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AN ASYMPTOTICALLY COMPATIBLE APPROACH FOR NEUMANN-TYPE
BOUNDARY CONDITION ON NONLOCAL PROBLEMS

Huaiqian You1, Xin Yang Lu2, Nathaniel Task3 and Yue Yu4,*

Abstract. In this paper we consider 2D nonlocal diffusion models with a finite nonlocal horizon
parameter 𝛿 characterizing the range of nonlocal interactions, and consider the treatment of Neumann-
like boundary conditions that have proven challenging for discretizations of nonlocal models. We propose
a new generalization of classical local Neumann conditions by converting the local flux to a correction
term in the nonlocal model, which provides an estimate for the nonlocal interactions of each point with
points outside the domain. While existing 2D nonlocal flux boundary conditions have been shown to
exhibit at most first order convergence to the local counter part as 𝛿 → 0, the proposed Neumann-
type boundary formulation recovers the local case as 𝑂(𝛿2) in the 𝐿∞(Ω) norm, which is optimal
considering the 𝑂(𝛿2) convergence of the nonlocal equation to its local limit away from the boundary.
We analyze the application of this new boundary treatment to the nonlocal diffusion problem, and
present conditions under which the solution of the nonlocal boundary value problem converges to the
solution of the corresponding local Neumann problem as the horizon is reduced. To demonstrate the
applicability of this nonlocal flux boundary condition to more complicated scenarios, we extend the
approach to less regular domains, numerically verifying that we preserve second-order convergence for
non-convex domains with corners. Based on the new formulation for nonlocal boundary condition,
we develop an asymptotically compatible meshfree discretization, obtaining a solution to the nonlocal
diffusion equation with mixed boundary conditions that converges with 𝑂(𝛿2) convergence.
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1. Background

In recent years, there has been great interest in using nonlocal integro-differential equations (IDEs) as a
means to describe physical systems, due to their natural ability to describe physical phenomena at small scales
and their reduced regularity requirements which lead to greater flexibility [1,9,15–17,20,21,25,26,29,31,33,34,
36, 43, 47, 49, 55, 58, 60, 69, 70]. In particular, nonlocal problems with Neumann-type boundary constraints have
received particular attention [2, 6, 8, 18, 19, 23, 27, 28, 30, 32, 39, 41, 52, 53, 57, 61, 69] due to their prevalence in
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describing problems related to: interfaces [3], free boundaries, and multiscale/multiphysics coupling problems
[5, 7, 44, 59, 68]. Unlike classical PDE models, in the nonlocal IDEs the boundary conditions must be defined
on a region with non-zero volume outside the surface [19, 28, 61], in contrast to more traditional engineering
scenarios where boundary conditions are typically imposed on a sharp co-dimension one surface. Therefore,
theoretical and numerical challenges arise from how to mathematically impose inhomogeneous Neumann-type
boundary conditions properly in the nonlocal model. For instance, in the peridynamic theory of solid mechanics
[4,22,35,37,38,42,45,46,60,62,65,67], the classical description of material deformation locally via a deformation
gradient is replaced by a nonlocal interaction described with integral operators. In these models, it has been
shown that the careless imposition of traction conditions on the nonlocal boundary induces an unphysical strain
energy concentration, leading in turn to the material being softer near the boundary. Such artificial phenomena
are referred to in the literature as a “surface” or “skin” effect [11,40]. On the other hand, differs from the local
problems, in some nonlocal problems boundary effects play a major role. For example, in nonlocal minimal
surface problems, the “stickiness” effect arises and the boundary datum may not be attained continuously
[12,24]. All the above examples indicate that careful treatments of the nonlocal boundary conditions are critical
for the study of nonlocal problems.

A key feature in the discretization of nonlocal models has been the concept of asymptotic compatibility,
originally introduced by Tian and Du [63], which describes the ability of a nonlocal discretization to recover a
corresponding local model as both 𝛿 and a characteristic discretization lengthscale are reduced. We advocate the
development of both nonlocal boundary treatment and discretization with the objective of preserving this limit.
In doing so, we ensure that nonlocal models recover a well-understood classical limit, avoiding phenomena such
as the surface effect. To this end, we introduce here a non-local boundary treatment that is designed to recover
the classical theory. After rigorously proving that this nonlocal boundary value problem recovers the desired local
Neumann problem as 𝛿 → 0, we have a firm mathematical foundation upon which to demonstrate asymptotic
compatibility, where we will develop an asymptotically compatible numerical method and demonstrate its high-
order convergence and a lack of artificial surface phenomena.

In this paper we study compactly supported nonlocal integro-differential equations (IDEs) with radial kernels.
For concreteness, we focus on the nonlocal diffusion equation

𝐿𝛿𝑢𝛿 := −2
∫︁

𝐵(x,𝛿)

𝐽𝛿(|x− y|)(𝑢𝛿(y)− 𝑢𝛿(x)) dy = 𝑓(x), x ∈ Ω ⊂ R𝑁 , (1.1)

although the proposed technique is applicable to more general problems. Here 𝐵(x, 𝛿) is the ball centered at x
with radius 𝛿, 𝑢𝛿(x) is the solution, Ω is a bounded and connected domain in R𝑁 (𝑁 = 2), 𝑓(x) is given data,
and the kernel function 𝐽𝛿 : R → R is parameterized by a positive horizon parameter 𝛿 which measures the
extent of nonlocal interaction. We further take a popular choice of 𝐽𝛿 as a rescaled kernel given by

𝐽𝛿(|𝜉|) =
𝑐

𝛿𝑁+2
𝐽

(︂
|𝜉|
𝛿

)︂
, (1.2)

where 𝐽 : [0,∞) → R is a nonnegative and continuous function with
∫︀

R𝑁 𝐽(|z|)|z|2 dz = 𝑁 .
Similar as in [61], we also assume that 𝐽(𝑟) is nonincreasing in 𝑟, strictly positive in 𝑟 ∈ [0, 1] and vanishes

when 𝑟 > 1. In this work we aim to design a new formulation of Neumann-type constraint for the nonlocal
problem (1.1) with mixed boundary conditions of Dirichlet, Neumann and mixed type, and present a numerical
discretization of the resulting problem.

We pose three requirements for this formulation:

(1) The constraint should be a proper nonlocal analogue to the local Neumann-type boundary conditions, so
the formulation provides an approximation of physical boundary conditions on a sharp surface.

(2) A boundary value problem given by the nonlocal Neumann-type constraint with the nonlocal diffusion
equation (1.1) should be well-posed. Rigorous mathematical analysis on the existence, uniqueness and
continuous dependence on data should be addressed for the associated variational problem.
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(3) The nonlocal Neumann-type boundary value problem should recover the classical Neumann problem as
𝛿 → 0, preferably with an optimal convergence rate of O(𝛿2) in the 𝐿∞ norm.

In the first part of the paper, we provide analysis of the boundary value problem (BVP) to establish the
consistency and well-posedness of the boundary value problem. We establish here second-order convergence on
non-trivial geometry, improving upon the first-order, one-dimensional analysis found in the literature [19,30,61].
In the second part of this paper, we will present a new asymptotically compatible meshfree discretization of
the proposed nonlocal BVP [10, 54, 64]. We pursue an extension of previous work by Trask et al. [64] utilizing
an optimization-based approach to meshfree quadrature. This framework is attractive due to its demonstrated
ability to achieve high-order asymptotically compatible solutions on unstructured data, which is complementary
to the objective of developing boundary conditions consistent for irregular geometries. By introducing the new
boundary treatment we will demonstrate improved second-order convergence over the previously demonstrated
first order-convergence shown for Neumann problems [64].

The paper is organized as follows. We first present in Section 2 a definition of the nonlocal Neumann-type
boundary condition and the corresponding nonlocal variational problem, together with the associated nonlocal
operator and natural energy space. In Section 3, we study the well-posedness of the nonlocal variational problem
for convex and sufficiently regular domains. We provide a consistency result for the nonlocal BVP by showing
that the weak solution of the proposed nonlocal Neumann-type constrained value problem (denoted as 𝑢𝛿)
converges to the solution of the corresponding classical diffusion problem (denoted as 𝑢0) as the interaction
horizon 𝛿 → 0 in the 𝐿2(Ω) norm. Although the main proof in this section has assumed homogeneous Neumann
boundary conditions, a discussion on the extension to inhomogeneous Neumann-type boundary condition is also
provided. Furthermore, in Section 4 we prove the 𝑂(𝛿2) convergence rate of the continuous nonlocal solution
𝑢𝛿 to 𝑢0 in the 𝐿∞(Ω) norm without extra regularity assumptions on 𝑢𝛿. Numerical results utilizing a meshfree
quadrature rule are presented in Section 5. To verify the asymptotic compatibility of the combined boundary
treatment and the meshfree numerical scheme, in Section 6 we use manufactured solutions to demonstrate the
convergence of the discrete model to the local solution as both the discretization length scale ℎ and the nonlocal
interaction length scale 𝛿 → 0. Furthermore, in Section 7 we extend the approach to domains with corners
which indicate that the conclusions of the model problem and the convergence rates extrapolate to nontrivial
problems of interest to the broader engineering community. Section 8 summarizes our findings and discusses
future research. The appendices include additional technical details on the theoretical analysis.

2. A nonlocal flux condition for 2d diffusion problem

In this section, we first introduce a nonlocal flux boundary condition, and then provide a corresponding
nonlocal variational problem along with the associated energy space for the purpose of analysis. Given that
Ω ∈ R𝑁 (𝑁 = 2) is a bounded, convex, connected and 𝐶3 domain, we seek a nonlocal analogue to the local

Neumann boundary condition
𝜕𝑢

𝜕n
= 𝑔(x), x ∈ 𝜕Ω in the following classical problem

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝐿0𝑢0 := −△𝑢0 = 𝑓(x), in Ω
𝜕𝑢0

𝜕n
= 𝑔(x), on 𝜕Ω∫︀

Ω
𝑢0(x) dx = 0.

(2.1)

Here n(x) is the unit exterior normal to Ω at x.
Moreover, we will use p(x) to represent the unit tangential vector with orientation clockwise to n(x). Before

introducing our nonlocal formulation, we denote the following notation (see Fig. 1 for illustration)

Ω𝛿 := {x ∈ Ω|dist(x, 𝜕Ω) < 𝛿}, (R𝑁∖Ω)𝛿 :=
{︀
x ∈ R𝑁∖Ω|dist(x, 𝜕Ω) < 𝛿

}︀
.
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Figure 1. Left: notations for the domain, where Ω is represented by the green and red regions
together, and the nonlocal Neumann boundary condition is applied on the red region Ω𝛿. Right:
notations for the projection of point x ∈ Ω𝛿, the corresponding unit tangential vector p(x) and
the unit normal vector n(x).

We further assume sufficient regularity in the boundary that we may take 𝛿 sufficiently small so that for any
x ∈ Ω𝛿, there exists a unique orthogonal projection of x onto 𝜕Ω. We denote this projection as x. Therefore,
one has x− x = 𝑠𝑥n(x) for x ∈ Ω𝛿, where 0 < 𝑠𝑥 < 𝛿. We also assume that for x ∈ Ω𝛿, we can find a contour
Γ(x) which is parallel to 𝜕Ω. In the following contents, we denote x𝑙 as the point with distance 𝑙 to x along
Γ(x) following the p(x) direction, and x−𝑙 as the point with distance 𝑙 to x in the opposite direction. Moreover,
we employ the following notations for the directional components of the Hessian matrix of a scalar function 𝑣:

[𝑣(x)]𝑝𝑝 := p𝑇 (x)∇2𝑣(x)p(x), [𝑣(x)]𝑛𝑛 := n𝑇 (x)∇2𝑣(x)n(x), [𝑣(x)]𝑝𝑛 := p𝑇 (x)∇2𝑣(x)n(x),

and the higher order derivative components are similarly defined.
Since 𝐵(x, 𝛿) ∩ (R𝑁∖Ω)𝛿 ̸= ∅ for x ∈ Ω𝛿, from (1.1) we have

𝐿𝛿𝑢𝛿 = −2
∫︁

𝐵(x,𝛿)

𝐽𝛿(|x− y|)(𝑢𝛿(y)− 𝑢𝛿(x)) dy

= −2
∫︁

𝐵(x,𝛿)∩Ω

𝐽𝛿(|x− y|)(𝑢𝛿(y)− 𝑢𝛿(x)) dy − 2
∫︁

𝐵(x,𝛿)∩(R𝑁∖Ω)𝛿

𝐽𝛿(|x− y|)(𝑢𝛿(y)− 𝑢𝛿(x)) dy,

hence we need to approximate the integral in 𝐵(x, 𝛿)∩(R𝑁∖Ω)𝛿 and obtain a formulation with correction terms.
Specifically, we propose the following flux boundary condition for (1.1): for x ∈ Ω𝛿

− 2
∫︁

Ω

𝐽𝛿(|x− y|)(𝑢𝛿(y)− 𝑢𝛿(x)) dy −
∫︁

R𝑁∖Ω
𝐽𝛿(|x− y|)(y − x) · n(x)(𝑔(x) + 𝑔(y)) dy

−
∫︁

R𝑁∖Ω
𝐽𝛿(|x− y|)|(y − x) · p(x)|2 dy[𝑢𝛿(x)]𝑝𝑝 = 𝑓(x), (2.2)

where the second and third terms aim to provide an approximation for

−2
∫︁

R𝑁∖Ω
𝐽𝛿(|x− y|)(𝑢𝛿(y)− 𝑢𝛿(x)) dy.

Since the boundary condition 𝑔(x) is defined only on 𝜕Ω, the 𝑔(x) and 𝑔(y) terms in (2.2) will be approximated
with the following (local) extensions

𝑔(x) ≈ 𝑔(x)− (x− x) · n(x)𝑓(x)− (x− x) · n(x)[𝑢𝛿(x)]𝑝𝑝,

𝑔(y) ≈ (x)− (y − x) · n(x)𝑓(x)− (y − x) · n(x)[𝑢𝛿(x)]𝑝𝑝.
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Furthermore, we replace [𝑢𝛿(x)]𝑝𝑝 with its approximation 2
∫︀ 𝛿

−𝛿
𝐻𝛿(|𝑙|)(𝑢𝛿(x𝑙) − 𝑢𝛿(x)) dx𝑙 − 𝜅(x)𝑔(x), where

dx𝑙 is the line integral along the contour Γ(x), 𝜅(x) is the curvature of 𝜕Ω at x, and 𝐻𝛿(|𝑟|) =
𝑐1
𝛿3
𝐻

(︂
|𝑟|
𝛿

)︂
is

the kernel for 1D nonlocal diffusion model. Similar to the requirements for 𝐽 , we assume here 𝐻 : [0,∞) → R
to be a nonnegative and continuous function with

∫︀
R 𝐻(|𝑧|)|𝑧|2 d𝑧 = 1.

𝐻(𝑟) is nonincreasing in 𝑟, strictly positive in [0, 1] and vanishes for |𝑧| > 1. Moreover, we add a further
requirement on 𝐻 that

∫︀
R 𝐻(𝑧) d𝑧 := 𝐶𝐻 <∞. Here we note that 2

∫︀ 𝛿

−𝛿
𝐻𝛿(|𝑙|)(𝑢𝛿(x𝑙)−𝑢𝛿(x)) dx𝑙 is a nonlocal

version of the Laplace–Beltrami operator defined on Γ(x).
Substituting the above two approximations into (2.2), we obtain the following model

− 2
∫︁

Ω

𝐽𝛿(|x− y|)(𝑢𝛿(y)− 𝑢𝛿(x)) dy − 2𝑀𝛿(x)
∫︁ 𝛿

−𝛿

𝐻𝛿(|𝑙|)(𝑢𝛿(x𝑙)− 𝑢𝛿(x)) dx𝑙

= 𝑓(x)−
∫︁

R𝑁∖Ω
𝐽𝛿(|x− y|)

[︀
|(y − x) · n(x)|2 − |(x− x) · n(x)|2

]︀
dy𝑓(x)

+

(︃
2
∫︁

R𝑁∖Ω
𝐽𝛿(|x− y|)(y − x) · n(x) dy −𝑀𝛿(x)𝜅(x)

)︃
𝑔(x). (2.3)

where
𝑀𝛿(x) :=

∫︁
R𝑁∖Ω

𝐽𝛿(|x− y|)
[︀
|(y − x) · p(x)|2 − |(y − x) · n(x)|2 + |(x− x) · n(x)|2

]︀
dy.

Thus, by defining the nonlocal operator

𝐿𝑁𝛿𝑢 :=− 2
∫︁

Ω

𝐽𝛿(|x− y|)(𝑢(y)− 𝑢(x)) dy − 2𝑀𝛿(x)
∫︁ 𝛿

−𝛿

𝐻𝛿(|𝑙|)(𝑢(x𝑙)− 𝑢(x)) dx𝑙

and

𝑓𝛿(x) := 𝑓(x)−
∫︁

R𝑁∖Ω
𝐽𝛿(|x− y|)

[︀
|(y − x) · n(x)|2 − |(x− x) · n(x)|2

]︀
dy𝑓(x)

+

(︃
2
∫︁

R𝑁∖Ω
𝐽𝛿(|x− y|)(y − x) · n(x) dy −𝑀𝛿(x)𝜅(x)

)︃
𝑔(x), (2.4)

the proposed algorithm is equivalent to the following nonlocal integral equation{︃
𝐿𝑁𝛿𝑢𝛿 = 𝑓𝛿 + 𝐶𝑓 , in Ω∫︀

Ω
𝑢𝛿 dx = 0.

(2.5)

Here 𝐶𝑓 is a constant independent of x to guarantee the compatibility condition, note that it vanishes in the
weak formulation. Given a test function 𝑣 satisfying

∫︀
𝛺
𝑣𝑑x = 0, the corresponding nonlocal weak formulation

can then be introduced
𝐵𝛿(𝑢𝛿, 𝑣) = (𝑓𝛿, 𝑣)𝐿2(Ω), (2.6)

where 𝐵𝛿(𝑢, 𝑣) denotes a nonsymmetric bilinear form 𝐵𝛿(𝑢, 𝑣) := (𝐿𝛿𝑢, 𝑣). We note that

− 2
∫︁

Ω

∫︁
Ω

𝐽𝛿(|x− y|)(𝑢(y)− 𝑢(x)) dy𝑣(x) dx

= −
∫︁

Ω

∫︁
Ω

𝐽𝛿(|x− y|)(𝑢(y)− 𝑢(x))𝑣(x) dy dx−
∫︁

Ω

∫︁
Ω

𝐽𝛿(|y − x|)(𝑢(x)− 𝑢(y))𝑣(y) dy dx

=
∫︁

Ω

∫︁
Ω

𝐽𝛿(|x− y|)[𝑢(y)− 𝑢(x)][𝑣(y)− 𝑣(x)] dy dx
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and

− 2
∫︁

Ω

𝑀𝛿(x)
∫︁ 𝛿

−𝛿

𝐻𝛿(|𝑙|)(𝑢(x𝑙)− 𝑢(x)) dx𝑙𝑣(x) dx

= −2
∫︁

Ω

∫︁
Ω

𝑀𝛿(x)𝐻𝛿(|𝑙|)𝐷(x,y)(𝑢(y)− 𝑢(x))𝑣(x) dy dx

=
∫︁

Ω

∫︁
Ω

𝑀𝛿(x)𝐻𝛿(|𝑙|)𝐷(x,y)(𝑢(y)− 𝑢(x))[𝑣(y)− 𝑣(x)] dy dx

−
∫︁

Ω

∫︁
Ω

𝑀𝛿(y)𝐻𝛿(|𝑙|)𝐷(y,x)(𝑢(x)− 𝑢(y))𝑣(x) dx dy

−
∫︁

Ω

∫︁
Ω

𝑀𝛿(x)𝐻𝛿(|𝑙|)𝐷(x,y)(𝑢(y)− 𝑢(x))𝑣(x) dy dx

=
∫︁

Ω

∫︁
Ω

𝑀𝛿(x)𝐻𝛿(|𝑙|)𝐷(x,y)[𝑢(y)− 𝑢(x)][𝑣(y)− 𝑣(x)]|r′(y)|dy dx

+
∫︁

Ω

∫︁
Ω

[︂
𝑀𝛿(y)

|r′(x)|
|r′(y)|

−𝑀𝛿(x)
]︂
𝐻𝛿(|𝑙|)𝐷(x,y)(𝑢(y)− 𝑢(x))𝑣(x)|r′(y)|dy dx

=
∫︁

Ω𝛿

𝑀𝛿(x)
∫︁ 𝛿

−𝛿

𝐻𝛿(|𝑙|)[𝑢(x𝑙)− 𝑢(x)][𝑣(x𝑙)− 𝑣(x)] dx𝑙 dx

+
∫︁

Ω𝛿

∫︁ 𝛿

−𝛿

[︂
𝑀𝛿(x𝑙)

|r′(x)|
|r′(x𝑙)|

−𝑀𝛿(x)
]︂
𝐻𝛿(|𝑙|)[𝑢(x𝑙)− 𝑢(x)] dx𝑙𝑣(x) dx,

where r is the bijective parametrization of Γ(x), |r′(x)| is the Jacobian of r, and 𝐷(x,y) denotes a Dirac-Delta
function:

𝐷(x,y) := lim
𝜖→0

𝜖−1𝜓(dist(y,Γ(x))/𝜖), where 𝜓 is a mollifier function on R.

