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AN ASYMPTOTICALLY COMPATIBLE APPROACH FOR NEUMANN-TYPE
BOUNDARY CONDITION ON NONLOCAL PROBLEMS

HUAIQIAN You!, XIN YANG Lu?, NATHANIEL TASK?® AND YUE YU**

Abstract. In this paper we consider 2D nonlocal diffusion models with a finite nonlocal horizon
parameter d characterizing the range of nonlocal interactions, and consider the treatment of Neumann-
like boundary conditions that have proven challenging for discretizations of nonlocal models. We propose
a new generalization of classical local Neumann conditions by converting the local flux to a correction
term in the nonlocal model, which provides an estimate for the nonlocal interactions of each point with
points outside the domain. While existing 2D nonlocal flux boundary conditions have been shown to
exhibit at most first order convergence to the local counter part as § — 0, the proposed Neumann-
type boundary formulation recovers the local case as O(6%) in the L°°(Q2) norm, which is optimal
considering the O(4?) convergence of the nonlocal equation to its local limit away from the boundary.
We analyze the application of this new boundary treatment to the nonlocal diffusion problem, and
present conditions under which the solution of the nonlocal boundary value problem converges to the
solution of the corresponding local Neumann problem as the horizon is reduced. To demonstrate the
applicability of this nonlocal flux boundary condition to more complicated scenarios, we extend the
approach to less regular domains, numerically verifying that we preserve second-order convergence for
non-convex domains with corners. Based on the new formulation for nonlocal boundary condition,
we develop an asymptotically compatible meshfree discretization, obtaining a solution to the nonlocal
diffusion equation with mixed boundary conditions that converges with 0(52) convergence.
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1. BACKGROUND

In recent years, there has been great interest in using nonlocal integro-differential equations (IDEs) as a
means to describe physical systems, due to their natural ability to describe physical phenomena at small scales
and their reduced regularity requirements which lead to greater flexibility [1,9,15-17,20,21,25,26,29,31, 33,34,
36,43,47,49, 55,58, 60,69, 70]. In particular, nonlocal problems with Neumann-type boundary constraints have
received particular attention [2,6, 8,18, 19,23, 27,28, 30, 32,39, 41,52, 53,57,61,69] due to their prevalence in
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describing problems related to: interfaces [3], free boundaries, and multiscale/multiphysics coupling problems
[5,7,44,59,68]. Unlike classical PDE models, in the nonlocal IDEs the boundary conditions must be defined
on a region with non-zero volume outside the surface [19,28,61], in contrast to more traditional engineering
scenarios where boundary conditions are typically imposed on a sharp co-dimension one surface. Therefore,
theoretical and numerical challenges arise from how to mathematically impose inhomogeneous Neumann-type
boundary conditions properly in the nonlocal model. For instance, in the peridynamic theory of solid mechanics
[4,22,35,37,38,42,45,46,60,62,65,67], the classical description of material deformation locally via a deformation
gradient is replaced by a nonlocal interaction described with integral operators. In these models, it has been
shown that the careless imposition of traction conditions on the nonlocal boundary induces an unphysical strain
energy concentration, leading in turn to the material being softer near the boundary. Such artificial phenomena
are referred to in the literature as a “surface” or “skin” effect [11,40]. On the other hand, differs from the local
problems, in some nonlocal problems boundary effects play a major role. For example, in nonlocal minimal
surface problems, the “stickiness” effect arises and the boundary datum may not be attained continuously
[12,24]. All the above examples indicate that careful treatments of the nonlocal boundary conditions are critical
for the study of nonlocal problems.

A key feature in the discretization of nonlocal models has been the concept of asymptotic compatibility,
originally introduced by Tian and Du [63], which describes the ability of a nonlocal discretization to recover a
corresponding local model as both § and a characteristic discretization lengthscale are reduced. We advocate the
development of both nonlocal boundary treatment and discretization with the objective of preserving this limit.
In doing so, we ensure that nonlocal models recover a well-understood classical limit, avoiding phenomena such
as the surface effect. To this end, we introduce here a non-local boundary treatment that is designed to recover
the classical theory. After rigorously proving that this nonlocal boundary value problem recovers the desired local
Neumann problem as § — 0, we have a firm mathematical foundation upon which to demonstrate asymptotic
compatibility, where we will develop an asymptotically compatible numerical method and demonstrate its high-
order convergence and a lack of artificial surface phenomena.

In this paper we study compactly supported nonlocal integro-differential equations (IDEs) with radial kernels.
For concreteness, we focus on the nonlocal diffusion equation

Lyus = 2 / Js(1x — y]) (usly) — us(x)) dy = f(x), x€QCRY, (1.1)
B(x,6)

although the proposed technique is applicable to more general problems. Here B(x, ) is the ball centered at x
with radius §, us(x) is the solution, € is a bounded and connected domain in RY (N = 2), f(x) is given data,
and the kernel function Js : R — R is parameterized by a positive horizon parameter § which measures the
extent of nonlocal interaction. We further take a popular choice of J5 as a rescaled kernel given by

() = 527 (). 12)

where J : [0,00) — R is a nonnegative and continuous function with [y J(|z|)|z|*dz = N.

Similar as in [61], we also assume that J(r) is nonincreasing in r, strictly positive in r € [0, 1] and vanishes
when 7 > 1. In this work we aim to design a new formulation of Neumann-type constraint for the nonlocal
problem (1.1) with mixed boundary conditions of Dirichlet, Neumann and mixed type, and present a numerical
discretization of the resulting problem.

We pose three requirements for this formulation:

(1) The constraint should be a proper nonlocal analogue to the local Neumann-type boundary conditions, so
the formulation provides an approximation of physical boundary conditions on a sharp surface.

(2) A boundary value problem given by the nonlocal Neumann-type constraint with the nonlocal diffusion
equation (1.1) should be well-posed. Rigorous mathematical analysis on the existence, uniqueness and
continuous dependence on data should be addressed for the associated variational problem.
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(3) The nonlocal Neumann-type boundary value problem should recover the classical Neumann problem as
§ — 0, preferably with an optimal convergence rate of O(62) in the L> norm.

In the first part of the paper, we provide analysis of the boundary value problem (BVP) to establish the
consistency and well-posedness of the boundary value problem. We establish here second-order convergence on
non-trivial geometry, improving upon the first-order, one-dimensional analysis found in the literature [19,30,61].
In the second part of this paper, we will present a new asymptotically compatible meshfree discretization of
the proposed nonlocal BVP [10,54,64]. We pursue an extension of previous work by Trask et al. [64] utilizing
an optimization-based approach to meshfree quadrature. This framework is attractive due to its demonstrated
ability to achieve high-order asymptotically compatible solutions on unstructured data, which is complementary
to the objective of developing boundary conditions consistent for irregular geometries. By introducing the new
boundary treatment we will demonstrate improved second-order convergence over the previously demonstrated
first order-convergence shown for Neumann problems [64].

The paper is organized as follows. We first present in Section 2 a definition of the nonlocal Neumann-type
boundary condition and the corresponding nonlocal variational problem, together with the associated nonlocal
operator and natural energy space. In Section 3, we study the well-posedness of the nonlocal variational problem
for convex and sufficiently regular domains. We provide a consistency result for the nonlocal BVP by showing
that the weak solution of the proposed nonlocal Neumann-type constrained value problem (denoted as us)
converges to the solution of the corresponding classical diffusion problem (denoted as ug) as the interaction
horizon § — 0 in the L?(Q) norm. Although the main proof in this section has assumed homogeneous Neumann
boundary conditions, a discussion on the extension to inhomogeneous Neumann-type boundary condition is also
provided. Furthermore, in Section 4 we prove the O(82) convergence rate of the continuous nonlocal solution
us 10 ug in the L™ (Q) norm without extra regularity assumptions on us. Numerical results utilizing a meshfree
quadrature rule are presented in Section 5. To verify the asymptotic compatibility of the combined boundary
treatment and the meshfree numerical scheme, in Section 6 we use manufactured solutions to demonstrate the
convergence of the discrete model to the local solution as both the discretization length scale A and the nonlocal
interaction length scale § — 0. Furthermore, in Section 7 we extend the approach to domains with corners
which indicate that the conclusions of the model problem and the convergence rates extrapolate to nontrivial
problems of interest to the broader engineering community. Section 8 summarizes our findings and discusses
future research. The appendices include additional technical details on the theoretical analysis.

2. A NONLOCAL FLUX CONDITION FOR 2D DIFFUSION PROBLEM

In this section, we first introduce a nonlocal flux boundary condition, and then provide a corresponding
nonlocal variational problem along with the associated energy space for the purpose of analysis. Given that
Qe RN (N = 2) is a bounded, convex, connected and C*® domain, we seek a nonlocal analogue to the local

Neumann boundary condition au_ g(x), x € 99 in the following classical problem

on
Loug := —Aug = f(x), in
% = g(x) n 0N
on IV © (2.1)

Jo wo(x) dx = 0.

Here n(x) is the unit exterior normal to  at x.
Moreover, we will use p(x) to represent the unit tangential vector with orientation clockwise to n(x). Before
introducing our nonlocal formulation, we denote the following notation (see Fig. 1 for illustration)

Qs = {x € Q|dist(x,09) < 6}, (RYV\Q)s := {x € RN\ Q|dist(x,00) < 6} .
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FIGURE 1. Left: notations for the domain, where 2 is represented by the green and red regions
together, and the nonlocal Neumann boundary condition is applied on the red region 25. Right:
notations for the projection of point x € €5, the corresponding unit tangential vector p(X) and
the unit normal vector n(X).

We further assume sufficient regularity in the boundary that we may take J sufficiently small so that for any
x € s, there exists a unique orthogonal projection of x onto 9€2. We denote this projection as X. Therefore,
one has X — x = 5,n(X) for x € Qs, where 0 < s, < §. We also assume that for x € 5, we can find a contour
['(x) which is parallel to 9. In the following contents, we denote x; as the point with distance ! to x along
I'(x) following the p(X) direction, and x_; as the point with distance ! to x in the opposite direction. Moreover,
we employ the following notations for the directional components of the Hessian matrix of a scalar function v:

[0)]pp =P @ V(X)PE),  [0(X)]n =0T (@) V(x)nE),  [0X)]pm = p" )V 0(x)n(),

and the higher order derivative components are similarly defined.
Since B(x,8) N (RM\Q)s # 0 for x € Q, from (1.1) we have

Lius = —2 / T5(1% — 1) (us(y) — us(x)) dy
B(x,6)

_ o / Ts(% — 1) (us(y) — us(x)) dy — 2 / Ts(1% — y)(us(y) — us(x)) dy,
B(x,6)N< B(x,0)N(RN\Q)s

hence we need to approximate the integral in B(x, )N (R \Q)s and obtain a formulation with correction terms.
Specifically, we propose the following flux boundary condition for (1.1): for x € Q5

- 2/ Js(jx = y)(us(y) — us(x)) dy — / Js(lx —y)(y —x) - nX)(9(x) + 9(v)) dy
Q RN \Q
= [ sl ¥l %) D) P dylus ()l = ) (2:2)
RN \Q
where the second and third terms aim to provide an approximation for
w2 [ Aoy sty — sy

Since the boundary condition g(x) is defined only on 99, the g(x) and ¢(y) terms in (2.2) will be approximated
with the following (local) extensions

9(x) = ¢g(X) = (x = %) - n(X) f(x) = (x = X) - 0(x)[u5(x)]pp,
9(y) = (%) = (y = %) - n(X)f(x) = (y = %) - n(X)[us(x)] pp-
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Furthermore, we replace [us(x)],, with its approximation 2ff Hs(J1]) (us(x) — us(x)) dx; — £(X)g(X), where

dx; is the line integral along the contour I'(x), k(X) is the curvature of 92 at X, and Hs(|r|) = EH 6) is
the kernel for 1D nonlocal diffusion model. Similar to the requirements for J, we assume here H : [0,00) —
to be a nonnegative and continuous function with [, H(|z|)[z[*dz = 1.

H(r) is nonincreasing in r, strictly positive in [0, 1] and vanishes for |z| > 1. Moreover, we add a further

requirement on H that [, H(z)dz := Cy < oo. Here we note that 2 fi; Hs(|1])(us(x1) —us(x)) dx; is a nonlocal
version of the Laplace—Beltrami operator defined on I'(x).
Substituting the above two approximations into (2.2), we obtain the following model

)
9 / T5(1% - y]) (us(y) — us(x)) dy — 2M;(x) / H (1) (s (1) — 5(x)) dx,
Q —0
) - / Ts(x—y) [Iy - %) -n@®)  (x - %) - n®)] dyf(x)
RN\Q

+ (2/ Js(|x —y(y —x) - n(xX)dy — Ma(X)KJ(X)) 9(%). (2.3)
RN\Q

where

Ms(x) := /RN\Q Js(Ix = y) [I(y =x) - p@)* ~|(y = %) n@)* +|(x — %) - n()[*] dy.

