

of the orthogonal projection of ω̃′ to α̃ and let ℓ be the length of the geodesic

representative of α on X . Let ω̃ be an orthogonal geodesic of α̃. There is a
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loxodromic isometry T of H associated with α that preserves α̃, and applying

powers of this isometry to ω̃ gives a family of orthogonal geodesics to α̃ which

meet it at points spaced by distance ℓ. Then dα(X, λ) is the number of these

translates that intersect ω̃′ as each such translate gives one intersection in the

quotient X̂ = H/〈T 〉 considered above. Therefore, this number is between

(⌊L/ℓ⌋ − 1) and ⌊L/ℓ⌋, and dα(X, λ)
+≍ L/ℓ with additive error at most 2 (see

also [Min96, Section 3] for more details).

3. Twisting parameter along a Thurston geodesic

In this section, S is any oriented surface of finite type and T(S) is the associated

Teichmüller space.

Recall that Tǫ(S) denotes the ǫ-thick part of T(S). Consider two points X,

Y ∈ Tǫ(S). Recall that we say a curve α interacts with a geodesic lamination

λ if α is a leaf of λ or if α intersects λ essentially. Suppose α is a curve that

interacts with Λ(X, Y ). Let G : [0, T ] → T be any geodesic from X to Y , and

let ℓα = mint ℓα(t). We are interested in curves which become short somewhere

along G. We call an interval of time [a, b] ⊂ [0, T ] the active interval for α along

G if [a, b] is the maximal such interval with ℓα(a) = ℓα(b) = ǫ. Note that any

curve which is sufficiently short somewhere on G has a nontrivial active interval.

The main goal of this section is to prove the following theorem, which, in

particular, establishes Theorem 1.2. As in Section 1, we use the notation Log(x)=
min(1, log(x)). Denote X t = G(t).

THEOREM 3.1. There exists a constant ǫ0 such that the following statement holds.

Let X, Y ∈ Tǫ0
(S) and α be a curve that interacts with Λ(X, Y ). Let G be any

geodesic from X to Y and ℓα = mint ℓα(t). Then

dα(X, Y ) ∗≍
+

1

ℓα
Log

1

ℓα
.

If ℓα < ǫ0, then dα(X, Y )
+≍dα(Xa, Xb), where [a, b] is the active interval for α.

Further, for all sufficiently small ℓα, the twisting dα(X t ,Λ(X, Y )) is uniformly

bounded for all t 6 a and ℓα(t)
∗≍ et−bℓα(b) for all t > b. All errors in this

statement depend only on ǫ0.

Note that if α is a leaf of Λ(X, Y ), then it does not have an active interval

because its length grows exponentially along G, and the theorem above says that

in this case dα(X, Y ) is uniformly bounded. If α crosses a leaf of Λ(X, Y ), then

dα(X, Y ) is large if and only if α gets short along any geodesic from X to Y .

Moreover, the minimum length of α is the same for any geodesic from X to Y , up
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Figure 4. Saccheri and Lambert quadrilaterals.

to a multiplicative constant. Further, the theorem says that, essentially, all of the

twisting about α occurs in the active interval [a, b] of α.

Before proceeding to the proof of the theorem, we need to introduce a notion of

horizontal and vertical components for a curve that crosses a leaf of Λ(X, Y ) and

analyze how their lengths change in the active interval. This analysis will require

some lemmas from hyperbolic geometry.

LEMMA 3.2. Let ω and ω′ be two disjoint geodesics in H with no endpoint in

common. Let p ∈ ω and p′ ∈ ω′ be the endpoints of the common perpendicular

between ω and ω′. Let x ∈ ω be arbitrary and let x ′ ∈ ω′ be the point on the same

side of [p, p′] as x such that dH(x, p) = dH(x
′, p′). Then

sinh
dH(p, p′)

2
cosh dH(x, p) = sinh

dH(x, x ′)

2
. (3)

For any y ∈ ω′, we have

sinh dH(p, p′) cosh dH(x, p) 6 sinh dH(x, y) (4)

and

dH(x
′, y) 6 dH(x, y). (5)

Proof. We refer to Figure 4 for the proof. Equation (3) is well known, as the four

points x, x ′, p′, p form a Saccheri quadrilateral. The point y′ ∈ ω′ closest to x
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has 6 xy′ p′ = π/2; so x, y′, p′, p form a Lambert quadrilateral and the following

identity holds:

sinh dH(p, p′) cosh dH(x, p) = sinh dH(x, y′).

Equation (4) follows since dH(x, y′) 6 dH(x, y). For (5), set A = 6 xx ′y and B =
6 x ′xy and consider the triangle △xx ′y. Depending on which side of x ′ the point

y is, A is obtuse or acute. In any case, A > B. It is a standard fact that the side

opposite the bigger angle in a triangle is longer. Hence, dH(x, y) > dH(x
′, y).

In this section, we will often use the following elementary estimates for

hyperbolic trigonometric functions. The proofs are omitted.

LEMMA 3.3.

(i) If 0 6 x 6 1 or 0 6 sinh(x) 6 1, we have sinh(x) 6 2x.

(ii) For all x > 0, 1

2
ex 6 cosh(x) 6 ex and x 6 sinh(x) 6 1

2
ex .

(iii) For all x > 1, we have sinh(x) > 1

4
ex .

(iv) For all x > 1, we have

log(2) 6 arcsinh(x)− log(x) 6 log(3)

and

0 6 arccosh(x)− log(x) 6 log(2).

Now consider X ∈ T(S) and a geodesic lamination λ on X . If α crosses a leaf

ω of λ, define VX (ω, α) to be the shortest arc with endpoints on ω that, together

with an arc HX (ω, α) of ω, form a curve homotopic to α. Thus, VX (ω, α) and

HX (ω, α) meet orthogonally and α passes through the midpoints of both of these

arcs (see Figure 5). If α is a leaf of λ, then we set HX (ω, α) = α and let VX (ω, α)

be the empty set.

Define hX and vX to be the lengths of HX (ω, α) and VX (ω, α), respectively.

By considering the right triangles formed by these curves and α (which have

hypotenuse along α), it is immediate that

max(hX , vX ) 6 ℓα(X) 6 hX + vX . (6)

The quantities hX and vX can be computed in the universal cover X̃ ∼= H as

follows. Let ω̃ and α̃ be intersecting lifts of ω and α to H. Let φ be the hyperbolic

isometry with axis α̃ and translation length ℓα(X). Set ω̃′ = φ(ω̃) and let ψ be the
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Figure 5. Estimating ht .

hyperbolic isometry taking ω̃ to ω̃′ with axis perpendicular to the two geodesics.

Since φ and ψ both take ω to ω′, their composition ψ−1φ is a hyperbolic isometry

with axis ω̃. The quantity vX is the translation length ofψ and hX is the translation

length of ψ−1φ. For the latter, this means that hX = dH(ψ(q), φ(q)) for any

q ∈ ω̃.

In the following, let X t = G(t) be a geodesic segment and let λ = λG. Let

α be a curve that interacts with λ. We will refer to VX t
(ω, α) and HX t

(ω, α)

as the vertical and horizontal components of α at X t . We are interested in the

lengths ht = hX t
and vt = vX t

of the horizontal and vertical components of α as

functions of t . We will show that vt decreases super-exponentially, while ht grows

exponentially. These statements are trivial if α is a leaf of λ, so we will always

assume that α crosses a leaf ω of λ.

LEMMA 3.4. Suppose α crosses a leaf ω of λ. For any t > s,

ht > et−s(hs − vs).

Proof. In H, choose a lift α̃ of the geodesic representative of α on Xs and a lift ω̃

of ω that crosses α̃. Let ω̃′ = φs(ω̃) where φs is the hyperbolic isometry with axis

α̃ and translation length ℓs(α). Let ψs be the hyperbolic isometry taking ω̃ to ω̃′

with axis perpendicular to the two geodesics. Let p ∈ ω̃ be the point lying on the

axis of ψs . By definition,

vs = dH(p, ψs(p)) and hs = dH(ψs(p), φs(p)).
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The configuration of points and geodesics in H constructed above is depicted in

Figure 5; it may be helpful to refer to this figure in the calculations that follow.

Note that for brevity, the subscript s is omitted from the labels involving ψ, φ in

the figure.

Let f : Xs → X t be an optimal map and let f̃ : H → H be a lift of f . Since

f is an et−s-Lipschitz map such that distances along leaves of λ are stretched by

a factor of exactly et−s , the images f̃ (ω̃) and f̃ (ω̃′) are geodesics and

dH( f̃ψs(p), f̃ φs(p)) = et−shs and dH( f̃ (p), f̃ψs(p)) 6 et−svs .

Let ψt be the hyperbolic isometry taking f̃ (ω̃) to f̃ (ω̃′) with axis their common

perpendicular. Let φt be the hyperbolic isometry corresponding to f α taking f̃ (ω̃)

to f̃ (ω̃′). Note that φt f̃ = f̃ φs since f̃ is a lift of f . But ψs and ψt do not

necessarily correspond to a conjugacy class of π1(S), so f̃ need not conjugate ψs

to ψt .

By definition,

ht = dH(ψt f̃ (p), φt f̃ (p)) = dH(ψt f̃ (p), f̃ φs(p)).

By Lemma 3.2(5),

dH( f̃ψs(p), ψt f̃ (p)) 6 dH( f̃ψs(p), f̃ (p)).

Using the triangle inequality and the above equations, we obtain the conclusion.

ht > dH(φt f̃ (p), f̃ψs(p))− dH( f̃ψs(p), ψt f̃ (p))

> dH(φt f̃ (p), f̃ψs(p))− dH( f̃ψs(p), f̃ (p))

= dH( f̃ φs(p), f̃ψs(p))− dH( f̃ψs(p), f̃ (p))

> et−shs − et−svs .

LEMMA 3.5. Suppose α crosses a leaf ω of λ. There exists ǫv > 0 such that if

va 6 ǫv, then for all t > a, we have

vt 6 e−Aet−a

, where A > 0 and A
+≍ log

1

va

and where the additive error is at most log 4 + 1.

Proof. We refer to Figure 6. As before, choose a lift α̃ to H of the geodesic

representative of α on Xa and a lift ω̃ of ω that crosses α̃. Let ω̃′ = φ(ω̃) where

φ is the hyperbolic isometry with axis α̃ and translation length ℓ(α). Let p ∈ ω̃
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Figure 6. Bounding vt from above.

and p′ ∈ ω̃′ be the endpoints of the common perpendicular between ω̃ and ω̃′; so

va = dH(p, p′).

We assume va <
1

2
. Let [x, y] ⊂ ω̃ and [x ′, y′] ⊂ ω̃′ be segments of the same

length with midpoints p and p′ such that [x, x ′] and [y, y′] have length 1 and are

disjoint from [p, p′]. By (3) from Lemma 3.2,

dH(x, p) = arccosh
sinh 1/2

sinh va/2
.

We can apply Lemma 3.3(i) and (iv), which give
∣∣∣∣dH(x, y)− 2 log

1

va

∣∣∣∣ 6 2 log 4. (7)

In particular, va is small if and only if dH(x, y) is large. Let ǫv be small enough so

that dH(x, y) > 4.