Therefore

𝐵𝛿(𝑢, 𝑣) =
∫︁

Ω

∫︁
Ω

𝐽𝛿(|x− y|)[𝑢(y)− 𝑢(x)][𝑣(y)− 𝑣(x)] dy dx

+
∫︁

Ω𝛿

𝑀𝛿(x)
∫︁ 𝛿

−𝛿

𝐻𝛿(|𝑙|)[𝑢(x𝑙)− 𝑢(x)][𝑣(x𝑙)− 𝑣(x)] dx𝑙 dx

+
∫︁

Ω𝛿

∫︁ 𝛿

−𝛿

[︂
𝑀𝛿(x𝑙)

|r′(x)|
|r′(x𝑙)|

−𝑀𝛿(x)
]︂
𝐻𝛿(|𝑙|)[𝑢(x𝑙)− 𝑢(x)] dx𝑙𝑣(x) dx. (2.7)

We then consider the nonlocal energy seminorm || · ||𝑆𝛿
as

||𝑢||2𝑆𝛿
=
∫︁

Ω

∫︁
Ω

𝐽𝛿(|x− y|)[𝑢(y)− 𝑢(x)]2 dy dx +
∫︁

Ω𝛿

𝑀𝛿(x)
∫︁ 𝛿

−𝛿

𝐻𝛿(|𝑙|)[𝑢(x𝑙)− 𝑢(x)]2 dx𝑙 dx,

with corresponding constrained energy space given by

𝑆𝛿(Ω) =
{︂
𝑢 ∈ 𝐿2(Ω) : ||𝑢||𝑆𝛿

<∞,

∫︁
Ω

𝑢dx = 0
}︂
.

Given the nonlocal Poincaré inequality which will be addressed in the next section, we will see that || · ||𝑆𝛿
is

actually a full norm. Similar to [50], one can show that the constrained energy space 𝑆𝛿(Ω) is a Hilbert space
under the given assumptions for the kernels 𝐽 and 𝐻. We note that for a fixed 𝛿 and integrable kernels 𝐽 , 𝐻,
based on the results in [27,50] we have

||𝑢||2𝑆𝛿
≤ 𝐶1(𝛿)(||𝑢||2𝐿2(Ω) + 𝛿||𝑢||2𝐿2(Ω𝛿)) ≤ 𝐶2(𝛿)||𝑢||2𝐿2(Ω),
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where 𝐶1(𝛿), 𝐶2(𝛿) are constants independent of 𝑢 but depending on 𝛿. Together with the Poincaré inequality,
we immediately obtain the equivalence result between 𝑆𝛿(Ω) and the space of 𝐿2(Ω) functions with zero mean.

Remark 2.1. A similar form of the flux condition (2.2) has been proposed in the previous literature, e.g.,
[19, 61]. By comparing the second term of (2.2) with the first case in [19], one can see that the second term of
(2.2) can be obtained by taking 𝐺 = 𝐺1 in [19] and modifying the correction term

∫︀
R𝑁∖Ω𝐺𝛿(x,x−y)𝑔(y) dy as∫︀

R𝑁∖Ω𝐺𝛿(x,x − y)
1
2

(𝑔(x) + 𝑔(y)) dy. Actually, this modification is sufficient to provide a nonlocal Neumann-

type condition with second order accuracy in the 1D case, as shown in [61]. However, in higher dimensional
cases we need to add the third term of (2.2) to achieve second order accuracy.

Remark 2.2. Note that in the current paper we focus on the 2D nonlocal diffusion problem, while the idea
can be further extended to the 3D cases and to more general nonlocal IDEs, which will be addressed in future
work.

3. Well-posedness and asymptotic property

In this section, we first address the well-posedness of the proposed nonlocal Neumann volume-constrained
problem by providing a nonlocal Poincaré-type inequality based on the estimates for boundary curvature 𝜅(x)
and its derivative 𝜅′(x). The coercivity and boundedness of the nonsymmetric bilinear operator 𝐵𝛿(·, ·) defined
in (2.7) follow, which yield the well-posedness of the variational problem. Furthermore, we study the consistency
of the nonlocal problem with the classical local model. Specifically, following the framework introduced in [63]
we prove the uniform embedding property and the precompact property of the proposed norm 𝑆𝛿, and then
show the asymptotic property of the solution of (2.5) as 𝛿 → 0, i.e., the solution 𝑢𝛿 converges to the solution 𝑢0

from the limiting local model (2.1). Here for simplicity we consider the case when 𝑔(x) = 0, and defer discussion
of inhomogeneous boundary conditions until Remark 3.11. For the limiting local model one can define the
corresponding inner product ||𝑢||𝑆0 = ||∇𝑢||𝐿2(Ω), the bilinear form 𝐵0(𝑢, 𝑣) = (∇𝑢,∇𝑣) and the constrained
energy space 𝑆0 =

{︀
𝑢 ∈ 𝐻1(Ω) :

∫︀
Ω
𝑢dx = 0

}︀
. Throughout this section, we consider the symbol “𝐶” to indicate

a generic constant that is independent of 𝛿, but may have different numerical values in different situations.
Moreover, we introduce the following notation for simplicity:

𝑏𝛿(𝑢, 𝑣) :=
∫︁

Ω

∫︁
Ω

𝐽𝛿(|x− y|)(𝑢(y)− 𝑢(x))(𝑣(y)− 𝑣(x)) dy dx,

ℎ𝛿(𝑢, 𝑣) :=
∫︁

Ω𝛿

𝑀𝛿(x)
∫︁ 𝛿

−𝛿

𝐻𝛿(|𝑙|)[𝑢(x𝑙)− 𝑢(x)][𝑣(x𝑙)− 𝑣(x)] dx𝑙 dx,

𝐼𝛿(x,y) := |(y − x) · p(x)|2 − |(y − x) · n(x)|2 + |(x− x) · n(x)|2.

We first have the following estimates of the function 𝑀𝛿(x) for each x ∈ Ω𝛿.

Lemma 3.1. For 𝑙 ∈ [−𝛿, 𝛿], and assuming that there exist constants 𝑑,𝐷 > 0 such that |𝜅′(z)| ≤ 𝐷, |𝜅(z)| ≤ 𝐷

and sup|𝜉|≤𝑑

⃒⃒⃒⃒
𝜅′(z𝜉)
𝜅(z)

⃒⃒⃒⃒
≤ 𝐷 for almost every z ∈ 𝜕Ω, there exists a 0 < 𝛿 ≤ 𝑑 such that for 𝛿 ≤ 𝛿 for almost every

x ∈ 𝜕Ω we have 0 ≤𝑀𝛿(x) ≤ 𝐶 and ⃒⃒⃒⃒
𝑀𝛿(x)−𝑀𝛿(x𝑙)

|r′(x)|
|r′(x𝑙)|

⃒⃒⃒⃒
≤ 𝐶𝑀𝛿2, (3.1)⃒⃒⃒⃒

𝑀𝛿(x)|r′(x𝑙)| −𝑀𝛿(x𝑙)|r′(x)|
𝑀𝛿(x)|r′(x𝑙)|

⃒⃒⃒⃒
≤ 𝐶𝑁𝛿, (3.2)

where 𝐶𝑀 , 𝐶𝑁 are constants independent of 𝛿.
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Figure 2. Notation for the geometric estimates in Lemma 3.1. Left: illustration of regions 𝐷𝛿

and 𝐴𝛿. Green represents 𝐷𝛿, the region in 𝐵(x, 𝛿) which lies on the other side of the tangential
line at x with respect to Ω. Cyan represents 𝐴𝛿, the region in 𝐵(x, 𝛿) which lies between 𝜕Ω
and the tangential line. Right: representation of the Cartesian coordinate system locally near
x. Here the region 𝐴𝛿 lies below the red curve 𝑦 = 𝑓(𝑥).

Proof. We show now that 0 ≤𝑀𝛿(x) ≤ 𝐶. Note that

𝑀𝛿(x) =
∫︁

(R𝑁∖Ω)𝛿

𝐽𝛿(|x− y|)𝐼𝛿 dy =
∫︁

𝐷𝛿

𝐽𝛿(|x− y|)𝐼𝛿 dy +
∫︁

𝐴𝛿

𝐽𝛿(|x− y|)𝐼𝛿 dy.

With 𝜏(x) representing the tangent line to 𝜕Ω at x, here 𝐷𝛿 is the region of 𝐵(x, 𝛿) on the side of 𝜏(x)
not containing Ω (as shown in the green region in the left plot of Fig. 2), and 𝐴𝛿 := 𝐵(x, 𝛿)∖(𝐷𝛿 ∪ Ω) (as
shown in the cyan region in the left plot of Fig. 2). We consider first the 𝐷𝛿 part. One can rewrite y ∈ 𝐷𝛿 as
x + (𝑟 cos(𝜃), 𝑟 sin(𝜃)) with 𝑠𝑥 < 𝑟 < 𝛿 and −𝜋/2 < − arccos(𝑠𝑥/𝑟) ≤ 𝜃 ≤ arccos(𝑠𝑥/𝑟) ≤ 𝜋/2, which yields∫︁

𝐷𝛿

𝐽𝛿(|x− y|)𝐼𝛿 dy =
∫︁ 𝛿

𝑠𝑥

𝐽𝛿(𝑟)
∫︁ arccos(𝑠𝑥/𝑟)

− arccos(𝑠𝑥/𝑟)

𝐼𝛿(x,y)𝑟 d𝜃 d𝑟

= 2
∫︁ 𝛿

𝑠𝑥

𝐽𝛿(𝑟)𝑟2
√︀

1− (𝑠𝑥/𝑟)2𝑠𝑥 d𝑟. (3.3)

From (3.3) we can see that
∫︀

𝐷𝛿
𝐽𝛿(|x− y|)𝐼𝛿 dy ≥ 0 and

𝑀𝛿(x) ≥
∫︁

𝐴𝛿

𝐽𝛿(|x− y|)[|(y − x) · p(x)|2 − |(y − x) · n(x)|2] dy. (3.4)

Therefore it suffices to show now that

|(y − x) · p(x)| ≥ |(y − x) · n(x)| ∀y ∈ 𝐴𝛿. (3.5)

We adopt a Cartesian coordinate system as shown in the right plot of Figure 2, assuming that x coincides with
the origin, p(x) is oriented along the positive direction of the 𝑥-axis while n(x) coincides with the negative
direction of the 𝑦-axis. We then have x = (0, 0), 𝜏(x) = {𝑦 = 0}, Ω ⊆ {𝑦 ≥ 0}, and let 𝑦 = 𝑓(𝑥) be the curve
describing 𝜕Ω. We note that any point y lying below 𝑦 = |𝑥| satisfies (3.5). Assuming that there exists a point
z ∈ 𝜕Ω lying above 𝑦 = |𝑥|, there exists 𝑥0 ̸= 0 such that 𝑓(𝑥0) = |𝑥0| and (𝑥0, 𝑓(𝑥0)) ∈ 𝜕Ω. For simplicity we
consider the case where 𝑥0 > 0 since the case where 𝑥0 < 0 is analogous. Since 𝑓 ′(0) = 0, by continuity there
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exists at least one point 𝑥1 ∈ (0, 𝑥0) such that 𝑓 ′(𝑥1) ≥ 1. Let 𝑥2 := inf{𝑡 > 0 : 𝑓 ′(𝑡) ≥ 1} ≤ 𝑥1 ≤ 𝑥0, then by
the regularity of 𝑓 we have 𝑥2 > 0. Thus 𝑓 ′(𝑥2) − 𝑓 ′(0) = 1 =

∫︀ 𝑥2

0
𝑓 ′′(𝑠) d𝑠. Moreover, the unsigned curvature

of the graph of 𝑓 can be given by |𝑓 ′′(𝑥)|(1 + 𝑓 ′(𝑥)2)−3/2. Due to the finiteness of the curvature of 𝜕Ω, and the
fact that 𝑓 ′(𝑥)2 ≤ 1 for all 𝑥 ∈ [0, 𝑥2], we obtain 𝐷 ≥ |𝑓 ′′(𝑥)|(1 + 𝑓 ′(𝑥)2)−3/2 and therefore

|𝑓 ′′(𝑥)| ≤ 𝐷(1 + 𝑓 ′(𝑥)2)3/2 ≤ 2
√

2𝐷, ∀𝑥 ∈ [0, 𝑥2].

Hence
1 =

∫︁ 𝑥2

0

𝑓 ′′(𝑠) d𝑠 ≤
∫︁ 𝑥2

0

|𝑓 ′′(𝑠)|d𝑠 ≤ 2
√

2𝑥2D ⇒ 𝑥2 ≥
1

2
√

2𝐷
·

But since 𝑥2 ≤ 𝑥0, this means that the first intersection point between 𝑦 = 𝑓(𝑥) and 𝑦 = |𝑥| (which we denote
as w = (𝑥0, |𝑥0|)) has distance at least 𝑥2 from x = (0, 0). Thus, for sufficiently small 𝛿 ≤ 1

4
√

2𝐷
=: 𝛿1, we get

|w − x| ≥ 𝑥2 ≥
1

2
√

2𝐷
≥ 2𝛿 = sup

𝑝,𝑞∈𝐵(x,𝛿)

|𝑝− 𝑞|.

Therefore, w /∈ 𝐵(x, 𝛿), and the entire region 𝐴𝛿 lies below 𝑦 = |𝑥|. Consequently, any y ∈ 𝐴𝛿 satisfies
|(y − x) · p(x)| ≥ |(y − x) · n(x)| and in turn 𝑀𝛿 ≥ 0. On the other hand, with the 𝐶3 regularity of Ω and by
Taylor expansion 𝐵(x, 𝛿)∩ 𝜕Ω is the graph of a function of the form 𝑦 = 𝑓(𝑥) = 𝜅(x)

2 𝑥2 +𝑂(𝑥3). Therefore, the
area |𝐴𝛿| ≤ 𝐶|𝜅(x)|(𝛿2 − 𝑠2𝑥)3/2 ≤ 𝐶𝐷𝛿3. Hence

𝑀𝛿(x) ≤
⃒⃒⃒⃒∫︁

𝐷𝛿

𝐽𝛿(|x− y|)𝐼𝛿 dy
⃒⃒⃒⃒

+
⃒⃒⃒⃒∫︁

𝐴𝛿

𝐽𝛿(|x− y|)𝐼𝛿 dy
⃒⃒⃒⃒

≤ 𝐶 sup
𝑟
𝐽(|𝑟|)(𝛿−4𝑠𝑥(𝛿2 − 𝑠2𝑥)3/2 +𝐷𝛿) ≤ 𝐶.

To show (3.1), denoting by 𝐷𝛿,x𝑙
, 𝐴𝛿,x𝑙

the analogous sets of 𝐷𝛿, 𝐴𝛿 at x𝑙 instead of x, we then have

𝑀𝛿(x)−𝑀𝛿(x𝑙)
|r′(x)|
|r′(x𝑙)|

=
∫︁

𝐷𝛿

𝐽𝛿(|x− y|)𝐼𝛿(x,y) dy − |r′(x)|
|r′(x𝑙)|

∫︁
𝐷𝛿,x𝑙

𝐽𝛿(|x𝑙 − y|)𝐼𝛿(x𝑙,y) dy

+
∫︁

𝐴𝛿

𝐽𝛿(|x− y|)𝐼𝛿(x,y) dy − |r′(x)|
|r′(x𝑙)|

∫︁
𝐴𝛿,x𝑙

𝐽𝛿(|x𝑙 − y|)𝐼𝛿(x𝑙,y) dy.

With the definition of x𝑙 and the regularity assumptions on Ω, it holds 𝑠x𝑙
:= dist(x𝑙, 𝜕Ω) = dist(x, 𝜕Ω). We

obtain ∫︁
𝐷𝛿,x𝑙

𝐽𝛿(|x𝑙 − y|)𝐼𝛿(x𝑙,y) dy =
∫︁

𝐷𝛿

𝐽𝛿(|x− y|)𝐼𝛿(x,y) dy.

Moreover, with the coordinate system as shown in the right plot of Figure 2, we have |r′(x)| = 1 and |r′(x𝑙)| =√︀
1 + (𝑓 ′(𝑥))2. Since for any point x𝑙 = (𝑥𝑙, 𝑓(𝑥𝑙)) in 𝐵(x, 𝛿), |𝑓 ′(𝑥𝑙)| = |𝑥𝑙𝑓

′′(𝜉)| ≤ 𝐶𝛿 for some 𝜉 ∈ [0, 𝑥𝑙],
therefore ⃒⃒⃒⃒

|r′(x)|
|r′(x𝑙)|

− 1
⃒⃒⃒⃒

=

⃒⃒⃒⃒
⃒ 1√︀

1 + (𝑓 ′(𝑥𝑙))2
− 1

⃒⃒⃒⃒
⃒ =

1
2

(𝑓 ′(𝑥𝑙))2 +𝑂(𝛿4) ≤ 𝐶𝛿2 (3.6)

and hence together with (3.3) we obtain∫︁
𝐷𝛿

𝐽𝛿(|x− y|)𝐼𝛿(x,y) dy − |r′(x)|
|r′(x𝑙)|

∫︁
𝐷𝛿,x𝑙

𝐽𝛿(|x𝑙 − y|)𝐼𝛿(x𝑙,y) dy ≤ 𝐶𝛿2.

To estimate
∫︀

𝐴𝛿
𝐽𝛿(|x−y|)𝐼𝛿(x,y) dy−

∫︀
𝐴𝛿,x𝑙

𝐽𝛿(|x𝑙−y|)𝐼𝛿(x𝑙,y) dy, let 𝑅 be the rototranslation mapping such
that

𝑅(x𝑙) = x, 𝑅(p(x𝑙)) = p(x), 𝑅(n(x𝑙)) = n(x).
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With such construction we note that the curves 𝑅(𝐵(x𝑙, 𝛿) ∩ 𝜕Ω) and 𝐵(x, 𝛿) ∩ 𝜕Ω share the same tangential
lines at x. Meanwhile, 𝐵(x, 𝛿)∩𝜕Ω and 𝑅(𝐵(x𝑙, 𝛿)∩𝜕Ω) have different curvatures 𝜅(x) and 𝜅(x𝑙), respectively.
When 𝛿 ≪ 1/𝐷, we have the arc lengths of 𝑅(𝐵(x𝑙, 𝛿) ∩ 𝜕Ω) and 𝐵(x, 𝛿) ∩ 𝜕Ω satisfying |𝑅(𝐵(x𝑙, 𝛿) ∩ 𝜕Ω)| ≤
2
√︀
𝛿2 − 𝑠2𝑥+𝐶𝜅(x𝑙)(𝛿2−𝑠2𝑥) and |𝐵(x, 𝛿)∩𝜕Ω| ≤ 2

√︀
𝛿2 − 𝑠2𝑥+𝐶𝜅(x)(𝛿2−𝑠2𝑥). Moreover, the spread 𝑑ℋ(𝐵(x, 𝛿)∩

𝜕Ω, 𝑅(𝐵(x𝑙, 𝛿) ∩ 𝜕Ω)) is bounded by

𝑑ℋ(𝐵(x, 𝛿) ∩ 𝜕Ω, 𝑅(𝐵(x𝑙, 𝛿) ∩ 𝜕Ω))

= max

{︃
sup

𝑧∈𝐵(x,𝛿)∩𝜕Ω

dist(𝑧,𝑅(𝐵(x𝑙, 𝛿) ∩ 𝜕Ω)), sup
𝑧∈𝑅(𝐵(x𝑙,𝛿)∩𝜕Ω)

dist(𝑧,𝐵(x, 𝛿) ∩ 𝜕Ω)

}︃
≤ 𝐶|𝜅(x𝑙)− 𝜅(x)|(𝛿2 − 𝑠2𝑥).

Therefore, noting that the quantities 𝐽𝛿, 𝐼𝛿 and dy are invariant under 𝑅, and |𝐼𝛿(x𝑙,y)|, |𝐼𝛿(x,y)| ≤ 3𝛿2, one
has ⃒⃒⃒⃒ ∫︁

𝐴𝛿,x𝑙

𝐽𝛿(|x𝑙 − y|)𝐼𝛿(x𝑙,y) dy −
∫︁

𝐴𝛿

𝐽𝛿(|x− y|)𝐼𝛿(x,y) dy
⃒⃒⃒⃒

=
⃒⃒⃒⃒ ∫︁

𝑅(𝐴𝛿,x𝑙
)

𝐽𝛿(|x− y|)𝐼𝛿(x,y) dy −
∫︁

𝐴𝛿

𝐽𝛿(|x− y|)𝐼𝛿(x,y) dy
⃒⃒⃒⃒

≤ 𝐶

∫︁
𝐴𝛿𝛥𝑅(𝐴𝛿,x𝑙

)

𝐽𝛿(|x− y|)𝛿2 dy ≤ 𝐶|𝜅(x𝑙)− 𝜅(x)|𝛿−2(𝛿2 − 𝑠2𝑥)3/2

≤ 𝐶 sup
|𝜉|≤|𝑙|

|𝜅′(x𝜉)|𝛿−1(𝛿2 − 𝑠2𝑥)3/2 ≤ 𝐶𝛿−1(𝛿2 − 𝑠2𝑥)3/2, (3.7)

where the constant 𝐶 depends on sup𝑟 𝐽(|𝑟|) and is independent of 𝛿. Moreover, with (3.6) and⃒⃒⃒∫︀
𝐴𝛿
𝐽𝛿(|x− y|)𝐼𝛿 dy

⃒⃒⃒
≤ 𝐶 sup𝑟 𝐽(|𝑟|)𝛿 we have⃒⃒⃒⃒

⃒
(︂

1− |r′(x)|
|r′(x𝑙)|

)︂∫︁
𝐴𝛿,x𝑙

𝐽𝛿(|x𝑙 − y|)𝐼𝛿(x𝑙,y) dy

⃒⃒⃒⃒
⃒ ≤ 𝐶𝛿3.