Thus, by defining the nonlocal operator
)
Lpu =2 / Ts(% - y])(uly) — u(x)) dy — 2M5(x) / Hy (1) (u(x1) — u(x)) dx
Q —0

and

fs(x) = f(x) = /RN\Q Js(lx =y [|(v =%) n@)* — |(x - %) n@)P] dyf(x)

+ (2/ Js(|x —y)(y —x) n(X)dy — Ma(X)F»(X)) 9(%), (2.4)
RN\Q

the proposed algorithm is equivalent to the following nonlocal integral equation

{LN(;ugngrCf, in

Jo us dx = 0. (25)

Here Cy is a constant independent of x to guarantee the compatibility condition, note that it vanishes in the
weak formulation. Given a test function v satisfying || o vdx = 0, the corresponding nonlocal weak formulation
can then be introduced

Bs(us,v) = (f5,v)12(0), (2.6)

where Bs(u,v) denotes a nonsymmetric bilinear form Bs(u,v) := (Lsu,v). We note that
— 2/ / Js(|x — y|)(u(y) — u(x)) dyv(x) dx
= [ [ x = yDuty) = uyeee) dyax [ slly = xl)(ux) — u())oty) dy dx
aJa aJa
— [ [ s = y)iuty) - ubelloty) - v} dy dx
aJa
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and
)
—2/QM5(X)/_6H5(|Z\)(U(XI) ~ u(x)) dxp(x) dx
=2 [ [ MG H5 (DD, y)(u(y) = u)olx) dy dx
- /Q /Q M; (%) Ha (1)) D, ) (uly) — u(x))[e(y) — v(x)] dy dx
- / / M (y) Hs (1) Dy, %) (u(x) — u(y))v(x) dx dy
QJQ
= [ [ Mo Hs ) D) aly) = u)e(x) dy dx
QJQ
- / / M; (%) Ha (1)) D, y)[u(y) — u(x)][o(y) — ()] ' (y)| dy dx

' (x)
4 / / [M5<y> o —M5<x>] Hy (1) D(x, y)(u(y) — u(x))o(x)r'(y)| dy dx

= | st /Ha () — u(x)][o(x) — v(x)) dx; dx

r'(x
/ / {M(; x;) | ))|| M(;(x)] Hs()I)[u(x;) — u(x)] dxgv(x) dx,
Qs
where r is the bijective parametrization of I'(x), |[r/(x)] is the Jacobian of r, and D(x,y) denotes a Dirac-Delta
function:
D(x,y) := lir% e 1 (dist(y,T'(x))/€), where 1 is a mollifier function on R.

Therefore
Biwo) = [ [ Js(x = yDluty) =~ uolfo(y) — o) dy e
+ Ma / Hs([I)[u(x) — u(x)][v(x) — v(x)] dx; dx
/ / [Mg x)| Mg(X):| Hs(|1]) [u(x:) — u(x)] dxjv(x) dx. (2.7)
Qs xi)|
We then consider the nonlocal energy seminorm || |lss as

)
ull3, = / / Ja(lx = ¥luy) — uol dyax-+ [ Mo / (D () w0} dx dx

with corresponding constrained energy space given by

S5(Q) = {u € L*(Q) : |Jul|s; < o0, /Qudx: 0}.

Given the nonlocal Poincaré inequality which will be addressed in the next section, we will see that || - ||g, is
actually a full norm. Similar to [50], one can show that the constrained energy space Ss(2) is a Hilbert space
under the given assumptions for the kernels J and H. We note that for a fixed § and integrable kernels J, H,
based on the results in [27,50] we have

lullg, < C1(8)([[ullZ2q) + dllulliz ;) < Ca(O)llullZz(q):
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where C1(6), C2(d) are constants independent of u but depending on §. Together with the Poincaré inequality,
we immediately obtain the equivalence result between S5(2) and the space of L?(£2) functions with zero mean.

Remark 2.1. A similar form of the flux condition (2.2) has been proposed in the previous literature, e.g.,
[19,61]. By comparing the second term of (2.2) with the first case in [19], one can see that the second term of
(2.2) can be obtained by taking G = G in [19] and modifying the correction term fRN\Q Gs(x,x—y)g(y)dy as

1
flRN\Q Gs(x,x — y)i(g(x) + ¢g(y)) dy. Actually, this modification is sufficient to provide a nonlocal Neumann-

type condition with second order accuracy in the 1D case, as shown in [61]. However, in higher dimensional
cases we need to add the third term of (2.2) to achieve second order accuracy.

Remark 2.2. Note that in the current paper we focus on the 2D nonlocal diffusion problem, while the idea
can be further extended to the 3D cases and to more general nonlocal IDEs, which will be addressed in future
work.

3. WELL-POSEDNESS AND ASYMPTOTIC PROPERTY

In this section, we first address the well-posedness of the proposed nonlocal Neumann volume-constrained
problem by providing a nonlocal Poincaré-type inequality based on the estimates for boundary curvature x(x)
and its derivative k’(x). The coercivity and boundedness of the nonsymmetric bilinear operator Bs(-,-) defined
in (2.7) follow, which yield the well-posedness of the variational problem. Furthermore, we study the consistency
of the nonlocal problem with the classical local model. Specifically, following the framework introduced in [63]
we prove the uniform embedding property and the precompact property of the proposed norm Ss, and then
show the asymptotic property of the solution of (2.5) as 6 — 0, i.e., the solution us converges to the solution ug
from the limiting local model (2.1). Here for simplicity we consider the case when g(x) = 0, and defer discussion
of inhomogeneous boundary conditions until Remark 3.11. For the limiting local model one can define the
corresponding inner product ||ul|s, = [|Vu|[r2(q), the bilinear form By(u,v) = (Vu, Vv) and the constrained
energy space Sy = {u € HY(Q): fQ udx = O}. Throughout this section, we consider the symbol “C” to indicate
a generic constant that is independent of ¢, but may have different numerical values in different situations.
Moreover, we introduce the following notation for simplicity:

bs(u, v) = / / Js(x — 1) (u(y) — u(x)(v(y) — v(x)) dy dx,

1
he (u, v) := ; M;(x) [SHa(lll)[u(Xz)—U(X)][U(Xz)—U(X)] dx; dx,

Ii(xy) =y =x) - p&)* — [(y - %) - n®)|* + |(x - %) - nX)*
We first have the following estimates of the function Ms(x) for each x € Q5.

Lemma 3.1. Forl € [0, 6], and assuming that there exist constants d, D > 0 such that |<'(z)| < D, |k(z)| < D

/

and sup|¢|<q n < D for almost every z € 0), there exists a 0 < § < d such that for § < & for almost every

(z¢)
K(z)
x € 99 we have 0 < Ms(x) < C and

My (x) — My () 2 ‘ < Caré?, (3.1)

' (x
‘Ma(X)Ir’(Xz)I — Ms(xy)|r' (x)
M (x)|r' (%)

~—

‘ < Oy, (3.2)

where Cyy, Cn are constants independent of §.
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zo x|l pX)

FIGURE 2. Notation for the geometric estimates in Lemma 3.1. Left: illustration of regions Djs
and As. Green represents Ds, the region in B(x,d) which lies on the other side of the tangential
line at X with respect to Q. Cyan represents Aj, the region in B(x,d) which lies between 02
and the tangential line. Right: representation of the Cartesian coordinate system locally near
X. Here the region Aj lies below the red curve y = f(x).

Proof. We show now that 0 < Ms(x) < C. Note that

My = [ asx-yDIsdy = [ s(x-yisdy + [ sl yisdy,
(RV\Q)5 Ds

As

With 7(X) representing the tangent line to 99 at X, here D; is the region of B(x,d) on the side of 7(X)
not containing 2 (as shown in the green region in the left plot of Fig. 2), and As := B(x,9)\(Ds U Q) (as
shown in the cyan region in the left plot of Fig. 2). We consider first the Ds part. One can rewrite y € Dj as
x + (rcos(f),rsin(f)) with s, < r < and —7/2 < —arccos(s,/r) < 6 < arccos(s,/r) < m/2, which yields

arccos(sz/r)

/Dé J5(|X—Y|)Lsdy:/85 Jé('f‘)/ Is(x,y)rdodr

= — arccos(sg /T)

)
s / Js(r)r2 /T = (50 /r2ss dr. (3.3)

x

From (3.3) we can see that st Js(|x —y|)Is dy > 0 and

Ms() > [ Jsx = 3Dy =) PP = (v %) - n(x) P dy. (3.4)
5
Therefore it suffices to show now that

Iy =%) - pX)| 2|y -%) nx)] Vyeds (3.5)

We adopt a Cartesian coordinate system as shown in the right plot of Figure 2, assuming that X coincides with
the origin, p(X) is oriented along the positive direction of the z-axis while n(X) coincides with the negative
direction of the y-axis. We then have X = (0,0), 7(X) = {y = 0}, @ C {y > 0}, and let y = f(x) be the curve
describing 0€2. We note that any point y lying below y = |z| satisfies (3.5). Assuming that there exists a point
z € 09 lying above y = |z|, there exists z¢ # 0 such that f(z¢) = |xo| and (zg, f(x0)) € IQ. For simplicity we
consider the case where xy > 0 since the case where 275 < 0 is analogous. Since f'(0) = 0, by continuity there
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exists at least one point 1 € (0,z0) such that f'(z1) > 1. Let xo := inf{t > 0: f/'(t) > 1} < 21 < ¢, then by
the regularity of f we have xo > 0. Thus f/(z2) — f/(0) =1 = foxz f"(s)ds. Moreover, the unsigned curvature
of the graph of f can be given by |f”(z)|(1+ f'(x)?)~3/2. Due to the finiteness of the curvature of 952, and the
fact that f'(x)? <1 for all z € [0, 25], we obtain D > |f”(2)|(1+ f'(z)?)~3/? and therefore

(@) < DL+ f/(@)*)*? <2V3D,  Va € [0,a2).

Hence

1=/0/2f”(8)ds</0/2f”( s < 2VBaap > 02 > s

But since x5 < xg, this means that the first intersection point between y = f(x) and y = |z| (which we denote
as w = (g, |xo|)) has distance at least x5 from X = (0,0). Thus, for sufficiently small § < 4\/1§D =:§;, we get

|w —X| > x5 > >26= sup [p—gql.
\[D P,q€ B(x,9)

Therefore, w ¢ B(x,d), and the entire region As lies below y = |z|. Consequently, any y € As satisfies
(y = %) - p(X)| > |(y — X) - n(X)| and in turn Ms > 0. On the other hand, with the C?3 regularity of Q and by
Taylor expansion B(x,d) N0 is the graph of a function of the form y = f(z) = = x) 2?2 + O(23). Therefore, the
area |As| < C|k(X)|(6% — s2)3/2 < CDJ®. Hence

M;(x) < ]/ Js(lx = y) s dy] i ‘/ Ts(lx — yDIs dy‘
Ds As

< Csup J(|r|) (6 *s,(82 — s2)3/% + D§) < C.