Let f : Xa → X t be an optimal map and f̃ : H → H a lift of f . Let r ∈ f̃ (ω̃)

and r ′ ∈ f̃ (ω̃′) be the endpoints of the common perpendicular between f̃ (ω̃) and

f̃ (ω̃′); so vt = dH(r, r
′). Without a loss of generality, assume that r is farther away

from f̃ (x) than f̃ (y). This means

dH( f̃ (x), r) > 1

2
dH( f̃ (x), f̃ (y)). (8)

We also have

dH( f̃ (x), f̃ (y)) = et−adH(x, y) and dH( f̃ (x), f̃ (x ′)) 6 et−a. (9)

By (4) from Lemma 3.2,

sinh dH(r, r
′) cosh dH( f̃ (x), r) 6 sinh dH( f̃ (x), f̃ (x ′)).
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Incorporating (8) and (9) to the above inequality yields

sinh dH(r, r
′) 6

sinh et−a

cosh
(

1

2
et−adH(x, y)

) .

Now use Lemma 3.3(ii) to obtain

dH(r, r
′) 6 e−et−a((dH(x,y)/2)−1).

Setting A = (dH(x, y)/2) − 1 and applying (7), we have that A > 0 and

|A − log (1/va)| 6 log 4 + 1. This finishes the proof.

LEMMA 3.6. Suppose α crosses a leaf ω of λ. Let ǫv be the constant from

Lemma 3.5. If [a, b] is an interval of times with ℓα(a) = ℓα(b) = ǫ < ǫv, then

ℓα(t)
∗≺ǫ for all t ∈ [a, b] with the multiplicative error at most 12e.

Proof. Let t ∈ [a, b].
Suppose first that vt >

1

2
ht . Here, one can replace 1

2
by any other number in

(0, 1). Then ℓα(t) 6 3vt . By Lemma 3.5,

vt 6 e−A ∗≍vα

where the multiplicative error is at most 4e, and since va is bounded above by ǫ,

we have ℓα(t)
∗≺ǫ, with error at most 12e.

Now suppose vt 6
1

2
ht . Then by Lemma 3.4,

hb > eb−t(ht − vt) >
1

2
eb−t ht >

1

2
ht .

Hence,

ℓα(t) 6 ht + vt 6
3

2
ht 6 3hb 6 3ǫ.

This finishes the proof.

For our purposes, an important consequence of Lemma 3.6 is that if the curve

is short enough at the endpoints of an interval, then its length will be below ǫM

throughout that interval. Specifically, fix ǫ0 > 0 so that

ǫ0 < min
( ǫM

12e
, ǫv

)
,

where ǫM is the Margulis number chosen in Section 2.3 and ǫv is the constant

from Lemma 3.5. Then as an immediate corollary of Lemma 3.6, we have the

following.
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COROLLARY 3.7. If [a, b] is an interval such that ℓα(a) = ℓα(b) = ǫ0, then

ℓα(t) < ǫM for all t ∈ [a, b].

Next we study the relationship between the relative twisting dα(X, λ) and the

length of VX (ω, α) and ℓα(X).

LEMMA 3.8. Suppose α crosses a leaf ω of λ. Fix X = X t and let ℓ = ℓα(X) and

v be the length of VX (ω, α). Then the following statements hold:

(i) If ℓ 6 ǫM , then

ℓ dα(X, λ)
+≍2 log

ℓ

v
.

(ii) If dα(X, λ) > (4ǫM/ℓ)+ 2, then

v 6 2e−(ℓ/4)dα(X,λ).

Proof. The reader may find it helpful to look at Figure 5 for this proof.

Let B be the angle between α̃ and ω̃. Let L be the length of the projection of

ω̃ to α̃. Recall that dα(X, λ)
+≍ L

ℓ
with additive error at most 2. Since ℓ 6 ǫM , this

implies

ℓ dα(X, λ)
+≍L (10)

with additive error at most 2ǫm . By hyperbolic geometry, L satisfies

1 = cosh
L

2
· sin B. (11)

To find sin B, denote by φ the hyperbolic isometry with axis α̃ and with translation

length ℓ. Let ω̃′ = φ(ω̃). Denote by x the intersection of α̃ and ω̃ and set x ′ = φ(x).

Let p ∈ ω̃ and p′ ∈ ω̃′ be the points on the common perpendicular between ω̃

and ω̃′. That is, p′ = ψ(p) where ψ is the translation along an axis perpendicular

to ω̃ such that ψ(ω̃) = ω̃′. By construction, dH(x, x ′) = ℓ and dH(p, p′) = v.

Then the intersection point of [p, p′] and [x, x ′] is the midpoint of both. Thus,

sin B can be found from

sin B sinh
ℓ

2
= sinh

v

2
. (12)

Combining (11) and (12), we obtain

L = 2 arccosh
sinh ℓ/2

sinh v/2
. (13)
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When ℓ 6 ǫM < 1, we can apply Lemma 3.3(i) and (iv) to simplify (13), obtaining

L
+≍2 log

ℓ

v

which in combination with (10) gives

ℓ dα(X, λ)
+≍2 log

ℓ

v
,

with the additive error in the latter estimate at most 2 log 4 + 2ǫM .

Now we consider the upper bound on v under the assumption dα(X, λ) >

(4ǫM/ℓ) + 2. By (10), we have L > ℓ dα(X, λ) − 2ǫM and incorporating this

with (13) gives

sinh ℓ/2

sinh v/2
> cosh

(
ℓ

2
dα(X, λ)− ǫM

)
.

Therefore,

v

2
6 sinh

v

2
6

sinh ℓ/2

cosh
(
ℓ

2
dα(X, λ)− ǫM

) 6
eℓ/2

e(ℓ/2)dα(X,λ)−ǫM
= e(ℓ/2)+ǫM −(ℓ/2)dα(X,λ)

where the third inequality above uses the fact that (ℓ/2)dα(X, λ) − ǫM > 0 to

apply Lemma 3.3(ii). Furthermore, our assumed lower bound on dα(X, λ) gives

ℓ

2
+ ǫM −

ℓ

2
dα(X, λ) 6 −

ℓ

4
dα(X, λ)

and substituting this in the previous bound on v/2, we find

v 6 2e−(ℓ/4)dα(X,λ)

which completes the proof.

The following lemma implies that the length of the vertical component does

not decrease too quickly along a geodesic ray if the curve starts out being

approximately vertical and remains short throughout the ray.

LEMMA 3.9. Suppose α crosses a leaf ω of λ. There exists A > 0 with A
+≍

log (1/ǫ0) such that the following holds. If ℓα(a) = ǫ0 and va > ǫ0/4, and if

ℓα(t) < ǫM for all t > a, then we have

vt
∗≻e−Aet−a

.
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Proof. Let β be a shortest curve at time a that intersects α. Recall that ǫM was

chosen so that ℓα(a) < ǫM implies i(α, β) ∈ {1, 2}. We will give the proof in the

case i(α, β) = 1, with the other case being essentially the same. Since α is short

for all t > a, the part of β in a collar neighborhood of α has length that can be

estimated in terms of the length of α and the relative twisting of X t and β (see

[CRS08, Lemma 7.3]), giving a lower bound for the length of β itself:

ℓβ(t)
+≻dα(X t , β)ℓα(t)+ 2 log

1

ℓα(t)
.

On the other hand, since ℓα(a) = ǫ0 and va > ǫ0/4, applying Lemma 3.8 to Xa

tells us that dα(Xa, λ) is bounded. Hence, |dα(X t , λ)−dα(X t , β)|
+≺1 which means

that we can write

ℓβ(t)
+≻dα(X t , λ)ℓα(t)+ 2 log

1

ℓα(t)
.

The length of β cannot grow faster than the length of λ; therefore,

dα(X t , λ)ℓα(t)+ 2 log
1

ℓα(t)

+≺et−aℓβ(a).

Applying Lemma 3.8 again, now to X t , we have

2 log
ℓα(t)

vt

+ 2 log
1

ℓα(t)

+≍dα(X t , λ)ℓα(t)+ 2 log
1

ℓα(t)

+≺et−aℓβ(a)

which implies

vt
∗≻e−(1/2)et−aℓβ (a).

The claim now follows from the fact that ℓβ(a)
+≍2 log (1/ǫ0).

THEOREM 3.10. Suppose α crosses a leaf ω of λ. Let [a, b] be an interval such

that ℓα(a) = ℓα(b) = ǫ0. Then

dα(Xa, Xb)
∗≍
+

eb−a.

The length of α is minimum in the interval [a, b] at a time tα ∈ [a, b] satisfying

tα − a
+≍ Log(b − tα), (14)

and the minimum length is ℓα(tα)
∗≍e−(b−tα).

Furthermore, if (b − a) is sufficiently large, then log(b − tα) > 1 and so (14)

also holds with Log replaced by log.
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In some of the preceding lemmas, we indicated the dependence of multiplicative

and additive errors on ǫ0. However, since ǫ0 is a fixed constant, we will ignore

such dependence in most cases from now on.

Proof. We split the proof into two cases, depending on whether the interval

[a, b] is ‘short’ or ‘long’. More precisely, we consider the cases (b − a) 6 Q

and (b − a) > Q for some positive real Q, the threshold. The implicit constants

in the approximate comparisons we derive in each case will depend on Q, and at

various points in the long-interval case, it will be necessary to assume that Q is

sufficiently large (that is, greater than some universal constant). At the end, we

can fix any Q large enough to satisfy all of those assumptions.

First, we consider the short-interval case, (b − a) 6 Q. Here, all of the claims

of approximate equality in the theorem will hold because all of the quantities

in question are bounded. Since tα ∈ [a, b], both (tα − a) and Log(b − tα) are

nonnegative and bounded above, that is, tα − a
+≍Log(b − tα)

+≍0.

The surface X tα admits maps from Xa and to Xb with bounded Lipschitz

constant (at most eQ). Since α has length ǫ0 on both Xa and Xb, this shows that

ℓα(t) is bounded above and below by positive constants depending on Q for all

t ∈ [a, b], that is, that ℓα(tα)
∗≍ 1. Since 1 > e−(b−tα) > e−(b−a) > e−Q , we also

have e−(b−tα) ∗≍1, and, thus, ℓα(tα)
∗≍e−(b−tα).

To obtain the bound on dα(Xa, Xb) in the short-interval case, we recall from

[Min96] that the rate at which dα(Xa, �) can change is bounded with the bound

depending on the length of α. As noted above, we have upper and lower bounds

for the length of α along the geodesic between Xa and Xb; hence, dα(Xa, Xb)
+≍0.

We are assuming an upper bound on (b − a); so this implies dα(Xa, Xb)
+≍eb−a .

Now we turn to the long-interval case, (b − a) > Q. First, we require Q >

log(2) so that eb−a > 2. It follows that ha − va 6 ǫ0/2; to see this, assume for

contradiction that ha − va > ǫ0/2. Then Lemma 3.4 gives

hb >
ǫ0

2
eb−a > ǫ0,

while (6) gives

hb 6 ℓα(b) = ǫ0,

a contradiction.

Now, since ha − va 6 ǫ0/2 and ha + va > ℓa(α) = ǫ0, we find ǫ0/4 6 va 6 ǫ0;

that is, at time t = a, the curve is nearly perpendicular to λ, and ℓα(a)/va
∗≍ 1.

Applying Lemma 3.8, we obtain

ǫ0 dα(Xa, λ) = ℓα(a)dα(Xa, λ)
+≍0.

Dividing by ǫ0, we obtain dα(Xa, λ)
+≍0.
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By Corollary 3.7, we have ℓα(t) < ǫM for all t ∈ [a, b]. Using this, the bounds

of Lemma 3.5 and Lemma 3.9 show that there are A, B > 0 such that

e−Bet−a ∗≺vt 6 e−Aet−a

for all t ∈ [a, b]. (15)

(And, in fact, those lemmas show A, B
+≍log (1/ǫ0).) Taking the logarithm of (15)

gives

log
1

vt

∗≍
+

et−a for all t ∈ [a, b], (16)

where the additive error comes from the multiplicative error in (15) and the

multiplicative error from the constants A, B.

