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Practical guide to designing safer ionic liquids for
cellulose dissolution using a tiered computational
framework†

Preston Griffin, Selene Ramer, Matthew Winfough and Jakub Kostal *

The theoretical promise of ionic liquids (ILs) as ‘green’ designer solvents that can be tuned to facilitate key

steps of lignocellulosic biomass processing has not been fully realized due to the sheer number of poss-

ible cation–anion combinations and concerns about toxicity of this class of chemicals. Although compu-

tational methods are being applied to identify ILs with specific functions, such as dissolution of cellulose,

they are not used to iteratively design new ionic liquids with the goal of simultaneously optimizing mul-

tiple criteria, such as performance and environmental safety. Here we describe a tiered computational

approach to develop new ILs based on mixed quantum and molecular mechanics simulations, which,

combined with analysis of physicochemical properties of ILs can be used to guide structural modifications

to design both better performing task-specific and safer IL analogs. The increase in computing require-

ments of the proposed approach over structure-based statistical models is relatively modest; yet, our

approach is more robust than these models, and far less costly than highly-accurate but very demanding

large-scale molecular simulations.

Introduction

Developing efficient and economically-viable processes for
generating fuels and platform chemicals from non-food com-
petitive lignocellulose is a critical challenge for sustainable
development.1 The biorefinery concept, which has been pro-
posed as a strategy to vastly increase our ability to efficiently
convert lignocellulose to fuels and chemicals, still lacks
technology needed for economical and safe processing.2,3

Specifically, the valorization of cellulose, the main component
of lignocellulose (40–50 wt%), requires that the polymer is dis-
solved prior to deconstruction into constituting monomers.4

The three-dimensional microfibril structure of cellulose is
embedded in a hydrated matrix of covalently coupled hemi-
cellulose and amorphous phenylpropanoid polymer lignin.5

On the molecular level, cellulose comprises of D-glucose
chains that align parallel into flat sheets, which are stacked
together to form the microfibril. This structure is held together
by a complex network of intra- and inter-chain hydrogen
bonds (Hbonds) between hydroxyl groups and van der Waals
interactions on contiguous sheets.6 Thus, dissolving cellulose
requires the disruption of these interactions, which typically
calls for harsh reaction conditions and corrosive reagents.7,8

To address the demand for effective and green solvents in
cellulose dissolution, ionic liquids (IL) have emerged as a
viable alternative. These molten salts offer many advantages,
such as high thermal stability, wide electrochemical window,
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broad liquid range, low vapour pressure and high solvation
ability toward various chemicals, which has led to their wide-
spread use in many applications.9 Most importantly, the physi-
cal and chemical properties of ILs can be tuned by varying the
structures of cations and anions.10 Since the seminal report by
Rogers et al. on cellulose dissolution in 1-butyl-3-methyl-
imidazolium chloride in 2002,11 extensive body of work on cell-
ulose dissolution by ILs has been developed, providing both a
diverse repertoire of suitable structures and studies that eluci-
date the mechanistic underpinning of the dissolution
process.8 Nevertheless, the extent of cellulose solubility offered
by ILs12 and our mechanistic understanding of ILs’ structure–
activity relationships still have significant gaps.13 Most impor-
tantly, there is need to develop reliable and efficient design
tools that would yield next-generation of these solvent systems
based on criteria of high performance and low environmental
impact.8 This is a task that cannot be accomplished experi-
mentally or ad hoc as there are estimated 1012–1018 cation–
anion combinations based on (existing!) structures.14

Extensive efforts in the field of ILs over the past two
decades have delivered a plethora of computational methods
to study and predict cellulose dissolution, and in a few cases,
to inform design of more efficient systems. Reported computer
models range from structure-based (Q)SAR/(Q)SPR-type
approaches12,15 to quantum-mechanics models16,17 to sophisti-
cated and computationally-intensive molecular dynamics
simulations.18,19 A comprehensive overview of these models,
which explores their utility in the context of IL structures and
their conformational equilibria, the role of IL–cellulose inter-
actions in cellulose solubility and co-solvent effects, is pro-
vided elsewhere.8

Among existing tools showing promise in solvent design,
COSMO-based models are effective in predicting thermo-
dynamics of separation processes.17 While most require costly
quantum mechanics calculations, Zhang et al. showed a modi-
fied group contribution approach paired with COSMO can
speed up the discovery of novel ILs.20 From studies of cellulose
dissolution using COSMO, the work by Liu et al.21 should be
highlighted for its usefulness and simplicity. Relying on
COSMO-RS (COSMO for Real Solvent), an implicit solvation
model capable of performing mixture calculations at various
temperatures and integrating dominant interactions of
H-bonds and van der Waals forces in IL systems,17 Liu et al.
performed assessments of 357 ILs (combinations of 17 cations
and 21 anions), and validated their approach using experi-
mental measurements of microcrystalline cellulose solubility
in 7 of these ILs.21 Predicted logarithmic activity coefficients
showed significant correlation with wt% solubility of cellulose
in ILs, with R2 ∼ 0.35–0.62, depending on the specific cellulose
model used.

While instrumental in advancing the field of cellulose dis-
solution by ILs, existing computational models suffer from
trade-offs: sophisticated modelling approaches have a narrow
mechanistic focus, and are too demanding to apply across the
vast chemical space of ILs; statistically-heavy approaches trade
robustness and mechanistic transparency for high training-set

accuracy; and existing methods that attempt to compromise
between efficiency and mechanistic detail are yet to show
optimal performance metrics. The design approach reported
by Liu et al. is an example of the latter; while the COSMO-RS
model alleviates many limitations and theoretical shortcoming
of dielectric continuum models,22 it remains an implicit
model that trades atomic detail for efficiency. In particular,
implicit models neglect the specific spatial orientation
between donor and acceptor in Hbonds,23 which play a key
role in cellulose interactions with ILs.8 Thus, there is room for
improvement in a design tool for novel ILs by considering
explicit solvent systems. Importantly, no existing models
combine function and environmental-safety criteria into a
single design tool.

