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Highlights
e We have an increasing understanding of DNA methylation dynamics during
reproduction, but the exact role for RdADM in these dynamics is unclear
o New phenotypes indicate that RdDM is involved in seed development, perhaps by
mediating parental dosage balance
¢ New model systems, including non-flowering plants, will allow a better understanding of

the ancestral roles of RADM
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Abstract

Two trends are changing our understanding of RNA-directed DNA methylation. In model
systems like Arabidopsis, tissue-specific analysis of DNA methylation is uncovering dynamic
changes in methylation during sexual reproduction and unraveling the contribution of maternal
and paternal epigenomes to the developing embryo. These studies indicate that RNA-directed
DNA Methylation might be important for mediating balance between maternal and paternal
contributions to the endosperm. At the same time, researchers are moving beyond Arabidopsis
to illuminate the ancestral role of RADM in non-flowering plants that lack an endosperm,

suggesting that RADM might play a broader role in sexual reproduction.
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Introduction

In plants de novo DNA methylation is performed through RNA-directed DNA Methylation
(RdDM) [1]. Unlike symmetric methylation, which is maintained through the recognition of hemi-
methylated sites following DNA replication, CHH methylation (where H=A, T, or C) must be
placed on unmethylated templates following each round of replication [2]. In constitutive
heterochromatin CHH methylation is maintained by CHROMOMETHYLTRANSFERASEZ2, which
recognizes heterochromatic marks such as H3K9me2 [3]. In euchromatin, or at the boundaries

between hetero- and euchromatin, CHH methylation is instead placed by RdDM [4,5].

RdDM begins when RNA Polymerase (Pol) IV and RNA-dependent RNA Polymerase 2 (RDR2)
generate short double-stranded transcripts that are then trimmed to 24 nt in length by DICER-
LIKE3 (DCL3). The resulting siRNAs are termed p4-siRNAs due to their initiation by Pol IV. P4-
siRNAs bind to ARGONAUTE4 (AGO4) or one of its close paralogs and seek out homologous
loci transcribed by RNA Pol V. Finally, AGO4 recruits DOMAINS REARRANGED
METHYLTRANSFERASE 2 (DRM2) to catalyze CHH methylation at these loci. In addition to

this canonical RADM pathway, several variations on RdDM operate in specific circumstances

[6].

There have recently been great advances in the biochemistry of RdDM, including debate about
whether the AGO4/p4-siRNA complex binds to DNA or nascent RNA [7,8], analysis of the
catalytic function of Pol IV and Pol V [9,10], and analysis of the non-catalytic carboxy-terminal
domains of these polymerases [11-13]. Unfortunately, space limitations preclude the discussion
of this biochemical work. We will instead focus on the role of RdADM during seed development,

and how an evolutionary perspective might help us understand its function.
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Reproductive development is characterized by dynamic DNA methylation

Whole genome bisulfite sequencing of isolated cell types has recently provided a detailed look
at changes in methylation levels during sexual reproduction [14-22]. This analysis has been
easiest for the microspore and male gametophyte due to relatively easier isolation of
homogenous cell populations, but information about the megaspore and female gametophyte
are also increasing. However, DNA methylation offers only an indirect assessment of RdADM
activity. Assessment of sexual lineage methylation in RdADM mutants is needed to better

understand RdDM’s precise role in these changes.

In the microspore mother cell (the diploid cell that will eventually undergo meiosis to create the
haploid microspore) CHH methylation is reduced, suggesting reduced activity of RADM [18].
Despite this overall reduction, RADM appears at novel genic locations where it influences gene
expression and impacts microsporogenesis [18]. A transient decrease in CHH methylation has
also been observed in the megaspore mother cell [23], and genetic evidence indicates RdDM
might also influence megasporogenesis [24]. Whether RADM has a particular role in these
tissues, or whether it has been co-opted to create cell-type specific expression patterns in a

variety of specialized cells is an open question.

Following meiosis the haploid microspore develops into the 3-celled male gametophyte which
contains two sperm cells encased in the vegetative cell. The vegetative nucleus is actively
demethylated and loci with reduced CG methylation in the vegetative nucleus display increased
CHH methylation in the sperm cells [14,15,17]. This pattern suggests p4-siRNAs might be
produced from demethylated regions in the vegetative nucleus and move to the sperm cells to
induce methylation. Transposon siRNAs produced in the vegetative nucleus can move into
sperm cells and silence reporters expressed there [25], but it is not clear whether these siRNAs

are canonical p4-siRNAs or other types of small RNAs [22,25,26]. CHH methylation is not
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elevated overall in sperm cells [15,17,20,22], so either movement of p4-siRNAs is not
widespread, mobile siRNAs cause predominantly post-transcriptional gene silencing, or
something restricts the activity of mobile p4-siRNAs in the sperm cells [21]. Alternatively, CHH
methylation in the sperm cells and demethylation of the vegetative nucleus might occur at the

same locations due to parallel action of autonomous pathways.