We claim that for Q sufficiently large, there exists s ∈ [a, b] such that hs = 2vs .

Indeed, if hs < 2vs for all s ∈ [a, b], then, since hb + vb > ǫ0, we have 1

3
ǫ0 6

vb 6 ǫ0. Using (16) with t = b, this gives an upper bound on eb−a , which is a

contradiction if Q is large enough. On the other hand, if hs > 2vs for all s ∈ [a, b],
then Lemma 3.4 implies that hb is large if (b−a) is sufficiently large. Specifically,

by taking Q larger than a universal constant, we would have hb > ǫ0, contradicting

that ǫ0 = ℓα(b)> hb. Thus, by requiring Q to be large enough so that both of these

arguments apply, we have hs = 2vs for some s ∈ [a, b]. For the rest of the proof,

let s denote any such point in the interval.

Since vs and hs are comparable, it follows from (6) that vs
∗≍ℓα(s). Since eb−s

is the Lipschitz constant from Xs to Xb, we have ℓα(s)e
b−s > ℓα(b) = ǫ0. In

particular, ǫ0
∗≺vse

b−s . On the other hand, Lemma 3.4 gives

hb >
1

2
hse

b−s = vse
b−s .

Thus, vse
b−s 6 hb 6 ℓα(b) = ǫ0. All together, we obtain

vs
∗≍e−(b−s). (17)

Now using (16) with t = s and (17) together, we find

es−a ∗≍
+
(b − s). (18)

From this, it follows that

Log(b − s)
+≍(s − a). (19)

Indeed, if log(b − s) > 1, then log(b − s) = Log(b − s) and (19) is the result of

taking the logarithm of (18). Otherwise, log(b − s) < 1, in which case Log(b −
s) = 1 and (18) gives a uniform upper bound on (s − a); so (19) holds simply

because both sides are nonnegative and bounded.
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Finally, since vt is essentially decreasing double-exponentially, ht is increasing

exponentially and ℓα(t) > max{vt , ht}, it follows that tα
+≍ s. This gives us the

order of the minimal length of α, which is approximated by ℓα(s)
∗≍ vs . Also,

using tα
+≍ s, we find that Equation (19) also holds if we replace s by tα, which

gives (14).

To complete the long-interval case, we estimate dα(Xa, Xb). By Lemma 3.8

and (16),

ǫ0 dα(Xb, λ)
+≍2 log

ǫ0

vb

∗≍eb−a,

and we can absorb the additive error in the multiplicative error since the

expression on the right is bounded away from 0. Since vt decreases double-

exponentially, vb is very small compared to ǫ0 for (b − a) large; so ǫ0 dα(Xb, λ) is

bounded away from 0. Dividing by ǫ0 (and absorbing this into the multiplicative

error as well), we find dα(Xb, λ)
∗≍ eb−a . Since dα(Xa, λ)

+≍ 0, this is the desired

estimate.

Fixing a value for the threshold Q large enough to satisfy all of the conditions

derived in the long-interval analysis above, the estimates in both parts of the proof

become uniform (that is, no longer depend on an additional parameter).

It only remains to prove the final claim from the statement of the theorem. For

this, we show that (b − tα) can be made larger than a given constant just by

assuming that (b − a) is sufficiently large. Suppose for contradiction that (b − tα),

and hence also (b − s), can be bounded with (b − a) arbitrarily large. Then es−a ∗≍
eb−a is large while (b − s) is bounded, contradicting (18).

Note that Theorem 3.10 highlights an interesting contrast between the behavior

of Thurston metric geodesics and that of Teichmüller geodesics: along a

Teichmüller geodesic, a curve α achieves its minimum length near the midpoint

of the interval in which α is short (see [Raf14, Section 3]), and this minimum

is on the order of dα(X, Y )−1. However, for a Thurston metric geodesic, the

minimum length occurs much closer to the start of the interval (assuming the

interval is sufficiently long) since (tα − a) is only on the order of log(b − tα). In

addition, the minimum length on the Thurston geodesic is larger than that in the

Teichmüller case, though only by a logarithmic factor.

To exhibit this difference, Figure 7 shows a Teichmüller geodesic segment and

a stretch path segment (for lamination β+) joining the same pair of points in the

upper half-plane model of T(S1,1). Here β is a simple closed curve. In this model,

the imaginary part of a point z ∈ H is approximately π/ℓα(z), where α is a curve

which has approximately the same length at both endpoints but which becomes

short somewhere along each path. Thus, the expected (and observed) behavior

of the Thurston geodesic is that its maximum height is lower than that of the

Teichmüller geodesic, but that this maximum height occurs closer to the starting
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Figure 7. A Teichmüller geodesic (blue) and a stretch path (red) in the Teichmüller

space T(S1,1) ≃ H of the punctured torus. Both geodesic segments start at

X = −16.302 + i and end at Y = i , and each has its midpoint marked.

point for the Thurston geodesic. Further properties of the Thurston geodesics in

the punctured torus case are explored in the next section.

Continuing toward the proof of Theorem 3.1, we show the following.

LEMMA 3.11. Suppose α crosses a leaf ω of λ. There exists a constant C > 0

such that if ℓα(s) > ǫ0 and dα(Xs, λ) > C, then ℓα(t)
∗≍et−sℓα(s) for all t > s.

Proof. By Lemma 3.8, if dα(Xs, λ) > (4ǫM/ℓα(s))+ 2, then

vs 6 2e−(ℓα(s)/4)dα(Xs ,λ).

Since ℓα(s) > ǫ0 in this case, there is a universal constant C so that this estimate

applies when dα(Xs, λ) > C . Furthermore, we can choose C so that the inequality

above gives

vs 6
1

3
ℓα(s)

and so hs >
2

3
ℓα(s) and 2vs 6 hs . Incorporating Lemma 3.4, we have that for all

t > s,

ℓα(t) > ht >
1

2
et−shs >

1

3
et−sℓα(s).

On the other hand, ℓα(t) 6 et−sℓα(s). This finishes the proof.

LEMMA 3.12. Suppose α interacts with λ. If ℓα(t) > ǫ0 for all t ∈ [a, b], then

dα(Xa, Xb)
+≍0.
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Proof. We first show that for any s 6 t , if ℓα(t)
∗≍et−sℓα(s), then dα(Xs, X t)

+≍0.

Let β be the shortest curve at Xs that intersects α. At time t , the length of β

satisfies

ℓβ(t) > ℓα(t)dα(β, X t)− Dℓα(t),

where D > 0 is universal. Also, dα(β, Xs) is bounded by the choice of β. Hence,

we can write
ℓβ(t)

ℓα(t)

+≻dα(Xs, X t).

Therefore, since ℓβ(t) 6 et−sℓβ(s) and ℓα(t)
∗≍et−sℓα(s), we have

dα(Xs, X t)
+≺
ℓβ(s)

ℓα(s)
.

Let ǫB be the Bers constant. If ℓα(s)> ǫB , then ℓβ(t)6 ǫB and so ℓβ(s)/ℓα(s) < 1.

If ℓα(s) 6 ǫB , then ℓβ(s) is, up to a bounded multiplicative error, the width of the

collar about α. So in this case, since ℓα(s) > ǫ0, we have

ℓβ(s)

ℓα(s)

∗≺
1

ǫ0

log
1

ǫ0

∗≍1.

If α is a leaf of λ, then ℓα(b) = eb−aℓα(a); so the conclusion follows from the

paragraph above. Now suppose that α crosses a leaf of λ. Let C be the constant

of Lemma 3.11. If dα(X t , λ) < C for all t ∈ [a, b], then we are done. Otherwise,

there is an earliest time t ∈ [a, b] such that dα(X t , λ) > C . It is immediate that

dα(X, X t)
+≍0. By Lemma 3.11, ℓα(b)

∗≍eb−tℓα(t), so dα(X t , Xb)
+≍0 by the above

paragraph. The result follows.

We will now prove the theorem stated at the beginning of this section.

Proof of Theorem 3.1. If ℓα > ǫ0, then by Lemma 3.12,

dα(X, Y )
+≍0

+≍
1

ℓα
Log

1

ℓα
.

Now suppose ℓα < ǫ0 and let [a, b] be the active interval for α. From

Theorem 3.10, the minimal length ℓα occurs at tα ∈ [a, b] satisfying

tα − a
+≍Log(b − tα), and ℓα

∗≍e−(b−tα). We then have

dα(Xa, Xb)
∗≍eb−a = eb−tαetα−a

∗≍ eb−tαeLog(b−tα).

If (b − a) is large enough so that Theorem 3.10 gives Log(b − tα) = log(b − tα),

then this shows dα(Xa, Xb)
∗≍eb−tα (b − tα)

∗≍(1/ℓα) log(1/ℓα), and since ℓα 6 ǫ0,



D. Dumas, A. Lenzhen, K. Rafi and J. Tao 32

we have (1/ℓα) log (1/ℓα)
+≍(1/ℓα)Log (1/ℓα) with equality for ℓα small enough.

By Lemma 3.12, dα(X, Xa) and dα(Xb, Y ) are both uniformly bounded. Thus,

dα(X, Y )
+≍dα(Xa, Xb) and the estimate on dα(X, Y ) from Theorem 3.10 follows

in this case.

Otherwise, (b − a) is bounded above by a universal constant, in which case we

will show dα(X, Y )
+≍(1/ℓα)Log (1/ℓα) by showing that both sides are uniformly

bounded. First, the upper bound on (b − a) gives a positive lower bound on ℓα
(which is already bounded above by ǫ0) and so (1/ℓα)Log (1/ℓα)

+≍ 0. On the

other hand, using the bound on (b − a), Theorem 3.10 gives dα(Xa, Xb)
+≍0, and

as before, dα(X, Y )
+≍dα(Xa, Xb). We conclude dα(X, Y )

+≍0, as required.

For the last statement of Theorem 3.1, let C be the constant of Lemma 3.11.

By assumption, ℓα(t) > ǫ0 for all t 6 a. If there exists t 6 a such that dα(X t ,

λ) > C , then ℓα(tα)
∗≍ etα−tℓα(t), where tα is the time of the minimal length of

ℓα. This is impossible for all sufficiently small ℓα. Finally, since dα(Xa, Xb)
∗≍

(1/ℓα)Log (1/ℓα), for all sufficiently small ℓα, we can guarantee that dα(Xb, λ) >

C . The final conclusion follows by Lemma 3.11.

Recall that two curves that intersect cannot have lengths less than ǫM at the

same time. Therefore, if α and β intersect and ℓα < ǫ0 and ℓβ < ǫ0, then their

active intervals must be disjoint. This defines an ordering of α and β along G. In

the next section, we will focus on the torus S1,1 and show that the order of α and

β along G will always agree with their order in the projection of G(t) to the Farey

graph.

4. Coarse description of geodesics in T(S1,1)

4.1. Farey graph. See [Min99] for background on the Farey graph.

Let S1,1 be the once-punctured torus and represent its universal cover by the

hyperbolic plane H. Identify the ideal boundary ∂H with R∪{∞}. The point ∞ is

considered an extended rational number with reduced form 1/0. As in Section 2.2,

fix a positive ordered basis for H1(S1,1) and use this to associate a slope p/q ∈
QP1 = Q ∪ {∞} to every simple curve. In this section, we pass freely between a

rational number and the associated simple curve.