Rational design of functional chemicals with minimal tox-
icity remains a key frontier in green chemistry that is yet to be
systematically applied. Prior work by our group has focused on
developing design guidelines for chemicals with minimal eco-
toxicity,24 and has explored kinetic and thermodynamic design
drivers for a host of human-toxicity endpoints.25–28 Here, we
examined the relevance of the aforementioned computational
methods to further the design efforts of Liu et al. in developing
novel ILs. The goal of our effort was to develop a practical
design approach, one that balances accuracy, reliability and
mechanistic relevance with computational efficiency, ease of
use and interpretability for the non-expert, and can inform
both function and environmental performance. We report a
two-tier computational framework that links cost-effective yet
highly-accurate molecular simulations of cellulose solubility in
ILs with physicochemical properties of ILs. The framework
combines optimization of performance, i.e. ILs’ ability to dis-
solve cellulose, with previously-validated design guidelines for
minimal (eco)toxicity24,29–32 to provide the first step toward
holistic approach in new IL development that is consistent
with green chemistry principles. Our model achieves good
accuracy at moderate computational cost by strategically mod-
elling IL as a solute, rather than a solvent, in a cellulose-like
medium. Such system allows us to describe the IL pair more
accurately using quantum mechanics, and easily modify its
structure to enable rational design. The broader goal of this
work is to spur future IL design efforts that promote systems
thinking based on the entire lifecycle of these chemicals.

Methods
Theoretical approach

The tiered computational framework to facilitate design of
novel ILs is outlined in Fig. 1. The first tier focused on IL–cell-
ulose interactions by means of Monte Carlo (MC) simulations
of cellulose–IL mixtures. Both IL and cellulose models were
represented explicitly, and mixed quantum and molecular
mechanics (QM/MM) calculations were used to evaluate the
solute and solvent, respectively. Intuitively, to build such a
model one would choose to solvate cellulose in IL. While force
fields such as OPLS have been developed to describe ILs,33,34
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adequate sampling of the IL pairs can be problematic,35,36 par-
ticularly in the first solvation shell, and any design changes
made to ILs require re-parametrization of the force field – a
task that is both onerous and perplexing to the non-expert.
Because the phase mixing during cellulose dissolution by ILs
is a highly dynamic process,8 in constructing a computational
model to gauge IL–cellulose interactions it is equally reason-
able to assume a case where cellulose is the solute in IL
solvent as is to assume a model where a single IL pair acts as
the solute in cellulose-based medium. This is particularly true
when developing a computationally inexpensive model, which
must rely on severely-truncated representation of cellulose – in
our case, a cellulose monomer (or D-glucose), which was
shown useful by Liu and coworkers.21

The main advantage of solvating IL in cellulose is the
ability to describe the IL pair more accurately using quantum
mechanics, which also affords straightforward modifications
of the IL pair without the need for force-field parametrization.
Additionally, the majority of sampling required to properly
describe such a system is delegated to the classically-described
cellulose (solvent) model, which can be handled with ease by
most available force fields.

In our implementation, IL pairs were represented with the
PM7 semiempirical molecular orbital (SMO) method, which is
both reasonably accurate and efficient in describing the elec-
tronic structure of these systems.15 We noted that traditional
SMO methods such as AM1 or PM3 performed worse in
describing geometries of the IL pair; in contrast, higher level
density-functional or ab initio methods were impractical given
sampling requirements. In MC simulations, IL–cellulose inter-
actions used CM3P charges, scaled by a standard factor of 1.12
for IL pairs, for solute atoms in the Coulomb terms37 and the
all-atom OPLS force field for Lennard–Jones interactions.33

Periodic boundary conditions were invoked in NVT–NPT

ensembles at 1 atm and 388 K, which is the experimental
temperature reported by Liu et al.21 Cutoffs of 10 Å were used
for non-bonded interactions. Solute–solvent systems, which
consisted of the IL solute and a solvent box of 267 glucose
molecules (ca. 35 × 35 × 35 Å in size), were built in the BOSS
4.9 program,38 with solute geometries minimized prior to MC
simulations using Gaussian 16 software.39 Geometries of IL
pairs were optimized with a PM7-SMD approach, which uses
an implicit-solvent model based on macroscopic solvent para-
meters developed by Truhlar et al.40 The distance between the
anion and cation was kept fixed during subsequent MC simu-
lation to prevent dissociation, which is known to occur in
highly dilute solutions.41 The MC simulations consisted of
sampling 5 × 106 configurations to equilibrate the solvent in
the NVT ensemble, followed by 5 × 106 configurations of full-
system equilibration in the NPT ensemble and 15 × 106 con-
figurations of averaging to assess system thermodynamics.