Thus, we obtain the bound in (3.1).
We now work on the proof of (3.2) by combining (3.7) and establishing a lower bound for 𝑀𝛿. We firstly

prove that ⃒⃒⃒⃒
𝑀𝛿(x)−𝑀𝛿(x𝑙)

𝑀𝛿(x)

⃒⃒⃒⃒
≤ 𝐶𝛿. (3.8)

With the previous calculation, we have∫︁
𝐷𝛿

𝐽𝛿(x− y)𝐼𝛿 dy = 2
∫︁ 𝛿

𝑠𝑥

𝐽𝛿(𝑟)𝑟2
√︀

1− (𝑠𝑥/𝑟)2𝑠𝑥 d𝑟 ≥ 𝐶𝛿−4𝑠𝑥(𝛿2 − 𝑠2𝑥)3/2

≥ 𝐶

𝐷
|𝜅(x)|𝛿−4𝑠𝑥(𝛿2 − 𝑠2𝑥)3/2 = 𝐶|𝜅(x)|𝛿−4𝑠𝑥(𝛿2 − 𝑠2𝑥)3/2

and
∫︀

𝐴𝛿
𝐽𝛿(x− y)𝐼𝛿 dy ≥ 0. When 𝑠2𝑥 ≥ 𝛿2/2 one has⃒⃒⃒⃒
𝑀𝛿(x)−𝑀𝛿(x𝑙)

𝑀𝛿(x)

⃒⃒⃒⃒
≤ 𝐶

|𝜅(x𝑙)− 𝜅(x)|𝛿−2(𝛿2 − 𝑠2𝑥)3/2

|𝜅(x)|𝛿−4𝑠𝑥(𝛿2 − 𝑠2𝑥)3/2
= 𝐶

𝛿3

𝑠𝑥
sup
|𝜉|≤𝑑

⃒⃒⃒⃒
𝜅′(x𝜉)
𝜅(x)

⃒⃒⃒⃒
≤ 𝐶𝛿 sup

|𝜉|≤𝑑

⃒⃒⃒⃒
𝜅′(x𝜉)
𝜅(x)

⃒⃒⃒⃒
and therefore (3.8) holds true. For 𝑠2𝑥 < 𝛿2/2, we just need to bound

∫︀
𝐴𝛿
𝐽𝛿(x − y)𝐼𝛿 dy from below. For

notational simplicity, we assume here the Cartesian coordinate system shown in the right plot of Figure 2. The
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following properties hold:

(y − x) · p(x) = 𝑥 coordinate of y, (3.9)
(y − x) · n(x) = −(𝑦 coordinate of y). (3.10)

We first assume that |𝜅(x)| > 0. By Taylor approximation, 𝐵(x, 𝛿) ∩ 𝜕Ω is the graph of a function of the form
𝑦 = 𝑓(𝑥) = 𝜅(x)

2 𝑥2 + 𝑂(𝑥3). Integrating it yields that the area |𝐴𝛿| = 𝐶|𝜅(x)|(𝛿2 − 𝑠2𝑥)3/2 = 𝐶|𝜅(x)|𝛿3. Let
ℎ ∈ (0, 1) be a point where the area of 𝐴𝛿 ∩ {𝑥 ≥ ℎ𝛿} is 𝐶|𝜅(x)|𝛿3/2. With the convexity assumption of 𝜕Ω,
one has ℎ > 1/2. When 𝛿 ≤ 𝛿1 <

1
2D , the slope of 𝑓 (i.e. the slope of the tangent derivative of 𝐵(x, 𝛿) ∩ 𝜕Ω)

can reach at most 𝛿𝐷 < 1/2. Thus the graph of 𝑓 lies below the line 𝑦 = 𝑥/2 and (3.10) gives

𝐼𝛿 ≥ |(y − x) · p(x)|2 − |(y − x) · n(x)|2 ≥ |(y − x) · p(x)|2 − |(y − x) · n(x)|2

≥ 3
4
|(y − x) · p(x)|2 ≥ 3

4
ℎ2𝛿2 ≥ 3

16
𝛿2

for all y ∈ 𝐴𝛿 ∩ {𝑥 ≥ ℎ𝛿}.
Recalling that 𝐽(𝑟) is strictly positive for 0 ≤ 𝑟 ≤ 1 and therefore min𝑟≤1 𝐽(|𝑟|) > 0, we infer

𝑀𝛿 ≥
∫︁

𝐴𝛿∩{𝑥≥ℎ}
min
𝑟≤1

𝐽(|𝑟|)𝛿−4(|(y − x) · p(x)|2 − |(y − x) · n(x)|2) dy

≥ 3𝐶
32
|𝜅(x)|𝛿 ≥ 𝐶|𝜅(x)|𝛿. (3.11)

Combining with (3.7), we thus obtain the bound (3.8).

For |𝜅(x)| = 0, with domain 𝐶3 regularity assumption and sup|𝜉|≤𝑑

⃒⃒⃒⃒
𝜅′(x𝜉)
𝜅(x)

⃒⃒⃒⃒
≤ 𝐷 a.e., we have 𝜅(x𝜉) ≡ 0 for

|𝜉| ≤ 𝑑 almost everywhere and therefore 𝑀𝛿(x𝑙) = 𝑀𝛿(x) for |𝑙| ≤ 𝛿 and 𝛿 ≤ 𝑑/2. (3.8) can then be trivially
proved.

We can now prove (3.2):⃒⃒⃒⃒
𝑀𝛿(x)|r′(x𝑙)| −𝑀𝛿(x𝑙)|r′(x)|

𝑀𝛿(x)|r′(x𝑙)|

⃒⃒⃒⃒
≤ |r′(x)|
|r′(x𝑙)|

⃒⃒⃒⃒
𝑀𝛿(x)−𝑀𝛿(x𝑙)

𝑀𝛿(x)

⃒⃒⃒⃒
+
⃒⃒⃒⃒
|r′(x)|
|r′(x𝑙)|

− 1
⃒⃒⃒⃒
≤ 𝐶𝛿.

�

Remark 3.2. Note that in the previous proof we assumed 𝐽(𝑟) is strictly positive in [0, 1] such that 𝐽(|𝑟|) ≥
𝐶1 > 0. However, the proof can be extended for a more general positive 𝐽 whose support is the entire ball
𝐵(0, 1). It suffices to note:

– It easily follows from the previous proof that the set

𝐴𝛿 := {z ∈ 𝐴𝛿 : |z− x| ∈ [𝛿/3, 𝛿/2]}

has area 𝐶|𝐴𝛿| for some constant 𝐶 ∈ (0, 1), and on 𝐴𝛿 it holds 𝐼𝛿 ≥ 𝐶1𝛿
2, again for some constant

𝐶1 ∈ (0, 1).
– Since 𝐽(𝑟) is nonincreasing on 𝑟 and its support is the entire ball 𝐵(0, 1) there exists another constant 𝐶2 > 0

such that 𝐽(𝑟) ≥ 𝐶2 for 𝑟 ∈ [1/3, 1/2].

Combining the above two facts, we obtain

𝑀𝛿 ≥
∫︁

𝐴𝛿

𝐽𝛿(|x− y|)𝐼𝛿 dy ≥
∫︁

𝐴𝛿

min
𝛿/3≤𝑟≤𝛿/2

𝐽𝛿(𝑟)𝐼𝛿 dy ≥ 𝐶|𝜅(x)|𝛿.
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Remark 3.3. When 𝑢 ∈ 𝐶∞(Ω), the above bounds of 𝑀𝛿(x) yield

0 ≤ ℎ𝛿(𝑢, 𝑢) =
∫︁

Ω𝛿

𝑀𝛿(x)
∫︁ 𝛿

−𝛿

𝐻𝛿(|𝑙|)[𝑢(x𝑙)− 𝑢(x)]2 dx𝑙 dx

≤
∫︁

Ω𝛿

𝑀𝛿(x)
∫︁ 𝛿

−𝛿

𝐻𝛿(|𝑙|)

[︃⃒⃒⃒⃒
𝜕𝑢(x)
𝜕p

⃒⃒⃒⃒2
|𝑙|2 + 𝐶|𝑙|3

]︃
dx𝑙 dx

≤
∫︁

Ω𝛿

𝑀𝛿(x)
⃒⃒⃒⃒
𝜕𝑢(x)
𝜕p

⃒⃒⃒⃒2
dx + 𝐶|Ω𝛿|𝛿 ≤ 𝐶|Ω𝛿|

(︃⃒⃒⃒⃒
𝜕𝑢(x)
𝜕p

⃒⃒⃒⃒2
+ 𝛿

)︃
.

Combining with the results in [63], we have lim𝛿→0 ||𝑢||𝑆𝛿
= ||𝑢||𝑆0 .

We will now show a nonlocal Poincaré-type inequality:

Lemma 3.4. There exists a 0 < 𝛿 ≤ 1 such that

||𝑢||2𝐿2(Ω) ≤ 𝐶𝐵𝛿(𝑢, 𝑢) (3.12)

for all 𝑢 ∈ 𝑆𝛿 and 𝛿 ≤ 𝛿. Note that here 𝛿 depends on both 𝑢 and Ω.

Proof. With Proposition 2 from [51] we have the bound for the first term in (2.7): there exist 𝛿0 such that for
all 𝛿 < 𝛿0,

||𝑢||2𝐿2(Ω) ≤ 𝐶*𝑏𝛿(𝑢, 𝑢), (3.13)

and here we assume 𝐶* > 0 without loss of generality. To estimate the remaining two terms, we first work

on the case where 𝛿Ω is a straight line. For x ∈ Ω𝛿 we have 𝑀𝛿(x𝑙)
|r′(x)|
|r′(x𝑙)|

= 𝑀𝛿(x), and therefore the last

term of 𝐵𝛿(𝑢, 𝑢) vanishes. For the second term of 𝐵𝛿(𝑢, 𝑢), with Lemma 3.1 we have 𝑀𝛿(x) ≥ 0, and therefore
ℎ𝛿(𝑢, 𝑢) =

∫︀
Ω𝛿
𝑀𝛿(x)

∫︀ 𝛿

−𝛿
𝐻𝛿(|𝑙|)[𝑢(x𝑙) − 𝑢(x)]2 dx𝑙 dx ≥ 0. We then have the Poincaré-type inequality: there

exists constants 𝐶 and 𝛿0 such that for all 𝑢 ∈ 𝑆𝛿 and 𝛿 ≤ 𝛿0:

||𝑢||2𝐿2(Ω) ≤ 𝐶*𝑏𝛿(𝑢, 𝑢) ≤ 𝐶*(𝑏𝛿(𝑢, 𝑢) + ℎ𝛿(𝑢, 𝑢)) = 𝐶*𝐵𝛿(𝑢, 𝑢).

We now proceed to finish the proof. Here we assume that ‖𝑢‖𝐿2(Ω) > 0, otherwise the result is trivial. For
simplicity, we now denote 𝛿1 as min(𝛿0, 𝛿) where 𝛿 is defined in Lemma 3.1 and 𝛿0 as in (3.13). With (3.13) and
Lemma 3.1 we still have ||𝑢||2𝐿2(Ω) ≤ 𝐶*𝑏𝛿(𝑢, 𝑢) and ℎ𝛿(𝑢, 𝑢) ≥ 0. We now proceed to estimate the last term in
𝐵𝛿(𝑢, 𝑢): ∫︁

Ω𝛿

∫︁ 𝛿

−𝛿

[︂
𝑀𝛿(x𝑙)

|r′(x)|
|r′(x𝑙)|

−𝑀𝛿(x)
]︂
𝐻𝛿(|𝑙|)[𝑢(x𝑙)− 𝑢(x)] dx𝑙𝑢(x) dx

≥ −1
2

∫︁
Ω𝛿

𝑀𝛿(x)
∫︁ 𝛿

−𝛿

𝐻𝛿(|𝑙|)[𝑢(x𝑙)− 𝑢(x)]2 dx𝑙 dx

− 1
2

∫︁
Ω𝛿

∫︁ 𝛿

−𝛿

𝐻𝛿(|𝑙|) |𝑀𝛿(x)−𝑀𝛿(x𝑙)|r′(x)|/|r′(x𝑙)||2

|𝑀𝛿(x)|
dx𝑙|𝑢(x)|2 dx

≥ −1
2
ℎ𝛿(𝑢, 𝑢)− 𝐶𝑁𝐶𝑀

2

∫︁
Ω𝛿

∫︁ 𝛿

−𝛿

𝐻𝛿(|𝑙|)𝛿3 dx𝑙|𝑢(x)|2 dx

≥ −1
2
ℎ𝛿(𝑢, 𝑢)− 𝐶𝑁𝐶𝑀𝐶𝐻𝛿

2
‖𝑢‖2𝐿2(Ω). (3.14)
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Hence, when

𝛿 < min
{︂
𝛿1,

1
𝐶*𝐶𝑁𝐶𝑀𝐶𝐻

}︂
=: 𝛿 (3.15)

we have

𝐵𝛿(𝑢, 𝑢) ≥
(︂

1
𝐶*

− 𝐶𝑁𝐶𝑀𝐶𝐻𝛿

2

)︂
‖𝑢‖2𝐿2(Ω) +

1
2
ℎ𝛿(𝑢, 𝑢) ≥ 1

2𝐶*
‖𝑢‖2𝐿2(Ω).

�

The uniform boundedness of 𝐿−1
𝛿 then follows

Lemma 3.5. Assuming that Ω and 𝛿 satisfy the conditions in Lemma 3.4, there exists a constant 𝐶 such that

||𝐿−1
𝛿 ||𝐿2(Ω) ≤ 𝐶. (3.16)

Moreover, with the definition of || · ||𝑆𝛿
, we can show the boundedness and coercivity of the nonsymmetric

bilinear operator 𝐵𝛿(·, ·):

Lemma 3.6. There exists a 0 < 𝛿 ≤ 1 such that for all 𝛿 < 𝛿 the following inequalities hold

∀𝑢, 𝑣 ∈ 𝑆𝛿, 𝐵𝛿(𝑢, 𝑣) ≤ 𝐶1||𝑢||𝑆𝛿
||𝑣||𝑆𝛿

, (3.17)
∀𝑢 ∈ 𝑆𝛿, 𝐵𝛿(𝑢, 𝑢) ≥ 𝐶2||𝑢||2𝑆𝛿

, (3.18)

for two constants 𝐶1, 𝐶2 > 0.

Proof. We first show (3.17). For the first two terms in 𝐵𝛿(𝑢, 𝑣), with the Cauchy–Schwarz inequality one may
obtain 𝑏𝛿(𝑢, 𝑣) ≤ 𝐶

√︀
𝑏𝛿(𝑢, 𝑢)𝑏𝛿(𝑣, 𝑣) and ℎ𝛿(𝑢, 𝑣) ≤ 𝐶

√︀
ℎ𝛿(𝑢, 𝑢)ℎ𝛿(𝑣, 𝑣). Moreover, with Lemma 3.1, similar as

in (3.14) we can show that∫︁
Ω𝛿

∫︁ 𝛿

−𝛿

[︂
𝑀𝛿(x𝑙)

|r′(x)|
|r′(x𝑙)|

−𝑀𝛿(x)
]︂
𝐻𝛿(|𝑙|)[𝑢(x𝑙)− 𝑢(x)] dx𝑙𝑣(x) dx

≤ 𝐶

√︂
ℎ𝛿(𝑢, 𝑢)

(︁
𝐶𝑁𝐶𝑀𝐶𝐻𝛿‖𝑣‖2𝐿2(Ω)

)︁
≤ 𝐶

√︀
ℎ𝛿(𝑢, 𝑢)𝑏𝛿(𝑣, 𝑣). (3.19)

Therefore

𝐵𝛿(𝑢, 𝑣)2 ≤ 𝐶(𝑏𝛿(𝑢, 𝑢)𝑏𝛿(𝑣, 𝑣) + ℎ𝛿(𝑢, 𝑢)𝑏𝛿(𝑣, 𝑣) + ℎ𝛿(𝑢, 𝑢)ℎ𝛿(𝑣, 𝑣)) ≤ 𝐶||𝑢||2𝑆𝛿
||𝑣||2𝑆𝛿

.

On the other hand, (3.18) can be obtained when 𝛿 is taken as in (3.15) and follow a similar proof as in Lemma
(3.4). �

With the above properties, we can see that there exists a unique solution 𝑢𝛿 ∈ 𝑆𝛿 solving (2.6) (cf., [14],
Thm. 2.5.6). The well-posedness of the proposed variational problem is therefore obtained. To further show the
asymptotic property of solution when 𝛿 → 0, we need the following embedding property:

Lemma 3.7. For all 𝑢 ∈ 𝑆0 there exists a constant 𝐶 such that

𝐵𝛿(𝑢, 𝑢) ≤ 𝐶||∇𝑢||2𝐿2(Ω) (3.20)

for any 𝛿 satisfying the condition in Lemma 3.6.
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Proof. Given 𝑢 ∈ 𝑆0, from Theorem 1 of [13] we have that

𝑏𝛿(𝑢, 𝑢) ≤ 𝐶‖𝑢‖2𝐻1(Ω) ≤ 𝐶‖∇𝑢‖2𝐿2(Ω).

To bound the second and the third terms of 𝐵𝛿(𝑢, 𝑢), we start with the case of boundary curvature≡ 0,
where we only need to show that ℎ𝛿(𝑢, 𝑢) =

∫︀
Ω𝛿
𝑀𝛿(x)

∫︀ 𝛿

−𝛿
𝐻𝛿(|𝑙|)[𝑢(x𝑙) − 𝑢(x)]2 dx𝑙 dx ≤ 𝐶||∇𝑢||2𝐿2(Ω). Since

𝑀𝛿(x) ≤ 𝐶, it suffices to estimate
∫︀
Ω𝛿

∫︀ 𝛿

−𝛿
𝐻𝛿(|𝑙|)[𝑢(x𝑙)−𝑢(x)]2 dx𝑙 dx. With the Hölder inequality and the fact

that
∫︀
Ω𝛿
|∇𝑢(x𝑡)|2 dx =

∫︀
Ω𝛿
|∇𝑢(x)|2 dx for all |𝑡| ≤ 𝛿, we have∫︁

Ω𝛿

∫︁ 𝛿

−𝛿

𝐻𝛿(|𝑙|)[𝑢(x𝑙)− 𝑢(x)]2 dx𝑙 dx

≤ sup
𝑟≤1

𝐻(|𝑟|) 1
𝛿3

∫︁
Ω𝛿

∫︁ 𝛿

−𝛿

[𝑢(x𝑙)− 𝑢(x)]2 dx𝑙 dx ≤ 𝐶

𝛿2

∫︁
Ω𝛿

∫︁ 𝛿

−𝛿

∫︁ 𝑙

0

|∇𝑢(x𝑡)|2d𝑡dx𝑙 dx

≤ 𝐶

𝛿2

∫︁
Ω𝛿

∫︁ 𝛿

−𝛿

∫︁ 𝛿

0

|∇𝑢(x𝑡)|2d𝑡dx𝑙 dx =
𝐶

𝛿

∫︁
Ω𝛿

∫︁ 𝛿

0

|∇𝑢(x𝑡)|2d𝑡dx

=
𝐶

𝛿

∫︁ 𝛿

0

∫︁
Ω𝛿

|∇𝑢(x𝑡)|2 dxd𝑡 = 𝐶

∫︁
Ω𝛿

|∇𝑢(x)|2 dx ≤ 𝐶||∇𝑢||2𝐿2(Ω).

Therefore, the Lemma holds true when the boundary curvature 𝜅(x) ≡ 0, a.e. We now work on the case of
nonzero curvature.

Similar as in the curvature ≡ 0 case we can obtain ℎ𝛿(𝑢, 𝑢) ≤ 𝐶‖∇𝑢‖2𝐿2(Ω). For the last term of 𝐵𝛿(𝑢, 𝑢),
with (3.19) we have ∫︁

Ω𝛿

∫︁ 𝛿

−𝛿

[︂
𝑀𝛿(x𝑙)

|r′(x)|
|r′(x𝑙)|

−𝑀𝛿(x)
]︂
𝐻𝛿(|𝑙|)[𝑢(x𝑙)− 𝑢(x)] dx𝑙𝑢(x) dx

≤ 𝐶
√︀
ℎ𝛿(𝑢, 𝑢)𝑏𝛿(𝑢, 𝑢) ≤ 𝐶‖∇𝑢‖2𝐿2(Ω).

�

Before studying the limiting behavior of the nonlocal operator, we need a compactness property:

Lemma 3.8. Suppose 𝑢𝑛 ∈ 𝑆𝛿𝑛 and 𝛿𝑛 → 0, then given sup𝑛𝐵𝛿𝑛(𝑢𝑛, 𝑢𝑛) ≤ ∞, 𝑢𝑛 is precompact in 𝐿2(Ω).
Moreover, any limit point 𝑢 ∈ 𝑆0.

Proof. Since 𝑆𝛿𝑛
⊆ 𝐿2(Ω) and ℎ𝛿(𝑢𝑛, 𝑢𝑛) ≥ 0, similar to (3.14) we have,

𝐵𝛿(𝑢, 𝑢) ≥ 1
2

∫︁
Ω

∫︁
Ω

𝐽𝛿𝑛
(x− y)(𝑢𝑛(y)− 𝑢𝑛(x))2 dy dx +

(︂
1

2𝐶*
− 𝐶𝑁𝐶𝑀𝐶𝐻𝛿

2

)︂
‖𝑢‖2𝐿2(Ω)

where 𝐶* denotes the constant in (3.13). Therefore, when 𝛿 is taken as in (3.15), then for all 𝛿 < 𝛿

𝐵𝛿𝑛(𝑢𝑛, 𝑢𝑛) ≥ 1
2

∫︁
Ω

∫︁
Ω

𝐽𝛿𝑛(x− y)(𝑢𝑛(y)− 𝑢𝑛(x))2 dy dx.

We have 𝑢𝑛 ∈ 𝐿2(Ω) and ∫︁
Ω

∫︁
Ω

𝐽𝛿𝑛
(x− y)(𝑢𝑛(y)− 𝑢𝑛(x))2 dy dx ≤ ∞.