Given two curves α = p/q and β = r/s in reduced fractions, their geometric

intersection number is |ps − rq|. Form a graph with vertex set QP1 as follows:

connect p/q and r/s by an edge if |ps − rq| = 1. The resulting graph F is called

the Farey graph, which is also the curve graph of S1,1. This graph embeds naturally

in H ∪ ∂H, with its edges realized as hyperbolic geodesics (see Figure 8). These

geodesics cut H into ideal triangles; this is the Farey tesselation. In this tesselation,

each edge bounds exactly two ideal triangles with zero relative shearing. Thus,

each edge of F is equipped with a well-defined midpoint.
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Figure 8. The Farey graph.

Let α denote the curve with slope 1/0. The action of Dα on curves distinct from

α corresponds to the mapping of slopes m 7→ m + 1. Let β0 ∈ F be any curve

with i(α, β0) = 1. The associated Dehn twist family about α is βn = Dn
α(β0). Then

{βn}n∈Z is exactly the set of vertices of F that are connected to α by an edge or,

equivalently, the set of curves with slope in Z.

4.2. Markings and pivots. A marking on S1,1 is an unordered pair of curves

{α, β} such that i(α, β) = 1. Given a marking {α, β}, there are four markings that

are obtained from µ by an elementary move, namely:

{α, Dα(β)}, {α, D−1
α (β)}, {β, Dβ(α)}, {β, D−1

β (α)}.

Note that the set of markings on S1,1 can be identified with the set of edges of F,

and two edges differ by an elementary move if and only if they bound a common

triangle in the Farey tesselation of H. Denote by MG the graph with markings as

vertices and an edge connecting two markings that differ by an elementary move.

Then MG has the following property.

LEMMA 4.1. For any µ,µ′ ∈ MG, there exists a unique geodesic connecting

them.
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Proof. Each edge of F separates H into two disjoint half-spaces. Let E(µ,µ′) be

the set of edges in F that separate the interior of µ from the interior of µ′. Set

E(µ,µ′) = E(µ,µ′) ∪ {µ,µ′}. Every ν ∈ E(µ,µ′) disconnects µ from µ′ and,

thus, must appear in every geodesic from µ and µ′. Conversely, any ν ∈ MG lying

on a geodesic from µ to µ′ must lie in E(µ,µ′). For each ν ∈ E(µ,µ′), let Hν

be the half-space in H containing the interior of µ′. There is a linear order on

E(µ,µ′) = {µ1 < µ2 < · · · < µn} induced by the relation µi < µi+1 if and only

if Hµi
⊃ Hµi+1

. The sequence µ = µ1, µ2, . . . , µn = µ′ is the unique geodesic

path in MG from µ to µ′.

Given two markings µ and µ′ and a curve α, let nα be the number of edges in

E(µ,µ′) containing α. We say α is a pivot for µ and µ′ if nα > 2, and nα is the

coefficient of the pivot. Let Pivot(µ,µ′) be the set of pivots for µ and µ′. This set

is naturally linearly ordered as follows. Given α ∈ Pivot(µ,µ′), let eα be the last

edge in E(µ,µ′) containing α. Then for α, β ∈ Pivot(µ,µ′), we set α < β if eα
appears before eβ in g.

Recall that in Section 2.8, we defined the unsigned twisting (along α) for a pair

of curves β, β ′; this is denoted by dα(β, β
′). Generalizing this, we define unsigned

twisting for the pair of markings µ,µ′ by

dα(µ,µ
′) = min

β⊂µ,β ′⊂µ′
dα(β, β

′),

where β is a curve in µ and β ′ is a curve in µ′. Similarly, we define dα(β, µ
′) =

minβ ′⊂µ′ dα(β, β
′). In terms of these definitions, we have the following.

LEMMA 4.2 [Min99]. For any µ,µ′ ∈ MG and curve α, we have nα
+≍dα(µ,µ

′).

For α, β ∈ Pivot(µ,µ′), if α < β, then dα(β, µ
′)

+≍1 and dβ(µ, α)
+≍1. Conversely,

if nα is sufficiently large and dα(β, µ
′)

+≍1, then α < β.

Identify T(S1,1) with H in the usual way. Under this identification, if e is an

edge of F with endpoints α and β, then the set points along e correspond to

the set of surfaces on which α and β are the shortest curves and they intersect

perpendicularly. The midpoint of e corresponds to the hyperbolic structure in

this family where the two curves have the same length. This length is a uniform

constant independent of the edge e.

For any X ∈ T(S1,1), there exists an ideal triangle △ in the Farey tessellation of

H containing X . The three vertices of △ correspond to the three shortest curves

on X . We will define a short marking on X as follows. If X has at least two

systoles, then let A be the set of systoles on X . If X has a unique systole, then

let A be the set consisting of the systole plus the second shortest curves on X . In

either case, A is a subset of the vertices of △; so A has cardinality at most 3 and
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every pair of curves in A corresponds to an edge in △. A short marking on X is any

pair of curves in A. Note that in our definition, there is either a unique marking or

three short markings on X . This implies that, given X, Y ∈ T(S1,1), there are well-

defined short markings µX and µY on X and Y such that dMG(µX , µY ) is minimal

among all short markings on X and Y . By Lemma 4.1, the geodesic from µX to

µY is unique. Note that any edge of E(µX , µY ) separates µX from µY , and, hence,

it separates X from Y . We will denote by Pivot(X, Y ) = Pivot(µX , µY ) and refer

to Pivot(X, Y ) as the set of pivots for X and Y .

Given X, Y ∈ T(S1,1), we have that dα(X, Y )
+≍dα(µX , µY ).

Let ǫ0 be the constant of the previous section. The following statements

establish Theorem 1.3 of Section 1.

THEOREM 4.3. Suppose X, Y ∈ Tǫ0
(S1,1) and let G(t) be any geodesic from X

to Y , parameterized by an interval I ⊂ R. Let ℓα = inft ℓα(t). There are positive

constants ǫ1, C1, and C2 such that we have the following:

(i) If ℓα 6 ǫ1, then α ∈ Pivot(X, Y ) and dα(X, Y ) > C1.

(ii) If dα(X, Y ) > C2, then ℓα 6 ǫ1 and α ∈ Pivot(X, Y ).

(iii) Suppose α and β are distinct curves such that there exist s, t ∈ I with

ℓα(s) 6 ǫ1 and ℓβ(t) 6 ǫ1. Then α < β in Pivot(X, Y ) if and only if s < t .

(iv) For any α ∈ Pivot(X, Y ), ℓα
∗≺1.

Proof. The proof will show that any sufficiently small ǫ1 works. We first require

ǫ1 < ǫ0 where ǫ0 is the constant selected in the previous section.

Let λ = Λ(X, Y ). On the torus, every curve α interacts with λ. If λ contains α,

then ℓα(t) = etℓα(X). But this implies ℓα = ℓX (α) > ǫ0 and dα(X, Y )
+≍ 0 by

Lemma 3.12. Thus, we may assume that α crosses a leaf of λ. By Theorem 3.1,

dα(X, Y ) ∗≍ (1/ℓα) log (1/ℓα). Since dα(X, Y )
+≍ dα(µX , µY )

+≍ nα (the latter by

Lemma 4.2), we can select ǫ1 small enough and C1 > 0 so that ℓα 6 ǫ1 implies

that dα(X, Y ) > C1 and that nα > 2; that is, α is a pivot. This gives (i). Using the

same approximate equalities, if dα(X, Y ) is large, we find that ℓα is small, and we

can select C2 satisfying (ii).

We now fix our constants ǫ1, C1, and C2 so that (i) and (ii) are satisfied. By

fixing these constants, we can now ignore the dependence of any additive or

multiplicative errors on them.

For (iii), suppose ℓα 6 ǫ1 and ℓβ 6 ǫ1. By (i), they are both pivots. Let [a,
b] be the active interval for α. Recall that this is the longest interval such that

ℓα(a) = ℓβ(b) = ǫ0. Recall that by Corollary 3.7, we have ℓα(t) < ǫM for all

t ∈ [a, b]. Similarly, let [c, d] be the active interval for β. On the torus, two curves
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always intersect; so α and β cannot be simultaneously shorter than ǫM , so [a, b]
and [c, d] must be disjoint. By Lemma 4.2, α < β if and only if dα(β, µY )

+≍ 1.

By Theorem 3.1 and Lemma 3.12, b < c if and only if dα(Xc, Y )
+≍1. Since β is

ǫ0–short on Xc, we have dα(β, µY )
+≍dα(Xc, Y ). This finishes (iii).

Before we prove (iv), we introduce some notation. For each curve α, let Hα ⊂
T(S1,1) be the set of hyperbolic structures where ℓα(X) 6 ǫ1. Since ǫ1 < ǫM ,

the sets Hα and Hβ are disjoint if α 6= β. Let e be an edge of F and denote

its endpoints by α and β. The segment of e outside of Hα and Hβ is a closed

interval containing the midpoint of e. Along this interval, the length of α and β is

uniformly bounded (by a constant that depends only on ǫ1).

To prove (iv), let α ∈ Pivot(X, Y ) and assume ℓα > ǫ1. Let e ∈ E(µX , µY ) be

an edge containing α. Let β be the other curve of e. The edge e separates X and Y ;

so any geodesic G(t) from X to Y must cross e at some point X t . If ℓβ(t) > ǫ1,

then neither α nor β is ǫ1–short on X t ; so X t lies in the segment of e outside of Hα

and Hβ . Hence, ℓα(t)
∗≺1 by the discussion in the previous paragraph. On the other

hand, if ℓβ(t) 6 ǫ1, then β is a pivot by (i). Either α < β or β < α in Pivot(X, Y ).

If α < β, then dβ(X, α)
+≍1 by Lemma 4.2. Let [a, b] be the active interval for β.

By Theorem 3.1, we have dβ(X, Xa)
+≍ 1, and dβ satisfies the triangle inequality

up to additive error (by [MM00, Equation 2.5]); so we conclude dβ(α, Xa)
+≍ 1.

This, together with ℓβ(a) = ǫ0, yields ℓα(a)
∗≍1. If β < α, then the same argument

using Xb and Y in place of Xa and X also yields ℓα(b)
∗≍1. This concludes the

proof.

5. Envelopes in T(S1,1)

5.1. Fenchel–Nielsen coordinates along stretch paths in T(S1,1). We now

focus on the once-punctured torus S1,1 and on the completions α± of the maximal

chain-recurrent laminations containing a simple closed curve α discussed in

Section 2.2.

Consider the curve α as a pants decomposition of S1,1 and define τα(X) to be

the Fenchel–Nielsen twist coordinate of X relative to α. Note that τα(X) is well

defined up to a multiple of ℓα(X), and after making a choice at some point, τα(X)

is well defined. The Fenchel–Nielsen theorem states that the pair of functions

(log ℓα(�), τα(�)) define a diffeomorphism of T(S1,1) → R2.

Each α± defines a foliation F±
α on T(S1,1)whose leaves are the α±-stretch paths.

In the α± shearing coordinate system, the image of T(S1,1) in R2 is a convex cone,

and the foliation F±
α are by open rays from the origin.

In this section, we denote a point on the α± stretch path through X by X±
t =

stretch(X, α±, t). The function log ℓα(X
±
t ) = log ℓα(X) + t is smooth in t . Our

first goal is to establish the following theorem.
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THEOREM 5.1. For any simple closed curve α on S1,1 and any point X = X0 ∈
T(S1,1), the functions τα(X

±
t ) are smooth in t. Further,

τα(X
+
t ) > τα(X

−
t ) and

d

dt
τα(X

+
t )

∣∣∣∣
t=0

>
d

dt
τα(X

−
t )

∣∣∣∣
t=0

.