In the second-tier analysis, we carried out linear-response
calculations based on MC simulations in aqueous phase to
evaluate a host of physicochemical properties of ILs.38 Here,
we relied on the TIP4P model,42 which was used to construct
solvent boxes of 500 water molecules with dimensions of ca.
25 × 25 × 25 Å. All simulations were carried out at 298 K with
periodic boundary conditions and 10 Å cutoffs for all non-
bonded interactions. A 2.0 × 105 configurations of solvent equi-
libration were sampled in the NVT ensemble, followed by 5.0 ×
106 configurations of full-system equilibration in the NPT
ensemble and 25 × 106 configurations of averaging. The
purpose of this analysis was to identify drivers of IL–cellulose
interactions, and by extension cellulose solubility, which could
be used to rationally design new ILs by means of structural
modifications of IL components. It should be noted that pro-
perties determined in this report using linear-response calcu-
lations in BOSS 4.9,38 which are based on QM calculations in
conjunction with explicit MC simulations, are far more robust
and widely applicable than typical structure-based estimation
methods.43–45

In addition to cellulose dissolution, in the second tier, we
used physicochemical properties to also assess ecotoxicity of
ILs. To that end, energies of frontier molecular orbitals
(FMOs), which were used along with octanol–water partition
coefficient (log Po/w) to assess ecotoxicity of studied ILs accord-
ing to a previously developed approach,24 were computed
using the mPW1PW91 hybrid density functional46 and the
MIDIX+ basis set.47 The mPW1PW91/MIDIX+ level of theory
was found to provide excellent performance-to-cost ratio for
orbital energy calculations, and can be readily used to describe
larger systems in reasonable timeframes.48 Assuming dilute IL
solutions in ecotoxicity testing, a QM-based implicit-solvent
model (SMD)49 was employed in conjunction with density-
functional FMO calculations to estimate the effects of orbital
polarization by the aqueous medium.

Dataset

For a mechanistically-driven approach that requires no or few
empirical parameters, the size of an experimental dataset is

Fig. 1 Schematic representation of a two-tier, reductionist compu-
tational approach to design novel ILs via rational modifications of IL
structures.
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less relevant in model training than the quality and diversity
of its underlying structural and activity data.19,50 To that end,
and to benchmark our method against one of the most-robust
design effort for cellulose dissolution by ILs to date, we chose
the set by Liu et al.,21 which used 1-R-3-methylimidazolium
and N-R-pyridinium cations with methyl, ethyl, 2-hydroxyl-
ethyl, 2-methoxyethyl and acryloyloxypropyl substituents,
paired with chloride, bromide, acetate and diethylphosphate
anions (Fig. 2). Crucially, the ILs selected by Liu et al. cover a
broad solubility range (15–46 g mol−1 IL), and constitute a
structurally diverse mixture of cations and anions, which
include chemically-interesting and atypical substituents on
imidazolium and pyridinium rings.

Solubility values measured in this dataset are consistent
with existing mechanistic knowledge of the dissolution
process. For example, the acetate anion was found to be par-
ticularly effective due bridging Hbonds within cellulose
chains.51,52 In a different study, aromatic IL cations with
electron-donating groups were noted to promote cellulose
dissolution by increasing interaction of the side chain with
cellulose, while electron-withdrawing groups hindered
interactions of ILs with cellulose.53 Solubility values
reported by Liu and co-workers reflect these fundamental
observations, showing [Emim]Ac as the most effective IL in
the set, and unsaturated side-chain Amim and Apy as more
effective than electron-withdrawing HOEtmim, HOEtpy and
EtOMmim. Lastly, using a single dataset to validate any
computational approach ensures a unified protocol for
solubility testing, which is a concern in model develop-
ment, particularly for statistical approaches that require
relatively large datasets pooled from various experimental
sources.12

Results and discussion
Informing design of ILs for high cellulose solubility

IL–cellulose interactions. In the first tier of our compu-
tational approach, we explored the relationship between IL–
glucose interactions and experimental solubility of cellulose in
ILs. A sample model system, [Emim]Ac, is shown in Fig. 3. To
examine the effect of hydrogen and van der Waals bonding,
which are both implicated in cellulose dissolution,8 we con-
sidered separately contributions from electrostatic (Coulomb)
and van der Waals (Lennard–Jones, LJ) interactions:

ΔEIL‐glucose ¼Uelec þ UvdW ¼
X
i

X
j

qiqje2

rij

� �

þ
X
i

X
j

4εij
σij
rij

� �12

� σij
rij

� �6� �� � ð1Þ

From eqn (1), ΔE is the potential energy between IL and
glucose molecules, which contain interaction sites i and j with
associated charges, q, and LJ parameters, σ and ε.

Fig. 4 shows coefficients of determination, R2, corres-
ponding to univariate correlations between cellulose solubility
and the number of IL–glucose interactions and their energies
as assessed for the cation, anion and the IL pair. Fig. 4 also
shows the correlation between total energetics (Coulomb + LJ)
of glucose–glucose interactions and cellulose dissolution.

Table S1† lists all underlying data used to develop these
models. It should be noted that correlations reported in Fig. 4
are based on solubility expressed as grams of glucose per mole
of IL, which yielded more accurate and reliable predictive
models over mass percent (wt%) values in this work and in
previous studies.54

From Fig. 4, 6 models showed meaningful correlations (R2

> 0.5) between IL–glucose interactions and solubility, with LJ-
interaction energy (ELJ) having the highest correlation (R2 ∼

Fig. 2 Structures of ionic liquids (ILs) used in the first tier of compu-
tational framework for the design of ILs with high cellulose solubility.
Corresponding solubility (g mol−1) values were obtained from ref. 21. *
[DEME]MEPA (ref. 12) was used to illustrate our approach on a structu-
rally-different solvent system.

Fig. 3 Equilibrated [Emim]Ac-glucose box as obtained from PM7/
OPLS-AA/MC simulations. A close-up window depicts the interacting IL
pair.
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0.9) with experiment (Fig. 5). The trends are consistent in that
the greater the interactions, the higher was the apparent solu-
bility of cellulose in the IL. Notably, four single-descriptor
models shown in Fig. 4 fitted experimental data better than
the COSMO-RS model reported by Liu et al.:21 energetics of the
LJ interactions of the IL pair (IL LJ), energetics of the Coulomb
interactions of the anion (AN Coulomb), and the number of
both strong and weak interactions of the anion (AN strong and
weak) with glucose. Consistent with a study by Zavrel et al.,55

aromatic structure of IL cations afforded strong interactions
with glucose (Table S1†); however, no useful trend impacting
solubility was observed for individual cations.