To show (3.1), denoting by Dsx,, Asx, the analogous sets of Dj, As at x; instead of x, we then have

TR Lol < — v\ Ix(x _ M| %1 — vV Is(x
Ms() = M) sy = [ a3y = e [ sy ay
o oDty dy — 50 [ty dy

With the definition of x; and the regularity assumptions on €2, it holds sy, := dist(x;, 9Q) = dist(x, ). We
obtain

/ Js(ix1 — y)s(xi,y) dy = / Js(1x — y)I5(x, ) dy.
D‘le Ds

Moreover, with the coordinate system as shown in the right plot of Figure 2, we have |r/(x)| =1 and |r/(x;)| =

V14 (f'(x))2. Since for any point x; = (zy, f(27)) in B(x,9), |f'(x;)| = |xlf”( )| < C§ for some & € [0,xy],

therefore

1| = S @) + 0 < 8 (3.6)

and hence together with (3.3) we obtain

v ()]

Gl o,

[ asx = yhistxy)ay - To(b = ¥ s, y) dy < C8*
Ds
To estimate fA5 Js(|lx—yDIs(x,y)dy — fAé Js(|xi —y|)Is(x;,y) dy, let R be the rototranslation mapping such
%]
that
R(x) =%, R(p(x))=pEX), R0E))=nx).
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With such construction we note that the curves R(B(x;,d) N 9Q) and B(x,d) N 02 share the same tangential
lines at X. Meanwhile, B(x, ) N9 and R(B(x;,0) NON) have different curvatures x(X) and x(X;), respectively.
When ¢ < 1/D, we have the arc lengths of R(B(x;,d) N 0Q) and B(x,d) N 0N satisfying |R(B(x;,0) N IN)| <
2,/02 — s2+Ck(%;) (6% —52) and | B(x,0)NIN| < 21/62 — s2+Ck(X)(d%—5s2). Moreover, the spread dz(B(x, )N
09, R(B(x;,6) N9N)) is bounded by

dy(B(x,6) N 99, R(B(x:,6) N 0Q))

= max { sup  dist(z, R(B(x;,6) N 9N)), sup dist(z, B(x,0) N 89)}
z€B(x,6)NoN z€R(B(x,6)NO8N)
< Clr(x:) = K(X)|(0% - 52).
Therefore, noting that the quantities Js, I5 and dy are invariant under R, and |I5(x;,y)|, |Is(x,y)| < 3562, one
has

As

[ st = shistay)dy = [ gsx = sDistxy) dy]
As

_ ‘ / D)y - [ st = yh1stxy) dy]

As
<C Ts(jx — y[)8> dy < Clr(x) — k(X)|672(6* — 52)*/°
ASAR(AE,XL)
< C sup |K(Re)|[67H(02 — s2)%2 < 057162 — s2)%/2, (3.7)
€Il

where the constant C depends on sup,J(|r|) and is independent of ¢. Moreover, with (3.6) and
‘fAs Js(|x —y|)1Is dy‘ < Csup, J(|r|)d we have

|<1 |r/(x))/A&x Js(ba — y[)Is(x1,y) dy

()

< 83,

Thus, we obtain the bound in (3.1).
We now work on the proof of (3.2) by combining (3.7) and establishing a lower bound for Ms. We firstly
prove that

< C. (3.8)

‘ MJ(X) — M(;(xl)
M;(x)

With the previous calculation, we have

§
/ Js(x —y)Isdy = 2/ Ts(r)r? /T = (52 /)28, dr > C6™*5,(6% — 52)%/2
D(; S

Sz

> O (1815, (0% — 8272 = Cli(R)16~15,(6% - s2)1/2
and fAs Js(x —y)Isdy > 0. When s2 > §2/2 one has

_ IR el -2
N |K(X)[0~45,(62 — 52)3/2 Sz |¢|<d

’ M(;(X) — M(;(Xl)
Ms(x)

=)
A(%)

and therefore (3.8) holds true. For s2 < §%/2, we just need to bound ng Js(x —y)Isdy from below. For

x
notational simplicity, we assume here the Cartesian coordinate system shown in the right plot of Figure 2. The

H/(X‘c')‘ < C§ sup
RE) 1T fel<a
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following properties hold:

(y — X) - p(X) = x coordinate of y, (3.9)
(y — X) - n(X) = —(y coordinate of y). (3.10)

We first assume that |k(X)| > 0. By Taylor approximation, B(x,d) N J is the graph of a function of the form
y = f(z) = @aﬂ + O(2®). Integrating it yields that the area |As| = C|x(X)|(0% — s2)%/2 = C|k(X)|6°. Let
h € (0,1) be a point where the area of A5 N {x > hé} is C|k(X)|6%/2. With the convexity assumption of 99,
one has h > 1/2. When 6 < §; < %, the slope of f (i.e. the slope of the tangent derivative of B(x,4d) N 9Q)
can reach at most D < 1/2. Thus the graph of f lies below the line y = /2 and (3.10) gives

I>|(y—x) - pEP-|(y-% 0@ >|(y-%) pX] -y —-%)  nx)
> 2y = %) pR)P 2 0 >

for ally € As N {z > hd}.
Recalling that J(r) is strictly positive for 0 < r <1 and therefore min,<; J(|r|) > 0, we infer

iz [ (s =) pEIP (v — %) nGoP) dy
Asn{z>h} TS1
3C
> ﬁlﬁ(i)‘é > C|&(X)|0. (3.11)
Combining with (3.7), we thus obtain the bound (3.8).
L
For |k(X)| = 0, with domain C? regularity assumption and SUpP|¢|<q Hm(():f)) ‘ < D a.e., we have £(X¢) = 0 for

|€] < d almost everywhere and therefore Ms(X;) = M;s(X) for |I| < § and 6 < d/2. (3.8) can then be trivially
proved.
We can now prove (3.2):

Ms(x)r' ()] Ma(Xz)IF’(X)I’ o M) ‘Ma(X) — Ms(x)
Ms(x)|r' (x1)] )l Ms(x)

~ ' (x
O

Remark 3.2. Note that in the previous proof we assumed J(r) is strictly positive in [0, 1] such that J(|r|) >
C7 > 0. However, the proof can be extended for a more general positive J whose support is the entire ball
B(0,1). It suffices to note:

— It easily follows from the previous proof that the set
As :={zecAs:|z—x|€[0/3,§/2]}

has area C|A;| for some constant C' € (0,1), and on Aj it holds Iy > (462, again for some constant
C: € (0, 1).

— Since J(r) is nonincreasing on r and its support is the entire ball B(0, 1) there exists another constant Co > 0
such that J(r) > Cy for r € [1/3,1/2].

Combining the above two facts, we obtain

Ms > — 1, > i 1, > X)|0.
5> /A sl yDlsdy 2 /A in Jo(r)lsdy 2 Clr()lp
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Remark 3.3. When u € C*°(Q), the above bounds of M;(x) yield

S
0< hi(uu) = [ Mg(x)/_éH(;(\lD[u(xl)—u(x)}del dx

J u(x) |?
< [ ans) [ s U@P

ou(x) |?
op

U2 +Cl?

dx; dx

@
%

< M (x)
Qs

dx + C|Qs]5 < C|Qs| (‘

Combining with the results in [63], we have lims_,q ||u|ls; = ||ul|s,-
We will now show a nonlocal Poincaré-type inequality:
Lemma 3.4. There exists a 0 < & <1 such that
lullZ2 () < CBs(u, u) (3.12)
for allw € S5 and § < b. Note that here & depends on both u and .

Proof. With Proposition 2 from [51] we have the bound for the first term in (2.7): there exist dy such that for
all § < 50,
[lul[F2(0y < C*bs(u,w), (3.13)

and here we assume C* > 0 without loss of generality. To estimate the remaining two terms, we first work
v’ ()]
v’ (1)

term of Bjs(u,u) vanishes. For the second term of Bs(u,u), with Lemma 3.1 we have M;s(x) > 0, and therefore
hs(u,u) = an M;s(x) ffé Hs(|1])[u(x;) — u(x)]? dx;dx > 0. We then have the Poincaré-type inequality: there
exists constants C' and dg such that for all u € S5 and § < dg:

on the case where §) is a straight line. For x € Q5 we have My(x;) = Ms(x), and therefore the last

[ul 3200y < Cbs(u ) < C* (b (u,u) + ha(u, u)) = C* Bs(u, ).

We now proceed to finish the proof. Here we assume that |[luz2(q) > 0, otherwise the result is trivial. For
simplicity, we now denote J; as min(dg,d) where § is defined in Lemma 3.1 and &, as in (3.13). With (3.13) and
Lemma 3.1 we still have ||u\|%2(9) < C*bs(u,u) and hs(u,u) > 0. We now proceed to estimate the last term in
Bs(u,u):

[ [Ma S 0] (0D fu) — )] )

> —5 M5 / Hs (|1 [u(x;) — u(x)]? dx; dx

IMs x) = M (x) [’ (x)] /|’ ()| P 2
/Q,;/ Hs(|1]) A dx;|u(x)|* dx

> Ly OnCu ' 3 2
> —5hs(u,u) — — Hs([1])07 dxifu(x)[* dx
Qs J -6

1 CnCuCré
> —sha(u,u) - A )2, ) (3.14)
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Hence, when

1 N
(5 i _ = 1
< mln{él, C*CNCMCH} 1) (3.15)
we have
1 ONCMCHSN . oy 1 -
Bs(u,u) > (C* - 2) l[ullZ2(0) + §h5(u7u) 2 ﬁ”uﬂm(g)-

The uniform boundedness of L(S_1 then follows

Lemma 3.5. Assuming that Q and & satisfy the conditions in Lemma 3.4, there exists a constant C such that
L5 2y < C. (3.16)

Moreover, with the definition of || - ||s;, we can show the boundedness and coercivity of the nonsymmetric
bilinear operator Bs(,-):

Lemma 3.6. There exists a 0 < 6 < 1 such that for all § < § the following inequalities hold

Yu,v € S5,  Bs(u,v) < Cyllulls;||v]|ss, (3.17)
Vu € S5, Bs(u,u) > Collull3,, (3.18)

for two constants C1,Cy > 0.
Proof. We first show (3.17). For the first two terms in Bs(u,v), with the Cauchy—Schwarz inequality one may

obtain bs(u,v) < Cv/bs(u, u)bs(v,v) and hs(u,v) < Cy/hs(u, u)hs(v,v). Moreover, with Lemma 3.1, similar as
in (3.14) we can show that

d r'(x
/ / [M(;(xl) el M(;(x)] Hs (1) [u(x:) — u(x)] dx;v(x) dx
Qs J—5

' (x)]

< C\/h(;(u,u) (OnCuCHONIZ2 o) ) < CV/hs(u Wb (v,0). (3.19)
Therefore
B(;(u,v)2 < C(bs(u, u)bs(v,v) + he(u, u)bs (v, v) + hs(u, u)hs(v,v)) < C||u|\%~5|\v\|25

On the other hand, (3.18) can be obtained when 0 is taken as in (3.15) and follow a similar proof as in Lemma
(3.4). O

With the above properties, we can see that there exists a unique solution us € S5 solving (2.6) (cf., [14],
Thm. 2.5.6). The well-posedness of the proposed variational problem is therefore obtained. To further show the
asymptotic property of solution when § — 0, we need the following embedding property:

Lemma 3.7. For all u € Sy there exists a constant C' such that

Bs(u,u) < Cl|Vul[f2(q (3.20)

for any 0 satisfying the condition in Lemma 3.6.
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Proof. Given u € Sp, from Theorem 1 of [13] we have that
bs(u,u) < Cllull3 gy < ClIVullZ (o)

To bound the second and the third terms of Bs(u,u), we start with the case of boundary curvature= 0,
where we only need to show that hs(u,u) = fQ(; M;(x) fis Hs (1) [u(x;) — u(x)]? dx; dx < C||Vu||%2(9). Since
M;(x) < C, it suffices to estimate an fis Hys(|1])[u(x;) — u(x)]? dx; dx. With the Hélder inequality and the fact
that [, [Vu(x,)|*dx = [, [Vu(x)|* dx for all [t] < §, we have

5
/ / Hs()I))[u(x:) — u(x)]2 dx; dx
Qs J—5

1 ) ) l
< sup H (|r) / / () — u(x)]? dx dx < / / / V(o) [Pt dx dx
r<1 Qs J—0 Qs J—06J0

c P , c 5 ,
<5 |Vu(xy)|°dt dx; dx = — |Vu(x,)|“dt dx
0% Jas J-s Jo 5 Jas Jo

5
= 9/ / [Vu(xq)|? dxdt = C/ [Vu(x)]? dx < CHV“H%Z(Q)'
5 Jo Qs s

Therefore, the Lemma holds true when the boundary curvature x(x) = 0, a.e. We now work on the case of
nonzero curvature.
Similar as in the curvature = 0 case we can obtain hs(u,u) < C’||Vu||%2(m. For the last term of Bs(u,u),

with (3.19) we have

g r'(x
[ st B2~ a0 s — o st ax
< CVhs(u, u)bs(u,u) < C||Vul[Zz2(q)-

Before studying the limiting behavior of the nonlocal operator, we need a compactness property:

Lemma 3.8. Suppose u, € Ss, and 5, — 0, then given sup,, Bs, (un,un) < 00, u, is precompact in L?(2).
Moreover, any limit point u € Sy.