That is, the pair of foliations F+
α and F−

α are smooth and transverse.

We proceed to prove smoothness of τα(X
+
t ). Recall that the α+ shearing

embedding is sα+(X) = (ℓα(X), sα(X)) where sα(X) was defined in Section 2.5

and that like τα, the function sα is defined only up to adding an integer multiple

of ℓα(X). To further lighten our notation, we will often write ℓα(t) instead of

ℓα(X
+
t ), and sα(t) for sα(X

+
t ).

We also denote τα(0) and ℓα(0) by τ0 and ℓ0, respectively. Note that the values

of τα and ℓα do not depend on the choice of α+ or α−, but the values of the

shearing coordinates do.

We know, from the description of stretch paths in Section 2.7, that

sα(t) = sα(0)e
t and ℓα(t) = ℓ0 et .

We can now compute τα(X
+
t ) as follows, referring to Figure 9. Fix a lift α̃ of α

to be the imaginary line (shown in blue in Figure 9) in the upper half-plane H.

Now develop the picture on both sides of α̃. Since we are considering α+, all the

triangles on the left of α̃ are asymptotic to ∞ and all the triangles on the right of α̃

are asymptotic to 0. Below, we will choose some normalization, but first note that

the hyperelliptic involution exchanges the two complementary triangles T and T ′

of α+ while preserving α as a set. Let ι : H → H be a lift of this involution chosen

to preserve α̃, which, therefore, has the form ι(z) = −ec/z for some c = ct ∈ R.

Note that ι exchanges the two sides of α̃ and that it fixes a unique point iec/2 in H.

To fix the shearing coordinate sα(t), we make the choice of triangles in H

required by the construction of Section 2.4. Choose two triangles ∆l and ∆r in H

separated by α̃ so that one is a lift of T and the other is a lift of T ′ and ι(∆r ) = ∆l .

Let w̃ be the edge of ∆l that is a lift of w, namely, w̃ = [x,∞] for some x < 0.

Let φα(z) = eℓα z be the isometry associated with α̃ oriented toward ∞. The image

φα(w̃) = [eℓα x,∞] is another lift of w. Let δ̃ be the lift of δ that is asymptotic

to w̃ and φα(w̃). By applying a further dilation to the picture if necessary, we can

assume that δ̃ = [x − 1,∞]. Now, the geodesic w̃′ = [x, x − 1] is a lift of w′.

With our normalization, the midpoint of [x,∞] associated with ∆l is the point

(x, 1). Recall that sδ = −ℓα in this case, which is the shearing between triangles

∆l = [x, x − 1,∞] and [x − 1, eℓα x,∞]. This means that their midpoints on δ̃
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Figure 9. Computing the Fenchel–Nielsen twist along the α+ stretch path.

have y-coordinates with ratio eℓα , that is

|eℓα x − (x − 1)|

|(x − 1)− x |
= eℓα

from which it follows that

x = − coth(ℓα/2).

Let hl be the endpoint on α̃ of the horocycle based at infinity containing the

midpoint of w̃ considered as an edge of ∆l . Let hr = ι(hl). By construction,

hl = 1 and hr = ec. We can normalize so that sα = c.

To visualize the Fenchel–Nielsen twist parameter τ+(t) at X t about α, consider

the shortest geodesic arc β with both endpoints on α intersecting perpendicularly

(so β only intersects α twice). By symmetry, this arc intersects δ at a point q that

is equidistant to the midpoints of δ associated with T and T ′. We choose a lift β̃

that passes through q̃ = (x − 1, eℓα/2). Let pl be the endpoint on α̃ of the lift of

β that passes through δ̃. Since β̃ is perpendicular to α̃, we have q and pl lie on a

Euclidean circle centered at the origin. Using the Pythagorean theorem, we obtain

pl =
√
(x − 1)2 + (eℓα/2)2 = eℓα/2 coth

ℓα

2
.

Let i pr = ι(i pl)= −ec/ i pl = iec/pl . Up to an integral multiple of ℓα, the twisting

τα(t) is the signed distance between i pl and i pr ; that is,

τα = log
pr

pl

mod ℓα
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= log
ec

eℓα coth2
(
ℓα
2

) mod ℓα

= c − 2 log coth
ℓα

2
mod ℓα

= sα − 2 log coth
ℓα

2
mod ℓα.

In particular, at t = 0, we obtain

τ0 = sα(0)− 2 log coth
ℓ0

2
mod ℓ0. (20)

As we mentioned previously, sα(t) = sα(0)e
t and ℓα(t) = ℓ0et . Hence,

τα(t) = et sα(0)− 2 log coth
etℓ0

2
mod ℓα.

Solving for τ0 using (20), we obtain

τα(X
+
t ) = etτ0 + 2et log coth

ℓ0

2
− 2 log coth

et ℓ0

2
mod ℓα. (21)

Now let X−
t be the stretch path starting from X associated with α−. The

computation in this case is similar; in fact, 2τ = s+
α + s−

α mod ℓα. Thus,

τα(X
−
t ) = etτ0 − 2et log coth

ℓ0

2
+ 2 log coth

etℓ0

2
mod ℓα. (22)

This shows that τ(X+
t ) and τ(X−

t ) are both smooth functions of t . Note that

τ(X+
t ) − τ(X−

t ) is well defined. By a simple computation, we see that τ(X+
t ) −

τ(X−
t ) > 0, and

d

dt
(τα(X

+
t )− τα(X

−
t ))

∣∣∣∣
t=0

= 4 log coth
ℓ0

2
+ 2ℓ0 tanh

ℓ0

2
csch2 ℓ0

2
> 0.

This finishes the proof of Theorem 5.1.

5.2. Structure of envelopes in general. For any surface S of finite type and a

chain-recurrent lamination λ on S and X ∈ T(S), define

Out(X, λ) = {Z ∈ T(S) : λ = Λ(X, Z)}

and

In(X, λ) = {Z ∈ T(S) : λ = Λ(Z , X)}.

We call these the out-envelope and in-envelope of X (respectively) in the

direction λ.
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PROPOSITION 5.2. The out-envelopes and in-envelopes have the following

properties:

(i) If λ is maximal chain-recurrent, then for any completion λ̂ of λ, the set

Out(X, λ) is the stretch ray starting at X associated with λ̂, and the set

In(X, λ) is the stretch ray associated with λ̂ ending at X.

(ii) The closure of Out(X, λ) consists of points Y with λ ⊂ Λ(X, Y ). Similarly,

the closure of In(X, λ) is the set of points Y with λ ⊂ Λ(X, Y ).

(iii) If λ is a simple closed curve, then Out(X, λ) and In(X, λ) are open sets.

Proof. First, assume that λ is maximal chain-recurrent and let λ̂ be a completion

of it. By Corollary 2.3, if Λ(X, Y ) = λ, then there exists t > 0 such that

Y = stretch(X, λ̂, t), and this is the only geodesic from X to Y . That is, any

point in Out(X, λ) can be reached from X by following the stretch ray along λ̂

starting at X . Similarly, if Y ∈ In(X, λ), then the stretch ray along λ̂ starting at Y

contains X or, equivalently, the stretch ray along λ̂ ending at X contains Y . This

is (i).

For the other statements, we use [Thu86c, Theorem 8.4], which shows that

if Yi converges Y , then any limit point of Λ(X, Yi) in the Hausdorff topology

is contained in Λ(X, Y ). Applying this to a point Y in the closure of Out(X, λ)

and a sequence Yi ∈ Out(X, λ) converging to Y , we obtain λ ⊂ Λ(X, Y ). For

the other direction of (ii), let Y be any point such that λ ⊂ Λ(X, Y ). To show

Y is in the closure of Out(X, λ), we find a point Z ∈ Out(X, λ) such that

dTh(Y, Z) = ǫ, for any ǫ. Let λ′ be any maximal chain-recurrent lamination such

that λ = λ′ ∩Λ(X, Y ), and let Z = stretch(Y, λ′, ǫ). We have dTh(Y, Z) = ǫ.

Since λ = λ′ ∩Λ(X, Y ), we must have Λ(X, Z) = λ. This shows (ii) for

Out(X, λ). The analogous statement for In(X, λ) is proven similarly.

To obtain (iii), let λ be a simple closed curve, Y ∈ Out(X, λ), and Yi is any

sequence converging to Y , then any limit point of Λ(X, Yi) is contained in λ.

Since λ is a simple closed curve, Λ(X, Yi) = λ for all sufficiently large i . This

shows Out(X, λ) is open. The same proof also applies to In(X, λ).

Let X, Y ∈ T(S), and denote λ=Λ(X, Y ). We define the envelope of geodesics

from X to Y to be the set

Env(X, Y ) = {Z : Z ∈ [X, Y ] for some geodesic [X, Y ]}.

PROPOSITION 5.3. For any X, Y ∈ T(S), Env(X, Y ) = Out(X, λ) ∩ In(Y, λ).

Proof. For any Z ∈ Env(X, Y ), since Z lies on a geodesic from X to Y , λ must

be contained in Λ(X, Z) and in Λ(Z , Y ). This shows Env(X, Y ) ⊂ Out(X, λ) ∩



Coarse and fine geometry of the Thurston metric 41

In(Y, λ). On the other hand, if Z ∈ Out(X, λ) ∩ In(Y, λ), then λ ⊂ Λ(X, Z) and

λ ⊂Λ(Z , Y ). That is, if µ is the stump of λ, then dTh(X, Z) = log (ℓµ(Z)/ℓµ(X))

and dTh(Z , Y )= log (ℓµ(Y )/ℓµ(Z)); so dTh(X, Y )= dTh(X, Z)+dTh(Z , Y ). Thus,

the concatenation of any geodesic from X to Z and from Z to Y is a geodesic from

X to Y .

5.3. Structure of envelopes in T(S1,1). In this section, we specialize our study

of envelopes to the case of S = S1,1 and prove Theorem 1.1 of Section 1. The proof

is divided into several propositions.

PROPOSITION 5.4. Let α be a simple closed curve on S1,1. For any X ∈ T(S1,1),

the set Out(X, α) is an open region bounded by the stretch rays along α± starting

at X. Similarly, In(X, α) is an open region bounded by the stretch rays along α±

ending at X.

Proof. Set X±
t = stretch(X, α±, t). By Theorem 2.2, for any surface S and any

two points X, Y ∈ T(S), Thurston constructed a geodesic from X to Y that is

a concatenation of stretch paths, where the number of stretch paths needed in

the concatenation is bounded by 2|χ(S)|, that is, the number of triangles in an

ideal triangulation of S. In our setting where S = S1,1, for Y ∈ Out(X, α), this

would be either a single stretch path or a union of two stretch paths [X, Z ] and

[Z , Y ] where both Λ(X, Z) and Λ(Z , Y ) contain α. By Corollary 2.3, each one

of these is a stretch path along either α+ or α−. The initial path can be chosen to

stretch along α+ or α− arbitrarily. Assuming that we first stretch along α−, then

there are t1 and t2 such that Z = stretch(X, α−, t1), Y = stretch(Z , α+, t2), and

dTh(X, Y ) = t1 + t2. Set Z−
t = stretch(Z , α−, t) and Z+

t = stretch(Z , α+, t). By

the calculations of the previous section, τα(Z
−
t ) < τα(Z

+
t ). Since Z−

t = X−
t+t1

and

Z+
t2

= Y , we have

ℓα(X
−
t1+t2

) = ℓα(Y ) and τα(X
−
t1+t2

) < τα(Y ).