From Theorem 1.2 of [56], any limit of {𝑢𝑛} is in 𝐿2(Ω), or equivalently, 𝑢𝑛 is precompact, and any limit point
𝑢 ∈ 𝑆0. �
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With the above lemmas, we obtain the following 𝐿2 convergence result for an intermediate solution as 𝛿 → 0:

Lemma 3.9. Suppose 𝑢̃𝛿 is the weak solution of{︂
𝐿𝑁𝛿𝑢̃𝛿 = 𝑓, in Ω∫︀
Ω
𝑢̃𝛿 dx = 0, (3.21)

and 𝑢0 is the weak solution of (2.1), then

lim
𝛿→0

||𝑢̃𝛿 − 𝑢0||𝐿2(Ω) = 0. (3.22)

Proof. The proof follows a similar strategy as in [61, 63]. A detailed derivation is provided in
Appendix A.1. �

We now have the main theorem of this section for 𝑓 ∈ 𝐶(Ω):

Theorem 3.10. Suppose 𝑢𝛿 is the weak solution of (2.5) and 𝑢0 is the weak solution of (2.1), then

lim
𝛿→0

||𝑢𝛿 − 𝑢0||𝐿2(Ω) = 0. (3.23)

Proof. With the results in Lemma 3.9, we only need to show that lim𝛿→0 ||𝑢𝛿−𝑢̃𝛿||𝐿2(Ω) = 0. Since 𝐿𝛿(𝑢𝛿−𝑢̃𝛿) =
𝑓𝛿 − 𝑓 , with Lemma 3.5 we can see that it suffices to show

lim
𝛿→0

||𝑓𝛿 − 𝑓 ||𝐿2(Ω) = 0, (3.24)

or equivalently

lim
𝛿→0

∫︁
Ω𝛿

(︃∫︁
(R𝑁∖Ω)𝛿

𝐽𝛿(|x− y|)(|(y − x) · n(x)|2 − |(x− x) · n(x)|2) dy𝑓(x)

)︃2

dx = 0.

Since ⃒⃒⃒⃒
⃒
∫︁

(R𝑁∖Ω)𝛿

𝐽𝛿(|x− y|)(|(y − x) · n(x)|2 − |(x− x) · n(x)|2) dy

⃒⃒⃒⃒
⃒

≤ 𝐶

∫︁
(R𝑁∖Ω)𝛿

𝐽𝛿(|x− y|)|(y − x) · n(x)|2 dy ≤ 𝐶,

we have∫︁
Ω𝛿

(︃∫︁
(R𝑁∖Ω)𝛿

𝐽𝛿(|x− y|)(((y − x) · n(x))2 − ((x− x) · n(x))2) dy𝑓(x)

)︃2

dx ≤ 𝐶

∫︁
Ω𝛿

|𝑓(x)|2 dx

which vanishes as 𝛿 → 0. �

Remark 3.11. For the analysis in this paper we focus on the homogeneous Neumann-type boundary condition
𝑔(x) = 0, while we note that the proposed nonlocal variational formulation can be applied to inhomogeneous

boundary conditions. Here we take 𝐽𝛿(𝑟) =
4
𝜋𝛿4

for simplicity. When 𝑓(x) = 0 and 𝑔(x) ̸= 0, applying a test

function 𝑣(x) ∈ 𝐶∞(Ω) to (2.4) yields

(𝑓𝛿, 𝑣)𝐿2(Ω) =
∫︁

Ω

(︃
2
∫︁

R𝑁∖Ω
𝐽𝛿(|x− y|)(y − x) · n(x) dy −𝑀𝛿(x)𝜅(x)

)︃
𝑔(x)𝑣(x) dx

= 2
∫︁

Ω𝛿

∫︁
R𝑁∖Ω

𝐽𝛿(|x− y|)(y − x) · n(x) dy𝑔(x)𝑣(x) dx−
∫︁

Ω𝛿

𝑀𝛿(x)𝜅(x)𝑔(x)𝑣(x) dx.
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For the second part, with the Hölder inequality we have⃒⃒⃒⃒∫︁
Ω𝛿

𝑀𝛿(x)𝜅(x)𝑔(x)𝑣(x) dx
⃒⃒⃒⃒
≤ 𝐶

√︃∫︁
Ω𝛿

𝑔2(x) dx
∫︁

Ω𝛿

𝑣2(x) dx ≤ 𝐶
√︁
𝛿||𝑔||𝐿2(𝜕Ω)||𝑣||𝐿2(Ω).

Therefore,
⃒⃒⃒∫︀

Ω𝛿
𝑀𝛿(x)𝜅(x)𝑔(x)𝑣(x) dx

⃒⃒⃒
→ 0 as 𝛿 → 0. To show the asymptotic limit for the first part as 𝛿 → 0,

for each x ∈ Ω𝛿 we have∫︁
R𝑁∖Ω

𝐽𝛿(|x− y|)(y − x) · n(x) dy =
∫︁

𝐷𝛿

𝐽𝛿(|x− y|)(y − x) · n(x) dy +
∫︁

𝐴𝛿

𝐽𝛿(|x− y|)(y − x) · n(x) dy.

For the first part∫︁
𝐷𝛿

𝐽𝛿(|x− y|)(y − x) · n(x) dy =
4
𝜋𝛿4

∫︁ 𝛿

𝑠𝑥

2𝑟
√︀
𝛿2 − 𝑟2 d𝑟 =

8
3𝜋𝛿4

(𝛿2 − 𝑠2𝑥)3/2

and

2
∫︁

Ω𝛿

∫︁
𝐷𝛿

𝐽𝛿(|x− y|)(y − x) · n(x) dy𝑔(x)𝑣(x) dx

=
16

3𝜋𝛿4

∫︁
Ω𝛿

(𝛿2 − 𝑠2𝑥)3/2𝑔(x)𝑣(x) dx =
16

3𝜋𝛿4

∫︁
𝜕Ω

∫︁ 𝛿

0

(𝛿2 − 𝑟2)3/2 d𝑟𝑔(x)𝑣(x)dx + O(𝛿)

=
∫︁

𝜕Ω

𝑔(x)𝑣(x)dx + O(𝛿). (3.25)

For the second part, since the area of 𝐴𝛿 is bounded by 𝐶𝛿3, we have⃒⃒⃒⃒∫︁
𝐴𝛿

𝐽𝛿(|x− y|)(y − x) · n(x) dy
⃒⃒⃒⃒
≤ 𝐶𝛿. (3.26)

Combining (3.25) and (3.26) yields

lim
𝛿→0

(𝑓𝛿, 𝑣)𝐿2(Ω) = lim
𝛿→0

2
∫︁

Ω𝛿

∫︁
R𝑁∖Ω

𝐽𝛿(|x− y|)(y − x) · n(x) dy𝑔(x)𝑣(x) dx =
∫︁

𝜕Ω

𝑔(x)𝑣(x)dx.

Therefore, the right hand side converges to the inhomogeneous flux condition as 𝛿 → 0 in the variational
formulation. In fact, the asymptotic convergence property in Theorem 3.10 can be shown for the nonlocal
diffusion problem with inhomogeneous flux conditions given the corresponding nonlocal trace theorem, which
will be addressed in the future work.

4. Convergence rate in the 𝐿∞(Ω) norm

In this section we will estimate the order of convergence rate by considering a problem with the more general
setting: 𝜕Ω = 𝜕Ω𝐷

⋃︀
𝜕Ω𝑁 and (𝜕Ω𝐷)𝑜

⋂︀
(𝜕Ω𝑁 )𝑜 = ∅. Here 𝜕Ω𝐷 and 𝜕Ω𝑁 are both 1D curves. To define a

Dirichlet-type constraint on 𝜕Ω𝐷, we denote Ω𝐷𝛿 = {x ∈ Ω𝛿 : x ∈ 𝜕Ω𝐷} where x is the orthogonal projection of
x on 𝜕Ω. Moreover, we denote 𝜕Ω𝐷𝛿 = {x ∈ R𝑁∖Ω : dist(x,Ω𝐷𝛿) ≤ 𝛿} and assume that the value of 𝑢 is given on
it. To be specific, here we assume 𝑢(x) = 0 on 𝜕Ω𝐷𝛿 without loss of generality. Similarly, to apply the Neumann-
type constraint on 𝜕Ω𝑁 , we denote Ω𝑁𝛿 = {x ∈ Ω𝛿 : x ∈ 𝜕Ω𝑁} and 𝜕Ω𝑁𝛿 = {x ∈ R𝑁∖Ω : dist(x,Ω𝑁𝛿) ≤ 𝛿}.

We consider a Neumann-type constraint as an extension of
𝜕𝑢

𝜕n
= 𝑔(x) on 𝜕Ω𝑁 , by modifying the nonlocal

problem discussed in the last section as follows: for x ∈ Ω∖Ω𝑁𝛿:

−2
∫︁

Ω∪𝜕Ω𝐷𝛿

𝐽𝛿(|x− y|)(𝑢𝛿(y)− 𝑢𝛿(x)) dy = 𝑓(x),
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and for x ∈ Ω𝑁𝛿:

− 2
∫︁

Ω

𝐽𝛿(|x− y|)(𝑢𝛿(y)− 𝑢𝛿(x)) dy − 2𝑀𝛿(x)
∫︁ 𝛿

−𝛿

𝐻𝛿(|𝑙|)(𝑢𝛿(x𝑙)− 𝑢𝛿(x)) dx𝑙

= 𝑓(x)−
∫︁

𝜕Ω𝑁𝛿

𝐽𝛿(|x− y|)
[︀
|(y − x) · n(x)|2 − |(x− x) · n(x)|2

]︀
dy𝑓(x)

+
(︂

2
∫︁

𝜕Ω𝑁𝛿

𝐽𝛿(|x− y|)(y − x) · n(x) dy −𝑀𝛿(x)𝜅(x)
)︂
𝑔(x), (4.1)

where
𝑀𝛿(x) :=

∫︁
𝜕Ω𝑁𝛿

𝐽𝛿(|x− y|)
[︀
|(y − x) · p(x)|2 − |(y − x) · n(x)|2 + |(x− x) · n(x)|2

]︀
dy

Here we note that it is possible that Ω𝐷𝛿

⋂︀
Ω𝑁𝛿 ̸= ∅. We can then rewrite the nonlocal equation to be solved

as ⎧⎨⎩𝐿𝛿𝑢 = 𝑓, on Ω∖Ω𝑁𝛿

𝐿𝑁𝛿𝑢 = 𝑓𝛿, on Ω𝑁𝛿

𝑢 = 0, on 𝜕Ω𝐷𝛿.
(4.2)

The corresponding limiting local model is given by⎧⎪⎨⎪⎩
−△𝑢 = 𝑓, on Ω
𝜕𝑢

𝜕n
= 𝑔, on 𝜕Ω𝑁

𝑢 = 0, on 𝜕Ω𝐷.

(4.3)

Here 𝑓(x) is the given data corresponding to source, 𝑔(x) is the given local flux on 𝜕Ω𝑁 , and

𝑓𝛿(x) := 𝑓(x)−
∫︁

𝜕Ω𝑁𝛿

𝐽𝛿(|x− y|)
[︀
|(y − x) · n(x)|2 − |(x− x) · n(x)|2

]︀
dy𝑓(x)

+
(︂

2
∫︁

𝜕Ω𝑁𝛿

𝐽𝛿(|x− y|)(y − x) · n(x) dy −𝑀𝛿(x)𝜅(x)
)︂
𝑔(x).

In this section we focus on the case with homogeneous Neumann-type constraints, i.e., 𝑔(x) = 0.
For the above problem with mixed constraints, we have the nonlocal maximum principle stated below.

Lemma 4.1. For 𝑢 ∈ 𝐶(Ω) ∩ 𝐶(𝜕Ω𝐷𝛿∖𝜕Ω𝐷) and 𝑢 bounded on 𝜕Ω𝐷𝛿, assuming that 𝑢 satisfies 𝐿𝛿𝑢 ≤ 0 for
all 𝑥 ∈ Ω∖Ω𝑁𝛿 and 𝐿𝑁𝛿𝑢 ≤ 0 for all 𝑥 ∈ Ω𝑁𝛿, we have

sup
x∈Ω∪𝜕Ω𝐷𝛿

𝑢(x) ≤ sup
x∈𝜕Ω𝐷𝛿

𝑢(x). (4.4)

Proof. Assuming that supx∈Ω∪𝜕Ω𝐷𝛿
𝑢(x) > supx∈𝜕Ω𝐷𝛿

𝑢(x), since 𝑢 ∈ 𝐶(Ω) there exists x* ∈ (Ω ∪ 𝜕Ω𝑁 ) such
that 𝑢(x*) = supx∈(Ω∪𝜕Ω𝐷𝛿) 𝑢(x).
Case 1: x* ∈ Ω ∖ Ω𝑁𝛿. Then 𝐿𝛿𝑢(x*) = −2

∫︀
Ω∪𝜕Ω𝐷𝛿

𝐽𝛿(|x* − y|)(𝑢(y)− 𝑢(x*)) dy ≥ 0. Therefore 𝐿𝛿𝑢(x*) = 0
and

𝑢(y) = 𝑢(x*) = sup
x∈Ω∪𝜕Ω𝐷𝛿

𝑢(x), ∀y ∈ (Ω ∪ 𝜕Ω𝐷𝛿) ∩𝐵(x*, 𝛿). (4.5)

Case 2: x* ∈ Ω𝑁𝛿. Then

𝐿𝑁𝛿𝑢(x*) = −2
∫︁

Ω

𝐽𝛿(|x* − y|)(𝑢(y)− 𝑢(x*)) dy − 2𝑀𝛿(x*)
∫︁ 𝛿

−𝛿

𝐻(|𝑙|)[𝑢(x*𝑙 )− 𝑢(x*)] dx*𝑙 ≥ 0.
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Note that in Lemma 3.1 we have proven 𝑀𝛿(x*) ≥ 0. Again, this is possible only when

𝑢(y) = 𝑢(x*) = sup
x∈Ω∪𝜕Ω𝐷𝛿

𝑢(x), ∀y ∈ Ω ∩𝐵(x*, 𝛿). (4.6)

Summing up the two cases, in view of (4.5) and (4.6), we have

x* ∈ Ω ∖ Ω𝑁𝛿 ⇒ 𝑢(y) = 𝑢(x*) = sup
Ω∪𝜕Ω𝐷𝛿

𝑢, ∀y ∈ (Ω ∪ 𝜕Ω𝐷𝛿) ∩𝐵(x*, 𝛿), (4.7)

x* ∈ Ω𝑁𝛿 ⇒ 𝑢(y) = 𝑢(x*) = sup
Ω∪𝜕Ω𝐷𝛿

𝑢, ∀y ∈ Ω ∩𝐵(x*, 𝛿). (4.8)

Now fixing y* ∈ ((Ω∪ 𝜕Ω𝑁 )∩𝐵(x*, 𝛿)), we can apply the same arguments with y* in place of x*, and get (4.7)
and (4.8) with y* in the role of x*. This process can be repeated for all points y* ∈ ((Ω ∪ 𝜕Ω𝑁 ) ∩ 𝐵(x*, 𝛿)),
and together with the continuity assumption of 𝑢 we obtain:

𝑢(y) = 𝑢(x*) = sup
Ω∪𝜕Ω𝐷𝛿

𝑢, ∀y ∈ (Ω ∪ 𝜕Ω𝐷𝛿) ∩

⎡⎣𝐵(x*, 𝛿) ∪

⎛⎝ ⋃︁
y*∈(Ω∪𝜕Ω𝑁 )∩𝐵(x*,𝛿)

𝐵(y*, 𝛿)

⎞⎠⎤⎦ .
Geometrically, note that

(Ω ∪ 𝜕Ω𝐷𝛿) ∩

⎡⎣𝐵(x*, 𝛿) ∪

⎛⎝ ⋃︁
y*∈(Ω∪𝜕Ω𝑁 )∩𝐵(x*,𝛿)

𝐵(y*, 𝛿)

⎞⎠⎤⎦
= {𝑧 ∈ Ω ∪ 𝜕Ω𝐷𝛿 : dist(𝑧, (Ω ∪ 𝜕Ω𝑁 ) ∩𝐵(x*, 𝛿)) ≤ 𝛿}.

In other words, with this argument we expanded the region where 𝑢(z) = supΩ∪𝜕Ω𝐷𝛿
𝑢 from z ∈ (Ω ∪ 𝜕Ω𝑁 ) ∩

𝐵(x*, 𝛿) to its entire 𝛿-neighborhood lying in Ω ∪ 𝜕Ω𝐷𝛿. We then apply this argument recursively, so that the
region where 𝑢(z) = supΩ∪𝜕Ω𝐷𝛿

𝑢 will get expanded to the entire domain of Ω ∪ 𝜕Ω𝐷𝛿. In other words, to have
a global maximum inside Ω, the only possibility is for 𝑢 to be constant on Ω ∪ 𝜕Ω𝐷𝛿, which contradicts with
the assumption that supx∈Ω∪𝜕Ω𝐷𝛿

𝑢(x) > supx∈𝜕Ω𝐷𝛿
𝑢(x). �

We now assume that 𝑢𝛿 is the solution of (4.2) and 𝑢0 is the solution of (4.3). Denote 𝑒𝛿(x) := 𝑢𝛿(x)−𝑢0(x),
𝑇𝛿(x) := (𝐿0𝑢0(x)−𝐿𝛿𝑢0(x))+(𝑓𝛿(x)−𝑓(x)) for x ∈ Ω∖Ω𝑁𝛿 and 𝑇𝛿(x) := (𝐿0𝑢0(x)−𝐿𝑁𝛿𝑢0(x))+(𝑓𝛿(x)−𝑓(x))
for x ∈ Ω𝑁𝛿, then for x ∈ Ω∖Ω𝑁𝛿,

𝐿𝛿𝑒𝛿 = 𝐿𝛿𝑢𝛿 − 𝐿𝛿𝑢0 = 𝐿0𝑢0 − 𝐿𝛿𝑢0 = 𝑇𝛿, (4.9)

and similarly for x ∈ Ω𝑁𝛿,

𝐿𝛿𝑒𝛿 = 𝐿𝑁𝛿𝑢𝛿 − 𝐿𝑁𝛿𝑢0 = 𝑓𝛿 − 𝑓 + 𝐿0𝑢0 − 𝐿𝑁𝛿𝑢0 = 𝑇𝛿. (4.10)

We then obtain the following truncation estimate for 𝑇𝛿:

Lemma 4.2. Suppose 𝑢0 is the solution to local problem (4.3), then

𝑇𝛿(x) = O(𝛿2) (4.11)

for x ∈ Ω∖Ω𝑁𝛿, and

𝑇𝛿(x) = 2
∫︁

𝐸𝛿

𝐽𝛿(|x− y|)𝜕𝑢0(x)
𝜕p

((x− y) · p(x)) dy

+
∫︁

Ω

𝐽𝛿(|x− y|)[𝑢0(x)]𝑛𝑛𝑛((x− y) · n(x))(−|x− x|2 +
1
3
|(x− y) · n(x)|2) dy

+
∫︁

Ω

𝐽𝛿(|x− y|)[𝑢0(x)]𝑛𝑝𝑝((x− y) · n(x))|(x− y) · p(x)|2 dy

+ 𝜅(x)𝑀𝛿(x)[𝑢0(x)]𝑛𝑛((x− x) · n(x)) +𝑂(𝛿2) (4.12)
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Figure 3. Illustration of the geometric assumption and notation for the barrier function 𝜑(x)
definition.

for x ∈ Ω𝑁𝛿. Here 𝐸𝛿 denotes the region in 𝐴𝛿 which is asymmetric with respect to the 𝑦 axis (see the right plot
of Fig. 2).

Proof. The proof is based on the Taylor expansion of 𝑢0 and an estimate for the asymmetric part in 𝐴𝛿. The
detailed derivations can be found in Appendix A.2. �

Furthermore, with the maximum principle, when 𝑓 ∈ 𝐶(Ω) and 𝑢𝛿 = 𝑢0 continuous in 𝜕Ω𝐷𝛿, we have the
following lemma.

Lemma 4.3. Suppose that a nonnegative continuous function 𝜑(x) is defined on Ω∪𝜕Ω𝐷𝛿, and −𝐿𝛿𝜑 ≥ 𝐺(x) >
0 for x ∈ Ω∖Ω𝑁𝛿, −𝐿𝑁𝛿𝜑 ≥ 𝐺(x) > 0 for x ∈ Ω𝑁𝛿. Then

sup
x∈Ω∪𝜕Ω𝑁

|𝑒𝛿(x)| ≤ sup
x∈𝜕Ω𝐷𝛿

𝜑(x) sup
x∈Ω∪𝜕Ω𝑁

|𝑇𝛿(x)|
𝐺(x)

· (4.13)

Proof. Let 𝐾𝛿 = supx∈Ω∪𝜕Ω𝑁

|𝑇𝛿(x)|
𝐺(x)

, then for 𝐾𝛿𝜑(x) + 𝑒𝛿(x) we have: For x ∈ Ω∖Ω𝑁𝛿

𝐿𝛿(𝐾𝛿𝜑(x) + 𝑒𝛿(x)) = sup
x∈Ω∪𝜕Ω𝑁

|𝑇𝛿(x)|
𝐺(x)

𝐿𝛿𝜑(x) + 𝐿𝛿𝑒𝛿(x) = sup
x∈Ω∪𝜕Ω𝑁

|𝑇𝛿(x)|
𝐺(x)

𝐿𝛿𝜑(x) + 𝑇𝛿 ≤ 0,

and a similar argument holds for x ∈ Ω𝑁𝛿. With the maximum principle in Lemma 4.1 we have

sup
x∈Ω∪𝜕Ω𝑁

𝑒𝛿(x) ≤ sup
x∈Ω∪𝜕Ω𝑁

(𝐾𝛿𝜑(x) + 𝑒𝛿(x)) ≤ sup
x∈𝜕Ω𝐷𝛿

(𝐾𝛿𝜑(x) + 𝑒𝛿(x)) = 𝐾𝛿 sup
x∈𝜕Ω𝐷𝛿

𝜑(x).

Similarly, we have 𝐿𝛿(𝐾𝛿𝜑(x)− 𝑒𝛿(x)) ≤ 0 for x ∈ Ω∖Ω𝑁𝛿 and 𝐿𝑁𝛿(𝐾𝛿𝜑(x)− 𝑒𝛿(x)) ≤ 0 for x ∈ Ω𝑁𝛿, hence

sup
x∈Ω∪𝜕Ω𝑁

(−𝑒𝛿(x)) ≤ sup
x∈Ω∪𝜕Ω𝑁

(𝐾𝛿𝜑(x)− 𝑒𝛿(x)) ≤ sup
x∈𝜕Ω𝐷𝛿

(𝐾𝛿𝜑(x)− 𝑒𝛿(x)) = 𝐾𝛿 sup
x∈𝜕Ω𝐷𝛿

𝜑(x).