Proof. Since S5, C L*(Q) and hgs(uy, uy,) > 0, similar to (3.14) we have,

1 1 CnCyCr6
O R e e L
QJQ

where C* denotes the constant in (3.13). Therefore, when § is taken as in (3.15), then for all § < &

B () = 5 [ [ s, (=30 (y) = o () dy dx

We have u,, € L?(Q2) and
[ 5. 900 9) = () dy i < .
aJo

From Theorem 1.2 of [56], any limit of {u,} is in L?(), or equivalently, u,, is precompact, and any limit point
u € Sy. O
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With the above lemmas, we obtain the following L? convergence result for an intermediate solution as § — 0:

Lemma 3.9. Suppose us is the weak solution of

Lysus=f, in Q
{ [gdx =0, (3.21)
and ug is the weak solution of (2.1), then
gl_{% Ha(; - UQ||L2(Q) =0. (3.22)

Proof. The proof follows a similar strategy as in [61, 63]. A detailed derivation is provided in
Appendix A.1. a

We now have the main theorem of this section for f € C(Q):
Theorem 3.10. Suppose us is the weak solution of (2.5) and ug is the weak solution of (2.1), then

glir(l) [lus — uO||L2(Q) =0. (3.23)

Proof. With the results in Lemma 3.9, we only need to show that lims_.q ||us —s|| 12 () = 0. Since Ls(us—1s) =
fs — f, with Lemma 3.5 we can see that it suffices to show

lim [[f5 = fllz20) = 0, (3.24)

or equivalently

2
lim ( / Ts(x = y)(I(y =%) - n®) - |(x - %) 'n(X)IQ)dyf(X)> dx = 0.
Qs (RN\Q)s

d—0
Since
/ Js(x = yD(I(y - %) - n®) - |(x - %) - n(®)?) dy
(RN\Q)s
<c Js(x —y])I(y - %) - n®)2dy < C,
(RN\Q)s
we have
/ ( / Js(x — yD((y — %) - n(®)? - (x - %) - n(%)?) dyf(X)> dx<C [ |fPdx
Qs (RN\Q)s Qs

which vanishes as 6 — 0. O

Remark 3.11. For the analysis in this paper we focus on the homogeneous Neumann-type boundary condition
g(x) = 0, while we note that the proposed nonlocal variational formulation can be applied to inhomogeneous
4
boundary conditions. Here we take Js(r) = o for simplicity. When f(x) = 0 and g(x) # 0, applying a test
0
function v(x) € C*(Q) to (2.4) yields

(f5,v)L2(0) =/

Q

(2/ Js(|x —y)(y —x) - n(x)dy — Ma(X)H(X)) 9(X)v(x) dx
RN\Q

=2 [ [ sty =0 n) dvgeGo dx - [ Mg dx
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For the second part, with the Holder inequality we have

< c\/ [ emax [ w26 dx < 0blgllzeonllellaco
Qs Qs

s Ms(x)r(X)g(X)v(x) dx‘ — 0 as § — 0. To show the asymptotic limit for the first part as 6 — 0,

for each x € Qs we have

/ J5<|x—y|><y—x>-n<f>dy=/ J§<|x—y|><y—x>-n<f>dy+/ Js(x - y)(y — %) - n(%) dy.
RN\Q Ds As

Ms(x)k(X)g(X)v(x) dx

Qs

Therefore,

For the first part

27"\/ 02 —r2dr = — 52)3/2

Js(|x = y[)(y =x) n(X)dy = ?
Ds

and

/ / Js(1x = )y — %) - n(®) dyg(®)v(x) dx
Qs JD;s

37r54 /95(62_ $2)*2g(®)v(x) dx = 37T54 /m/ r2)3/2 drg(X)v(X)dx + O(4)

:/ g(X)v(X)dx + 0(9). (3.25)
o0
For the second part, since the area of As is bounded by C§2, we have
Js(1x = y)(y = %) -n(®) dy\ < s, (3.26)
As

Combining (3.25) and (3.26) yields
lim (f5, )0y = lim 2 / / YD X)) dyg () ax = /8 g

Therefore, the right hand side converges to the inhomogeneous flux condition as 4 — 0 in the variational
formulation. In fact, the asymptotic convergence property in Theorem 3.10 can be shown for the nonlocal
diffusion problem with inhomogeneous flux conditions given the corresponding nonlocal trace theorem, which
will be addressed in the future work.

4. CONVERGENCE RATE IN THE L*({2) NORM

In this section we will estimate the order of convergence rate by considering a problem with the more general
setting: 0Q = 9Qp |JONN and (90p)° (N(O2N)° = 0. Here 0Qp and 0Ny are both 1D curves. To define a
Dirichlet-type constraint on 9Qp, we denote Qps = {x € Qs : X € INp} where X is the orthogonal projection of
x on 9. Moreover, we denote 9Qps = {x € RV\Q : dist(x, 2ps) < §} and assume that the value of u is given on
it. To be specific, here we assume u(x) = 0 on IQps without loss of generality. Similarly, to apply the Neumann-
type constraint on 9y, we denote Qns = {x € Q5 : X € Ny} and M5 = {x € RV\Q : dist(x, Qns) < 5}

U
We consider a Neumann-type constraint as an extension of o g(x) on 00y, by modifying the nonlocal
n

problem discussed in the last section as follows: for x € Q\Qyy:

2 / Js(1x — y]) (us(y) — us(x)) dy = f(x),
QUOINDps
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and for x € Qps:

)
" / Ts(1% — y1)(us(y) — us(x)) dy — 2M;(x) / H (1) (g (1) — ug(x)) dxs
Q -0
— ) - /a sl 3 [y ) n)? o~ %) - n®) ] dy
; (2 /8 sl Dl ) ni) dy - M5<x>n<x>) 9(%), (4.1)

where
M;(x) = /89 Js(lx=yD) [y =) - pE)P = l(y = %) - n®)|* + [(x — %) - n(x)]’] dy

Here we note that it is possible that Qps () Qns # 0. We can then rewrite the nonlocal equation to be solved
as

Lsu = f, on  ON\Qns
LN(;u = fg, on QN5 (4.2)
u =0, on Jps.

The corresponding limiting local model is given by

—Au=f, on

oy om0y (4.3)
On
u=0, on ONp.

Here f(x) is the given data corresponding to source, g(x) is the given local flux on 9Qy, and

fs(x) = f(x) = / Js(lx =y [I(y =%) n@) - |(x - %) n®@)P] dyf(x)

N5

w2 e vy =) n()dy ~ MsG0n(x) ) ().

In this section we focus on the case with homogeneous Neumann-type constraints, i.e., g(x) = 0.
For the above problem with mixed constraints, we have the nonlocal maximum principle stated below.

Lemma 4.1. For u € C(Q) N C(0Qps\0Np) and u bounded on OQps, assuming that u satisfies Lsu < 0 for
all 2 € N\Qns and Lysu <0 for all x € Qns, we have

sup  u(x) < sup u(x). (4.4)
xEQUANDs x€00ps

Proof. Assuming that sup, g g0, W(X) > SuPxeaq,,, u(X), since u € C(9) there exists x* € (QU Q) such
that w(x*) = sup,¢ quan ) WX)-
Case 1: x* € O\ Qus. Then Lsu(x*) = —2 fQanm Js(Jx* — y])(u(y) — w(x*)) dy > 0. Therefore Lsu(x*) =0
and
u(y) =u(x*)= sup u(x), Vy € (QU 0N ps) N B(x*,9). (4.5)
x€EQUIN D s

Case 2: x* € Qns. Then

6
Lysu(x") = *2/9 Js([x* = y[)(uly) — u(x")) dy — 2M5(X*)[6 H([ID[u(x)) — w(x)]dx; > 0.
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Note that in Lemma 3.1 we have proven Ms(x*) > 0. Again, this is possible only when

u(y) =u(x*)= sup u(x), Vy € QN B(x*,0). (4.6)
xEﬁU@QD(;

Summing up the two cases, in view of (4.5) and (4.6), we have

x*€Q\Qns = uly) =u(x*) = sup u, Vy € (QUIQps) N B(x*, ), (4.7)
§U89D5

x* € Qns = uly) =u(x*) = sup wu, Vy € QN B(x*,6). (4.8)
ﬁUaﬂpg

Now fixing y* € ((QUOQN) N B(x*,0)), we can apply the same arguments with y* in place of x*, and get (4.7)
and (4.8) with y* in the role of x*. This process can be repeated for all points y* € ((2 U 0Qx) N B(x*,6)),
and together with the continuity assumption of v we obtain:

u(ly) =u(x*)= sup u, Vye (QUINps) N |Bx*§U U B(y*,9)
QUANDs ¥+ €(QUAN)NB(x*,5)

Geometrically, note that

(QUIPs) N | B(x*,8) U U B(y*,6)
y*€(QUINN)NB(x*,5)

={2€QUINps : dist(z, (QUINN) N B(x*,0)) < &}
In other words, with this argument we expanded the region where u(z) = SUpgG a0, U from z € (QUIN)N

B(x*,d) to its entire d-neighborhood lying in Q U dQps. We then apply this argument recursively, so that the
region where u(z) = SupgGaq,, U Will get expanded to the entire domain of 2 U d€2ps. In other words, to have

a global maximum inside €2, the only possibility is for « to be constant on Q U 8Qps, which contradicts with
the assumption that sup, g 50, 4(X) > SUDxecoa,, U(X). O

We now assume that us is the solution of (4.2) and wug is the solution of (4.3). Denote es5(x) := us ,
Ts5(x) := (Loup(x)— Lsuo(x))+(fs(x)— f(x)) for x € Q\Qns and T5(x) := (Louo(x)— Lnsuo(x))+(f5(x)— f(x))
for x € Qps, then for x € Q\Qps,

Lses = Lsus — Lsug = Loug — Lsug = Ts, (4.9)
and similarly for x € Qys,
Lses = Lysus — Lnsuo = fs — [ + Louo — Lnsug = Ts. (4.10)
We then obtain the following truncation estimate for Tj:
Lemma 4.2. Suppose ug is the solution to local problem (4.3), then
Ts(x) = O(6%) (4.11)
for x € Q\Qus, and

)=2 [ Jslx-v) fj‘)«x—y)'p(f))dy

Es

+ [ Js(Ix = yDluo(x )]nnn((x_Y)'n(i))(_|i_x|2+%‘(X_Y)'n(§)|2)dy

T (1% = y[)[uo(3)]npp((x = ¥) - n(X))|(x — y) - p(X)* dy

+ K(X) M5 () [0 ()| (x — X) - n(X)) + O(67) (4.12)

:o\@\
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FIGURE 3. Illustration of the geometric assumption and notation for the barrier function ¢(x)
definition.

forx € Qus. Here Es denotes the region in As which is asymmetric with respect to the y axis (see the right plot
of Fig. 2).

Proof. The proof is based on the Taylor expansion of ug and an estimate for the asymmetric part in As. The
detailed derivations can be found in Appendix A.2. O

Furthermore, with the maximum principle, when f € C(Q) and us = ug continuous in 9ps, we have the
following lemma.

Lemma 4.3. Suppose that a nonnegative continuous function ¢(x) is defined on QUINps, and —Ls¢ > G(x) >
0 for x € Q\Qns, —Lnsp > G(x) > 0 for x € Qns. Then

sup  les(x)| < sup p(x) sup Ol (4.13)

xEQUINN x€00ps xequoay G(x)

|T5(x)]

Proof. Let Ks = subyxcouoay T

B then for Ks¢(x) + e5(x) we have: For x € Q\Qns
x

|T5(x)|

xEQUON N G(X)

|T5(x)]

XEQUINN G(X)

Ls(K50(x) + es5(x)) = Ls¢(x) + Lses(x) = Ls¢(x) +T5 < 0,

and a similar argument holds for x € Qys. With the maximum principle in Lemma 4.1 we have

sup e5(x) < sup  (Ks50(x) +e5(x)) < sup (Kso(x) +e5(x)) = K5 sup p(x).
xEQUIN N xEQUIN N x€ONps x€ONps

Similarly, we have Ls(Ksp(x) —es(x)) < 0 for x € Q\Qns and Lys(Ksp(x) — es(x)) < 0 for x € Qps, hence

sup  (—es(x)) < sup  (Ksd(x) —es(x)) < sup (Ksp(x) —es(x)) = K5 sup  ¢(x).
x€QUIO N xcQUOION xXENps x€Eps

O

We now define a nonnegative continuous function ¢ satisfying the conditions given in Lemma 4.3. In the
4

following we take a specific kernel Js(s) = o for |s| < ¢ for simplicity. As shown in Figure 3, let {z1,22} :=
0

00p NIy and myn be the projection operator onto 9. Due to the convexity of 2, the map mgq(x) is always
well defined and single-valued for any point x ¢ Q. For x € ), the set where mgq(x) is not single-valued (i.e.
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the “ridge” of 9€2) is L?-negligible [48]. We then make the following crucial geometric assumption: Let 7(z;)
(resp. 7(z2)) be the tangent line to O at z; (resp. z2), then the intersecting point z := 7(z1) N 7(22) satisfies

WaQ(i) € 0y. (4.14)

Let z3 € 9 be a point such that 7(z3) is orthogonal to the bisector of the angle /z57z;. Set the barrier function
as
B(x) = |dist(x, 7(z3)) + 12 (4.15)

For any point X € 0y, in the following we denote the angle between p(X) and n(z3) as a(X). Note that
with the crucial geometric assumption and the fact the Q is convex, there exists 0 < & < m/2 such that
a < aX) <m—a, VX € 00xn. Let II be the half-plane delimited by 7(z3) and containing €2, we now check the
conditions in Lemma 4.3 with the following 3 steps:
Step 1. Convexity of ¢. To check that ¢ is convex on II, consider arbitrary points x,y € II, and ¢ € (0, 1).
We need to check