In agreement with previous reports, our analysis showed
that differences in cellulose dissolution were dominated by the
anion as the hydrogen-bond acceptor, with cation playing a
secondary role.8,55 An important correlation noted in Fig. 4 is
that between total glucose–glucose interaction energies
(Coulomb + LJ) and solubility (GLU–GLU, R2 = 0.66). As the LJ
energetics become more favourable between the IL and
glucose, driving the observed increase in cellulose dissolution,
the glucose–glucose interaction energies diminish, reflecting
disruption in the nonbonded network of this cellulose model.
This relationship is dominated by decrease in Coulomb inter-
actions, which represent the Hbonds between neighbouring
glucose molecules (Table S1†). In fact, removing the sole
outlier, [EtOMmim]Cl, increases the correlation between
glucose–glucose interaction energies and solubility of cellulose
to an impressive R2 of 0.89 for total interactions and R2 of 0.95
for coulombic interactions only.

Among debated issues in the field of cellulose dissolution,
there is controversy as to whether ILs dissociate in the dis-
solution process or act as an ion pair.8,56 While the answer is
surly “it depends” (e.g. on the stage in the dissolution process,
IL concentration and electronic properties, as well as experi-
mental conditions such as temperature), our results, which
indicate stronger correlation between solubility and IL pair
energetics than solvation metrics obtained for individual ions,
support the latter hypothesis. To examine this issue further,
we briefly considered the energetics of the cation–anion separ-
ation in the glucose medium for [Emim]Ac, the most effective
IL, and [EtOMmim]Cl, the least effective IL in dissolving cell-
ulose in Liu’s dataset. To that end, we carried out free energy
perturbation (FEP) calculations in glucose, where free energy
changes were computed with statistical perturbation theory in
a windowing format with double-wide sampling.57 In this com-
bined MC/FEP approach, each FEP window entailed 2.0 × 106

configurations of glucose equilibration in the NVT ensemble,
followed by 5.0 × 106 configurations of full-system equili-
bration and 10 × 106 configurations of averaging in the NPT
ensemble. Potentials of mean force (PMF) were computed by
perturbing the distance between the cation and anion of the IL
pairs at 0.05 Å increments per FEP window, starting from the
interacting IL-pair equilibrium state to ca. 6.5 Å of cation–
anion separation (Fig. 6). In [Emim]Ac, this distance was
measured between the oxygen (O) of the acetate and the
carbon (C) between the two nitrogen (N) atoms of the imidazo-
lium; in [EtOMmim]Cl, the perturbed distance corresponded
to that between chloride (Cl−) and the same carbon on the imi-
dazolium. From Fig. 6, the process is noted to be favourable,
as is known for highly dilute IL solutions.41 Importantly, the
separation is ca. 2.1 kcal mol−1 more favourable for
[EtOMmim]Cl, which is the solvent least capable of dissolving
cellulose in our dataset. This result indicates that the ion-pair
separation is likely not the driving force for cellulose dis-
solution. Our hypothesis is further supported by examining
the correlations between IL-glucose LJ-interaction energy and
solubility at large separation of the cation and anion for all 7
ILs in the dataset. At anion–cation distance of 6.5 Å, this corre-

Fig. 4 Coefficients of determination (R2) for univariate correlations
between solute–solvent/solvent–solvent energetics and solubility of
cellulose in a series of ILs, as computed from PM7/OPLS-AA/MC simu-
lations. IL = ionic-liquid pair, AN = anion, CAT = cation; solid bars reflect
correlations with Coulomb and LJ solute–solvent energetics; dotted
bars’ “weak” and “strong” labels reflect correlations with the total
number of Lennard Jones (LJ) and Coulomb pairwise interactions
between the solute and solvent; square-patterned purple bar corres-
ponds to total glucose–glucose, i.e. solvent–solvent, interaction
energies.

Fig. 5 Experimental solubility of cellulose in ILs plotted as a function of
Lennard Jones interaction energy as computed from PM7/OPLS-AA/MC
simulations of IL pairs in a glucose solvent box. Solubility (g mol−1) =
−2.536 × ELJ + 0.304. R2 = 0.89; R2

adj = 0.86; standard error (SE) = 1.8.
AmimCl was omitted from the analysis due to the lack of an exact
experimental value, viz. ref. 21.
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lation decreases to R2 = 0.49, which is considerably lower than
R2 = 0.89 noted for the interacting ion pair. Furthermore, no
meaningful correlation was observed between shorter-range
Coulomb interactions and experimental solubility at large
distances.

To briefly demonstrate the utility of the first tier of our com-
putational approach in informing design of ILs with high
ability to dissolve cellulose, we considered N,N-diethyl-2-
methoxy-N-methylethanaminium methoxyethoxypropionate, or
[DEME]MEPA (Fig. 2), which is one of the few ILs more
effective in dissolving cellulose than [Emim]Ac, with reported
solubility of 70.4 g mol−1.12 An alkylammonium salt, this IL is
very different from the imidazolium- and pyridinium-based
ILs in the set by Liu et al.21 Using our linear model for LJ inter-
actions and solubility (Fig. 5), we estimated solubility at
75.5 mol g−1 based on computed LJ energy, −29.6 kcal mol−1.
Our analysis correctly predicts [DEME]MEPA to have the
highest solubility of the series in Fig. 2. The small disparity
between the estimated and experimental value is not surpris-
ing given the use of different experimental protocols in this
study12 versus that of Liu et al.21

Physicochemical properties of ILs. Because the strength of
IL–glucose LJ interactions cannot be intuitively affected by
structural manipulations to achieve desired outcome in cell-
ulose dissolution, in the second tier of our computational
framework (Fig. 1), we explored the role of physicochemical
properties of ILs as drivers of IL–glucose interactions. We
focused, in particular, on LJ energies between IL and glucose
(ELJ), which showed highest correlations with experimental
solubility values. A comprehensive list of 18 properties were
calculated or predicted from QM/MM simulations, and corre-
lated with ELJ (Table S2†). In this purely computational tier, we
expanded our dataset to 31 ILs (Fig. S1†), incorporating a
diverse mix of cations and anions, which represent the breath
of the IL chemical space and have been assessed for their
environmental toxicity, a consideration that is instrumental to
our later discussion of safety-design criteria.