Similarly, if we stretch along α+ first, then there are s1 and s2 such that W =
stretch(X, α+, s1), Y = stretch(W, α−, s2), and s1 + s2 = t1 + t2. Then X+

t1+t2
=

X+
s1+s2

and by the same argument as above,

ℓα(X
+
t1+t2

) = ℓα(Y ) and τα(Y ) < τα(X
+
t1+t2

).

That is, Y is inside of the sector bounded by the stretch rays X+
t and X−

t for t > 0.

By replacing geodesics from X to Y by geodesics from Y to X , we obtain the

statement for In(X, α).
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REMARK 5.5 (Visualization of envelopes). Figure 0 (on page 2) illustrates

Proposition 5.4 by showing the sets In(X, α) in the Poincaré disk model of

T(S1,1) for X the hexagonal punctured torus and for several simple curves α,

including the three systoles. In the figure, the disk model is normalized so

that the origin corresponds to the hexagonal punctured torus. This figure was

produced as follows: the Fenchel–Nielsen coordinate computations of (21)–(22)

make it straightforward to compute stretch paths passing through a given point in

the relative SL(2,R) character variety of π1(S1,1). The software package CP1

[Dum13] allows the computation of the uniformization map from the disk to

the relative character variety; this map was numerically inverted using Newton’s

method to transport the computed stretch paths to the disk.

By the results of [Thé07], the stretch lines appearing as boundaries of in-

envelopes for T(S1,1) are exactly those which limit on rational points on the circle

at infinity as t → −∞. Thus, Figure 0 can be alternatively described as showing

regions bounded by the pairs of stretch rays joining several rational points at

infinity to the hexagonal punctured torus.

COROLLARY 5.6. Given X, Y ∈ T(S1,1), if Λ(X, Y ) is a simple closed curve,

then Env(X, Y ) is a compact quadrilateral.

Proof. The statement follows from Proposition 5.4 and the fact that Env(X, Y ) =
Out(X, α) ∩ In(Y, α).

PROPOSITION 5.7. In T(S1,1), the set Env(X, Y ) varies continuously as a

function of X and Y with respect to the topology induced by the Hausdorff

distance on closed sets.

Proof. First, suppose Λ(X, Y ) is a simple closed curve α. By [Thu86c,

Theorem 8.4], if X i → X and Yi → Y , then Λ(X, Y ) contains any limit point of

Λ(X i , Yi); thus, Λ(X i , Yi) = α for all sufficiently large i . That is, for sufficiently

large i , Env(X i , Yi) is a compact quadrilateral bounded by segments in the

foliations F±
α . Let Z be the left corner of Env(X, Y ), that is, the intersection point

of the leaf of F+
α through X and the leaf of F−

α through Y . For any neighborhood

U of Z , by smoothness and transversality of F±
α , there is a neighborhood UX of

X and a neighborhood UY of Y such that for all sufficiently large i , X i ∈ UX ,

Yi ∈ UY , and the leaf of F+
α through X i and the leaf of F−

α through Yi will intersect

in U . That is, for all sufficiently large i , the left corner of Env(X i , Yi) lies close

to the left corner of Env(X, Y ). A similar argument holds for the right corners.

This shows that Env(X i , Yi) converges to Env(X, Y ).
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Figure 10. Env(X i , Yi) is sandwiched between Gi and G′
i .

Now suppose Λ(X, Y ) = λ is a maximal chain-recurrent lamination and

X i → X and Yi → Y . Let λ̂ be the canonical completion of λ, and let G be the

stretch path along λ̂ passing through X and Y . Also let Gi and G′
i be the stretch

paths along λ̂ through X i and Yi , respectively. Since stretch paths along λ̂ foliate

T(S1,1), Gi and G′
i either coincide or are disjoint. In the backward direction, all

stretch paths along λ̂ converge to λ (the stump of λ̂) in PML [Pap91]. If they

coincide, then Λ(X i , Yi) = λ and Env(X i , Yi) is a segment of Gi . If they are

disjoint, then they divide T(S1,1) into three disjoint regions. Let Mi be the closure

of the region bounded by Gi ∪ G′
i ; see Figure 10. In the case that Gi = G′

i , set

Mi = Gi . For any geodesic L from X i to Yi , since X i , Yi ∈ Mi , if L leaves Mi ,

then it must cross either Gi or G′
i at least twice. But two points on a stretch path

cannot be connected by any other geodesic in the same direction; so L must be

contained entirely in Mi . Therefore, Env(X i , Yi) ⊂ Mi (see Figure 10). Since Gi

and G′
i converge to G, Mi also converges to G. Therefore, Env(X i , Yi) converges to

a subset of G. For any Z i ∈ Env(X i , Yi), dTh(X i , Z i)+ dTh(Z i , Yi) = dTh(X i , Yi),

so by continuity of dTh, Z i must converge to a point Z ∈ G with dTh(X, Z)+dTh(Z ,

Y ) = dTh(X, Y ). In other words, Z lies on the geodesic from X to Y . This shows

that Env(X i , Yi) converges to Env(X, Y ).

We can now assemble the proof of Theorem 1.1: part (ii) is Proposition 5.7,

part (iii) is Proposition 5.2(i), and part (iv) is Corollary 5.6. Part (i) is immediate

by Corollary 5.6 for simple closed curves and by part (iii) for the remaining case.
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6. Thurston norm and rigidity

In this section, we introduce and study Thurston’s norm, which is the

infinitesimal version of the metric dTh, and prove Theorems 1.4 and 1.5.

6.1. The norm. Thurston showed in [Thu86c] that the metric dTh is Finsler,

that is, it is induced by a norm ‖�‖Th on the tangent bundle. This norm is naturally

expressed as the infinitesimal analogue of the length ratio defining dTh:

‖v‖Th = sup
α

dXℓα(v)

ℓα(X)
= sup

α

dX (log ℓα)(v), v ∈ TXT(S). (23)

The following regularity of the norm will be needed in our study of isometries of

Thurston’s metric.

THEOREM 6.1. Let S be a surface of finite hyperbolic type. Then the Thurston

norm function TT(S) → R is locally Lipschitz.

The Thurston norm is defined as a supremum of a collection of 1-forms; we will

deduce its regularity from that of the forms. In preparation for stating a result to

that effect, we must introduce some terminology.

Let M be a smooth manifold, let π : V → M be a vector bundle over M , and

let E be a collection of sections of V . We say that E is locally uniformly bounded

if for each x ∈ M , there exists a neighborhood U of x and a compact set K ⊂ V

such that for each y ∈ U and e ∈ E, we have e(y) ∈ K . We say that E is locally

uniformly Lipschitz if for each x ∈ M , there exists a neighborhood U of x , a local

trivialization ϕ : π−1(U )
∼
−→ U × Rn , and a constant M so that for each e ∈ E, if

we use the local trivialization ϕ to regard the section e as a map Ui → Rn , then

this function is M-Lipschitz. Here we fix any background norm on Rn in order to

define Lipschitz functions to that space; because all such norms are bi-Lipschitz

equivalent, the definition of locally uniformly Lipschitz does not depend on that

choice.

LEMMA 6.2. Let M be a smooth manifold and E a collection of 1-forms on M.

Suppose that E, considered as a collection of sections of T ∗M, is locally uniformly

bounded and locally uniformly Lipschitz. Then the function E : T M → R defined

by

E(v) := sup
e∈E

e(v)

is locally Lipschitz (assuming it is finite at one point).
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Note that ‘locally Lipschitz’ is a well-defined property of a function on a

smooth manifold or a section of a vector bundle; it is equivalent to saying that

the collection consisting of only that section (or function) is locally uniformly

Lipschitz.

Proof. Any linear function Rn → R is Lipschitz; however, the Lipschitz constant

is proportional to its norm as an element of (Rn)∗. Thus, for example, a family

of linear functions is uniformly Lipschitz only when the corresponding subset of

(Rn)∗ is bounded.

For the same reason, if we take a family of 1-forms on M (sections of T ∗M)

and consider them as fiberwise-linear functions T M → R, then in order for these

functions on T M to be locally uniformly Lipschitz, we must require the sections

of T ∗M to be both locally uniformly Lipschitz and locally uniformly bounded.

Here, the compact set K in the definition of locally uniformly bounded ensures

that the pointwise norms of the sections in T ∗M are bounded in a neighborhood

of any point.

Thus, the hypotheses on E are arranged exactly so that the family of functions

T M → R of which E is the supremum is locally uniformly Lipschitz.

The supremum of a family of locally uniformly Lipschitz functions is locally

Lipschitz or identically infinity. Since the function E is such a supremum, we find

that it is locally Lipschitz once it is finite at one point.

Proof of Theorem 6.1. By (23), the Thurston norm is a supremum of the type

considered in Lemma 6.2. Therefore, it suffices to show that the set

d logC := {d log ℓα : α a simple curve}

of 1-forms on T(S) is locally uniformly bounded and locally uniformly Lipschitz.

To see this, first recall that length functions extend continuously from curves

to the space ML(S) of measured laminations (see, for example, [Thu86b],

[Bon86, Proposition 4.6]) and also that they extend from real-valued functions

on Teichmüller space to holomorphic functions on the complex manifold QF(S)

of quasi-Fuchsian representations (see [Bon96, page 292]) in which T(S) is a

totally real submanifold. The resulting length function ℓλ : QF(S) → C depends

continuously on λ in the locally uniform topology of functions on QF(S) [Bon98,

pages 20–21].

For holomorphic functions, locally uniform convergence implies locally

uniform convergence of derivatives of any fixed order; so we find that the

derivatives of ℓλ also depend continuously on λ.

Restricting to T(S) ⊂ QF(S) and noting that the length of a nonzero measured

lamination does not vanish on T(S), we see that the 1-form d log(ℓλ) on T(S) is



D. Dumas, A. Lenzhen, K. Rafi and J. Tao 46

real-analytic and that the map λ 7→ d log(ℓλ) is continuous from ML(S) \ {0} to

the C1 topology of 1-forms on any compact subset of T(S).

Since the 1-form d log ℓλ is invariant under scaling λ, it is naturally a function

(still C1 continuous) of [λ] ∈ PML(S) = (ML(S) \ {0})/R+. Because PML(S)

is compact, this implies that the collection of 1-forms

d logPML := {d log ℓλ : [λ] ∈ PML(S)}

is locally uniformly bounded in C1. In particular, it is locally uniformly Lipschitz,

and since this collection contains d logC, we are done.

6.2. Shape of the unit sphere. Fix X ∈ T(S) for the rest of this section. Let

T 1
XT(S) denote the unit sphere of Thurston’s norm, that is,

T 1
XT(S) = {v ∈ TXT(S) : ‖v‖Th = 1}.

Similarly, let T
61

X T(S) denote the unit ball of Thurston’s norm.

The dual of the convex set T
61

X T(S) has a convenient description in terms of

measured laminations.

THEOREM 6.3 (Thurston [Thu86c]). The map PML(S) → T ∗
XT(S) given by

µ 7→ dX log ℓµ embeds PML(S) as the boundary of a convex neighborhood of

the origin. This convex neighborhood is the dual convex set of T
61

X T(S).

Unlike this dual set, a typical point in the boundary of T
61

X T(S) does not have a

canonical description in terms of a lamination on S. However, certain points in the

sphere arise from stretch paths. Specifically, let CL denote the set of all complete

geodesic laminations on S. We have a map

vX : CL → T 1
XT(S),

where vX (λ) is the tangent vector at t = 0 to the stretch path t 7→ stretch(X, λ, t).