�

We now define a nonnegative continuous function 𝜑 satisfying the conditions given in Lemma 4.3. In the

following we take a specific kernel 𝐽𝛿(s) =
4
𝜋𝛿4

for |s| ≤ 𝛿 for simplicity. As shown in Figure 3, let {z1, z2} :=

𝜕Ω𝐷 ∩ 𝜕Ω𝑁 and 𝜋𝜕Ω be the projection operator onto 𝜕Ω. Due to the convexity of Ω, the map 𝜋𝜕Ω(x) is always
well defined and single-valued for any point x /∈ Ω. For x ∈ Ω, the set where 𝜋𝜕Ω(x) is not single-valued (i.e.



1392 H. YOU ET AL.

the “ridge” of 𝜕Ω) is 𝐿2-negligible [48]. We then make the following crucial geometric assumption: Let 𝜏(z1)
(resp. 𝜏(z2)) be the tangent line to 𝜕Ω at z1 (resp. z2), then the intersecting point z̃ := 𝜏(z1) ∩ 𝜏(z2) satisfies

𝜋𝜕Ω(z̃) ∈ 𝜕Ω𝑁 . (4.14)

Let z3 ∈ 𝜕Ω be a point such that 𝜏(z3) is orthogonal to the bisector of the angle ∠z2z̃z1. Set the barrier function
as

𝜑(x) := |dist(x, 𝜏(z3)) + 1|2. (4.15)

For any point x ∈ 𝜕Ω𝑁 , in the following we denote the angle between p(x) and n(z3) as 𝛼(x). Note that
with the crucial geometric assumption and the fact the Ω is convex, there exists 0 < 𝛼̃ < 𝜋/2 such that
𝛼̃ ≤ 𝛼(x) ≤ 𝜋 − 𝛼̃, ∀x ∈ 𝜕Ω𝑁 . Let Π be the half-plane delimited by 𝜏(z3) and containing Ω, we now check the
conditions in Lemma 4.3 with the following 3 steps:
Step 1. Convexity of 𝜑. To check that 𝜑 is convex on Π, consider arbitrary points x,y ∈ Π, and 𝑡 ∈ (0, 1).
We need to check

𝜑((1− 𝑡)x + 𝑡y) ≤ (1− 𝑡)𝜑(x) + 𝑡𝜑(y). (4.16)

By construction, 𝜑 is invariant in the direction of 𝜏(z3). Letting Σ be an arbitrary line orthogonal to 𝜏(z3) and
x* (resp. y*) be the projections of x (resp. y) on Σ for the projection of (1− 𝑡)x + 𝑡y on Σ, we get

[(1− 𝑡)x + 𝑡y]* = (1− 𝑡)x* + 𝑡y*.

Since 𝜑 is invariant in the direction of 𝜏(z3), we get

𝜑((1− 𝑡)x + 𝑡y) = 𝜑((1− 𝑡)x* + 𝑡y*), 𝜑(x) = 𝜑(x*), 𝜑(y) = 𝜑(y*),

and (4.16) is equivalent to
𝜑((1− 𝑡)x* + 𝑡y*) ≤ (1− 𝑡)𝜑(x*) + 𝑡𝜑(y*). (4.17)

Note that (4.17) holds true due to the convexity of 𝜑 along the direction n(z3) ‖ Σ. The convexity of 𝜑 gives
[𝜑]𝑣𝑣 ≥ 0 for any (nonzero) vector v. Combining with the facts 0 ≤ 𝑀𝛿(x) ≤ 𝐶 as shown in Lemma 3.1 and∫︀ 𝛿

−𝛿
𝐻(|𝑙|)[𝜑(x𝑙)− 𝜑(x)] dx𝑙 =

1
2

[𝜑]𝑝𝑝 +
𝜅

2
[𝜑]𝑛𝑛(x− x) · x as shown in (A.8), we infer directly that

𝑀𝛿(x)
∫︁ 𝛿

−𝛿

𝐻(|𝑙|)[𝜑(x𝑙)− 𝜑(x)] dx𝑙 ≥ 0. (4.18)

It remains to show the bounds for∫︁
(Ω∪𝜕Ω𝐷𝛿)∩𝐵(x,𝛿)

(𝜑(y)− 𝜑(x)) dy, ∀x ∈ Ω ∖ Ω𝑁𝛿, (4.19)∫︁
Ω∩𝐵(x,𝛿)

(𝜑(y)− 𝜑(x)) dy, ∀x ∈ Ω𝑁𝛿. (4.20)

Step 2: bound for (4.19). Note that in this case 𝐵(x, 𝛿) ⊂ Ω ∪ 𝜕Ω𝐷𝛿. Let ℓ(x) be the line through x and
parallel to ℓ := 𝜏(z3). Noting that 𝐵(x, 𝛿) is symmetric with respect to ℓ(x), for any y ∈ 𝐵(x, 𝛿) we denote by
y* the reflection of y across ℓ(x). Let 𝐵+(x, 𝛿) (resp. 𝐵−(x, 𝛿)) be the “upper” (resp. “lower”) half ball, then∫︁

(Ω∪𝜕Ω𝐷𝛿)∩𝐵(x,𝛿)

(𝜑(y)− 𝜑(x)) dy =
∫︁

𝐵+(x,𝛿)

(𝜑(y)− 𝜑(x)) + (𝜑(y*)− 𝜑(x)) dy

=
∫︁ 𝛿

0

[(
√︀
𝜑(x) + 𝜌)2 + (

√︀
𝜑(x)− 𝜌)2 − 2𝜑(x))]2

√︀
𝛿2 − 𝜌2 d𝜌 = 4

∫︁ 𝛿

0

𝜌2
√︀
𝛿2 − 𝜌2 d𝜌

≥ 4
∫︁ 𝛿/2

0

𝜌2
√︀
𝛿2 − 𝛿2/4 d𝜌 =

𝛿4

4
√

3
·
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Figure 4. Notation for estimating the bound of
∫︀
Ω∩𝐵(x,𝛿)

(𝜑(y) − 𝜑(x)) dy when x ∈ Ω𝑁𝛿.
Here green denotes the region of 𝐵−(x, 𝛿)∩Ω, cyan denotes [𝐵−(x, 𝛿)∩Ω]*, and yellow denotes
[Ω ∩𝐵+(x, 𝛿)] ∖ [𝐵−(x, 𝛿) ∩ Ω]*. [𝜕Ω]* is the reflection of 𝜕Ω across ℓ(x).

Recalling 𝐽𝛿 =
4
𝜋𝛿4

on its support, we obtained −𝐿𝛿𝜑(x) ≥ 2
𝜋
√

3
, ∀x ∈ Ω ∖ Ω𝑁𝛿.

Step 3: bound of (4.20). For x ∈ Ω𝑁𝛿, we will show that∫︁
Ω∩(x,𝛿)

(𝜑(y)− 𝜑(x))y ≥
{︂

𝛿3, when 𝑠𝑥 ≤ 𝛿/2,
𝛿4 + 𝐶(𝛿 − 𝑠𝑥)3/2𝛿3/2, when 𝑠𝑥 > 𝛿/2.

Let [𝐵−(x, 𝛿) ∩ Ω]* be the reflection of 𝐵−(x, 𝛿) ∩ Ω across ℓ(x), as shown in Figure 4. Note the crucial
geometric condition ensures that [𝐵−(x, 𝛿) ∩ Ω]* ⊆ 𝐵+(x, 𝛿) ∩ Ω. Since

(𝜑(y)− 𝜑(x)) + (𝜑(y*)− 𝜑(x)) = 2dist(y, ℓ(x))2, (4.21)

we have ∫︁
Ω∩𝐵(x,𝛿)

(𝜑(y)− 𝜑(x)) dy =
∫︁

[Ω∩𝐵+(x,𝛿)]∖[𝐵−(x,𝛿)∩Ω]*
(𝜑(y)− 𝜑(x)) dy

+
∫︁

[𝐵−(x,𝛿)∩Ω]*
(𝜑(y)− 𝜑(x)) dy +

∫︁
[𝐵−(x,𝛿)∩Ω]*

(𝜑(y*)− 𝜑(x)) dy

≥
∫︁

[𝐵−(x,𝛿)∩Ω]*
[(𝜑(y)− 𝜑(x)) + (𝜑(y*)− 𝜑(x))] dy ≥ 0.

Since x ∈ Ω, one has |𝐵−(x, 𝛿) ∩ Ω| > 0 unless x ∈ 𝜕Ω and (𝜕Ω ∩𝐵−(x, 𝛿)) ⊂ (ℓ(x) ∩𝐵−(x, 𝛿)).
Therefore, using (4.21), when 𝑠𝑥 > 𝛿/2 and 𝛿 ≤ 𝐷/5 ≤ (5 supz∈𝜕Ω |𝜅(z)|)−1, a direct computation gives∫︁

[𝐵−(x,𝛿)∩Ω]*
(𝜑(y)− 𝜑(x)) dy +

∫︁
[𝐵−(x,𝛿)∩Ω]*

(𝜑(y*)− 𝜑(x)) dy

≥
∫︁ 𝛿/2−𝛿/12

0

2𝜌2
√︀
𝛿2 − 𝜌2 d𝜌 ≥

∫︁ 5𝛿/12

0

2𝜌2
√︀
𝛿2 − (𝛿/2)2 d𝜌 ≥ 125

√
3𝛿4

5184
·

On the other hand, when 𝑠𝑥 > 𝛿/2 we calculate the integral on the purple region (denoted as 𝐹 ) shown in the left
plot of Figure 5. With the geometric assumption, we have 𝜑(y𝐵)−𝜑(x) ≥ 2dist(y𝐵 , 𝑙(x)) ≥ 2𝑠𝑥 sin(𝛼̃) > sin(𝛼̃)𝛿,
where y𝐵 denotes the coordinate of point 𝐵. Since

∫︀
[Ω∩𝐵+(x,𝛿)]∖[𝐵−(x,𝛿)∩Ω]*

(𝜑(y)−𝜑(x)) dy ≥
∫︀

𝐹
(𝜑(y)−𝜑(x)) dy

and |𝐶𝐷| =
√︀
𝛿2 − 𝑠2𝑥/2, |𝐶𝐸| ≥ (𝛿 − 𝑠𝑥)/2 when 𝛿 ≪ 1/ supz∈𝜕Ω |𝜅(z)|, for y ∈ 𝐹 we have

𝜑(y)− 𝜑(x) ≥ 𝜑(y𝐵)− 𝜑(x) ≥ sin(𝛼̃)𝛿,
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Figure 5. Notation for estimating the bound of
∫︀
Ω∩𝐵(x,𝛿)

(𝜑(y) − 𝜑(x)) dy when x ∈ Ω𝑁𝛿,
where the green and cyan regions denote 𝐵−(x, 𝛿) ∩ Ω and [𝐵−(x, 𝛿) ∩ Ω]*, respectively. The
union of yellow and purple regions represent [Ω ∩ 𝐵+(x, 𝛿)] ∖ [𝐵−(x, 𝛿) ∩ Ω]*. Left: notation
when dist(x, 𝜕Ω) > 𝛿/2, where the purple region is chosen such that p(y𝐵)⊥𝑥𝐵, n(y𝐵) ‖ 𝐶𝐸
and |𝐵𝐶| = |𝐵𝐷|. Right: notation when dist(x, 𝜕Ω) ≤ 𝛿/2, where the purple region is chosen
such that p(y𝐵)⊥𝑥𝐵 and the distance from 𝐶 to 𝑙(x) is 𝛿/2.

and
area(𝐹 ) > area(△𝐶𝐷𝐸) =

1
8

√︀
|𝛿 − 𝑠𝑥|3(𝛿 + 𝑠𝑥) ≥ 1

8
𝛿1/2(𝛿 − 𝑠𝑥)3/2.

We then have ∫︁
[Ω∩𝐵+(x,𝛿)]∖[𝐵−(x,𝛿)∩Ω]*

(𝜑(y)− 𝜑(x)) dy ≥ 𝐶(𝛿 − 𝑠𝑥)3/2𝛿3/2.

Similarly, for 𝑠𝑥 ≤ 𝛿/2 we have 𝐺 ⊂ [Ω∩𝐵+(x, 𝛿)]∖[𝐵−(x, 𝛿)∩Ω]* where 𝐺 is the purple set denoted in the right

plot of Figure 5. For y ∈ 𝐺 we have 𝜑(y)− 𝜑(x) ≥ 𝛿 and area(𝐺) ≥ min

{︃
(
√

3− 1)2𝛿2 tan(𝛼̃)
8

,

√
3

8
𝛿2

}︃
= 𝐶𝛿2.

Therefore ∫︁
[Ω∩𝐵+(x,𝛿)]∖[𝐵−(x,𝛿)∩Ω]*

(𝜑(y)− 𝜑(x)) dy ≥ 𝐶𝛿3,

i.e. the contribution of a region that lies completely above ℓ(x) is of order 𝑂(𝛿3), provided that it has positive
area.

Thus (4.19) and (4.20) are bounded. Combining with (4.18), and recalling 𝐽𝛿 = 𝐴𝛿−4 on its support, we get

−𝐿𝛿𝜑(x) = 2
∫︁

Ω∪𝜕Ω𝐷𝛿

𝐽𝛿(|x− y|)(𝜑(y)− 𝜑(x)) dy ≥ 𝐶

for all x ∈ Ω∖Ω𝑁𝛿, and

−𝐿𝑁𝛿𝜑(x) = 2
∫︁

Ω

𝐽𝛿(|x− y|)(𝜑(y)− 𝜑(x)) dy + 2𝑀𝛿(x)
∫︁ 𝛿

−𝛿

𝐻(|𝑙|)[𝑢0(x𝑙)− 𝑢0(x)] dx𝑙

≥ 𝐶[𝛿 − 𝑠𝑥]3/2𝛿−5/2 + 𝐶1 > 0

for all x ∈ Ω𝑁𝛿.
Note that Lemma 4.2 and the above estimates on function 𝜑 are still insufficient to ensure second order

𝐿∞(Ω) convergence to the local limit, since Lemma 4.2 gives 𝑇𝛿 = 𝑂(𝛿) on Ω𝑁𝛿, while the estimates for 𝜑 gives
only

−𝐿𝑁𝛿𝜑 ≥ 𝐶[𝛿 − 𝑠𝑥]3/2𝛿−5/2 + 𝐶1,
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and it is unclear if
𝑇𝛿

−𝐿𝑁𝛿𝜑
can be uniformly bounded from above by 𝐶𝛿2 as x approaches the inner boundary

of Ω𝑁𝛿. The next Lemma aims to provide an estimate for 𝑇𝛿.

Lemma 4.4. For x ∈ Ω𝑁𝛿, 𝑇𝛿(x) is bounded by 𝐶𝛿 when x is close to 𝜕Ω and bounded by 𝐶𝛿2 as x approaches
the inner boundary of Ω𝑁𝛿. Specifically,

|𝑇𝛿| ≤ 𝐶[𝛿 − 𝑠𝑥]3/2𝛿−1/2 +𝑂(𝛿2).

Proof. By Lemma 4.2 and the facts
∫︀

𝐵(x,𝛿)
𝐽𝛿(|x−y|)((x−y)·n(x))3 dy = 0,

∫︀
𝐵(x,𝛿)

𝐽𝛿(|x−y|)((x−y)·n(x)) dy =
0 and

∫︀
𝐵(x,𝛿)

𝐽𝛿(|x− y|)((x− y) · n(x))|(x− y) · p(x)|2 dy = 0, we have

𝑇𝛿 = 2
∫︁

𝐸𝛿

𝐽𝛿(|x− y|)𝜕𝑢0(x)
𝜕p

((x− y) · p(x)) dy

− [𝑢0(x)]𝑛𝑛𝑛

(︂
1
3

∫︁
𝜕Ω𝑁𝛿

𝐽𝛿(|x− y|)((x− y) · n(x))3 dy

−
∫︁

𝜕Ω𝑁𝛿

𝐽𝛿(|x− y|)((x− y) · n(x)) dy|x− x|2
)︂

−
∫︁

𝜕Ω𝑁𝛿

𝐽𝛿(|x− y|)[𝑢0(x)]𝑛𝑝𝑝((x− y) · n(x))|(x− y) · p(x)|2 dy

+ 𝜅(x)[𝑢0(x)]𝑛𝑛((x− x) · n(x))
∫︁

𝜕Ω𝑁𝛿

𝐽𝛿(|x− y|)
(︀
|(y − x) · p(x)|2

−|(y − x) · n(x)|2 + |(x− x) · n(x)|2
)︀

dy + O(𝛿2).

We firstly provide the bounds for the first term. Note that |𝐵(x, 𝛿) ∩ 𝜕Ω| ≤ 2
√︀
𝛿2 − 𝑠2𝑥 + 𝐶𝜅(x)(𝛿2 − 𝑠2𝑥),

therefore |(x− y) · p(x)| ≤ 𝐶
√︀
𝛿2 − 𝑠2𝑥 for y ∈ 𝐸𝛿. Moreover, as shown in Appendix A.2, for the area of 𝐸𝛿 we

have |𝐸𝛿| ≤ 𝐶(𝛿2 − 𝑠2𝑥)2 +𝑂(𝛿5). Then⃒⃒⃒⃒∫︁
𝐸𝛿

𝐽𝛿(|x− y|)𝜕𝑢0(x)
𝜕p

((x− y) · p(x)) dy
⃒⃒⃒⃒
≤ 𝐶(𝛿2 − 𝑠2𝑥)5/2𝛿−4 ≤ 𝐶(𝛿 − 𝑠𝑥)3/2𝛿−1/2.

For the rest of terms in 𝑇𝛿, note that the integrands

𝐽𝛿(|x− y|)((x− y) · n(x))3 ≤ 𝐶𝛿−1,

𝐽𝛿(|x− y|)((x− y) · n(x))|x− x|2 ≤ 𝐶𝛿−1,

𝐽𝛿(|x− y|)((x− y) · n(x))|(x− y) · p(x)|2 ≤ 𝐶𝛿−1,

𝐽𝛿(|x− y|)|(y − x) · p(x)|2((x− x) · n(x)) ≤ 𝐶𝛿−1,

𝐽𝛿(|x− y|)|(y − x) · n(x)|2((x− x) · n(x)) ≤ 𝐶𝛿−1,

𝐽𝛿(|x− y|)|(x− x) · n(x)|2((x− x) · n(x)) ≤ 𝐶𝛿−1

for some constant 𝐶. Thus it suffices to estimate the area of the domain of integration 𝜕Ω𝑁𝛿 ∩ 𝐵(x, 𝛿). Since
|𝐴𝛿| ≤ 𝐶𝛿3, it suffices the compute the area of 𝐷𝛿. Since 𝐷𝛿 is contained in the rectangle with side lengths
2
√︀
𝛿2 − 𝑠2𝑥 and 𝛿 − 𝑠𝑥, direct computation then gives

|𝐷𝛿| ≤ 2(𝛿 − 𝑠𝑥)
√︀
𝛿2 − 𝑠2𝑥 ≤ 2

√
2[𝛿 − 𝑠𝑥]3/2𝛿1/2.

We then have |𝜕Ω𝑁𝛿 ∩ 𝐵(x, 𝛿)| ≤ 𝐶[𝛿 − 𝑠𝑥]3/2𝛿1/2 + 𝐶𝛿3 which together with the bounds of the integrands
finishes the proof. �
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With the above lemmas we obtain the main theorem of this section.

Theorem 4.5. Suppose 𝑓 ∈ 𝐶(Ω), 𝑢𝛿 solves the nonlocal problem (4.2) and 𝑢0 is the solution to the corre-
sponding local problem (4.3), then for sufficiently small 𝛿 there exists a constant 𝐶 independent of 𝛿 such that

sup
x∈Ω

|𝑢𝛿(x)− 𝑢0(x)| ≤ 𝐶𝛿2. (4.22)

Proof. With the barrier function 𝜑 defined as in (4.15), from the above lemmas and bounds we have

|𝑇𝛿|
−𝐿𝛿𝜑

≤ 𝐶𝛿2, for x ∈ Ω∖Ω𝑁𝛿,

|𝑇𝛿|
−𝐿𝑁𝛿𝜑

≤ 𝐶1[𝛿 − 𝑠𝑥]3/2𝛿−1/2 + 𝐶2𝛿
2

𝐶3[𝛿 − 𝑠𝑥]3/2𝛿−5/2 + 𝐶4
, for x ∈ Ω𝑁𝛿.

Therefore, with Lemma 4.3, the proof of (4.22) will be finished once we can show that
|𝑇𝛿|

−𝐿𝑁𝛿𝜑
≤ 𝐶𝛿2 for

x ∈ Ω𝑁𝛿. Let

𝑓(𝑟) :=
𝐶1[𝛿 − 𝑟]3/2𝛿−1/2 + 𝐶2𝛿

2

𝐶3[𝛿 − 𝑟]3/2𝛿−5/2 + 𝐶4
, 𝑟 := 𝑠𝑥 ∈ [0, 𝛿].

Then

𝑓 ′(𝑟) =
(︂

3
2

)︂
(𝐶2𝐶3 − 𝐶1𝐶4)[𝛿 − 𝑟]1/2𝛿−1/2

[𝐶3[𝛿 − 𝑟]3/2𝛿−5/2 + 𝐶4]2
,

and thus 𝑓 is monotone (either increasing or decreasing, depending on the sign of 𝐶2𝐶3 − 𝐶1𝐶4). Since

𝑓(0) =
𝐶1𝛿 + 𝐶2𝛿

2

𝐶3𝛿−1 + 𝐶4
=
𝐶1𝛿

2 + 𝐶2𝛿
3

𝐶3 + 𝐶4𝛿
≤ 𝑂(𝛿2), 𝑓(𝛿) =

𝐶2𝛿
2

𝐶4
,

the monotonicity of 𝑓 ensures that 𝑓 ≤ 𝑂(𝛿2) for all 𝑟 ∈ [0, 𝛿], hence we get

sup
x∈Ω𝑁𝛿

|𝑇𝛿|
−𝐿𝑁𝛿𝜑

≤ 𝑂(𝛿2).