Two physicochemical properties with significant corre-
lations to ELJ that could be used to inform design of new ILs
emerged: aqueous solubility, log Sw (Fig. 7 top, R2 = 0.85) and
polarizability (Fig. 7 bottom, R2 = 0.65). In both cases, expected
trends were observed: the greater the polarizability and the
lower the log Sw, i.e. the more hydrophobic the IL pair, the
more favourable were the LJ interactions between IL and
glucose medium. These findings are consistent with our
understanding of LJ interactions, which are dominated by
weak induced-dipole London dispersion forces. The role of
hydrophobicity in the dissolution of cellulose remains contro-
versial;8 however, the markedly amphiphilic nature of cellulose
and its aqueous insolubility support our model’s hypothesis.
Furthermore, there are numerous reports suggesting that
hydrophobic interactions (versus Hbonds) are the decisive
factor for the behaviour of cellulose in the dissolution
process.58–61 For example, Lindman et al. observed in Cl NMR
studies that quadrupole relaxation effects of chloride ions,
which were attributed to interactions with hydroxyl groups of
cellulose,62 were much stronger for ILs with hydrophobic
groups than for those that were hydrophilic.63

To briefly demonstrate how these properties can be applied
to guide the design of ILs for high cellulose solubility, we
revisited the [DEME]MEPA salt discussed previously. Predicted
aqueous solubility, log Sw (−5.88) and polarizability (32.4 Å3)

Fig. 6 Computed potentials of mean force (PMF) for separating the
cation and anion of EmimAc (black curve) and EtOMmimCl (gray curve).
A 2.1 kcal mol−1 difference in free energies of the dissociated-pair
minima is noted.

Fig. 7 Computed Lennard Jones interaction energies plotted as a func-
tion of IL aqueous solubility, log Sw (top) and IL polarizability (bottom).
Top: ELJ = 3.0186 × log Sw − 7.0683; R2 = 0.85, R2

adj = 0.84, standard
error (SE) = 3.46; bottom: ELJ = −1.3414 × Polrz + 19.581; R2 = 0.65,
R2

adj = 0.64, SE = 5.22.

Green Chemistry Paper

This journal is © The Royal Society of Chemistry 2020 Green Chem., 2020, 22, 3626–3637 | 3631

Pu
bl

is
he

d 
on

 1
3 

M
ay

 2
02

0.
 D

ow
nl

oa
de

d 
by

 G
eo

rg
e 

W
as

hi
ng

to
n 

U
ni

ve
rs

ity
 o

n 
7/

8/
20

20
 4

:0
2:

14
 P

M
. 

View Article Online

https://doi.org/10.1039/d0gc00923g


yielded ELJ values of −24.8 and −23.9 kcal mol−1, respectively,
based on our linear models in Fig. 7. These values suggest
molar-solubility range of ca. 61–63 g mol−1, which is in quali-
tative agreement with the rest of Liu’s dataset (Fig. 2).

While aqueous solubility and polarizability provide good
structural interpretability as design guidelines, we further
explored the role of individual structural components of ILs
and the correlations between their properties and LJ inter-
actions. In particular, we focused on the side chains (R groups)
on the imidazolium and pyridinium cations in Liu’s dataset,
which are chemically, i.e. electronically, diverse (Fig. 2). While
cations are thought to play a lesser role in cellulose dis-
solution, their impact is certainly not negligible.8 A good
example is a series of imidazolium chloride salts with varying
lengths of the alkyl side chains (C2–C10), which was tested for
cellulose dissolution by Mai et al. and yielded a wide range
(0.8–20.5 g mol−1) of solubility metrics.12 It is important to
note that while several meaningful correlations were noted in
this study between R-group properties and ELJ, the purpose of
our analysis at this stage is to provide a qualitatively useful
guide for structural modifications of IL cations that would
increase cellulose dissolution. Evidently, in examining R
groups across different ILs, we ignore much of the relevant
chemistry, e.g. the anionic effect, or the important electronic
interplay between the side chain and the cation core. The
value proposition of this somewhat crude approach is that
side-chain properties can be assessed on the fly using
common chemistry toolkits, without the need for more
complex molecular simulations. Here, we relied on QikProp
2.2, which calculates physicochemical properties using the
PM3 semiempirical method, and estimates partition coeffi-
cients using structure–activity relationships.43,45

From Table S3,† one notable correlation with ELJ emerged
that can be mechanistically justified: the ionization energy, IE
(R2 = 0.81). Ionization energy, which corresponds to the nega-
tive energy of the highest-occupied molecular orbital (HOMO)
according to Koopman’s theorem, is the energy required to
remove the most-loosely bound electron from a molecule. We
noted that though the range of IE values was relatively narrow
in our set of R groups, ca. 10–12 eV, higher IE values more fre-
quently corresponded to greater magnitudes of ELJ (Table S3†).
This result is consistent with the notion that alkyl chains have
lower-lying HOMOs and donate electron density to the cation
ring, increasing cation–cellulose interactions.53 In contrast,
alkyl chains substituted with electronegative heteroatoms have
higher-lying HOMOs that draw electron density from the
cation ring, diminishing cation–cellulose interactions.53