¢((1 = t)x +ty) < (1 = 1)p(x) + t(y). (4.16)
By construction, ¢ is invariant in the direction of 7(z3). Letting ¥ be an arbitrary line orthogonal to 7(z3) and
x* (resp. y*) be the projections of x (resp. y) on X for the projection of (1 — t)x + ty on X, we get

[(1-t)x+ty]" =(1—-t)x" +ty".
Since ¢ is invariant in the direction of 7(z3), we get
A1 =t)x+ty) = p((1—t)x" +1y"), o(x) =o(x"), o(y) =0("),

and (4.16) is equivalent to
(1 —t)x" +ty*) < (1 = )p(x") + to(y™). (4.17)
Note that (4.17) holds true due to the convexity of ¢ along the direction n(z3) || . The convexity of ¢ gives
[@]vy > 0 for any (nonzero) vector v. Combining with the facts 0 < Ms(x) < C as shown in Lemma 3.1 and

fi; H(|I)[p(x1) — ¢p(x)] dx; = %[qﬁ]pp + g[d)]m(x —X) - x as shown in (A.8), we infer directly that
s
x) [ H(lotx) = o) dx > 0. (4.18)
It remains to show the bounds for
/ () - 60 dy,  ¥xe 9\ s, (4.19)
(QUA ps)NB(x,8)
/ (o(y) —o(x))dy,  Vx € Qus. (4.20)
QNB(x,0)

Step 2: bound for (4.19). Note that in this case B(x,0) C QU 9Qps. Let £(x) be the line through x and
parallel to ¢ := 7(z3). Noting that B(x,d) is symmetric with respect to £(x), for any y € B(x,0) we denote by
y* the reflection of y across £(x). Let Bt (x,d) (resp. B™(x,4)) be the “upper” (resp. “lower”) half ball, then

/ (9(y) — ¢(x)) dy = / (0(y) — &(x)) + (o(y*) — o(x)) dy
(QUON ps)NB(x,5) B+(x,6)

g 5
- / (VO + ) + (Vo) — ) — 26(x))|2v/8 — 72 dp = 4 / AVE R dp

6/2 §4
>4 262 —82/4dp = —-
> /O PV /4 dp Wi



ASYMPTOTICALLY COMPATIBLE APPROACH 1393

FIGURE 4. Notation for estimating the bound of anB(x 6)(¢( y) — ¢(x))dy when x € Qps.

Here green denotes the region of B~ (x, )N, cyan denotes [B~(x,4) N]*, and yellow denotes

2N BT (x,0)]\ [B~(x,0) N Q)*. [0Q]* is the reflection of I across £(x).

2
on its support, we obtained —Lsp(x) > —=, Vx € Q\ Qs

4
7ot ™3

Step 3: bound of (4.20). For x € Qxgs, we will show that

53, when s, <6/2,

/Qﬂ(x,é) ((y) — o(x))y > {54 +C6— Sm)3/263/27 when s, > 6/2.

Let [B~(x,d) N Q]* be the reflection of B~ (x,0) N Q across £(x), as shown in Figure 4. Note the crucial
geometric condition ensures that [B~(x,d) N Q)* € B*(x,4d) N Q. Since

(@(y) = d(x) + (¢(y") — &(x)) = 2dist(y, £(x))?, (4.21)

Recalling J5 =

we have

/ (6(y) — B(x)) dy = / (6(y) — B(x)) dy
QNB(x,6) [@NB+(x,0)]\[B~ (x,0)NQ]*

—o(x))d ") —é(x))d
e GO oAy [ (6 ot dy
-/ [(6y) = 66x)) + (6(y") — H(x))] dy > 0.

B~ (x,8)N9)]

Since x € €, one has |[B~(x,6) N Q] > 0 unless x € 90 and (02N B~ (x,6)) C (¢(x) N B~ (x,0)).
Therefore, using (4.21), when s, > 6/2 and § < D/5 < (5sup,cgq |£(z)]) !, a direct computation gives

/ (6(y) — 6(x)) dy + / (6(y") — 6(x)) dy
(B~ (x,6)NQY* (B~ (x,6)NQY*
55/12 125\/—5

5/2-8/12
2/ 2p%1/62 — p? de/ 20%1/02 — (0/2)2 dp > ——— ST
0 0

On the other hand, when s, > /2 we calculate the integral on the purple region (denoted as F') shown in the left
plot of Figure 5. With the geometric assumption, we have ¢(yp)—¢(x) > 2dist(y s, [(x )) > 25, sm( ) > sin(@)d,
where y g denotes the coordinate of point B. Since f[QnBJr(x HNB- (x.6)n 9" (p(y)—o(x))dy > [(o(y)—0(x)) dy
and |[CD| = /02 —s2/2, [CE| > (0 — s;)/2 when 6 < 1/sup,cyq |£(2)|, for y € F we have

P(y) — 6(x) = ¢(yB) — d(x) = sin(@)s,
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Nl > |

tx)

FIGURE 5. Notation for estimating the bound of meB(x 5)(¢(y) — ¢(x))dy when x € Qpy,

where the green and cyan regions denote B~ (x,0) N and [B~(x,d) N Q]*, respectively. The
union of yellow and purple regions represent [2 N BT (x,4)] \ [B~(x,d) N Q]*. Left: notation
when dist(x, 9) > §/2, where the purple region is chosen such that p(yg)LlzB, n(yg) | CE
and |BC| = |BD|. Right: notation when dist(x,0Q) < ¢/2, where the purple region is chosen
such that p(yp)LlxzB and the distance from C' to I(x) is §/2.

and
1l p———— 1
area(F) > area(ACDE) = g |5 - 5w|3<6 + 5$) > §61/2((5 — Sw)g/g.

We then have

/ (6(y) — d(x)) dy > C(6 — s,)3/26%/2.
[QNBF (x,6)]\[B~ (x,6)nQ]*

Similarly, for s, < §/2 we have G C [QNB™(x,0)]\[B~(x,d)NQ* where G is the purple set denoted in the right
(V3 1)252 tan(d),\/?g(sz} ey

plot of Figure 5. For y € G we have ¢(y) — ¢(x) > ¢ and area(G) > min{

Therefore

/ 8ly) -~ 6x) dy = O,
[2NB+(x,6)]\[B~ (x,6)NQ]*
i.e. the contribution of a region that lies completely above £(x) is of order O(82), provided that it has positive
area.
Thus (4.19) and (4.20) are bounded. Combining with (4.18), and recalling Js = AJ~* on its support, we get

—uwm=24wﬂhmm—ﬂxaw—mmwwzc

for all x € Q\Qps, and

§
—Lnsp(x) = 2/9 Js(|x —y)(o(y) — ¢(x)) dy + 2Ms(x) /_5 H([l])[uo(x1) — uo(x)] dx;
> C[6 — 5,326 + 01 > 0

for all x € Qps.

Note that Lemma 4.2 and the above estimates on function ¢ are still insufficient to ensure second order
L*>°(Q) convergence to the local limit, since Lemma 4.2 gives Ts = O(J) on Qx¢, while the estimates for ¢ gives
only

—Lns¢p > C[6 — 5,)%/2675/2 1 ¢y,
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and it is unclear if

T,

i3 0 5 can be uniformly bounded from above by C§? as x approaches the inner boundary
—Lns
of Qns. The next Lemma aims to provide an estimate for Tj.

Lemma 4.4. Forx € Qus, Ts5(x) is bounded by C§ when x is close to 92 and bounded by C6% as x approaches
the inner boundary of Qns. Specifically,

|Ts5| < C[0 — 5,267 % 4 0(5?).

Proof. By Lemma 4.2 and the facts fB(x,E) Js(|Jx—y|)((x—y)n(X))*dy =0, fB(x,5) Js(|x—y))(x—y)n(x))dy =
0and [g, 5 Js(lx —y[)(x —y) -n(x))|(x—y) - p(X)[*dy = 0, we have

+ A(X)[uo ()] nn((x — %) - n(i))/ Js(Ix = y1) (I(y = %) - p(X)/*

N s
~I(y = %) -n®)” +|(x - %) -nX)]*) dy + 0(?).

We firstly provide the bounds for the first term. Note that |B(x,d) N 992 < 24/62 — s2 + Ck(X)(62 — s2),

xT

therefore |(x —y) - p(X)| < C/6% — s2 for y € E5. Moreover, as shown in Appendix A.2, for the area of Es we
have |Es| < C(62 — s2)% + O(6°). Then

Oup(x)
Tellx —
RCE ™

(x—y) pX))dy| < C(82 — s2)>/2671 < O(6 — s,)*/267 /2.

For the rest of terms in T, note that the integrands

Js(lx —yD((x —y) nX)* < €5,

Js(lx = y)((x —y) - nX))[x - x> < €57,

Js(lx = yD((x —y) - n&)I(x-y) pE)* <57,
Js(Ix = yDI(y = %) - p(®)*((x = %) - n(x)) < €57,
Js(lx = yDI(y = %) n®)*((x - %) n(x)) < C67,
Js(lx = y))I(x = %) n®)*((x - %) 'n(x) < 67"

for some constant C. Thus it suffices to estimate the area of the domain of integration 0Qys N B(x,d). Since
|As] < C§3, it suffices the compute the area of Ds. Since Ds is contained in the rectangle with side lengths
24/0% — s2 and § — s,, direct computation then gives

|Ds| < 2(5 — 52)1/0% — 82 < 225 — 5,]3/261/2.

We then have |02y N B(x,6)| < C[6 — 5,]>/26'/2 + €3 which together with the bounds of the integrands
finishes the proof. (]
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With the above lemmas we obtain the main theorem of this section.

Theorem 4.5. Suppose f € C(Q), us solves the nonlocal problem (4.2) and wq is the solution to the corre-
sponding local problem (4.3), then for sufficiently small § there exists a constant C independent of 6 such that

sup |us(x) — uo(x)| < C62. (4.22)
xeQ

Proof. With the barrier function ¢ defined as in (4.15), from the above lemmas and bounds we have

|15| 2
— <
; Cco, for XEQ\QN(;,

T5|  _ Cilo— s |/2671/2 + Cy82

f Qns.
—Lnsp = Cs]0 — 5,]3/2675/24Cy or x € Qs

Therefore, with Lemma 4.3, the proof of (4.22) will be finished once we can show that —|LT;\57|5 3 < C6? for
x € Qps. Let gz g

fr) = Céf[a —Tl]3/255/2++ 54 o Ti= €[00
Then

/ _ 3 (020370104)[5,7,]1/2571/2
f(r) = (2> [Cald — 12726572 1 Cy2

and thus f is monotone (either increasing or decreasing, depending on the sign of CoC5 — C1Cy). Since

0y
-

2 2 3
_CH G G GF o s

f(O) B C36—1+Cy n C3+Cy6 —

the monotonicity of f ensures that f < O(6?2) for all r € [0, §], hence we get

|T5| 2
su < O(6%).
xGQIJ)\m _LN§¢ - ( )

5. MESHFREE QUADRATURE RULE AND NUMERICAL SOLVER

In this section we develop a discretization method based upon a meshfree quadrature rule for compactly
supported nonlocal integro-differential equations (IDEs) with radial kernels. This approach is based upon the
generalized moving least squares (GMLS) approximation framework [64], and falls within the scope of the
well-established GMLS approximation theory.

We discretize the domain Q and 92ps by a collection of points xp = {X;}{i=1,2,...,n,} C QU ps, where
the fill distance

h:= su min X; — X 5.1
enn 1§j§Np,j¢z'| i =%l (5-1)

is a length scale characterizing the resolution of the point cloud, and N, denotes the total number of points.
We define the separation distance

= 71 in| | (5.2)
= —min|z; — x; .
qx o AT j

and assume that the point set is quasi-uniform, namely that there exists a positive ¢4, satisfying

x < h < Cqux- (53)
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In a neighborhood of each point x; € x5, we reconstruct a polynomial approximation s, ,, ;(x) to the nonlocal
solution us(x) in B(x;,d). Specifically, we define s,, ,,,; as the solution to the optimization problem

PETm (R?)

Np
Su,Xh,,i(X) = min { Z[U(Xj) - p(Xj)]Q’LU(Xi, Xj) }7 (54)

j=1

where m,,(R?) are the m-th order polynomials in R?, and w(x,y) is a translation-invariant positive weight
function with compact support . For concreteness we take in this work

_ o Ja=E when  x—y| <4,
w(x,y) = P5(x —y) { 0 when |x—y|>4d.