This map is ‘dual’ to the map dX log ℓ� in the weak sense that dX log ℓµ(vX (λ))= 1

if µ is a measured lamination whose support is contained in λ.

For later use, it will be important to note the continuity of the map vX , which

follows easily from the results of [Bon98].

LEMMA 6.4. The map vX is continuous with respect to the Hausdorff topology

on CL.

Proof. Let λn ∈ CL be a sequence that converges in the Hausdorff topology. In

[Bon98, pages 20–21], Bonahon shows that the associated shearing embeddings
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Figure 11. At left, the unit sphere T 1
XT(S1,1) of the Thurston norm on the tangent

space at the point X = 0.35 + 1.8i in the upper half-plane model of T(S1,1). At

right, the unit sphere of the dual norm on the cotangent space.

sλn
: T(S) → RN converge in the C k topology to sλ on any compact subset of

T(S). (More precisely, Bonahon shows locally uniform convergence of a sequence

of holomorphic embeddings that complexify the shearing coordinates. Locally

uniform convergence of holomorphic maps implies local C k convergence.) Since

stretch paths are rays from the origin in the shearing coordinates, this shows that

the tangent vectors vX (λn) to such stretch paths converge to vX (λ).

Now we specialize in the punctured torus case. That is, for the rest of this

section, we assume S = S1,1. An example of the Thurston unit sphere (circle) and

its dual are shown in Figure 11. We will show that in this case, the shape of the

unit sphere determines the hyperbolic structure X up to the action of the mapping

class group.

In [Thu86c], Thurston studies the facets of the unit ball in TXT(S), showing, in

particular, that they correspond to simple curves on the surface. We will require a

slight extension of the result about these facets given by Thurston in Theorem 10.1

of that paper. While a corresponding result for any surface is suggested by

Thurston’s work, here we will use an ad hoc argument specific to the punctured

torus case.

Let RL ⊂ CL be the set of canonical completions of maximal chain-recurrent

geodesic laminations on S1,1. Thus, for any simple curve α on S1,1, we have α+,

α− ∈ RL, and any λ ∈ RL is either of this form or is a completion of a measured

lamination without closed leaves.
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THEOREM 6.5. Let L be a support line of the unit ball of ‖�‖Th. Then either

(i) L ∩ T 1
XT(S1,1) is a line segment with endpoints vX (α

+) and vX (α
−) for a

simple curve α, in which case L = {v : (dX log ℓα)(v) = 1} or

(ii) L ∩ T 1
XT(S1,1) is a point and is equal to {vX (λ̃)} for λ̃ the canonical

completion of a measured lamination λ with no closed leaves.

Proof. First, note that Theorem 5.1 implies that vX (α
+) 6= vX (α

−); so case (i)

always yields a (nondegenerate) line segment.

By the duality between the embedding of PML(S) in T ∗
XT(S1,1) and the norm

ball T
61

X T(S1,1), the support lines of the latter are exactly the sets

Lµ = {µ : (dX log ℓµ)(v) = 1}

for nonzero µ ∈ ML(S1,1). Thus, it suffices to characterize the set

L ′
µ := Lµ ∩ T 1

XT(S1,1)

for such µ. Since Lµ is a support line of T
61

X T(S1,1), we have that L ′
µ is a compact

convex subset of a line, that is either a point or a segment. If L ′
µ is a segment, then

at any interior point p of this segment, the line Lµ is the unique support line of

T
61

X T(S1,1) through p.

Suppose α is a simple curve. Then vX (α
±) ∈ L ′

α since α ⊂ α±. By convexity

of L ′
α, the closed segment with endpoints vX (α

±) is also a subset of L ′.

If L ′
α properly contained this segment, then at least one of vX (α

+) or vX (α
−)

would be an interior point of L ′, and, hence, there would be a neighborhood of

that point in T 1
XT(S1,1) in which Lα is the unique support line.

To see that this is not the case, choose λ ∈ RL that does not contain α (such

as λ = β+ for β a simple curve that intersects α). Then the sequence of Dehn

twists λn = Dn
α(λ) converges to α± in the Hausdorff topology as n → ±∞, and

the stump µn of λn has [µn] 6= [α] ∈ PML(S1,1) for all n. By Lemma 6.4, the

sequence vX (λn) converges (again as n → ±∞) to vX (α
±). Also, vX (λn) lies on

the support line Lµn
. Since PML(S1,1) embeds in T ∗

XT(S1,1) (Theorem 6.3), the

lines Lµn
are all distinct from Lα. This shows that Lα is not the unique support

line in any neighborhood of vX (α
±) and that (i) holds in this case.

Now consider L ′
µ for µ a measured lamination with no closed leaves. Let µ̃ ∈

RL be the canonical completion of µ. Then vX (µ̃) ∈ L ′
µ. To complete the proof,

we show L ′
µ = {vX (µ̃)} so that these support lines give case (ii).

Suppose for contradiction that L ′
µ contains a nontrivial segment. Then Lµ is the

unique support line of T 1
XT(S1,1) in the interior of that segment, which has vX (µ̃)

in its closure.
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We can approximate µ̃ in the Hausdorff topology by completions α+
n of simple

curves αn and can furthermore do so with [αn] ∈ PML(S) converging to [µ] ∈
PML(S) from either side (recalling that PML(S) ≃ S1 so that removing [µ]
separates a small neighborhood in PML(S) into two sides). Thus, the directions

of the support lines Lα+
n

can be taken to converge to that of Lµ from a given side.

As in the previous case, Lemma 6.4 shows that vX (α
+
n ) converges to vX (µ̃), and

since vX (α
+
n ) lies on Lαn

, this convergence can be taken to be from either side

of vX (µ̃). Since the support lines Lαn
are distinct from Lµ, this shows that the

support line is not unique in any interval whose closure contains vX (λ̃), which is

the desired contradiction.

Having established that the maximal line segments in T 1
XT(S1,1) are exactly

those with endpoints vX (α
±) for α a simple curve, we now study the geometry of

these segments. From now on, we refer to these simply as facets. Let |F(X, α)|
denote the length of the facet corresponding to a curve α with respect to ‖�‖Th,

that is

|F(X, α)| = ‖vX (α
+)− vX (α

−)‖Th.

To estimate this length, we first need the following lemma.

LEMMA 6.6. Let EQα(X, t) be the earthquake path along α with EQα(X, 0) = X.

Let ˙EQα = (d/dt)EQα(t)|t=0. Then we have

‖ ˙EQα‖Th
∗≍X ℓα(X).

Proof. In fact, this is true for arbitrary measured laminations, for the Teichmüller

space of any surface S, and for any norm on TXT(S). It is essentially just a

rephrasing of [Thu86c, Theorem 5.2] and the subsequent discussion.

The map λ 7→ ˙EQλ is a homeomorphism ML(S)→ TXT(S) (compare [Gar95,

Theorem 5.1]), and, in particular, the tangent vector to the earthquake path of a

nonzero lamination is always nonzero. The function λ 7→ ˙EQλ/ℓλ(X) is invariant

under scaling of λ and hence gives a well-defined continuous map PML(S) →
TXT \ {0}. By compactness of PML(S), the function ‖ ˙EQλ/ℓλ(X)‖ is bounded

above and below by positive constants, which is equivalent to the claim of the

lemma.

PROPOSITION 6.7. For every curve α, we have

|F(X, α)| ∗≍X ℓα(X)
2 e−ℓα(X).

Proof. Let X+
t and X−

t be as in Section 5.1. These are paths with X+
0 = X−

0 = X

and with tangent vectors vX (α
+) and vX (α

−), respectively, at t = 0. Note that the
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length of α is the same in X+
t and X−

t ; hence,

X+
t = EQα(X

−
t ,∆(t)), (24)

where as before EQα is the earthquake map along α and ∆ is the function

∆(t) = τα(X
+
t )− τα(X

−
t ) = 4et log coth

ℓα(X)

2
− 4 log coth

et ℓα(X)

2
.

Note that∆(0) = 0, and define ∆̇ = (d/dt)∆(t)|t=0. Differentiating (24) at t = 0,

we find

d

dt
X+

t

∣∣∣∣
t=0

= (D1 EQα)(X,0)

(
d

dt
X−

t

∣∣∣∣
t=0

)
+ (D2 EQα)(X,0)(∆̇). (25)

Here, D1 and D2 denote the derivatives of EQα with respect to its first and second

arguments, respectively. Now, as observed above, the left-hand side of (25) is

vX (α
+). Also, since EQα(Y, 0) = Y for all Y , we have that (D1 EQα)(X,0) is the

identity map, and the first term on the right-hand side of (25) becomes vX (α
−).

Recalling that ĖQα = (d/dt)EQα(X, t)|t=0, the second term on the right-hand

side of (25) is equal to ∆̇ ĖQα.

Thus, we have

vX (α
+) = vX (α

−)+ ∆̇ ĖQα

and, hence,

|F(X, α)| = ‖vX (α
+)− vX (α

−)‖Th = |∆̇| ‖ĖQα‖Th. (26)

Using the formula for ∆(t) given above, we compute

∆̇ = 4 log coth
ℓα(X)

2
+ 4ℓα(X) csch(ℓα(X)) > 0.

For large values of x , we have

log coth(x) ∼ 2e−2x and csch(x) ∼ 2e−x .

Hence, for large values of ℓα(X), we have

|∆̇| = ∆̇ ∼ 8e−ℓα(X) + 4ℓα(X)e
−ℓα(X) ∗≍ℓα(X)e

−ℓα(X),

and by Lemma 6.6,

‖ ˙EQα‖Th
∗≍X ℓα(X).

Substituting these estimates for ∆̇ and ‖ ˙EQα‖Th into (26) gives the proposition.
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Figure 12. The train track structure of a neighborhood of α+
0 (shown in a collar

about α).

THEOREM 6.8. Let α and β be curves with i(α, β) = 1. Let βn = Dn
α(β). Then

lim
n→∞

|log|F(X, βn)||

n
= ℓα(X).

Proof. For large values of n,

ℓβn
(X)

+≍nℓα(X).

The theorem now follows from Proposition 6.7.

Using the results above, we can now show that the shape of the unit sphere in

T 1
XT(S1,1) determines X up to the action of the mapping class group.

Proof of Theorem 1.4. Within the convex curve T 1
XT(S1,1), let U0 denote an open

arc disjoint from F(X, α) which has vX (α
+) as one endpoint. We use ‘interval

notation’ to refer to open arcs within U0, where (x, y) refers to the open arc in U0

with endpoints x, y. Thus, for example, U0 itself is (vX (α
+), y) for some y.

Let S(U0) denote the set of curves γ such that F(X, γ ) ⊂ U0. Thus, S(U0)

corresponds to the rational points of an interval in PML(S1,1) with α as one of its

endpoints. Any sequence of simple closed geodesics in this interval converging to

α in PML(S1,1) also converges in the Hausdorff topology, to α+
0 .

Thus, for any ǫ > 0, by choosing U0 small enough, we can assume that all

of the curves γ ∈ S(U0) have geodesic representative in X that is contained in

an ǫ-neighborhood of the geodesic lamination α+
0 . This neighborhood has the

structure of a thickened train track τ with three branches (as shown in Figure 12):

along α, there is a ‘thick’ branch and a ‘thin’ branch, and there is a third branch κ
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which connects one side of α to the other. Such a curve γ is therefore determined

by a pair of coprime nonnegative integers (p, q), where p is the weight of the

thin branch along α and q is the weight of κ . (By the switch relations, these two

weights determine the weight of the thick branch to be p + q). We call (p, q) the

coordinates of γ . In terms of these coordinates, q is the geometric intersection

number of the curve with α.