Informing design of ILs for minimal ecotoxicity

Physicochemical properties of ILs. Though initially heralded
as ‘green’ solvents due to their favourable physicochemical
properties when compared to traditional systems, many ILs
have since shown to be toxic to enzymes, microorganisms and
cells as well as whole animals and plants.64,65 This is discon-
certing given that most ILs are not readily biodegradable.66

Quantitative structure–activity and structure–property relation-

ships to assess toxicity of ILs toward different species and cell
lines have been developed, offering guidance in designing new
solvent systems.67 For example, Couling et al. developed a pre-
dictive model to determine the chemical and structural factors
that govern toxicity to aquatic organisms.68 However, among
the many computational approaches proposed for cellulose
dissolution, none explicitly consider toxicity as a fully-inte-
grated design criterion. To develop an effective design strategy
for safer ILs, it is essential that these models incorporate avail-
able mechanistic information. While toxicity mechanisms of
ILs are complex and not entirely understood, most authors
point to the disruption of cell membranes.69 Thus, ILs with
lipophilic substituents, which are more likely to interact with
cell membranes, are more toxic as a result.70 Some ILs are also
known to inhibit specific enzymes, such as acetylcholinester-
ases.64 To that end, reactivity of ILs is also an important factor
that should be incorporated into toxicity modelling.

To deliver an easy-to-use tool for designing safer ILs, we
considered our previously-developed safer chemical design
guidelines24 to assess toxicity of ILs to aquatic species. Our
guidelines define a ‘safer’ chemical space based on cutoff
values in two key properties applicable to ILs: the HOMO–
LUMO band gap, ΔE, which must be greater than 6 eV, and the
octanol–water partition coefficient, log Po/w, which must be
less than 2. These rules are mechanistically justified in the
context of ILs: a chemical with a high band gap will have a
relatively low chemical reactivity, and one that is not
sufficiently lipophilic will not be readily bioavailable (and in
the specific case of ILs, less likely to trigger narcosis).71 In eval-
uating these parameters for ILs, it is important to consider the
interacting ion pair. While toxicity is generally assumed to
relate to the nature of the cation,69 membrane permeability of
ILs depends on the ion-pair interactions, as does our interpret-
ation of reactivity via orbital-energy calculations. The latter can
be shown in Fig. 8, which illustrates the effect of pairing the
cation and anion on the HOMO and LUMO orbitals of [Apy]Cl
(Fig. 2). Expectedly, if both ions are present then HOMO is
largely localized to the anion while LUMO is mainly composed
of atomic orbitals of the cation. IL pairs were noted to have
smaller band gaps than cations, which results from lowering
of the LUMO energy due to delocalization of the orbital in the
ion pair and from raising the energy of the HOMO due to pres-
ence of the (nucleophilic) anion.

As detailed in the Methods section, our calculations of
log Po/w rely on rigorous QM/MM/MC simulations, which have
been extensively validated and found more robust than struc-
ture-based estimation methods.43–45 To that end, and because
experimental partition coefficients are highly concentration-
dependent,41 we deemed relative trends across different ILs
more important than absolute values, as long as our modelling
approach adhered to our previously-developed protocol, allow-
ing the use of an existing cutoff for minimal bioavailability
(log Po/w = 2).24

We emphasize that broader design rules, such as those
reported here, are particularly relevant due to the established
variability in experimental conditions in testing for acute
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aquatic toxicity, differences in responses across aquatic species
and the many (poorly understood) mechanisms of aquatic
toxicity.69,72 Computed ΔE and log Po/w values, along with
experimental hazard labels for acute aquatic toxicity, are sum-
marized in Table 1. Since only [Emim]Ac from the set by Liu
et al.21 had a measured lethal concentration at 50% (LC50)
value for aquatic species, we included key ILs compiled from
several other studies for reference. In our selection, we focused
on accepted studies from common aquatic model species,
such as Daphnia magna or zebrafish, that evaluated both toxic
and safe ILs, the latter being far less common.73–75 Several
cholinium-amino acid ([Ch]AA) ILs, which are proposed to be
safer and more biodegradable than imidazolium- and pyridi-
nium-based ILs, were included in Table 1 as well.64 Because
for many compounds we identified multiple toxicity
thresholds and for some, such as [Ch]AAs, only toxicity poten-
tials toward enzymes and bacteria were tested, we reported tox-
icity categories rather than numerical acute toxicity thresholds
in Table 1. These categories were assigned based on qualitative
report summaries in the absence of whole-animal tests or,
where available, using measured LC50 values and following
acute toxicity rating scale set by the US Fish and Wildlife
Service (FWS) and the US EPA Safer Choice Program: highly
toxic (<1 mg L−1), moderately toxic (1–10 mg L−1), slightly toxic
(10–100 mg L−1) and relatively nontoxic (>100 mg L−1).

From Table 1, we find good agreement between our design
guidelines for safer chemicals (high ΔE and low log Po/w) and
toxicity-concern categories assigned to the 22 ILs with experi-
mental toxicity thresholds. The trend observed between com-
puted properties and aquatic toxicity can be readily extended
to other substituents on imidazolium and pyridinium
halides,76 which were omitted from Table 1 for brevity. The
model yields good accuracy in category prediction (81%),
which is on par with our previous studies,77 and a very low
false-negative rate (1 compound in Table 1). The model thus

achieves very good sensitivity (89%). In Table 1, we note that
the performance of our design guidelines for safer ILs could
be potentially boosted by increasing the log Po/w cutoff value to
3, resulting in 90% accuracy. Such an adjustment to the cutoff
in log Po/w, a property which represents chemical bio-
availability in the model, would be perfectly reasonable given
the difference in bioavailability mechanisms between ILs and
neutral organics, on which the original design guidelines were
trained.70,78

From the dataset by Liu et al.,21 [Emim]Ac and [Emim]DEP
emerged as safe toward aquatic species based on both high
band gap and low log Po/w values. In accordance with experi-
mental observations, imidazolium and pyridinium ILs show
higher acute toxicity than “natural” [Ch]AA ILs in Table 1.69

However, the anion impacts the toxicity category, as shown by

Fig. 8 HOMO and LUMO orbitals of [Apy]Cl calculated at the
mPW1PW91/MIDIX+/SMD level of theory, showing difference between
the cation and the IL pair in orbital positions and polarization. The Cl−

anion is marked in green colour.