For a quasi-uniform pointset and sufficiently large ¢ the optimization problem possesses a unique solution [66].
We then use this polynomial reconstruction to approximate the nonlocal operator as follows.
For each point x;, denote the set of indices for points in B(x;,d) as

I(xi) = I(xi, 6, xn) = {7 € {1,---, Np} + [xi = x5] < 8}, (5:5)

and #1(x;) represents the number of indices in I(x;). Define as a basis for m,,, (R?) the set p1 (x), p2(x), -+ , po (%),
then the optimization problem has the following analytic solution.

Suxn.i(X) = aDP(PTDP)™' R(x), (5.6)
where
= (u(x;) : j € 1(xi))T € R¥IC),
= (pr(X)))jer(xi).1<k<q € R#L(xs
= diag(®s(x; —x;) : j € I(x;)) € R#I(xi)x#l(xi)7
R(x) = (p1(x), -+ ,po(x))" € RY.

This process exactly recovers u € m,,(R?). In the GMLS framework, the reconstruction may be used to approx-
imate a linear bounded target functional w as

u:
P: )XQ,
D

w(u) = wp(u) = @(Suy,,i) = WDP(PTDP)'w(R(x)), (5.7)

where w(R) denotes the application of the target functional component-wise to each element of the polynomial
basis. Classic examples of w include the point evaluation functional to develop meshfree approximants, point
evaluations of derivatives of functions to develop meshfree collocation schemes, and integrals of functions over
compact sets. In this work, we select w as the nonlocal operator in (1.1) and (2.5), and thus obtain a meshfree
estimator of the non-local operator that is exact when applied to 7, (R?). To do so will require the computation
of (1.1) and (2.5) applied to each member of the polynomial space.

In this paper we take m = 2 and choose the quadratic basis functions as follows

p1(x) =1, pa(x) = (x—x)-e1, p3(x)=(x—x;) e, pa(x)=[(x—x;) '91}2,

ps(x) = [(x —xi) - e2)’,  po(x) = [(x — x;) - e1][(x — %) - e2],

) .
where e := n(X;), e; := p(X;) for x; € Qns and e := (1,

0), ez := (0,1) when x; € Q/Qns. For x; € Q/Qns,
one may obtain the following formula for oy, in light of (1.1

):

—2aDP(PTDP)"! /B sy = DRG)  REx) dy = 7). (5.8)
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Similarly, for x; € Qys, we apply the Neumann boundary treatment and obtain the following formula for wy,
in light of (2.3):

—2aDP(PTDP)™! /B( - Js(ly — xi|)(R(y) — R(x;)) dy

§
—2aDP(PTDP)~' Ms(x;) [6H5(|l|)(R(Xl) — R(x;)) dx,

= f(xi) + (2/ Js(ly — %) (y — %) - n(X;) dy — Mé(Xi)H(Xi)> 9(%i)
B(x;,6)\
—/ Js(ly —xi|) [|[(y = %) - n(X) | — |(xs — %) - n(X;)[*] dy f(x:). (5.9)
B(x;,6)\Q

For x € 9Qps, we apply the Dirichlet boundary condition and therefore us(x) is given. We can then solve for
4 with (5.8) and (5.9).

Numerically, the problem now reduces to how to integrate quadratic polynomials over B(x;,d) N and
B(x;,6)\Q properly. On simple geometries the integral in (5.8) and (5.9) can be calculated analytically, while
for more generalized cases where the boundary curve is more complicated, an analytic quadrature is intractable.
We note that when ¢ is sufficiently small, B(x;,d) N and B(x;, )\ can be written as the regions between two
curves, and one can then evaluate the integral via numerical integration, for instance, with high-order Gaussian
quadrature rules.

6. NUMERICAL RESULTS

In this section we present the asymptotic convergence of the proposed boundary treatment by considering
the nonlocal diffusion problem on three types of representative domains: a square domain in Section 6.1 which
represents the case with 0 curvature on 0Q2y; a circular domain in Section 6.2, which illustrates a case with
constant curvature on 0f2; and an elliptical domain in Section 6.3, with varying curvatures along the domain
boundary. Here we note that the square domain case does not satisfy the C? regularity requirement and it is
therefore outside the scope of the model problem analysis presented earlier. Hence the results in Section 6.1 also
demonstrate how robust the convergence rate results are when relaxing the C2 assumption on domain regularity.
In this paper we focus on the type (3) convergence, i.e., the convergence of numerical solutions to the local
solution as h, d goes to 0 simultaneously, by testing four different combinations of (h,§) — 0: (1) fixing h/é = C,
taking § — 0; (2) fixing h/V§ = C, taking § — 0; (3) fixing h/6% = C, taking § — 0; and (4) decreasing §
with a fixed h < 0. Here we note that in combination type (2), one has to keep sufficiently large ratio between
0 and h so as to make sure that the optimization problem (5.4) in the meshfree quadrature rule is well-posed.
For combination type (4) tests, we aim to investigate the convergence of analytical nonlocal solutions us to the
local limit ug, by keeping a sufficiently small fixed h such that A < min§ in the tests. Therefore, the numerical
errors in combination type (4) tests are sufficiently small comparing with the differences between local and
nonlocal solutions, and results indicate the convergence of analytical nonlocal solution us to the local limit ug
with a decreasing §. However, here we note that for a fixed h one can not take § — 0 in combination type (4)
tests.

6.1. Test 1: curvature K(x) =0

In this numerical example, we demonstrate a case where the Neumann boundary is a line segment. Specifically,
we take the computational domain as Q = [0,1] x [0, 1], with 9Qy = {(1,y) : y € [0,1]} and IQp = IQ\IQy .
The local limit of the nonlocal problem has a smooth analytical solution ug(x,y) = sin(rz) cos(my), together
with f(x,y) = 272 sin(rz) cos(ry) and %\zzl = g(y) = —mcos(my). We apply the analytical local solution
as a Dirichlet boundary condition over 9€)ps by letting us = wug, and impose the Neumann-type constraint
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TABLE 1. Test 1: convergence to the local solution for the x(x) = 0 case with fixed § = Ch.

h 5/h = 4 §/h =35
[lus — uolloe  Order |lus —uoll2  Order | |lus —uolloc Order [lus—ugll2  Order

273 | 145 x 107t - 3.06 x 1072 - 9.04 x 1072 - 3.01x1072 -

2741 234x1072 263 580 x 1072  2.39 1.37x 1072  2.72 540 x 1072 2.48
275 | 425 x 1072  2.38 1.30 x 1072 2.16 250 x 1072 2.45 1.10 x 1072 2.30
276 1 1.00x 1072 217 3.02x107* 211 5.65 x 107%  2.15 268 x 107*  2.04
277 | 248 x 107 2.01 7.38 x 1075 2.03 1.34 x 107%  2.07 6.53 x 107°  2.04

Notes. Here the convergence order is with respect to §.

TABLE 2. Test 1: convergence to the local solution for the x(x) = 0 case with fixed § = Ch?

and 6 = CVh.
V8 /h = 29/2 82/h =272
h 0 [lus — uollooc  Order |Jlus —upllz2  Order | h 6 [lus — uolloo  Order ||lus —uollz2  Order
2-% 271 579x107t - 5.86 x 1072 — 25 277/2 330x1073 - 1.60 x 1073 -
2=6 273 490x107% 3.44 1.60 x 1073 2.60 2-6 o-4 1.50 x 1073 2.27 7.39 x 1074 2.24
2-7 275 176 x107%  2.40 9.05 x 1075 2.07 27 279/2  754x107% 1.98 3.70 x 1074 2.00

Notes. Here the convergence order is with respect to 4.

TABLE 3. Test 1: convergence to the local solution for the x(x) = 0 case with decreasing § and
fixed h < 6.

||lus — wolloe  Order |lus — uoll2  Order

2 295x107t - 1.18 x 1072 -

3 115x1072  4.29 1.60 x 1073 2.88
4 754x107*  3.93 3.70 x 107%  2.11

5 176x107*  2.10 9.05 x 107° 2.03

Notes. Here the convergence order is with respect to §.

(2.3) over the region Qs = [1 — §,1] x [0,1]. With uniform discretization of mesh size h, we demonstrate the
difference between the numerical results and ug in the L>°-norm and L?-norm, and the convergence order with
respect to § in Tables 1-3. It is observed that as ¢ decreases, the numerical solution from the proposed nonlocal
Neumann-type constraint problem converges to the local analytical solution ug as O(6%), which therefore verifies
the analysis in Section 4 and demonstrates the asymptotic compatibility of the numerical solver.

6.2. Test 2: constant curvature k(x)

We now consider as domain the unit circle Q = {(x,y)[z? + y* < 1}, 0Qx = 9Q and with the value
us(0,—1) = wuo(0,—1) given to make the problem well-posed. Similarly as in test 1, we consider a smooth
local solution wug(z,y) = sin(wz)cos(wy), with f(z,y) = 272 sin(mx) cos(ry) and %‘(Ly)eaQN = g(z,y) =
mz cos(mx) cos(my) — wy sin(wz) sin(7ry), with uniform discretization of mesh-size h. The L>-norm and L?-norm
convergence results are presented in Tables 4-6. It can be observed that the convergence rate is O(§2) as §
decreases, consistent with the analysis in Section 4.
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TABLE 4. Test 2: convergence to the local solution for the k(x) = const case with fixed 6 = Ch.

h §/h =4 §/h=35

[lus — uolloo  Order |Jus — uoll2  Order | ||us — uol||ec Order |lus —wuoll2  Order
273 | 374x 107t - 213 x 107t - 208 x 1071 — 1.77 x 1071 —
274 | 1.10x 107 177 6.88 x 1072  1.63 821 x1072 1.86 517 x 1072 1.78
27% | 268 x 1072  2.04 1.68 x 1072 2.03 1.98 x 1072 2.05 1.24 x 1072 2.06
276 | 630 x 1072 2.09 3.90 x 1072 2.11 470 x 1072 2.07 2.90 x 107%  2.10
277 | 150 x 107*  2.07 9.37 x 107*  2.06 1.10 x 1073 2.10 6.91 x 107*  2.07

Notes. Here the convergence order is with respect to 4.

TABLE 5. Test 2: convergence to the local solution for the k(x) = const case with fixed § = Ch?

and § = CVh.
Vo /h =414 62/h =2.45
h 0 [lus — uolloo  Order ||lus —uoll2  Order | h 0 [lus —uolloo  Order |lus —upllz2  Order
2=4  7/23 214 - 4.47x 1071 -~ 1/5  7/10 1.0569 - 6.50 x 10~1  —
275 7/25 9.08x 1072 2.19 5.67 x 1072 1.58 1/20  7/20 2.86x 107! 1.87 1.51 x 107t 2.11
2=6  7/27  470x1073  2.10 2.90 x 1073 2.10 1/80 7/40 7.16 x 1072 2.00 3.83x 1072 1.98

Notes. Here the convergence order is with respect to §.

TABLE 6. Test 2: convergence to the local solution for the x(x) = const case with decreasing &
and fixed h < 4.

0 |lus — uolloc  Order [lus —ugll2  Order

6 971 gH7Tx107t - 238 x 107t -

6 272 127x107t 238 752 x 1072 1.66
6 973 9287x107% 214 1.79 x 1072 2.07
6 974 640x 1072 2.16 4.00 x 1072 2.16

Notes. Here the convergence order is with respect to 4.

6.3. Test 3: non-constant curvature x(x)

In our previous two tests, the problem domains have either zero curvature or a constant curvature on the
Neumann boundary. In this section we further consider a more generalized domain with a non-constant curvature
on its boundary. We consider the ellipse Q = {(z,y)|z?/4 + y? < 1} with 9Qx = 9Q}. us(0, —1) = ug(0, —1)
is given to guarantee the compatibility condition. Here we note that when § < 1/2, the orthogonal projection
X is well-defined for any x € Qys. We again consider a smooth local solution ug(z,y) = sin(nz) cos(my) with
f(x,y) = 272 sin(mz) cos(my), and we demonstrate the convergence of the numerical solution to the local solution
with mesh-size h. As shown in Tables 7-9, second order convergence of § is achieved which therefore verifies
the estimates in Section 4 and illustrates the asymptotic compatibility for a domain with nonuniform boundary
curvature.

Moreover, we note that in the cases with constant curvature boundary, the Neumann-type constraint problem
gives the analytical solution us = ug for the patch test problem with a linear solution ug(z,y) = x+y. Therefore,
in the previous two tests, the numerical solver passes the linear patch test with machine precision. In the elliptical
domain with non-constant curvature, we further investigate the linear patch test problem, and the numerical
results are illustrated in Table 10. It can be observed that although the numerical solution is no longer within
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TABLE 7. Test 3: convergence to the local solution for the non-constant x(x) case with fixed

6 =Ch.
h 5/h=4 §/h=35
[lus — uwolloo  Order |Jus — uoll2  Order | ||us — uo||ooc Order |lus —wuoll2  Order
273 | 480x 1072 - 240 x 1072 — 3.60x 1072 - 1.90 x 1073 —
274 |1 280x 1072 0.78 1.60 x 1072 0.59 2.20x 1072  0.71 1.20 x 1072 0.66
2751 934x107* 158 539 x 107% 157 7.00x 107*  1.65 3.99 x 107*  1.59
276 1 233x107*  2.00 1.25 x 107%  2.11 1.88 x 107*  1.91 1.07 x107*  1.90

Notes. Here the convergence order is with respect to §.