Let ℓ1 denote the length of the branch κ , which we define to be the minimum

length of a path in the rectangle joining its short sides, and let ℓthick, ℓthin denote the

lengths of the branches along α. Note that ℓ1 increases without bound as ǫ → 0;

so we assume from now on that ℓ1 is much larger than ℓα(X). Also, since the

union of the thick and thin branches gives a small neighborhood of α, we have

ℓthick + ℓthin = ℓα(X)+ O(ǫ).

The point of this train track representation for curve in S(U0) is that it gives a

simple estimate for hyperbolic length. Specifically, the simple curve carried by τ

with coordinates (p, q) breaks into p arcs in κ , q arcs in the thin branch and p+q

arcs in the thick branch. Each arc has length equal to that of its branch, up to an

error proportional to ǫ. Thus, the overall length is

ℓ(p, q) = q ℓ1 + p ℓthin + (p + q) ℓthick + O((p + q)ǫ)

= q(ℓ1 + ℓthick)+ p (ℓthin + ℓthick)+ O((p + q)ǫ)

= q(ℓ1 + ℓthick)+ p ℓα(X)+ O((p + q)ǫ),

where the factor of ǫ accounts for the difference between the length of the branch

and the length of a segment of γ contained in the branch.

The quantity p/q (the slope of the curve, for a suitable homology basis) is

an affine coordinate for a neighborhood of α in PML(S1,1) ≃ RP1 in which α

corresponds to 1/0; thus, S(U0) corresponds to curves with coordinates satisfying

p/q > m for some constant m ∈ R. By the length estimate above, after shrinking

U0 so that ǫ is much smaller than ℓα(X) and ℓ1, we find that the minimum

length of a curve in S(U0) is attained for q = 1 and the smallest integer p

with that p > m. Denote these length minimizing coordinates by (p0, 1) and

the corresponding curve by γ0. Note that any other curve in S(U0) has length

exceeding this minimum by at least a fixed positive multiple of ℓα(X).

By Proposition 6.7, the length of a facet corresponding to a curve whose

hyperbolic length is bounded below is exponentially decreasing in length of

the curve, up to a fixed multiplicative error. (Here, assuming a lower bound

on the length allows us to ignore the factor ℓγ (X)
2 in that proposition as

it is overwhelmed by the exponential decay.) Therefore, long curves with a

sufficiently large difference in hyperbolic length have associated facets whose

lengths compare in the opposite way. By taking ℓα(X) to be large enough and

U0 small enough so that all curves in S(U0) are long, the hyperbolic length gap
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between the minimizer γ0 and any other curve in S(U0) noted above implies that

F(X, γ0) is the longest facet in U0.

Now, we can shrink U0 to exclude F(X, γ0), find the new longest facet, and

iterate this construction. That is, we apply the argument above to the arc (vX (α
+),

vX (γ
−
0 )) and find hyperbolic length minimizer and facet length maximizer γ1.

Taking vX (γ
−
0 ) as the endpoint means that the coordinates (p, q) of curves whose

facets lie in this arc now satisfy p/q > p0, so arguing exactly as above, we

find that the coordinates of γ1 are (p0 + 1, 1). Continuing inductively, we obtain

a sequence γi of curves, each corresponding to the longest facet in (vX (α
+),

vX (γ
−

i−1)) and having coordinates (p0 + i, 1). We call this the sequence of longest

facets.

Recall that the Dehn twist about α acts in these coordinates by adding 1 to the

slope of the curve. Thus, in more invariant terms, we have shown that the sequence

of longest facets to one side of α+ corresponds to the sequence of all sufficiently

large positive powers of the Dehn twist about α applied to a curve intersecting α

once. This is the sort of collection considered in Theorem 6.8, which shows that

the hyperbolic length of α is determined by the asymptotic behavior of these facet

lengths.

An argument very similar to the one above shows that the sequence of longest

facets in a small neighborhood of vX (α
−) corresponds to large negative powers

of the Dehn twist about α applied to a curve intersecting α once, and that through

the asymptotics of their lengths, the geometry of the norm sphere near vX (α
−)

also determines the length of α. As before, this applies to any simple curve α

that is sufficiently long on X . Collectively, we refer to the arguments above as the

longest facet construction.

Now for X, Y ∈ T(S1,1), assume that there is a norm-preserving linear map

L : TXT(S1,1) → TYT(S1,1).

Since L is linear, it maps the facets in T 1
XT(S1,1) bijectively to those in T 1

Y T(S1,1).

By Theorem 6.5, this induces some permutation on the simple curves that label

the facets: for a simple curve γ , we denote by γ ∗ the simple curve such that

L(F(X, γ )) = F(Y, γ ∗).

Choose a simple curve α so that ℓX (α) and ℓY (α
∗) are large enough so that the

longest facet construction applies to both of them. Then we obtain a sequence of

curves γi = Di
αβ which satisfy i(γi , α) = 1 and whose facets F(X, γi) approach

one endpoint of F(X, α) with each being longest in some neighborhood of that

endpoint. As L is an isometry, the image facets F(X, γ ∗
i ) approach some endpoint

of F(X, α∗) and are locally longest in the same sense. Thus, the curves γ ∗
i are also
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obtained by applying powers (positive or negative) of a Dehn twist about α∗ to a

fixed curve and they satisfy i(γ ∗
i , α

∗) = 1. Since |F(X, γi)| = |F(Y, γ ∗
i )|, we

conclude ℓX (α) = ℓX (α
∗).

Now choose an integer N so that ℓX (γN ) and ℓY (γ
∗
N ) are large enough to apply

the longest facet construction (to γN and γ ∗
N , respectively). Proceeding as in the

previous paragraph, we find ℓX (γN ) = ℓY (γ
∗
N ).

At this point, we have two pairs of simple curves intersecting once, (α, γN )

and (α∗, γ ∗
N ), and the lengths of the first pair on X are equal to those of the

second pair on Y . This implies that X and Y are in the same orbit of the extended

mapping class group: take a mapping class φ with φ(α) = α∗ and φ(γN ) = γ ∗
N .

Then α has the same length on X and φ−1(Y ); so these points differ only in

the Fenchel–Nielsen twist parameter (relative to pants decomposition α). Since

the length of γN is the same as well, either the twist parameters are equal and

X = φ−1(Y ) or the twist parameters differ by a sign and X = r(φ−1(Y )) where

r is the orientation-reversing mapping class which preserves both α and γN while

reversing orientation of γN .

6.3. Local and global isometries. Before proceeding with the proof of

Theorem 1.5, we recall some standard properties of the extended mapping

class group action on T(S1,1). (For further discussion, see, for example, [Kee74,

Section 2] [FM12, Section 2.2.4].)

The mapping class group Mod(S1,1) = Homeo+(S1,1)/Homeo0(S1,1) of the

punctured torus is isomorphic to SL(2,Z), and identifying T(S1,1) with the upper

half-plane H in the usual way, the action of Mod(S1,1) becomes the action of

SL(2,Z) by linear fractional transformations. Similarly, the extended mapping

class group Mod±(S1,1) = Homeo(S1,1)/Homeo0(S1,1) can be identified with

GL(2,Z), where an element
(

a b
c d

)
of determinant −1 acts on H by the conjugate-

linear map z 7→ (az̄ + b)/(cz̄ + d). Neither of these groups acts effectively on H

since in each case the elements ±I act trivially; thus, when considering the action

on T(S1,1), it is convenient to work with the quotients PSL(2,Z) and PGL(2,Z)

which act effectively.

The properly discontinuous action of PGL(2,Z) on H preserves the standard

(2, 3,∞) triangle tiling of H (see Figure 13), with the cells of each dimension in

this tiling corresponding to different types of isotropy; specifically, we have the

following:

• A point in the interior of a triangle has trivial stabilizer in PGL(2,Z).

• A point in the interior of an edge has stabilizer in PGL(2,Z) isomorphic to Z/2

and generated by a reflection, that is, an element conjugate to either z 7→ −z̄ or

z 7→ −z̄ + 1.
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Figure 13. The standard (2, 3,∞) triangle tiling of the upper half-plane. The

marked point is the imaginary unit i .

While vertices of the tiling have larger stabilizers, the only property of such points

we will use is that they form a discrete set.

Proof of Theorem 1.5. Let U be an open connected set in T(S1,1) and let f : (U,
dTh) → (T(S1,1), dTh) be an isometric embedding.

By Theorem 6.1, the Thurston norm is locally Lipschitz (locally C
0,1
loc ). By

[MT17, Theorem A], an isometry of such Finsler spaces is C
1,1
loc and its differential

is norm-preserving. Therefore, for each X ∈ U , the differential

dX f : TXT(S1,1) → T f (X)T(S1,1)

is an isometry for the Thurston norm, and by Theorem 1.4, there exists Φ(X) ∈
PGL(2,Z) such that

f (X) = Φ(X) · X. (27)

This property may not determineΦ(X) ∈ PGL(2,Z) uniquely; however, choosing

one such element for each point of U , we obtain a map Φ : U → PGL(2,Z).

Let X0 ∈ U be a point with trivial stabilizer in PGL(2,Z). Using proper

discontinuity of the PGL(2,Z) action, we can select neighborhoods V of X0 and

W of f (X0) so that

{φ ∈ PGL(2,Z) : φ · V ∩ W 6= ∅} = {Φ(X0)}.

However, by continuity of f and (27), we find that the Φ(X) is an element of this

set for all X near X0. That is, the map Φ is locally constant at X0. More generally,
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this shows thatΦ is constant on any connected set consisting of points with trivial

stabilizer.

Now we consider the behavior ofΦ and f in a small neighborhood V of a point

X1 with Z/2 stabilizer—that is, a point in the interior of an edge e of the (2, 3,∞)

triangle tiling. Taking V to be a sufficiently small disk, we can assume V \ e has

two components, which we label by V±, and that each component consists of

points with trivial stabilizer (equivalently, V does not contain any vertices of the

tiling). By the discussion above,Φ is constant on V+ and on V−, and we denote the

respective values by φ+ and φ−. By continuity of f , the element φ−1
+ φ− ∈ PGL(2,

Z) fixes e ∩ V pointwise and is therefore either the identity or a reflection. In the

latter case, f would map both sides of e (locally, near X1) to the same side of the

edge f (e), and, hence, it would not be an immersion at X1. This is a contradiction,

for we have seen that the differential of f is an isomorphism at each point. We

conclude φ+ = φ−, and f agrees with this extended mapping class on V \ e. By

continuity of f , the same equality extends over the edge e.

Let U ′ ⊂ U denote the subset of points with trivial or Z/2 stabilizer. We

have now shown that for each X ∈ U ′, there exists a neighborhood of X on

which f is equal to an element of PGL(2,Z). An element of PGL(2,Z) is

uniquely determined by its action on any open set; so this local representation of

f by a mapping class is uniquely determined and locally constant. Thus, on any

connected component of U ′, we have that f is equal to a mapping class. However,

U ′ is connected since U is connected and open and the set of points in T(S1,1)

with larger stabilizer (that is, the vertex set of the tiling) is discrete.

We have therefore shown f = φ on U ′, for some φ ∈ PGL(2,Z). Finally,

both f and φ are continuous, and U ′ is dense in U ; equality extends to U , as

required.
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