Table 1 Computed HOMO–LUMO gap (ΔE) and predicted log Po/w
values for a series of ILs tested by Liu et al.21 and key ILs tested for eco-
toxicity and reported in the literature.64,68,74,75,79,80 IL structures corres-
ponding to name acronyms in column 1 are provided in Fig. 2 and S1.†
Shaded rows mark mispredictions, i.e. false positives or negatives, based
on safer design guidelines. Computed performance metrics are provided
at the end: Accuracy = (TP + TN)/(TP + TN + FP + FN), Sensitivity = TP/
(TP + FN), Specificity = TN/(TN + FP), Precision = TP/(TP + FP) where TP
= true positives, TN = true negatives, FP = false positives and FN = false
negatives

IL
ΔE
(eV) log Po/w

Design
guidelines

Exptl ecotox
category Ref.

[Amim]Cl 5.93 4.6 Not safe N/A N/A
[Apy]Cl 4.89 4.22 Not safe N/A N/A
[Emim]Ac 7.02 -1.31 Safe Nontoxic EChAa

[Emim]DEP 7.32 0.76 Safe N/A N/A
[EtOMmim]Cl 6.18 3.43 Not safe N/A N/A
[HOEtmim]Br 5.92 3.29 Not safe N/A N/A
[HOEtpy]Br 4.70 3.76 Not safe N/A N/A
[C4mim]Cl 6.18 5.31 Not safe Slightly toxic 73
[C4mim]Br 5.41 5.27 Not safe Moderately toxic 73
[C4mim]NO3 6.41 -1.38 Safe Nontoxic 74
[C2mim]NO3 6.41 -2.27 Safe Nontoxic 74
[C4py]Cl 4.50 5.00 Not safe Slightly toxic 73
[3MPyC6]Br 3.72 6.96 Not safe Highly toxic 67
[3MpyC4]Br 3.88 5.4 Not safe Slightly toxic 67
[C6mim]Br 5.05 6.96 Not safe Moderately toxic 67
[35MpyC4]Br 3.98 5.86 Not safe Slightly toxic 67
[4C4Am]Br 6.28 7.73 Not safe Moderately toxic 67
[4C4Phos]Br 5.82 0.02 Not safe Moderately toxic 67
[2CAm]2CNCO2 6.84 -2.04 Safe Slightly toxic 78
[C6mim]NO3 6.47 -0.21 Safe Nontoxic 74
[C6mim]Cl 5.93 6.20 Not safe Nontoxic 74
[C4pyrr]Tf2N 8.12 2.41 Not safe Nontoxic 79
[C2mim]OTs 6.53 0.06 Safe Nontoxic 79
[C4py]Tf2N 6.29 2.86 Not safe Nontoxic 79
[Ch]Gly 7.84 -3.08 Safe Nontoxic 64
[Ch]Ala 7.30 -3.70 Safe Nontoxic 64
[Ch]Val 7.02 -2.65 Safe Nontoxic 64
[Ch]Leu 6.91 -2.37 Safe Nontoxic 64
Accuracy (%) 81 90b

Sensitivity (%) 89 89b

Specificity (%) 75 92b

Precision (%) 73 89b

aHazard category assigned based on LC50 > 120 mg L−1 obtained from
EChA database (EC# 604-344-8, CAS# 143314-17-4). b Performance
metrics calculated using log Po/w > 3 cutoff for safer ILs.

Green Chemistry Paper

This journal is © The Royal Society of Chemistry 2020 Green Chem., 2020, 22, 3626–3637 | 3633

Pu
bl

is
he

d 
on

 1
3 

M
ay

 2
02

0.
 D

ow
nl

oa
de

d 
by

 G
eo

rg
e 

W
as

hi
ng

to
n 

U
ni

ve
rs

ity
 o

n 
7/

8/
20

20
 4

:0
2:

14
 P

M
. 

View Article Online

https://doi.org/10.1039/d0gc00923g


the case of [C4mim]NO3 (nontoxic) vs. [C4mim]Br (moderately
toxic) vs. [C4mim]Cl (slightly toxic). This difference is reflected
in both ΔE and low log Po/w values. Because quaternary
ammonium salts, particularly those with shorter alkyl side
chains, are recognized as having lower acute aquatic toxicity
than corresponding aromatic ILs;72 we revisited the [DEME]
MEPA compound. This IL was used above to demonstrate the
utility of our computational design framework for cellulose
dissolution, indicating high performance. Based on computed
ΔE and low log Po/w values, 7.71 eV and −1.63, respectively,
[DEME]MEPA is predicted as being acutely nontoxic toward
aquatic species.

Design strategy

As illustrated in Fig. 9, our computational model suggests that
design opportunities for new ILs exist in the chemical space
defined by several computed physicochemical properties,
namely by aqueous solubility, log Sw, polarizability, the
octanol–water partition coefficient, log Po/w, and the HOMO–
LUMO band gap, ΔE.