TABLE 8. Test 3: convergence to the local solution for the non-constant x(x) case with fixed

§=Ch? and 6 = CV/h.

V5/h =16 §%2/h=1.8
4 [lus — uolloo  Order |lus —upllz2  Order | h 4 [lus — uolloo  Order |lus —upllz2  Order
20 4.00x 1071 — 534 x 1072 - 1/20 3/10 460 x 1073 — 240 x 1073 —

272 3.20x 1073  3.48 1.80 x 1073 2.45 1/60 +/3/10 1.80x 1073  1.71 9.83 x 1074  1.63
274 233x107% 1.89 1.25 x 107%  1.92 1/80  3/20 1.36 x 1073 1.95 7.16 x 1074 2.20

[N -
|
SIS

|
o

Notes. Here the convergence order is with respect to ¢.

TABLE 9. Test 3: convergence to the local solution for the non-constant «(x) case with decreas-
ing § and fixed h < §.

5 [lus — uolloc  Order [lus —uoll2  Order

35/8 412x107' - 1.48x 1072 -

3.5/16  9.72x 1073 540 1.20 x 1073 3.63
3.5/32 7.44x107% 371  4.26x107* 150
3.5/64 1.88x107* 1.98 1.07 x 107*  1.99

Notes. Here the convergence order is with respect to §.

TABLE 10. Test 3: linear patch test for convergence to the local solution for the non-constant

k(x) case.
h §/h =4 5/h =35
[lus — uolloe  Order |lus —uollz2  Order | [lus —uolloc Order [lus—ugllz2  Order
2l 1mx107t 787x107% - 1.14x 107" 5.94 x 107>

41 289%x1072 257 1.55 x 1072 2.34 2.16 x 1072 2.39 1.16 x 1072 2.36
516.01x10"2% 227 3.20x 1072 228 450 x 1072 2.26 2.40 x 1072 2.27
6 1120x107% 232 6.04 x 107*  2.40 8.35 x 107*  2.43 411 x107* 255
71 1.26x107* 325 469 x 107°  3.69 1.39 x 107*  2.58 6.20 x 107°  2.72
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GQNl

— cos 6, —sin 6)
ny = (sin @, — cogt)

0Q N2

FIGURE 6. Geometric assumptions and notation for the corner case. Here the yellow region
denotes B(x,d) N 00 ys.

machine precision accuracy, the numerical solution converges to the analytical solution with an O(h?) rate as
h — 0.

7. EXTENSION: DOMAIN WITH CORNERS

In many popular nonlocal problem applications, it is common that the Neumann-type boundary contains
corners. For example, on a peridynamic problem with damage, once a crack initiates and bifurcates, new zigzag
boundary forms and the Neumann-type boundary condition must be applied on these new boundaries. To
investigate how well the new Neumann-type constraint formulation extrapolates to the setting of Lipschitz
domains, in this section we further extend the proposed formulation to boundaries with corners. We also
numerically show the performance as well as asymptotic compatibility properties on a sample test problem with
Neumann-type boundary on two sides of a square domain. Specifically, in Section 7.1 we derive the formulation
near a corner by approximating —2 |, a0ns J6(x—y)(u(y)—u(x)) dy. Then in Section 7.2 we firstly adopt a similar
problem domain as in test 1 of Section 6.1 but with Neumann-type boundary conditions applied on two sides
of the boundary including their intersecting corner. To further demonstrate the performance on complicated
domains, we also test the formulation on a cross-shape domain which is non-convex (as shown in Fig. 7) with
Neumann-type boundary conditions applied on all boundaries. In both cases we demonstrate the second-order
convergence of the nonlocal solution to the corresponding local limit as h,§ — 0.

7.1. Flux condition and numerical setting

In this section we extend the numerical algorithm to a domains with corners. For simplicity, here we assume
that there are two boundaries with Neumann-type boundary conditions:

371'11 = J1, on GQNl, (71)
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A\y
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[€— 0.5 —»
T
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v >
-1 o 1 X

-1

FIGURE 7. A cross-shape non-convex domain employed in the second test of corner formulation.

37112 = g2, on GQNg, (72)
and the two boundaries intersect at ¢ = 9Qn1 [ 9Qn2. For any point x satisfying |x — ¢| < 4, we project x
onto the two boundaries respectively, i.e., x = X1 — s;111(X1) = X — $z2n2(X2). In this section, we assume that
both 9Qpn1 and 0o are straight lines near the corner c, although the formulation can be further extended
to more general cases. Denote 6 as the angle between 02y, and 0€Qy,, without loss of generality we further
denote n; = (0,1) and ny = (sin @, — cos #). Correspondingly, we have p; = (1,0) and p2 = (— cos 8, — sin ). We
illustrate geometric assumptions and notation in Figure 6. For each point x = (z1, z2), with Taylor expansion
we have the following approximation for u(y) — u(x) with y = (y1,y2) € B(x,9) N 0Qns:

ou(x) 1

GU(X) + d2 2 + id% [U(X)]nlrn + %d% [u(x)]nsz + d1d2 [U‘(X)}"ln2 + 0(53)

81’11 on

u(y) —u(x) = dq
_ _ 15
=d191(X1) + d292(X2) + <2d1 - (X1 —x) - n1d1> (=f(x) = [w(x)]pypy)

+ (;dg — (X2 — x) '112d2> (=f(x) = [w(x)]psp2)

1 891 (il) 892(22) . 3
+ 25in9d1d2 ( D1 Ops + f(x)sinfcosf | + O(6°),
where ) .
cos

1:= m(?ﬂ —21) + (Y2 —x2), do:= sinﬁ(yl — 1)

Moreover, we have
0g1 (X 0
[0V g + [0 = —F(x) + ot 8 2B _ 0 p20102) )
op1 Op2
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Let )
D1 = 2/ J5(|X — y‘) |:2d% — (il — X) . n1d1:| dy,
N5

1
Dy = 2/ J5(|X — y‘) |:2d§ — (fg - X) . n2d2:| dy,
N5

substituting the above approximations into the nonlocal formulation and neglecting the higher order terms give
the algorithm. For D1 > D, we take §; as the arc length from x to 02y following the contour parallel to 021
and use 2 ff}l Hs, (1) (u(x1) — u(x)) dx;1 to denote the integral on this contour which approximates [u(x)]p, p,

01
- 2/Q Js(lx =y (u(y) —u(x))dy + 4(D1 — D2) | Hs, (1) (u(xi1) — u(x)) dxpn

—6

— f(x) — D1 f(x) — Dy cot 6 (ag(;r(:l) - 8951()’2‘2)) + 2/8%5 Ts(1x = y|) <dlgl(x1)

991(%1)  0g2(X2)
op1 Op2

1 .
+ dago(X2) + 2sin9d1d2 ( + f(x)sin 6 cos 0) > dy. (7.3)
Else we similarly take do as the arc length from x to 9y following the contour parallel to 0Qy2 and use
f , Ho, (|1]) (u(x12) — u(x)) dx2 to denote the integral on this contour which approximates [u(x)]p,p,

d2
- 2/Q Js(lx = y)(uly) —u(x))dy + 4(D2 — D1) [ Hs, (I])(u(x2) — u(x)) dxiz

— 65
= f(x) = Daf(x) — Dy cot 0 (3951(;:1) - 89821(:2(2)> + Q/émm Js(|1x —yl) <d191(X1)
991(%1)  0g2(X2)

op1 Op2

_ 1 .
+ dag2(X2) + QSinedldQ ( + f(x)sin 6 cos 0) > dy. (7.4)

Here we note that in (7.3) and (7.4), since the coefficient for nonlocal Laplace Beltrami ffgi Hs, (|U])(u(xy) —
u(x))dxy; (i =1 or 2) is not negative, the coercivity is not guaranteed in this formulation. However, numerical
experiments in Section 7.2 still suggest that the method remains robust in practice, possibly due to the fact
that the corner formulation only impacts the discretization points within distance ¢ to both edges. Moreover,
here we note that when considering a sufficiently smooth function u in a finite domain €2, one has

)
/Q / Ts(x — yDluly) - u@)Pdydx = 01), [ Ms(x) / (1) ) = u(x) dxp dx = O(6)

Qs

Therefore, in the nonlocal weak formulation the —2 [, Js(|x — y|)(u(y) — u(x)) dy term gets more dominant as
0 — 0, which possibly explains the numerical robustness of the corner formulation (7.3) and (7.4).

7.2. Numerical results

In this section we firstly investigate the numerical performance of formulation (7.3) and (7.4) on a square
domain ©Q = [0,1] x [0,1] with Neumann-type boundary conditions applied on dQxn1 = {(1,y) : y € [0,1]}
and 0Qn2 = {(x,1) : © € [0,1]}. Note that the Neumann-type boundary contains a corner ¢ = (1,1) where
the numerical algorithms (7.3) and (7.4) are employed. We set the analytlcal local solution as ug(z,y) = z2y?,
which then yields f(z,y) = —2(2? + y?), g—mm:l = g1(y) = 2y* and 2 Guly—1 = g2(x) = 22 The Dirichlet-
type condition u = wug is provided in a layer 0Qps = {(z,y)|(z,y) € [ J,1] x [—4,1]/Q2}. With mesh-sizes
h ={1/16,1/32,1/64,1/128} and a fixed ratio 6/h = {4.0,3.5}, the numerical results are shown in Table 11,
illustrating an O(d?) convergence rate to the local limit.
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TABLE 11. Convergence to the local solution in the square domain with Neumann-type bound-
ary including a corner.

h §/h =4 §/h =35
[lus — uwolloe  Order |Jus — uoll2  Order | ||us — uo||ooc Order |lus —wuoll2  Order
273 | 743 x107% 1.91 x 1072 — 5.45x 1072 — 1.46 x 1072 —

274 1 152x 1072 229 4.01 x 1073 2.26 1.13x 1072 2.27 310 x 1072 2.24
275 1 330x 1072 2.20 9.12 x 107* 2.13 240 x 1072 2.24 6.97 x 107*  2.15
276 | 742x107% 215 217 x107*  2.06 5.60 x 107%  2.11 1.66 x 107*  2.07
277 | 1.74x 107*  2.09 5.32x107° 2.03 1.31 x 107*  2.09 4.04x107° 2.03

TABLE 12. Convergence to the local solution on a non-convex cross-shape domain

h §/h =35
[[us — uolloc Order [Jus —ugl]l2  Order
1/40 775 x107% - 2.80 x 1072

1/80 1.73x107* 216  4.66 x 10™* 2.59
1/160 2.84 x107°  2.60 8.11x 107° 2.52

In the second test of this section, we further consider a non-convex domain with corners. The domain is
presented in Figure 7. A Neumann-type boundary condition is applied everywhere over the boundary except
for on point (—1,0) where Dirichlet boundary condition is applied to make the problem well posed. We use the
analytical local solution ug(z,y) = sin(z) cos(y) with f(x,y) = 2sin(x) cos(y), and keep the ration §/h = 3.5
while decreasing § and h simultaneously. The numerical results are provided in Table 12, which shows a second-
order convergence rate in §. This example shows that the proposed formulation is capable to handle non-convex
domains consisting of line segments and corners as boundaries.

8. CONCLUSION AND FUTURE WORK

In this paper we have introduced a new nonlocal Neumann-type constraint for the 2D nonlocal diffusion
problem which is an analogue to the local flux boundary condition and for the first time achieved the optimal
second-order convergence rate O(62) to the local limit in the L°°(Q2) norm. The formulation is applied on a
collar layer inside the domain and therefore requires no mesh or extrapolation outside the problem domain,
which enables the possibility of applying the physical boundary conditions on a sharp interface. We have
shown that when the problem domain is bounded, convex, connected and possesses sufficient regularity, the
proposed nonlocal Neumann-type constraint with the nonlocal diffusion equation is well-posed. The nonlocal
solution us converges to the solution uy from the corresponding local problem in the L?(£2) norm as the horizon
size § — 0. Moreover, when the solution is continuous in  and the Neumann type boundary is convex, we
have further proved the second-order convergence of us in the L°°(2) norm. Numerically, we have developed
an asymptotically compatible particle method based on a meshfree quadrature rule for the Neumann-type
constraint problem. Numerical examples on domains with representative geometries and boundary curvatures
were investigated, and the optimal convergence rate O(4?) in the L°>°(€2) norm was observed in all instances,
verifying the asymptotic compatibility of both the Neumann boundary treatment and discretization. Finally,
we have demonstrated that the regularity assumption may be relaxed in practice and the formulation can
be extended to non-convex domain with corners, which greatly improves the applicability of the proposed
formulation for more complicated scenarios. Although the formulation does not preserve formal coercivity near
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the corner, numerical experiments indicate that the formulation is robust in practice and achieves the optimal
convergence rate to the local limit.