�

5. Meshfree quadrature rule and numerical solver

In this section we develop a discretization method based upon a meshfree quadrature rule for compactly
supported nonlocal integro-differential equations (IDEs) with radial kernels. This approach is based upon the
generalized moving least squares (GMLS) approximation framework [64], and falls within the scope of the
well-established GMLS approximation theory.

We discretize the domain Ω and 𝜕Ω𝐷𝛿 by a collection of points 𝜒ℎ = {x𝑖}{𝑖=1,2,··· ,𝑁𝑝} ⊂ Ω ∪ 𝜕Ω𝐷𝛿, where
the fill distance

ℎ := sup
x𝑖∈𝜒ℎ

min
1≤𝑗≤𝑁𝑝,𝑗 ̸=𝑖

|x𝑖 − x𝑗 | (5.1)

is a length scale characterizing the resolution of the point cloud, and 𝑁𝑝 denotes the total number of points.
We define the separation distance

𝑞𝜒 =
1
2

min
𝑖 ̸=𝑗

|𝑥𝑖 − 𝑥𝑗 | (5.2)

and assume that the point set is quasi-uniform, namely that there exists a positive 𝑐𝑞𝑢 satisfying

𝑞𝜒 ≤ ℎ ≤ 𝑐𝑞𝑢𝑞𝜒. (5.3)
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In a neighborhood of each point x𝑖 ∈ 𝜒ℎ, we reconstruct a polynomial approximation 𝑠𝑢,𝜒ℎ,𝑖(x) to the nonlocal
solution 𝑢𝛿(x) in 𝐵(x𝑖, 𝛿). Specifically, we define 𝑠𝑢,𝜒ℎ,𝑖 as the solution to the optimization problem

𝑠𝑢,𝜒ℎ,𝑖(x) = min
𝑝∈𝜋𝑚(R2)

{︃
𝑁𝑝∑︁
𝑗=1

[𝑢(x𝑗)− 𝑝(x𝑗)]2𝑤(x𝑖,x𝑗)

}︃
, (5.4)

where 𝜋𝑚(R2) are the 𝑚-th order polynomials in R2, and 𝑤(x,y) is a translation-invariant positive weight
function with compact support 𝛿. For concreteness we take in this work

𝑤(x,y) = Φ𝛿(x− y) =
{︂

(1− |x−y|
𝛿 )4, when |x− y| ≤ 𝛿,

0 when |x− y| > 𝛿.

For a quasi-uniform pointset and sufficiently large 𝛿 the optimization problem possesses a unique solution [66].
We then use this polynomial reconstruction to approximate the nonlocal operator as follows.

For each point x𝑖, denote the set of indices for points in 𝐵(x𝑖, 𝛿) as

𝐼(x𝑖) ≡ 𝐼(x𝑖, 𝛿, 𝜒ℎ) := {𝑗 ∈ {1, · · · , 𝑁𝑝} : |x𝑖 − x𝑗 | < 𝛿}, (5.5)

and #𝐼(x𝑖) represents the number of indices in 𝐼(x𝑖). Define as a basis for 𝜋𝑚(R2) the set 𝑝1(x), 𝑝2(x), · · · , 𝑝𝑄(x),
then the optimization problem has the following analytic solution.

𝑠𝑢,𝜒ℎ,𝑖(x) = 𝑢̃𝐷𝑃 (𝑃T𝐷𝑃 )−1𝑅(x), (5.6)

where

𝑢̃ := (𝑢(x𝑗) : 𝑗 ∈ 𝐼(x𝑖))T ∈ R#𝐼(x𝑖),

𝑃 := (𝑝𝑘(x𝑗))𝑗∈𝐼(x𝑖),1≤𝑘≤𝑄 ∈ R#𝐼(x𝑖)×𝑄,

𝐷 = 𝑑𝑖𝑎𝑔(Φ𝛿(x𝑖 − x𝑗) : 𝑗 ∈ 𝐼(x𝑖)) ∈ R#𝐼(x𝑖)×#𝐼(x𝑖),

𝑅(x) = (𝑝1(x), · · · , 𝑝𝑄(x))T ∈ R𝑄.

This process exactly recovers 𝑢 ∈ 𝜋𝑚(R2). In the GMLS framework, the reconstruction may be used to approx-
imate a linear bounded target functional 𝜛 as

𝜛(𝑢) ≈ 𝜛ℎ(𝑢) := 𝜛(𝑠𝑢,𝜒ℎ,𝑖) = 𝑢̃𝐷𝑃 (𝑃T𝐷𝑃 )−1𝜛(𝑅(x)), (5.7)

where 𝜛(𝑅) denotes the application of the target functional component-wise to each element of the polynomial
basis. Classic examples of 𝜛 include the point evaluation functional to develop meshfree approximants, point
evaluations of derivatives of functions to develop meshfree collocation schemes, and integrals of functions over
compact sets. In this work, we select 𝜛 as the nonlocal operator in (1.1) and (2.5), and thus obtain a meshfree
estimator of the non-local operator that is exact when applied to 𝜋𝑚(R2). To do so will require the computation
of (1.1) and (2.5) applied to each member of the polynomial space.

In this paper we take 𝑚 = 2 and choose the quadratic basis functions as follows

𝑝1(x) = 1, 𝑝2(x) = (x− x𝑖) · e1, 𝑝3(x) = (x− x𝑖) · e2, 𝑝4(x) = [(x− x𝑖) · e1]2,
𝑝5(x) = [(x− x𝑖) · e2]2, 𝑝6(x) = [(x− x𝑖) · e1][(x− x𝑖) · e2],

where e1 := n(x𝑖), e2 := p(x𝑖) for x𝑖 ∈ Ω𝑁𝛿 and e1 := (1, 0), e2 := (0, 1) when x𝑖 ∈ Ω/Ω𝑁𝛿. For x𝑖 ∈ Ω/Ω𝑁𝛿,
one may obtain the following formula for 𝜛ℎ in light of (1.1):

−2𝑢̃𝐷𝑃 (𝑃T𝐷𝑃 )−1

∫︁
𝐵(x𝑖,𝛿)

𝐽𝛿(|y − xi|)(𝑅(y)−𝑅(x𝑖)) dy = 𝑓(x𝑖). (5.8)
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Similarly, for x𝑖 ∈ Ω𝑁𝛿, we apply the Neumann boundary treatment and obtain the following formula for 𝜛ℎ

in light of (2.3):

− 2𝑢̃𝐷𝑃 (𝑃T𝐷𝑃 )−1

∫︁
𝐵(x𝑖,𝛿)∩Ω

𝐽𝛿(|y − x𝑖|)(𝑅(y)−𝑅(x𝑖)) dy

− 2𝑢̃𝐷𝑃 (𝑃T𝐷𝑃 )−1𝑀𝛿(x𝑖)
∫︁ 𝛿

−𝛿

𝐻𝛿(|𝑙|)(𝑅(x𝑙)−𝑅(x𝑖)) dx𝑙

= 𝑓(x𝑖) +

(︃
2
∫︁

𝐵(x𝑖,𝛿)∖Ω
𝐽𝛿(|y − x𝑖|)(y − x𝑖) · n(x𝑖) dy −𝑀𝛿(x𝑖)𝜅(x𝑖)

)︃
𝑔(x𝑖)

−
∫︁

𝐵(x𝑖,𝛿)∖Ω
𝐽𝛿(|y − x𝑖|)

[︀
|(y − x𝑖) · n(x𝑖)|2 − |(x𝑖 − x𝑖) · n(x𝑖)|2

]︀
dy𝑓(x𝑖). (5.9)

For x ∈ 𝜕Ω𝐷𝛿, we apply the Dirichlet boundary condition and therefore 𝑢𝛿(x) is given. We can then solve for
𝑢̃ with (5.8) and (5.9).

Numerically, the problem now reduces to how to integrate quadratic polynomials over 𝐵(x𝑖, 𝛿) ∩ Ω and
𝐵(x𝑖, 𝛿)∖Ω properly. On simple geometries the integral in (5.8) and (5.9) can be calculated analytically, while
for more generalized cases where the boundary curve is more complicated, an analytic quadrature is intractable.
We note that when 𝛿 is sufficiently small, 𝐵(x𝑖, 𝛿)∩Ω and 𝐵(x𝑖, 𝛿)∖Ω can be written as the regions between two
curves, and one can then evaluate the integral via numerical integration, for instance, with high-order Gaussian
quadrature rules.

6. Numerical results

In this section we present the asymptotic convergence of the proposed boundary treatment by considering
the nonlocal diffusion problem on three types of representative domains: a square domain in Section 6.1 which
represents the case with 0 curvature on 𝜕Ω𝑁 ; a circular domain in Section 6.2, which illustrates a case with
constant curvature on 𝜕Ω; and an elliptical domain in Section 6.3, with varying curvatures along the domain
boundary. Here we note that the square domain case does not satisfy the 𝐶3 regularity requirement and it is
therefore outside the scope of the model problem analysis presented earlier. Hence the results in Section 6.1 also
demonstrate how robust the convergence rate results are when relaxing the 𝐶3 assumption on domain regularity.
In this paper we focus on the type (3) convergence, i.e., the convergence of numerical solutions to the local
solution as ℎ, 𝛿 goes to 0 simultaneously, by testing four different combinations of (ℎ, 𝛿) → 0: (1) fixing ℎ/𝛿 = 𝐶,
taking 𝛿 → 0; (2) fixing ℎ/

√
𝛿 = 𝐶, taking 𝛿 → 0; (3) fixing ℎ/𝛿2 = 𝐶, taking 𝛿 → 0; and (4) decreasing 𝛿

with a fixed ℎ≪ 𝛿. Here we note that in combination type (2), one has to keep sufficiently large ratio between
𝛿 and ℎ so as to make sure that the optimization problem (5.4) in the meshfree quadrature rule is well-posed.
For combination type (4) tests, we aim to investigate the convergence of analytical nonlocal solutions 𝑢𝛿 to the
local limit 𝑢0, by keeping a sufficiently small fixed ℎ such that ℎ≪ min 𝛿 in the tests. Therefore, the numerical
errors in combination type (4) tests are sufficiently small comparing with the differences between local and
nonlocal solutions, and results indicate the convergence of analytical nonlocal solution 𝑢𝛿 to the local limit 𝑢0

with a decreasing 𝛿. However, here we note that for a fixed ℎ one can not take 𝛿 → 0 in combination type (4)
tests.

6.1. Test 1: curvature 𝜅(x) = 0

In this numerical example, we demonstrate a case where the Neumann boundary is a line segment. Specifically,
we take the computational domain as Ω = [0, 1]× [0, 1], with 𝜕Ω𝑁 = {(1, 𝑦) : 𝑦 ∈ [0, 1]} and 𝜕Ω𝐷 = 𝜕Ω∖𝜕Ω𝑁 .
The local limit of the nonlocal problem has a smooth analytical solution 𝑢0(𝑥, 𝑦) = sin(𝜋𝑥) cos(𝜋𝑦), together
with 𝑓(𝑥, 𝑦) = 2𝜋2 sin(𝜋𝑥) cos(𝜋𝑦) and 𝜕𝑢

𝜕n |𝑥=1 = 𝑔(𝑦) = −𝜋 cos(𝜋𝑦). We apply the analytical local solution
as a Dirichlet boundary condition over 𝜕Ω𝐷𝛿 by letting 𝑢𝛿 = 𝑢0, and impose the Neumann-type constraint
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Table 1. Test 1: convergence to the local solution for the 𝜅(x) = 0 case with fixed 𝛿 = 𝐶ℎ.

h 𝛿/ℎ = 4 𝛿/ℎ = 3.5

||𝑢𝛿 − 𝑢0||∞ Order ||𝑢𝛿 − 𝑢0||2 Order ||𝑢𝛿 − 𝑢0||∞ Order ||𝑢𝛿 − 𝑢0||2 Order

2−3 1.45× 10−1 – 3.06× 10−2 – 9.04× 10−2 – 3.01× 10−2 –
2−4 2.34× 10−2 2.63 5.80× 10−3 2.39 1.37× 10−2 2.72 5.40× 10−3 2.48
2−5 4.25× 10−3 2.38 1.30× 10−3 2.16 2.50× 10−3 2.45 1.10× 10−3 2.30
2−6 1.00× 10−3 2.17 3.02× 10−4 2.11 5.65× 10−4 2.15 2.68× 10−4 2.04
2−7 2.48× 10−4 2.01 7.38× 10−5 2.03 1.34× 10−4 2.07 6.53× 10−5 2.04

Notes. Here the convergence order is with respect to 𝛿.

Table 2. Test 1: convergence to the local solution for the 𝜅(x) = 0 case with fixed 𝛿 = 𝐶ℎ2

and 𝛿 = 𝐶
√
ℎ.

√
𝛿/ℎ = 29/2 𝛿2/ℎ = 2−2

h 𝛿 ||𝑢𝛿 − 𝑢0||∞ Order ||𝑢𝛿 − 𝑢0||2 Order h 𝛿 ||𝑢𝛿 − 𝑢0||∞ Order ||𝑢𝛿 − 𝑢0||2 Order

2−5 2−1 5.79× 10−1 – 5.86× 10−2 – 2−5 2−7/2 3.30× 10−3 – 1.60× 10−3 –

2−6 2−3 4.90× 10−3 3.44 1.60× 10−3 2.60 2−6 2−4 1.50× 10−3 2.27 7.39× 10−4 2.24

2−7 2−5 1.76× 10−4 2.40 9.05× 10−5 2.07 2−7 2−9/2 7.54× 10−4 1.98 3.70× 10−4 2.00

Notes. Here the convergence order is with respect to 𝛿.

Table 3. Test 1: convergence to the local solution for the 𝜅(x) = 0 case with decreasing 𝛿 and
fixed ℎ≪ 𝛿.

h 𝛿 ||𝑢𝛿 − 𝑢0||∞ Order ||𝑢𝛿 − 𝑢0||2 Order

2−7 2−2 2.25× 10−1 – 1.18× 10−2 –
2−7 2−3 1.15× 10−2 4.29 1.60× 10−3 2.88
2−7 2−4 7.54× 10−4 3.93 3.70× 10−4 2.11
2−7 2−5 1.76× 10−4 2.10 9.05× 10−5 2.03

Notes. Here the convergence order is with respect to 𝛿.

(2.3) over the region Ω𝑁𝛿 = [1 − 𝛿, 1] × [0, 1]. With uniform discretization of mesh size ℎ, we demonstrate the
difference between the numerical results and 𝑢0 in the 𝐿∞-norm and 𝐿2-norm, and the convergence order with
respect to 𝛿 in Tables 1–3. It is observed that as 𝛿 decreases, the numerical solution from the proposed nonlocal
Neumann-type constraint problem converges to the local analytical solution 𝑢0 as 𝑂(𝛿2), which therefore verifies
the analysis in Section 4 and demonstrates the asymptotic compatibility of the numerical solver.

6.2. Test 2: constant curvature 𝜅(x)

We now consider as domain the unit circle Ω = {(𝑥, 𝑦)|𝑥2 + 𝑦2 ≤ 1}, 𝜕Ω𝑁 = 𝜕Ω and with the value
𝑢𝛿(0,−1) = 𝑢0(0,−1) given to make the problem well-posed. Similarly as in test 1, we consider a smooth
local solution 𝑢0(𝑥, 𝑦) = sin(𝜋𝑥) cos(𝜋𝑦), with 𝑓(𝑥, 𝑦) = 2𝜋2 sin(𝜋𝑥) cos(𝜋𝑦) and 𝜕𝑢

𝜕n |(𝑥,𝑦)∈𝜕Ω𝑁
= 𝑔(𝑥, 𝑦) =

𝜋𝑥 cos(𝜋𝑥) cos(𝜋𝑦)−𝜋𝑦 sin(𝜋𝑥) sin(𝜋𝑦), with uniform discretization of mesh-size ℎ. The 𝐿∞-norm and 𝐿2-norm
convergence results are presented in Tables 4–6. It can be observed that the convergence rate is 𝑂(𝛿2) as 𝛿
decreases, consistent with the analysis in Section 4.
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Table 4. Test 2: convergence to the local solution for the 𝜅(x) = 𝑐𝑜𝑛𝑠𝑡 case with fixed 𝛿 = 𝐶ℎ.

h 𝛿/ℎ = 4 𝛿/ℎ = 3.5

||𝑢𝛿 − 𝑢0||∞ Order ||𝑢𝛿 − 𝑢0||2 Order ||𝑢𝛿 − 𝑢0||∞ Order ||𝑢𝛿 − 𝑢0||2 Order

2−3 3.74× 10−1 – 2.13× 10−1 – 2.98× 10−1 – 1.77× 10−1 –
2−4 1.10× 10−1 1.77 6.88× 10−2 1.63 8.21× 10−2 1.86 5.17× 10−2 1.78
2−5 2.68× 10−2 2.04 1.68× 10−2 2.03 1.98× 10−2 2.05 1.24× 10−2 2.06
2−6 6.30× 10−3 2.09 3.90× 10−3 2.11 4.70× 10−3 2.07 2.90× 10−3 2.10
2−7 1.50× 10−4 2.07 9.37× 10−4 2.06 1.10× 10−3 2.10 6.91× 10−4 2.07

Notes. Here the convergence order is with respect to 𝛿.

Table 5. Test 2: convergence to the local solution for the 𝜅(x) = 𝑐𝑜𝑛𝑠𝑡 case with fixed 𝛿 = 𝐶ℎ2

and 𝛿 = 𝐶
√
ℎ.

√
𝛿/ℎ = 4

√
14 𝛿2/ℎ = 2.45

h 𝛿 ||𝑢𝛿 − 𝑢0||∞ Order ||𝑢𝛿 − 𝑢0||2 Order h 𝛿 ||𝑢𝛿 − 𝑢0||∞ Order ||𝑢𝛿 − 𝑢0||2 Order

2−4 7/23 2.14 – 4.47× 10−1 – 1/5 7/10 1.0569 – 6.50× 10−1 –
2−5 7/25 9.08× 10−2 2.19 5.67× 10−2 1.58 1/20 7/20 2.86× 10−1 1.87 1.51× 10−1 2.11

2−6 7/27 4.70× 10−3 2.10 2.90× 10−3 2.10 1/80 7/40 7.16× 10−2 2.00 3.83× 10−2 1.98

Notes. Here the convergence order is with respect to 𝛿.

Table 6. Test 2: convergence to the local solution for the 𝜅(x) = 𝑐𝑜𝑛𝑠𝑡 case with decreasing 𝛿
and fixed ℎ≪ 𝛿.

h 𝛿 ||𝑢𝛿 − 𝑢0||∞ Order ||𝑢𝛿 − 𝑢0||2 Order

2−6 2−1 6.57× 10−1 – 2.38× 10−1 –
2−6 2−2 1.27× 10−1 2.38 7.52× 10−2 1.66
2−6 2−3 2.87× 10−2 2.14 1.79× 10−2 2.07
2−6 2−4 6.40× 10−3 2.16 4.00× 10−3 2.16

Notes. Here the convergence order is with respect to 𝛿.

6.3. Test 3: non-constant curvature 𝜅(x)

In our previous two tests, the problem domains have either zero curvature or a constant curvature on the
Neumann boundary. In this section we further consider a more generalized domain with a non-constant curvature
on its boundary. We consider the ellipse Ω = {(𝑥, 𝑦)|𝑥2/4 + 𝑦2 ≤ 1} with 𝜕Ω𝑁 = 𝜕Ω}. 𝑢𝛿(0,−1) = 𝑢0(0,−1)
is given to guarantee the compatibility condition. Here we note that when 𝛿 < 1/2, the orthogonal projection
x is well-defined for any x ∈ Ω𝑁𝛿. We again consider a smooth local solution 𝑢0(𝑥, 𝑦) = sin(𝜋𝑥) cos(𝜋𝑦) with
𝑓(𝑥, 𝑦) = 2𝜋2 sin(𝜋𝑥) cos(𝜋𝑦), and we demonstrate the convergence of the numerical solution to the local solution
with mesh-size ℎ. As shown in Tables 7–9, second order convergence of 𝛿 is achieved which therefore verifies
the estimates in Section 4 and illustrates the asymptotic compatibility for a domain with nonuniform boundary
curvature.

Moreover, we note that in the cases with constant curvature boundary, the Neumann-type constraint problem
gives the analytical solution 𝑢𝛿 = 𝑢0 for the patch test problem with a linear solution 𝑢0(𝑥, 𝑦) = 𝑥+𝑦. Therefore,
in the previous two tests, the numerical solver passes the linear patch test with machine precision. In the elliptical
domain with non-constant curvature, we further investigate the linear patch test problem, and the numerical
results are illustrated in Table 10. It can be observed that although the numerical solution is no longer within
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Table 7. Test 3: convergence to the local solution for the non-constant 𝜅(x) case with fixed
𝛿 = 𝐶ℎ.

h 𝛿/ℎ = 4 𝛿/ℎ = 3.5

||𝑢𝛿 − 𝑢0||∞ Order ||𝑢𝛿 − 𝑢0||2 Order ||𝑢𝛿 − 𝑢0||∞ Order ||𝑢𝛿 − 𝑢0||2 Order

2−3 4.80× 10−3 – 2.40× 10−3 – 3.60× 10−3 – 1.90× 10−3 –
2−4 2.80× 10−3 0.78 1.60× 10−3 0.59 2.20× 10−3 0.71 1.20× 10−2 0.66
2−5 9.34× 10−4 1.58 5.39× 10−4 1.57 7.00× 10−4 1.65 3.99× 10−4 1.59
2−6 2.33× 10−4 2.00 1.25× 10−4 2.11 1.88× 10−4 1.91 1.07× 10−4 1.90

Notes. Here the convergence order is with respect to 𝛿.

Table 8. Test 3: convergence to the local solution for the non-constant 𝜅(x) case with fixed
𝛿 = 𝐶ℎ2 and 𝛿 = 𝐶

√
ℎ.