These properties have foundation in current mechanistic
knowledge of the cellulose-dissolution process,8 and the
modes of action for acute aquatic toxicity.24 The fact that
[Emim]Ac, [Emim]DEP and [DEME]MEPA emerged as having
high solubility of cellulose while being nontoxic to aquatic
species based on our models suggests that an intersection in
the IL chemical space exists for these properties to both opti-
mize function and minimize ecotoxicity. It is interesting to
note that the natural cholinium-amino acid ILs investigated
here, which were all identified as safe toward aquatic species,
also displayed properties indicative of good solubility.
Cholinium Leucine, [Ch]Leu, fared the best with predicted
Lennard Jones energy, ELJ = −15.1 kcal mol−1 (based on
aqueous solubility, log Sw = −2.66), which resulted in solubility

comparable to [Emim]DEP, ca. 40 g mol−1. This is not surpris-
ing given structural similarities between [Ch]Leu and [DEME]
MEPA, which showed remarkable dissolving ability.

From a structural-modification standpoint, it is imperative
to comment on the relationship between hydrophobicity of a
molecule (low aqueous solubility) and its lipophilicity as
measured by log Po/w:

log Sw ¼ log So � log Po=w ð2Þ

Eqn (2) shows these two properties are not interchangeable.
A compound can be hydrophobic but have relatively low
log Po/w if it also has low solubility in octanol, log So. While
studying drug solubility in water-based systems, Bergström
and Larsson showed that the correlation between log Sw and
log Po/w on 292 drugs was only modest, with R2 of ca. 0.56.81 In
our dataset of 31 ILs, no significant correlation between log Sw
and log Po/w of the interacting IL pair was observed (R2 ∼ 0.1,
Table S2†). Using eqn (2), we evaluated octanol solubility,
log So in order to rank the ILs in the dataset from the least to
the most soluble in octanol (Table S4†). The top 8 ILs identi-
fied in this manner had both log Po/w < 3 and showed aqueous
solubility, log Sw comparable to or lower than [Emim]Ac,
suggesting relatively high dissolving ability of cellulose based
on our model. From these 8 ILs, 5 were quaternary ammonium
salts and 5 had a carboxylate anion (Table S2 and Fig. S1†),
which is considered the most effective anion in dissolving cell-
ulose.82 Thus, provided generous cutoff in log Po/w (value of
2–3, as suggested here), new ILs can be identified via structural
modifications of existing molecular scaffolds that satisfy
minimal ecotoxicity criteria while having sufficiently low
aqueous solubility to yield strong LJ energetics in our model,
and by extension, high solubility of cellulose.

By relying on mechanistic yet reduced models of the dis-
solution process, we sought balance between reliability and
efficiency. Basic physicochemical properties, such as ioniza-
tion energy (IE) of IL side chains, can be estimated instan-
taneously by most available software. Even more rigorous QM/
MM/MC simulations used to calculate interaction energetics
require only ca. 1–2 h of real computer time per compound on
high-performance CPUs, and can be parallelized on multi-CPU
workstations of computing clusters to screen large datasets.
The setup of these calculations is straightforward using our
computational protocol and the glucose solvent box developed
in this study. Likewise, density functional calculations needed
to evaluate ΔE values are relatively fast owing to the small
basis set used; ca. 12–24 h of CPU time are needed for most
ILs. When considered all together, these computing require-
ments are certainly greater than those of structure-based stat-
istical models used to predict safety67 and cellulose dis-
solution metrics;12 however, they are comparable to the
COSMO-RS model,21 which they outperform, and are far-less
costly than highly accurate but very demanding large-scale
molecular simulations.8

Fig. 9 A 3-D flowchart for designing novel ILs for cellulose dissolution
that pose minimal ecotoxicity based on key physicochemical properties.
Green marks chemical space with low hazard based on cutoff values in
ΔE and log Po/w; arrows along the front-plane x- and y-axes denote
directions in log Sw and polarizability that optimize van der Waals inter-
actions between ILs and cellulose and increase performance. Exemplary
ILs, [DEME]MEPA, [Emim]Ac and [Ch]Leu, which were predicted to be
both efficient and safe, are included for reference in their relative posi-
tions in the diagram.
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Conclusions

Rational design of functional chemicals with minimal toxicity
remains a grand challenge in green chemistry that is yet to be
addressed systematically. Here, we demonstrate the develop-
ment of a computationally inexpensive design strategy for
ionic liquids (ILs) as promising designer solvents for cell-
ulose dissolution, a key step in biomass processing. Many ILs
have been recognized for their ability to dissolve cellulose by
disrupting the vast network of noncovalent interactions
between glucose chains. However, much of the vast chemical
space encompassed by possible IL-pair combinations and
substitutions remains largely unexplored for their potential
utility in this application while also considering their
environmental safety. To that end, our rational design strat-
egy for developing safer ILs for cellulose dissolution, as
described in this report, is based on a two-tier computational
framework. The first tier relies on strong quantitative agree-
ment between cellulose solubility and energetics calculated
in explicit QM/MM/MC simulations, while the second tier
exploits physicochemical properties of ILs to optimize said
computed energetics and to inform design of environmen-
tally nontoxic IL analogues.

The goal of our combined approach was to deliver practi-
cal guidelines that are mechanistically-sound, transparent
and useful in informing structural modifications likely to
yield safer and effective solvent systems for cellulose dis-
solution. The key structure–property relationships identi-
fied, which are consistent with existing mechanistic knowl-
edge, are formalized here through both qualitative and
quantitative models that show good correlations and con-
sistency with experimental studies owing to a robust theore-
tical approach. Our work aims to instigate further efforts
toward a holistic computational framework for designing
safer and efficacious ILs. To that end, while a mechanisti-
cally-diverse ecotoxicity model is a good indicator of a
broader toxicity potential,83 additional criteria of ‘green-
ness’ and sustainability ought to be incorporated in future
studies. In particular, subsequent model iterations should
consider physicochemical hazards of ILs as well as compre-
hensive environmental fate and persistence metrics based
on the entire life-cycle of ILs.84–86
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