We note that the formulation described in this paper actually provides an approach for applying the Neumann-
type boundary condition on general compactly supported nonlocal integro-differential equations (IDEs) with
radial kernels. As a natural extension, we are working on a nonlocal trace theorem which will immediately extend
the current analysis results in the L? norm to problems with inhomogeneous boundary conditions, and we are
also developing a sharp traction boundary condition for peridynamics which is consistent with the classical
elasticity theory.

APPENDIX A.

A.1. Proof of Lemma 3.9

In this section we aim to provide the detailed proof for Lemma 3.9. Since Bs(is,v) = (f,v)z2(q) for any
v € Ss, with Lemmas 3.4-3.6 we have

\lis||3, < CBs(ts, @is) = C(f, s) 2y < ClIf 1|2 llisl L2 < Clf 2o llisl]ss

which yields the uniform boundedness of {is}. With Lemma 3.8, we have the convergence of a subsequence of
{5} in L?(Q). Here we use the same ;s to denote the convergent subsequence, then iis — u, € So. To prove
the lemma, it suffices to show that u, = ug or

Bo(ux,v) := (Vu., Vo) = (f,v)12(0), Yve CT(Q). (A1)

Taking a standard mollifier ¢, satisfying fB(O 9 ¢e(x)dx = 1 and letting s = fB(O o Us(x — y)oe(y)dy, we
define Q. = {x € Q : dist(x,09) < €} and Q° = {x € Q : dist(x, Q) > €}. Assuming that € > 4, for v € C>®()
we denote

Bi(w0) = [ [ Js(ix = ¥D(uly) — u()(0(y) = v(x)) dy dx.
Bi(u,v) = . Vu - Vudx.

Since

fasee) = [ [ sk = y1)(@s.y) — () (0(3) — 0() dy dx

= / / Js(|x —yl) (/B(O’E) bc(2)is(y — 2) dz — /Bm,@ be(2)5(x — 2) dz> (v(y) — v(x)) dy dx
- /B(O ! be(2) (/ . Js(|x — y|)(is(y — z) — is(x — 2))(v(y) — v(x)) dy dx) dz
= [ @Bt - 0).060) s,
B(0,¢)
to show (A.1) it suffices to prove that when § — 0 first then ¢ — 0, we have

B§(tis.e, v) — Bo(usx,v), (A.2)

and

/ be(z)Bs (s (x — 2z),v(x))dz — (f,v)12(q)- (A.3)
B(0,¢)
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To show (A.2) we first fix € and let 6 — 0. Since € > §, Q¢ Qs = @ and Q5 C Q. Then
BS(fi5.0,v) = /Q /Q T5(% = y1) (e (y) — is,e(x)) (v(y) — v(x)) dy dx
- /Q /Q T5(% = y]) (e (y) — 5,0 () (0(y) — v(x)) dy dx.

Since s, — Us,e a8 6 — 0, with Proposition 3.4 of [63] and the Dominated Convergence Theorem,

lim lim / /Q Js(|x — ¥])(Us,e(y) — Gs,e (%)) (v(y) — v(x)) dy dx = 11_1)1(1) B§(tse,v) = Bo(us, v).

e—046—0 Q

On the other hand, for the second term, with the uniform boundedness

lim lim
e—06—0 O

Hence (A.2) has been proved. For (A.3) it suffices to show that
lim lim | B§ (a5 (x — 2), v(x)) = (£(x), v(%)) £2(0)
= hm lim |B§(ts(x — z),v(x)) — Bs(ts(x),v(x))| = 0.

e—056—0
Denote Q% = {x € Q:x —z € Q°}, we have
| B (115 (x — 2), v(x)) — Bs(ts(x), v(x))]
| [l = 9@ty — 2) = st - 2)(ely) - v(x) dy dx
Qe JQe

- / / Ts(% — yD)(@s(y) — s (0) (u(y) — v(x)) dy dx
QJO

§
- [ Mst) [ HsD[a ) 7 o) ~ o60)] ddx
Qs )

/

é
—/Q [ {Ma(xz) |r,(x)| — My(x) | Hs(|I)[E° (x;) — @ (x)] dxv(x) dx

\/ / Ts(% — y])(is(y) — @) 0y +2) — v(x +2) — v(y) + v(x)) dy dx
//Ja I — v 1) (@s(y) — () (u(y) — v(x)) dy dx

- / / Js(1x — y)(ds(y) — a5(x))(u(y) — v(x)) dy dx
QJQ

o
+ Ms(X)/ Hs(|i)[a° (x0) — a° (x)][v(x1) — v(x)] dx; dx
Qs -0

+/Q§ /2 {Ma(xz)

=14+ 1T+ IIL

/

r'(x)]
v’ ()

T M0 | Ha( ) — 0] o)

For the first term we have

I < lus]s;|[o(x +2) = v(X)|]s; < [[as]]ss][v(x +2) —v(x)]]s,

/6 /Q Js(|x — y)(Us,e(y) — ts.e(x)) (v(y) — v(x)) dy dx| < Celi_r}rgJ area({2) = 0.

1407

(A.4)



1408 H. YOU ET AL.

which goes to 0 as € — 0 since |z| < e and v € C°°(Q). For the second term, since |z| < ¢, Q\Q% C Q.
Therefore

II<

/ / Ts(1% — y))(@s(y) — s (0) (u(y) — v(x)) dy dx
o\Q= JO

+ / / Js(1x — y)(dis(y) — 15(x))(u(y) — v(x)) dy dx
Q\Qze ZE

1/2
< 2lfislls, ( [ RECERTICES —v(x))?dydx>

1/2
<olfills, ([ [ Jstx=¥Diety) o2 ay ax)

Since v € C(Q), we have lim.olims—o [, JoJs(x — y)(v(y) — v(x))?dydx = 0 and therefore
lim¢_,lims_oII = 0. For the third term we first consider the curvature = 0 case. When ¢ is sufficiently
small, since Ms(x) < 37 sup,.<; J(|r|) we have

§
II1 S Mlg(X)/ H(;(\l|)[ﬂ5(xl) — ﬂg(X)][U(X[) — ’U(XH Xm dx
Qs -4
(z) 2 1/2
< Cll@||s, (/ Ms(x / Hs(|1)12 dx, sup gT dx) (A.6)
< C||@|s, s sup W) (area(2s))"/2. (A7)

Ov(z)
op

0. To prove the case of nonzero curvature, when J is sufficiently small (3.19) and (A.7) yield

< 0. Since €2 is bounded, lims_g area({2s) = 0. Hence lim,_,q lims_o IT] =

Since v € C*(Q), SUPzecq,

I < M5 / Hs (1) [as(x;) — as(x)][v(x;) — v(x)] dx; dx
|r' x)| . i
/ / Ms(x;) 00| — Ms(x)| Hs()I])[ts(x;) — ts(x)] dxgv(x) dx
Qs
Ov(z) 2 5
< O], / v2(x)dx + sup area(s) =%0.
Qs 2€Q; | OP
Duetov € C*(Q),asd — 0 fQ x) dx — 0. Moreover, lims_,q area({2s) = 0. Therefore lim,_,o lims_.o II] =0

and we have then finished the proof
A.2. Proof of Lemma 4.2

In this section we aim to provide the detailed derivation for Lemma 4.2. For x € Q\Qxs,

Ty = Louo — Latto = —Aug +2 / Js(1% — y])(uo(y) — uo(x)) dy
QUIN ps

= Aug+ / Js(% = y)[uo()]pp((x — ) - p())? dy
QUON s
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+ / Js(Ix = y) [uo(¥)]nn ((x — ¥) - n(X))* dy + O(6%) = O(6?).
QUAN D

For x € Qpng, we will first estimate fis H()])[uo(x:) — up(x)] dx;. With Taylor’s expansion we have

o) = o) + 2290 3 — ) ) + 29— x) - pi(x)
+ 30 (Olunl e = %) n G + 3 [0 (el (1~ x) - P
+ o) (6 — ) - n®) (6 — ) - PR)) + a0 (1~ %) -0 ()
+ 2[00 (G = %) DR + 00Nyl (51 %) )G~ x) - B(X))
£ 30 (6 — %) - m(3)| (0 — %) - PRI+ O(1).

Assuming the boundary 9 is C® regular, we can approximate 92 N B(x, ) with the osculating circle C(X).
When 99 does not coincide with C(X), we denote Px; as the point with distance ! to x along C(X) following
the p direction. For point x, take the Cartesian coordinate system as shown in the right plot of Figure 2
and let (¢1(s),c2(s)) be the curve of boundary 9 which is parameterized by the arclength s. Then we have

X = (01(1)362(1))T7 and 3
B l 0 0/1//(0)% O(1*
X =X+ 0 + m();)lQ + 0/2//(0)% + ( )7

. 1 ’
sin(lk(x)), @(1 - cos(ln(x)))) . Therefore

while Px; = x + <
K (x)
" (0)+r>%(x) 13

6

x; — Px; = +O(l4)

111

c5'(0) 3
26 l

With Es to denote the region in A5 which is asymmetric with respect to the y axis in the right plot of Figure 2,
we then have the area of Ej as |Es| < C(62 — s2)% 4+ O(6°). Moreover, adopting the coordinates as shown in the
right plot of Figure 2, we have (x; — x) - n(X) = —51% — #13 +O0(1%), (x;, —x)-p(X) =1+ #13 + O(1%).
Therefore

duo(x) (K AO0) ) Do) (), AO)a) B
(5 + S52e) + 2009 (14 L0+ Sl
Kl3 3

— —[uo(x)]pn + E[“O(X)]ppp + O(l4),

Ouo(x) (”F _ 40 l3> 4 Quolx) <—l - CIQN(O)F’) e

K3 3
+ 5 [wo(x)]pn — 5 [uo(x)]ppp + oY),

which yield

o) + o x1) — 2u0(x) = 512 20 4 a4+ 01

,0up(X)

=kl n

+ 02 [uo (3)]nn (x = K) - (K)) + 1[0 (x)]p + O
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= 2 [uo (%) ((x = X) - 0(R)) + P[uo(x)]pp + O(1Y).

Therefore
/ Z HU o (x0) — 10(x)] dx
-/ " B0 [1% 0 () — ) - 0(5)) + Pfuo ()] + O]
= 20 n((x — %) - n(®) + 3 o ()] + (), (A8)
and

4
2005(x) [ A1) uo(x) = o))
— M(x)[tt0 ()] + $M5 () [0 (X)]n (% — X) - n(%)) + O(67)

= £Ms(x)[uo(X)]nn ((x = X) - 0(X)) + [uo(X)]pp /m Js(1x = y)I(y = x) - p(®)|* dy

= [uo(*)]pp /{m Js(jx = y]) (I(y = %) -n®)|* - |(x - %) -n(x)]*) dy + O(&°).
NS
With the above properties one has the following approximation via Taylor expansion:

2 / Js(x = y1) (uo(y) — uo(x)) dy
Q
:*2/9J5<\x—y|>[uo<x>1m<<xfy>-<f*><>>d>’+2/ Jé("‘*y“augr(f)

Es

(x—y) px)dy

+/QJ6(|X—Y|)[UO(X)]mm((X—Y) (X)) (% - x> + %KX—Y) n(X)*) dy

+ / J5(1% — 1) [t0 ()]l (x — ) - n(®) 2 dy + / Js(1x = ) [0yl (x — ¥) - p(X)[* dy
Q Q
+ /Q T5(1% = y) [0 ()] mpp((x — ¥) - 0(®)|(x — y) - D) dy + O(52), (A.9)
and the estimate for Ty with x € Qpny4:
Ts = (Loug — Lysuo) + (fs — f)
)
— —Aug(x) +2 / T5(% — y)) uo(y) — uo(x)) dy + 2M;(x) / H (1) o (xr) — wo(x)] dx
Q —0
- /8 =y =) n) ¢ %) - 0 )~ Au0) dy

=2 [ ey T (e y) - p) dy

+ /Q s (% =yt (3)nnn (x — y) - (X)) (—[% — x|* + %\(X —y) n®)*)dy

+ /Q T (1% = Do (x)]npp((x = ¥) - n(X))|(x — y) - p(X)|* dy
+ kM5 (x) [0 (X)]nn (x — %) - n(X)) + O(6?). (A.10)
We have then finished the proof.
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