√
𝛿/ℎ = 16 𝛿2/ℎ = 1.8

h 𝛿 ||𝑢𝛿 − 𝑢0||∞ Order ||𝑢𝛿 − 𝑢0||2 Order h 𝛿 ||𝑢𝛿 − 𝑢0||∞ Order ||𝑢𝛿 − 𝑢0||2 Order

2−4 20 4.00× 10−1 – 5.34× 10−2 – 1/20 3/10 4.60× 10−3 – 2.40× 10−3 –

2−5 2−2 3.20× 10−3 3.48 1.80× 10−3 2.45 1/60
√

3/10 1.80× 10−3 1.71 9.83× 10−4 1.63

2−6 2−4 2.33× 10−4 1.89 1.25× 10−4 1.92 1/80 3/20 1.36× 10−3 1.95 7.16× 10−4 2.20

Notes. Here the convergence order is with respect to 𝛿.

Table 9. Test 3: convergence to the local solution for the non-constant 𝜅(x) case with decreas-
ing 𝛿 and fixed ℎ≪ 𝛿.

𝛿 ||𝑢𝛿 − 𝑢0||∞ Order ||𝑢𝛿 − 𝑢0||2 Order

3.5/8 4.12× 10−1 – 1.48× 10−2 –
3.5/16 9.72× 10−3 5.40 1.20× 10−3 3.63
3.5/32 7.44× 10−4 3.71 4.26× 10−4 1.50
3.5/64 1.88× 10−4 1.98 1.07× 10−4 1.99

Notes. Here the convergence order is with respect to 𝛿.

Table 10. Test 3: linear patch test for convergence to the local solution for the non-constant
𝜅(x) case.

h 𝛿/ℎ = 4 𝛿/ℎ = 3.5

||𝑢𝛿 − 𝑢0||∞ Order ||𝑢𝛿 − 𝑢0||2 Order ||𝑢𝛿 − 𝑢0||∞ Order ||𝑢𝛿 − 𝑢0||2 Order

2−3 1.71× 10−1 – 7.87× 10−2 – 1.14× 10−1 – 5.94× 10−2 –
2−4 2.89× 10−2 2.57 1.55× 10−2 2.34 2.16× 10−2 2.39 1.16× 10−2 2.36
2−5 6.01× 10−3 2.27 3.20× 10−3 2.28 4.50× 10−3 2.26 2.40× 10−3 2.27
2−6 1.20× 10−3 2.32 6.04× 10−4 2.40 8.35× 10−4 2.43 4.11× 10−4 2.55
2−7 1.26× 10−4 3.25 4.69× 10−5 3.69 1.39× 10−4 2.58 6.20× 10−5 2.72
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Figure 6. Geometric assumptions and notation for the corner case. Here the yellow region
denotes 𝐵(x, 𝛿) ∩ 𝜕Ω𝑁𝛿.

machine precision accuracy, the numerical solution converges to the analytical solution with an 𝑂(ℎ2) rate as
ℎ→ 0.

7. Extension: domain with corners

In many popular nonlocal problem applications, it is common that the Neumann-type boundary contains
corners. For example, on a peridynamic problem with damage, once a crack initiates and bifurcates, new zigzag
boundary forms and the Neumann-type boundary condition must be applied on these new boundaries. To
investigate how well the new Neumann-type constraint formulation extrapolates to the setting of Lipschitz
domains, in this section we further extend the proposed formulation to boundaries with corners. We also
numerically show the performance as well as asymptotic compatibility properties on a sample test problem with
Neumann-type boundary on two sides of a square domain. Specifically, in Section 7.1 we derive the formulation
near a corner by approximating −2

∫︀
𝜕Ω𝑁𝛿

𝐽𝛿(x−y)(𝑢(y)−𝑢(x)) dy. Then in Section 7.2 we firstly adopt a similar
problem domain as in test 1 of Section 6.1 but with Neumann-type boundary conditions applied on two sides
of the boundary including their intersecting corner. To further demonstrate the performance on complicated
domains, we also test the formulation on a cross-shape domain which is non-convex (as shown in Fig. 7) with
Neumann-type boundary conditions applied on all boundaries. In both cases we demonstrate the second-order
convergence of the nonlocal solution to the corresponding local limit as ℎ, 𝛿 → 0.

7.1. Flux condition and numerical setting

In this section we extend the numerical algorithm to a domains with corners. For simplicity, here we assume
that there are two boundaries with Neumann-type boundary conditions:

𝜕𝑢

𝜕n1
= 𝑔1, on 𝜕Ω𝑁1, (7.1)
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Figure 7. A cross-shape non-convex domain employed in the second test of corner formulation.

𝜕𝑢

𝜕n2
= 𝑔2, on 𝜕Ω𝑁2, (7.2)

and the two boundaries intersect at c = 𝜕Ω𝑁1

⋂︀
𝜕Ω𝑁2. For any point x satisfying |x − c| < 𝛿, we project x

onto the two boundaries respectively, i.e., x = x1−𝑠𝑥1n1(x1) = x2−𝑠𝑥2n2(x2). In this section, we assume that
both 𝜕Ω𝑁1 and 𝜕Ω𝑁2 are straight lines near the corner c, although the formulation can be further extended
to more general cases. Denote 𝜃 as the angle between 𝜕Ω𝑁1 and 𝜕Ω𝑁2 , without loss of generality we further
denote n1 = (0, 1) and n2 = (sin 𝜃,− cos 𝜃). Correspondingly, we have p1 = (1, 0) and p2 = (− cos 𝜃,− sin 𝜃). We
illustrate geometric assumptions and notation in Figure 6. For each point x = (𝑥1, 𝑥2), with Taylor expansion
we have the following approximation for 𝑢(y)− 𝑢(x) with y = (𝑦1, 𝑦2) ∈ 𝐵(x, 𝛿) ∩ 𝜕Ω𝑁𝛿:

𝑢(y)− 𝑢(x) = 𝑑1
𝜕𝑢(x)
𝜕n1

+ 𝑑2
𝜕𝑢(x)
𝜕n2

+
1
2
𝑑2
1[𝑢(x)]𝑛1𝑛1 +

1
2
𝑑2
2[𝑢(x)]𝑛2𝑛2 + 𝑑1𝑑2[𝑢(x)]𝑛1𝑛2 +𝑂(𝛿3)

= 𝑑1𝑔1(x1) + 𝑑2𝑔2(x2) +
(︂

1
2
𝑑2
1 − (x1 − x) · n1𝑑1

)︂
(−𝑓(x)− [𝑢(x)]𝑝1𝑝1)

+
(︂

1
2
𝑑2
2 − (x2 − x) · n2𝑑2

)︂
(−𝑓(x)− [𝑢(x)]𝑝2𝑝2)

+
1

2 sin 𝜃
𝑑1𝑑2

(︂
𝜕𝑔1(x1)
𝜕p1

− 𝜕𝑔2(x2)
𝜕p2

+ 𝑓(x) sin 𝜃 cos 𝜃
)︂

+𝑂(𝛿3),

where

𝑑1 :=
cos 𝜃
sin 𝜃

(𝑦1 − 𝑥1) + (𝑦2 − 𝑥2), 𝑑2 :=
1

sin 𝜃
(𝑦1 − 𝑥1).

Moreover, we have

[𝑢(x)]𝑝1𝑝1 + [𝑢(x)]𝑝2𝑝2 = −𝑓(x) + cot 𝜃
𝜕𝑔1(x1)
𝜕p1

− cot 𝜃
𝜕𝑔1(x2)
𝜕p2

+𝑂(𝛿).
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Let

𝐷1 = 2
∫︁

𝜕Ω𝑁𝛿

𝐽𝛿(|x− y|)
[︂

1
2
𝑑2
1 − (x1 − x) · n1𝑑1

]︂
dy,

𝐷2 = 2
∫︁

𝜕Ω𝑁𝛿

𝐽𝛿(|x− y|)
[︂

1
2
𝑑2
2 − (x2 − x) · n2𝑑2

]︂
dy,

substituting the above approximations into the nonlocal formulation and neglecting the higher order terms give
the algorithm. For 𝐷1 > 𝐷2, we take 𝛿1 as the arc length from x to 𝜕Ω𝑁 following the contour parallel to 𝜕Ω𝑁1

and use 2
∫︀ 𝛿1

−𝛿1
𝐻𝛿1(|𝑙|)(𝑢(x𝑙1)−𝑢(x)) dx𝑙1 to denote the integral on this contour which approximates [𝑢(x)]𝑝1𝑝1 :

− 2
∫︁

Ω

𝐽𝛿(|x− y|)(𝑢(y)− 𝑢(x)) dy + 4(𝐷1 −𝐷2)
∫︁ 𝛿1

−𝛿1

𝐻𝛿1(|𝑙|)(𝑢(x𝑙1)− 𝑢(x)) dx𝑙1

= 𝑓(x)−𝐷1𝑓(x)−𝐷2 cot 𝜃
(︂
𝜕𝑔1(x1)
𝜕p1

− 𝜕𝑔2(x2)
𝜕p2

)︂
+ 2

∫︁
𝜕Ω𝑁𝛿

𝐽𝛿(|x− y|)
(︂
𝑑1𝑔1(x1)

+ 𝑑2𝑔2(x2) +
1

2 sin 𝜃
𝑑1𝑑2

(︂
𝜕𝑔1(x1)
𝜕p1

− 𝜕𝑔2(x2)
𝜕p2

+ 𝑓(x) sin 𝜃 cos 𝜃
)︂)︂

dy. (7.3)

Else, we similarly take 𝛿2 as the arc length from x to 𝜕Ω𝑁 following the contour parallel to 𝜕Ω𝑁2 and use
2
∫︀ 𝛿2

−𝛿2
𝐻𝛿2(|𝑙|)(𝑢(x𝑙2)− 𝑢(x)) dx𝑙2 to denote the integral on this contour which approximates [𝑢(x)]𝑝2𝑝2 :

− 2
∫︁

Ω

𝐽𝛿(|x− y|)(𝑢(y)− 𝑢(x)) dy + 4(𝐷2 −𝐷1)
∫︁ 𝛿2

−𝛿2

𝐻𝛿2(|𝑙|)(𝑢(x𝑙2)− 𝑢(x)) dx𝑙2

= 𝑓(x)−𝐷2𝑓(x)−𝐷1 cot 𝜃
(︂
𝜕𝑔1(x1)
𝜕p1

− 𝜕𝑔2(x2)
𝜕p2

)︂
+ 2

∫︁
𝜕Ω𝑁𝛿

𝐽𝛿(|x− y|)
(︂
𝑑1𝑔1(x1)

+ 𝑑2𝑔2(x2) +
1

2 sin 𝜃
𝑑1𝑑2

(︂
𝜕𝑔1(x1)
𝜕p1

− 𝜕𝑔2(x2)
𝜕p2

+ 𝑓(x) sin 𝜃 cos 𝜃
)︂)︂

dy. (7.4)

Here we note that in (7.3) and (7.4), since the coefficient for nonlocal Laplace Beltrami
∫︀ 𝛿𝑖

−𝛿𝑖
𝐻𝛿𝑖

(|𝑙|)(𝑢(x𝑙𝑖)−
𝑢(x)) dx𝑙𝑖 (𝑖 = 1 or 2) is not negative, the coercivity is not guaranteed in this formulation. However, numerical
experiments in Section 7.2 still suggest that the method remains robust in practice, possibly due to the fact
that the corner formulation only impacts the discretization points within distance 𝛿 to both edges. Moreover,
here we note that when considering a sufficiently smooth function 𝑢 in a finite domain Ω, one has∫︁

Ω

∫︁
Ω

𝐽𝛿(|x− y|)[𝑢(y)− 𝑢(x)]2 dy dx = 𝑂(1),
∫︁

Ω𝛿

𝑀𝛿(x)
∫︁ 𝛿

−𝛿

𝐻𝛿(|𝑙|)[𝑢(x𝑙)− 𝑢(x)]2 dx𝑙 dx = 𝑂(𝛿).

Therefore, in the nonlocal weak formulation the −2
∫︀
Ω
𝐽𝛿(|x− y|)(𝑢(y)− 𝑢(x)) dy term gets more dominant as

𝛿 → 0, which possibly explains the numerical robustness of the corner formulation (7.3) and (7.4).

7.2. Numerical results

In this section we firstly investigate the numerical performance of formulation (7.3) and (7.4) on a square
domain Ω = [0, 1] × [0, 1] with Neumann-type boundary conditions applied on 𝜕Ω𝑁1 = {(1, 𝑦) : 𝑦 ∈ [0, 1]}
and 𝜕Ω𝑁2 = {(𝑥, 1) : 𝑥 ∈ [0, 1]}. Note that the Neumann-type boundary contains a corner c = (1, 1) where
the numerical algorithms (7.3) and (7.4) are employed. We set the analytical local solution as 𝑢0(𝑥, 𝑦) = 𝑥2𝑦2,
which then yields 𝑓(𝑥, 𝑦) = −2(𝑥2 + 𝑦2), 𝜕𝑢

𝜕n |𝑥=1 = 𝑔1(𝑦) = 2𝑦2 and 𝜕𝑢
𝜕n |𝑦=1 = 𝑔2(𝑥) = 2𝑥2. The Dirichlet-

type condition 𝑢 = 𝑢0 is provided in a layer 𝜕Ω𝐷𝛿 = {(𝑥, 𝑦)|(𝑥, 𝑦) ∈ [−𝛿, 1] × [−𝛿, 1]/Ω}. With mesh-sizes
ℎ = {1/16, 1/32, 1/64, 1/128} and a fixed ratio 𝛿/ℎ = {4.0, 3.5}, the numerical results are shown in Table 11,
illustrating an 𝑂(𝛿2) convergence rate to the local limit.
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Table 11. Convergence to the local solution in the square domain with Neumann-type bound-
ary including a corner.

h 𝛿/ℎ = 4 𝛿/ℎ = 3.5

||𝑢𝛿 − 𝑢0||∞ Order ||𝑢𝛿 − 𝑢0||2 Order ||𝑢𝛿 − 𝑢0||∞ Order ||𝑢𝛿 − 𝑢0||2 Order

2−3 7.43× 10−2 – 1.91× 10−2 – 5.45× 10−2 – 1.46× 10−2 –
2−4 1.52× 10−2 2.29 4.01× 10−3 2.26 1.13× 10−2 2.27 3.10× 10−3 2.24
2−5 3.30× 10−3 2.20 9.12× 10−4 2.13 2.40× 10−3 2.24 6.97× 10−4 2.15
2−6 7.42× 10−3 2.15 2.17× 10−4 2.06 5.60× 10−4 2.11 1.66× 10−4 2.07
2−7 1.74× 10−4 2.09 5.32× 10−5 2.03 1.31× 10−4 2.09 4.04× 10−5 2.03

Table 12. Convergence to the local solution on a non-convex cross-shape domain

h 𝛿/ℎ = 3.5
||𝑢𝛿 − 𝑢0||∞ Order ||𝑢𝛿 − 𝑢0||2 Order

1/40 7.75× 10−4 – 2.80× 10−3 –
1/80 1.73× 10−4 2.16 4.66× 10−4 2.59
1/160 2.84× 10−5 2.60 8.11× 10−5 2.52

In the second test of this section, we further consider a non-convex domain with corners. The domain is
presented in Figure 7. A Neumann-type boundary condition is applied everywhere over the boundary except
for on point (−1, 0) where Dirichlet boundary condition is applied to make the problem well posed. We use the
analytical local solution 𝑢0(𝑥, 𝑦) = sin(𝑥) cos(𝑦) with 𝑓(𝑥, 𝑦) = 2 sin(𝑥) cos(𝑦), and keep the ration 𝛿/ℎ = 3.5
while decreasing 𝛿 and ℎ simultaneously. The numerical results are provided in Table 12, which shows a second-
order convergence rate in 𝛿. This example shows that the proposed formulation is capable to handle non-convex
domains consisting of line segments and corners as boundaries.

8. Conclusion and future work

In this paper we have introduced a new nonlocal Neumann-type constraint for the 2D nonlocal diffusion
problem which is an analogue to the local flux boundary condition and for the first time achieved the optimal
second-order convergence rate 𝑂(𝛿2) to the local limit in the 𝐿∞(Ω) norm. The formulation is applied on a
collar layer inside the domain and therefore requires no mesh or extrapolation outside the problem domain,
which enables the possibility of applying the physical boundary conditions on a sharp interface. We have
shown that when the problem domain is bounded, convex, connected and possesses sufficient regularity, the
proposed nonlocal Neumann-type constraint with the nonlocal diffusion equation is well-posed. The nonlocal
solution 𝑢𝛿 converges to the solution 𝑢0 from the corresponding local problem in the 𝐿2(Ω) norm as the horizon
size 𝛿 → 0. Moreover, when the solution is continuous in Ω and the Neumann type boundary is convex, we
have further proved the second-order convergence of 𝑢𝛿 in the 𝐿∞(Ω) norm. Numerically, we have developed
an asymptotically compatible particle method based on a meshfree quadrature rule for the Neumann-type
constraint problem. Numerical examples on domains with representative geometries and boundary curvatures
were investigated, and the optimal convergence rate 𝑂(𝛿2) in the 𝐿∞(Ω) norm was observed in all instances,
verifying the asymptotic compatibility of both the Neumann boundary treatment and discretization. Finally,
we have demonstrated that the regularity assumption may be relaxed in practice and the formulation can
be extended to non-convex domain with corners, which greatly improves the applicability of the proposed
formulation for more complicated scenarios. Although the formulation does not preserve formal coercivity near
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the corner, numerical experiments indicate that the formulation is robust in practice and achieves the optimal
convergence rate to the local limit.

We note that the formulation described in this paper actually provides an approach for applying the Neumann-
type boundary condition on general compactly supported nonlocal integro-differential equations (IDEs) with
radial kernels. As a natural extension, we are working on a nonlocal trace theorem which will immediately extend
the current analysis results in the 𝐿2 norm to problems with inhomogeneous boundary conditions, and we are
also developing a sharp traction boundary condition for peridynamics which is consistent with the classical
elasticity theory.

Appendix A.

A.1. Proof of Lemma 3.9

In this section we aim to provide the detailed proof for Lemma 3.9. Since 𝐵𝛿(𝑢̃𝛿, 𝑣) = (𝑓, 𝑣)𝐿2(Ω) for any
𝑣 ∈ 𝑆𝛿, with Lemmas 3.4–3.6 we have

||𝑢̃𝛿||2𝑆𝛿
≤ 𝐶𝐵𝛿(𝑢̃𝛿, 𝑢̃𝛿) = 𝐶(𝑓, 𝑢̃𝛿)𝐿2(Ω) ≤ 𝐶||𝑓 ||𝐿2(Ω)||𝑢̃𝛿||𝐿2(Ω) ≤ 𝐶||𝑓 ||𝐿2(Ω)||𝑢̃𝛿||𝑆𝛿

which yields the uniform boundedness of {𝑢̃𝛿}. With Lemma 3.8, we have the convergence of a subsequence of
{𝑢̃𝛿} in 𝐿2(Ω). Here we use the same 𝑢̃𝛿 to denote the convergent subsequence, then 𝑢̃𝛿 → 𝑢* ∈ 𝑆0. To prove
the lemma, it suffices to show that 𝑢* = 𝑢0 or

𝐵0(𝑢*, 𝑣) := (∇𝑢*,∇𝑣) = (𝑓, 𝑣)𝐿2(Ω), ∀𝑣 ∈ 𝐶∞(Ω). (A.1)

Taking a standard mollifier 𝜑𝜖 satisfying
∫︀

𝐵(0,𝜖)
𝜑𝜖(x) dx = 1 and letting 𝑢̃𝛿,𝜖 =

∫︀
𝐵(0,𝜖)

𝑢̃𝛿(x − y)𝜑𝜖(y) dy, we
define Ω𝜖 = {x ∈ Ω : dist(x, 𝜕Ω) < 𝜖} and Ω𝜖 = {x ∈ Ω : dist(x, 𝜕Ω) ≥ 𝜖}. Assuming that 𝜖 > 𝛿, for 𝑣 ∈ 𝐶∞(Ω)
we denote

𝐵𝜖
𝛿(𝑢, 𝑣) =

∫︁
Ω𝜖

∫︁
Ω𝜖

𝐽𝛿(|x− y|)(𝑢(y)− 𝑢(x))(𝑣(y)− 𝑣(x)) dy dx,

𝐵𝜖
0(𝑢, 𝑣) =

∫︁
Ω𝜖

∇𝑢 · ∇𝑣 dx.

Since

𝐵𝜖
𝛿(𝑢̃𝛿,𝜖, 𝑣) =

∫︁
Ω𝜖

∫︁
Ω𝜖

𝐽𝛿(|x− y|)(𝑢̃𝛿,𝜖(y)− 𝑢̃𝛿,𝜖(x))(𝑣(y)− 𝑣(x)) dy dx

=
∫︁

Ω𝜖

∫︁
Ω𝜖

𝐽𝛿(|x− y|)

(︃∫︁
𝐵(0,𝜖)

𝜑𝜖(z)𝑢̃𝛿(y − z) dz−
∫︁

𝐵(0,𝜖)

𝜑𝜖(z)𝑢̃𝛿(x− z) dz

)︃
(𝑣(y)− 𝑣(x)) dy dx

=
∫︁

𝐵(0,𝜖)

𝜑𝜖(z)
(︂∫︁

Ω𝜖

∫︁
Ω𝜖

𝐽𝛿(|x− y|)(𝑢̃𝛿(y − z)− 𝑢̃𝛿(x− z))(𝑣(y)− 𝑣(x)) dy dx
)︂

dz

=
∫︁

𝐵(0,𝜖)

𝜑𝜖(z)𝐵𝜖
𝛿(𝑢̃𝛿(x− z), 𝑣(x)) dz,

to show (A.1) it suffices to prove that when 𝛿 → 0 first then 𝜖→ 0, we have

𝐵𝜖
𝛿(𝑢̃𝛿,𝜖, 𝑣) → 𝐵0(𝑢*, 𝑣), (A.2)

and ∫︁
𝐵(0,𝜖)

𝜑𝜖(z)𝐵𝜖
𝛿(𝑢̃𝛿(x− z), 𝑣(x)) dz → (𝑓, 𝑣)𝐿2(Ω). (A.3)
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To show (A.2) we first fix 𝜖 and let 𝛿 → 0. Since 𝜖 > 𝛿, Ω𝜖
⋂︀

Ω𝛿 = Φ and Ω𝛿 ⊂ Ω𝜖. Then

𝐵𝜖
𝛿(𝑢̃𝛿,𝜖, 𝑣) =

∫︁
Ω𝜖

∫︁
Ω

𝐽𝛿(|x− y|)(𝑢̃𝛿,𝜖(y)− 𝑢̃𝛿,𝜖(x))(𝑣(y)− 𝑣(x)) dy dx

−
∫︁

Ω𝜖

∫︁
Ω𝜖

𝐽𝛿(|x− y|)(𝑢̃𝛿,𝜖(y)− 𝑢̃𝛿,𝜖(x))(𝑣(y)− 𝑣(x)) dy dx.

Since 𝑢̃𝛿,𝜖 → 𝑢*,𝜖 as 𝛿 → 0, with Proposition 3.4 of [63] and the Dominated Convergence Theorem,

lim
𝜖→0

lim
𝛿→0

∫︁
Ω𝜖

∫︁
Ω

𝐽𝛿(|x− y|)(𝑢̃𝛿,𝜖(y)− 𝑢̃𝛿,𝜖(x))(𝑣(y)− 𝑣(x)) dy dx = lim
𝜖→0

𝐵𝜖
0(𝑢*,𝜖, 𝑣) = 𝐵0(𝑢*, 𝑣). (A.4)

On the other hand, for the second term, with the uniform boundedness

lim
𝜖→0

lim
𝛿→0

⃒⃒⃒⃒∫︁
Ω𝜖

∫︁
Ω𝜖

𝐽𝛿(|x− y|)(𝑢̃𝛿,𝜖(y)− 𝑢̃𝛿,𝜖(x))(𝑣(y)− 𝑣(x)) dy dx
⃒⃒⃒⃒
≤ 𝐶 lim

𝜖→0
area(Ω𝜖) = 0.

Hence (A.2) has been proved. For (A.3) it suffices to show that

lim
𝜖→0

lim
𝛿→0

|𝐵𝜖
𝛿(𝑢̃𝛿(x− z), 𝑣(x))− (𝑓(x), 𝑣(x))𝐿2(Ω)|

= lim
𝜖→0

lim
𝛿→0

|𝐵𝜖
𝛿(𝑢̃𝛿(x− z), 𝑣(x))−𝐵𝛿(𝑢̃𝛿(x), 𝑣(x))| = 0. (A.5)

Denote Ωz𝜖 = {x ∈ Ω : x− z ∈ Ω𝜖}, we have

|𝐵𝜖
𝛿(𝑢̃𝛿(x− z), 𝑣(x))−𝐵𝛿(𝑢̃𝛿(x), 𝑣(x))|

=
⃒⃒⃒⃒∫︁

Ω𝜖

∫︁
Ω𝜖

𝐽𝛿(|x− y|)(𝑢̃𝛿(y − z)− 𝑢̃𝛿(x− z))(𝑣(y)− 𝑣(x)) dy dx

−
∫︁

Ω

∫︁
Ω

𝐽𝛿(|x− y|)(𝑢̃𝛿(y)− 𝑢̃𝛿(x))(𝑣(y)− 𝑣(x)) dy dx

−
∫︁

Ω𝛿

𝑀𝛿(x)
∫︁ 𝛿

−𝛿

𝐻𝛿(|𝑙|)[𝑢̃𝛿(x𝑙)− 𝑢̃𝛿(x)][𝑣(x𝑙)− 𝑣(x)] dx𝑙 dx

−
∫︁

Ω𝛿

∫︁ 𝛿

−𝛿

[︂
𝑀𝛿(x𝑙)

|r′(x)|
|r′(x𝑙)|

−𝑀𝛿(x)
]︂
𝐻𝛿(|𝑙|)[𝑢̃𝛿(x𝑙)− 𝑢̃𝛿(x)] dx𝑙𝑣(x) dx

⃒⃒⃒⃒
⃒

≤
⃒⃒⃒⃒∫︁

Ωz𝜖

∫︁
Ωz𝜖

𝐽𝛿(|x− y|)(𝑢̃𝛿(y)− 𝑢̃𝛿(x))(𝑣(y + z)− 𝑣(x + z)− 𝑣(y) + 𝑣(x)) dy dx
⃒⃒⃒⃒

+
⃒⃒⃒⃒∫︁

Ωz𝜖

∫︁
Ωz𝜖

𝐽𝛿(|x− y|)(𝑢̃𝛿(y)− 𝑢̃𝛿(x))(𝑣(y)− 𝑣(x)) dy dx

−
∫︁

Ω

∫︁
Ω

𝐽𝛿(|x− y|)(𝑢̃𝛿(y)− 𝑢̃𝛿(x))(𝑣(y)− 𝑣(x)) dy dx
⃒⃒⃒⃒

+

⃒⃒⃒⃒
⃒
∫︁

Ω𝛿

𝑀𝛿(x)
∫︁ 𝛿

−𝛿

𝐻𝛿(|𝑙|)[𝑢̃𝛿(x𝑙)− 𝑢̃𝛿(x)][𝑣(x𝑙)− 𝑣(x)] dx𝑙 dx

+
∫︁

Ω𝛿

∫︁ 𝛿

−𝛿

[︂
𝑀𝛿(x𝑙)

|r′(x)|
|r′(x𝑙)|

−𝑀𝛿(x)
]︂
𝐻𝛿(|𝑙|)[𝑢̃𝛿(x𝑙)− 𝑢̃𝛿(x)] dx𝑙𝑣(x) dx

⃒⃒⃒⃒
⃒

:= I + II + III.

For the first term we have

𝐼 ≤ ||𝑢̃𝛿||𝑆𝛿
||𝑣(x + z)− 𝑣(x)||𝑆𝛿

≤ ||𝑢̃𝛿||𝑆𝛿
||𝑣(x + z)− 𝑣(x)||𝑆0
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which goes to 0 as 𝜖 → 0 since |z| ≤ 𝜖 and 𝑣 ∈ 𝐶∞(Ω). For the second term, since |z| < 𝜖, Ω∖Ωz𝜖 ⊂ Ω2𝜖.
Therefore

II ≤

⃒⃒⃒⃒
⃒
∫︁

Ω∖Ωz𝜖

∫︁
Ω

𝐽𝛿(|x− y|)(𝑢̃𝛿(y)− 𝑢̃𝛿(x))(𝑣(y)− 𝑣(x)) dy dx

⃒⃒⃒⃒
⃒

+

⃒⃒⃒⃒
⃒
∫︁

Ω∖Ωz𝜖

∫︁
Ωz𝜖

𝐽𝛿(|x− y|)(𝑢̃𝛿(y)− 𝑢̃𝛿(x))(𝑣(y)− 𝑣(x)) dy dx

⃒⃒⃒⃒
⃒

≤ 2||𝑢̃𝛿||𝑆𝛿

(︃∫︁
Ω∖Ωz𝜖

∫︁
Ω

𝐽𝛿(|x− y|)(𝑣(y)− 𝑣(x))2 dy dx

)︃1/2

≤ 2||𝑢̃𝛿||𝑆𝛿

(︂∫︁
Ω2𝜖

∫︁
Ω

𝐽𝛿(|x− y|)(𝑣(y)− 𝑣(x))2 dy dx
)︂1/2

.

Since 𝑣 ∈ 𝐶∞(Ω), we have lim𝜖→0 lim𝛿→0

∫︀
Ω2𝜖

∫︀
Ω
𝐽𝛿(x − y)(𝑣(y) − 𝑣(x))2 dy dx = 0 and therefore

lim𝜖→0 lim𝛿→0 II = 0. For the third term we first consider the curvature ≡ 0 case. When 𝛿 is sufficiently
small, since 𝑀𝛿(x) ≤ 3𝜋 sup𝑟≤1 𝐽(|𝑟|) we have

III ≤

⃒⃒⃒⃒
⃒
∫︁

Ω𝛿

𝑀𝛿(x)
∫︁ 𝛿

−𝛿

𝐻𝛿(|𝑙|)[𝑢̃𝛿(x𝑙)− 𝑢̃𝛿(x)][𝑣(x𝑙)− 𝑣(x)] dx𝑙 dx

⃒⃒⃒⃒
⃒

≤ 𝐶||𝑢̃𝛿||𝑆𝛿

(︃∫︁
Ω𝛿

𝑀𝛿(x)
∫︁ 𝛿

−𝛿

𝐻𝛿(|𝑙|)𝑙2 dx𝑙 sup
z∈Ω𝛿

⃒⃒⃒⃒
𝜕𝑣(z)
𝜕p

⃒⃒⃒⃒2
dx

)︃1/2

(A.6)

≤ 𝐶||𝑢̃𝛿||𝑆𝛿
sup
z∈Ω𝛿

⃒⃒⃒⃒
𝜕𝑣(z)
𝜕p

⃒⃒⃒⃒
(area(Ω𝛿))1/2

. (A.7)

Since 𝑣 ∈ 𝐶∞(Ω), supz∈Ω𝛿

⃒⃒⃒⃒
𝜕𝑣(z)
𝜕p

⃒⃒⃒⃒
≤ ∞. Since Ω is bounded, lim𝛿→0 area(Ω𝛿) = 0. Hence lim𝜖→0 lim𝛿→0 𝐼𝐼𝐼 =

0. To prove the case of nonzero curvature, when 𝛿 is sufficiently small (3.19) and (A.7) yield

III ≤

⃒⃒⃒⃒
⃒
∫︁

Ω𝛿

𝑀𝛿(x)
∫︁ 𝛿

−𝛿

𝐻𝛿(|𝑙|)[𝑢̃𝛿(x𝑙)− 𝑢̃𝛿(x)][𝑣(x𝑙)− 𝑣(x)] dx𝑙 dx

⃒⃒⃒⃒
⃒

+

⃒⃒⃒⃒
⃒
∫︁

Ω𝛿

∫︁ 𝛿

−𝛿

[︂
𝑀𝛿(x𝑙)

|r′(x)|
|r′(x)𝑙|

−𝑀𝛿(x)
]︂
𝐻𝛿(|𝑙|)[𝑢̃𝛿(x𝑙)− 𝑢̃𝛿(x)] dx𝑙𝑣(x) dx

⃒⃒⃒⃒
⃒

≤ 𝐶||𝑢̃𝛿||𝑆𝛿

√︃∫︁
Ω𝛿

𝑣2(x) dx + sup
z∈Ω𝛿

⃒⃒⃒⃒
𝜕𝑣(z)
𝜕p

⃒⃒⃒⃒2
area(Ω𝛿) 𝛿→0→ 0.

Due to 𝑣 ∈ 𝐶∞(Ω), as 𝛿 → 0
∫︀
Ω𝛿
𝑣2(x) dx → 0. Moreover, lim𝛿→0 area(Ω𝛿) = 0. Therefore lim𝜖→0 lim𝛿→0 𝐼𝐼𝐼 = 0

and we have then finished the proof.

A.2. Proof of Lemma 4.2

In this section we aim to provide the detailed derivation for Lemma 4.2. For x ∈ Ω∖Ω𝑁𝛿,

𝑇𝛿 = 𝐿0𝑢0 − 𝐿𝛿𝑢0 = −△𝑢0 + 2
∫︁

Ω∪𝜕Ω𝐷𝛿

𝐽𝛿(|x− y|)(𝑢0(y)− 𝑢0(x)) dy

= −△𝑢0 +
∫︁

Ω∪𝜕Ω𝐷𝛿

𝐽𝛿(|x− y|)[𝑢0(x)]𝑝𝑝((x− y) · p(x))2 dy
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+
∫︁

Ω∪𝜕Ω𝐷𝛿

𝐽𝛿(|x− y|)[𝑢0(x)]𝑛𝑛((x− y) · n(x))2 dy +𝑂(𝛿2) = 𝑂(𝛿2).

For x ∈ Ω𝑁𝛿, we will first estimate
∫︀ 𝛿

−𝛿
𝐻(|𝑙|)[𝑢0(x𝑙)− 𝑢0(x)] dx𝑙. With Taylor’s expansion we have

𝑢0(x𝑙) = 𝑢0(x) +
𝜕𝑢0(x)
𝜕n

(x𝑙 − x) · n(x) +
𝜕𝑢0(x)
𝜕p

(x𝑙 − x) · p(x)

+
1
2

[𝑢0(x)]𝑛𝑛|(x𝑙 − x) · n(x)|2 +
1
2

[𝑢0(x)]𝑝𝑝|(x𝑙 − x) · p(x)|2

+ [𝑢0(x)]𝑝𝑛((x𝑙 − x) · n(x))((x𝑙 − x) · p(x)) +
1
6

[𝑢0(x)]𝑛𝑛𝑛((x𝑙 − x) · n(x))3

+
1
6

[𝑢0(x)]𝑝𝑝𝑝((x𝑙 − x) · p(x))3 +
1
2

[𝑢0(x)]𝑝𝑛𝑛|(x𝑙 − x) · n(x)|2((x𝑙 − x) · p(x))

+
1
2

[𝑢0(x)]𝑝𝑝𝑛((x𝑙 − x) · n(x))|(x𝑙 − x) · p(x)|2 +𝑂(𝑙4).

Assuming the boundary 𝜕Ω is 𝐶3 regular, we can approximate 𝜕Ω ∩ 𝐵(x, 𝛿) with the osculating circle 𝒞(x).
When 𝜕Ω does not coincide with 𝒞(x), we denote Px𝑙 as the point with distance 𝑙 to x along 𝒞(x) following
the p direction. For point x, take the Cartesian coordinate system as shown in the right plot of Figure 2
and let (𝑐1(𝑠), 𝑐2(𝑠)) be the curve of boundary 𝜕Ω which is parameterized by the arclength 𝑠. Then we have
x𝑙 = (𝑐1(𝑙), 𝑐2(𝑙))𝑇 , and

x𝑙 = x +

(︃
𝑙

0

)︃
+

(︃
0

𝜅(x)𝑙2

2

)︃
+

(︃
𝑐′′′1 (0) 𝑙3

6

𝑐′′′2 (0) 𝑙3

6

)︃
+𝑂(𝑙4),

while Px𝑙 = x +
(︂

1
𝜅(x)

sin(𝑙𝜅(x)),
1

𝜅(x)
(1− cos(𝑙𝜅(x)))

)︂𝑇

. Therefore

x𝑙 −Px𝑙 =

⎛⎝ 𝑐′′′1 (0)+𝜅2(x)
6 𝑙3

𝑐′′′2 (0)
6 𝑙3

⎞⎠+𝑂(𝑙4).

With 𝐸𝛿 to denote the region in 𝐴𝛿 which is asymmetric with respect to the 𝑦 axis in the right plot of Figure 2,
we then have the area of 𝐸𝛿 as |𝐸𝛿| ≤ 𝐶(𝛿2− 𝑠2𝑥)2 +𝑂(𝛿5). Moreover, adopting the coordinates as shown in the
right plot of Figure 2, we have (x𝑙 − x) · n(x) = −𝜅

2 𝑙
2 − 𝑐′′′1 (0)

6 𝑙3 + 𝑂(𝑙4), (x𝑙 − x) · p(x) = 𝑙 + 𝑐′′′2 (0)
6 𝑙3 + 𝑂(𝑙4).

Therefore

𝑢0(x𝑙)− 𝑢0(x) = −𝜕𝑢0(x)
𝜕n

(︂
𝜅

2
𝑙2 +

𝑐′′′1 (0)
6

𝑙3
)︂

+
𝜕𝑢0(x)
𝜕p

(︂
𝑙 +

𝑐′′′2 (0)
6

𝑙3
)︂

+
𝑙2

2
[𝑢0(x)]𝑝𝑝

− 𝜅𝑙3

2
[𝑢0(x)]𝑝𝑛 +

𝑙3

6
[𝑢0(x)]𝑝𝑝𝑝 +𝑂(𝑙4),

𝑢0(x−𝑙)− 𝑢0(x) = −𝜕𝑢0(x)
𝜕n

(︂
𝜅

2
𝑙2 − 𝑐′′′1 (0)

6
𝑙3
)︂

+
𝜕𝑢0(x)
𝜕p

(︂
−𝑙 − 𝑐′′′2 (0)

6
𝑙3
)︂

+
𝑙2

2
[𝑢0(x)]𝑝𝑝

+
𝜅𝑙3

2
[𝑢0(x)]𝑝𝑛 −

𝑙3

6
[𝑢0(x)]𝑝𝑝𝑝 +𝑂(𝑙4),

which yield

𝑢0(x𝑙) + 𝑢0(x−𝑙)− 2𝑢0(x) = 𝜅𝑙2
𝜕𝑢0(x)
𝜕n

+ 𝑙2[𝑢0(x)]𝑝𝑝 +𝑂(𝑙4)

= 𝜅𝑙2
𝜕𝑢0(x)
𝜕n

+ 𝜅𝑙2[𝑢0(x)]𝑛𝑛((x− x) · n(x)) + 𝑙2[𝑢0(x)]𝑝𝑝 +𝑂(𝑙4)
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= 𝜅𝑙2[𝑢0(x)]𝑛𝑛((x− x) · n(x)) + 𝑙2[𝑢0(x)]𝑝𝑝 +𝑂(𝑙4).

Therefore ∫︁ 𝛿

−𝛿

𝐻(|𝑙|)[𝑢0(x𝑙)− 𝑢0(x)] dx𝑙

=
∫︁ 𝛿

0

𝐻(|𝑙|)
[︀
𝜅𝑙2[𝑢0(x)]𝑛𝑛((x− x) · n(x)) + 𝑙2[𝑢0(x)]𝑝𝑝 +𝑂(𝑙4)

]︀
dx𝑙

=
𝜅

2
[𝑢0(x)]𝑛𝑛((x− x) · n(x)) +

1
2

[𝑢0(x)]𝑝𝑝 +𝑂(𝛿2), (A.8)

and

2𝑀𝛿(x)
∫︁ 𝛿

−𝛿

𝐻(|𝑙|)[𝑢0(x𝑙)− 𝑢0(x)] dx𝑙

= 𝑀𝛿(x)[𝑢0(x)]𝑝𝑝 + 𝜅𝑀𝛿(x)[𝑢0(x)]𝑛𝑛((x− x) · n(x)) +𝑂(𝛿2)

= 𝜅𝑀𝛿(x)[𝑢0(x)]𝑛𝑛((x− x) · n(x)) + [𝑢0(x)]𝑝𝑝

∫︁
𝜕Ω𝑁𝛿

𝐽𝛿(|x− y|)|(y − x) · p(x)|2 dy

− [𝑢0(x)]𝑝𝑝

∫︁
𝜕Ω𝑁𝛿

𝐽𝛿(|x− y|)
(︀
|(y − x) · n(x)|2 − |(x− x) · n(x)|2

)︀
dy +𝑂(𝛿2).

With the above properties one has the following approximation via Taylor expansion:

2
∫︁

Ω

𝐽𝛿(|x− y|)(𝑢0(y)− 𝑢0(x)) dy

= −2
∫︁

Ω

𝐽𝛿(|x− y|)[𝑢0(x)]𝑛𝑛((x− y) · (x− x)) dy + 2
∫︁

𝐸𝛿

𝐽𝛿(|x− y|)𝜕𝑢0(x)
𝜕p

((x− y) · p(x)) dy

+
∫︁

Ω

𝐽𝛿(|x− y|)[𝑢0(x)]𝑛𝑛𝑛((x− y) · n(x))(−|x− x|2 +
1
3
|(x− y) · n(x)|2) dy

+
∫︁

Ω

𝐽𝛿(|x− y|)[𝑢0(x)]𝑛𝑛|(x− y) · n(x)|2 dy +
∫︁

Ω

𝐽𝛿(|x− y|)[𝑢0(x)]𝑝𝑝|(x− y) · p(x)|2 dy

+
∫︁

Ω

𝐽𝛿(|x− y|)[𝑢0(x)]𝑛𝑝𝑝((x− y) · n(x))|(x− y) · p(x)|2 dy +𝑂(𝛿2), (A.9)

and the estimate for 𝑇𝛿 with x ∈ Ω𝑁𝛿:

𝑇𝛿 = (𝐿0𝑢0 − 𝐿𝑁𝛿𝑢0) + (𝑓𝛿 − 𝑓)

= −△𝑢0(x) + 2
∫︁

Ω

𝐽𝛿(|x− y|)(𝑢0(y)− 𝑢0(x)) dy + 2𝑀𝛿(x)
∫︁ 𝛿

−𝛿

𝐻(|𝑙|)[𝑢0(x𝑙)− 𝑢0(x)] dx𝑙

−
∫︁

𝜕Ω𝑁𝛿

𝐽𝛿(|x− y|)(|(y − x) · n(x)|2 − |(x− x) · n(x)|2)(−△𝑢0(x)) dy

= 2
∫︁

𝐸𝛿

𝐽𝛿(|x− y|)𝜕𝑢0(x)
𝜕p

((x− y) · p(x)) dy

+
∫︁

Ω

𝐽𝛿(|x− y|)[𝑢0(x)]𝑛𝑛𝑛((x− y) · n(x))(−|x− x|2 +
1
3
|(x− y) · n(x)|2) dy

+
∫︁

Ω

𝐽𝛿(|x− y|)[𝑢0(x)]𝑛𝑝𝑝((x− y) · n(x))|(x− y) · p(x)|2 dy

+ 𝜅𝑀𝛿(x)[𝑢0(x)]𝑛𝑛((x− x) · n(x)) +𝑂(𝛿2). (A.10)

We have then finished the proof.
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[6] B. Baeumer, M. Kovács, M.M. Meerschaert and H. Sankaranarayanan, Boundary conditions for fractional diffusion. J. Comput.
Appl. Math. 336 (2018) 408–424.

[7] S. Badia, F. Nobile and C. Vergara, Fluid-structure partitioned procedures based on Robin transmission conditions. J. Comput.
Phys. 227 (2008) 7027–7051.

[8] G. Barles, C. Georgelin and E.R. Jakobsen, On Neumann and oblique derivatives boundary conditions for nonlocal elliptic
equations. J. Diff. Equ. 256 (2014) 1368–1394.
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