Like the vegetative nucleus in the male gametophyte, the central cell of the female gametophyte
is also actively demethylated [17], and could produce siRNAs that function in the egg cell.
Although such movement has not been directly observed, injection of fluorescent reporters into
central cells indicates that siRNA movement to the egg cell is possible [27]. Similarly,
fluorescent reporters indicate that methylation in the egg cell requires NRPE1 and DRM2, but
not NRPD1, suggesting that p4-siRNA reception, but not production of p4-siRNAs, is required
for egg cell methylation [23]. Alternatively, methylation in the egg cell might rely on non-

canonical RDR6-RdDM, which utilizes Pol V but not Pol IV [6].

RdDM is highly active during embryogenesis

Following fertilization CHH methylation increases in both the endosperm and the young embryo
[15,17,23,28], indicating that RdADM is occurring. CHH methylation continues to rise during
embryogenesis, reaching levels in the mature embryo that are higher than almost any other
tissue tested [29-33]. The sites with highest methylation match regions that are demethylated in
the endosperm [31], suggesting either that demethylation in one tissue triggers p4-siRNA
production and movement into an adjacent tissue, or that demethylation and methylation
pathways are targeted to the same loci in endosperm and embryo, respectively. The level of
CHH methylation immediately declines upon imbibition and germination, indicating that elevated
methylation might be designed to achieve transcriptional quiescence for dormancy [29-31].

Indeed, demethylation at a number of promoters might facilitate upregulation of the germination



113  program [30]. Conversely, mutants that maintain the embryogenic program following

114  germination also maintain high CHH methylation [31], indicating that germination can occur
115  despite elevated methylation, and suggesting that hyperactive RdDM is an inherent part of the
116 embryogenesis program. However, Arabidopsis mutants lacking RdDM have only subtle seed
117  phenotypes, indicating that hyperactive RdADM is not required for embryogenesis in all species
118  [34].

119

120  Animportant outstanding question is “which tissues generate the p4-siRNAs directing embryo
121 RdDM?” Although most research has focused on the idea that p4-siRNAs might enter the

122  embryo either with the sperm nucleus or from the endosperm, it is also possible that maternal
123  sporophytic tissue could be a source of siRNAs. RdDM in the sporophyte is required for seed
124  development in Brassica rapa [34], and many p4-siRNA are produced in seed coat [35]. DNA
125 methylation patterns are also dynamic during fruit development [36-38], suggesting that these
126  seed-adjacent tissues might influence the embryo epigenome. Alternatively, RdADM in the

127  embryo might be entirely autonomous (Figure 1). Indeed, soybean embryogenic tissue culture
128  shows hypermethylation of CHH sites despite a lack of interaction with maternal somatic tissue
129  [39].

130

131 RdDM might influence parental balance in developing endosperm

132  Several studies suggest that RADM'’s largest impact on seed development occurs in the

133  endosperm, particularly in cases of parental dosage imbalance [22,26,35,40-42]. Because the
134  endosperm develops from the fertilization of the 2n central cell by a 1n sperm cell, endosperm is
135 triploid with a 2:1 maternal:paternal ratio. Distortion of this ratio, by altering either the actual
136  ploidy or the effective ploidy of the parents, results in changes to endosperm developmental
137  timing (Figure 2). Paternal excess results in a prolonged phase of endosperm proliferation and

138  produces larger seeds with a high abortion rate, due in part to overexpression of AGAMOUS-
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LIKE transcription factors [35,40,43,44]. Loss of maternal RdDM also causes AGAMOUS-LIKE
overexpression, suggesting that maternally-expressed p4-siRNAs might contribute to maternal
effective ploidy [35,40]. In balanced (2:1 maternal:paternal) but RADM-deficient endosperm
there is slight bias toward maternal expression generally, suggesting that RADM might repress
maternal dosage [41]. However, recent work suggests endosperm has a “buffering” system that
increases maternal expression and decreases paternal expression during paternal excess [42],
raising the possibility that the maternal transcriptional shift in nrpd7 endosperm is due to the

perception of a slight paternal excess due to reduction in maternal effective ploidy.

If maternally-derived p4-siRNAs increase maternal effective ploidy, what influences paternal
effective ploidy? Loss of NRPD1 in pollen represses seed abortion in paternal excess crosses
[22,26,41,42], suggesting that Pol IV might promote paternal effective ploidy. Surprisingly, there
are few 24-nt p4-siRNAs in pollen; instead NRPD1 is required for 21/22-nt siRNA production
from transposons [22,26]. These siRNAs might be carried by the sperm cell to the central cell
during fertilization to balance the maternal 24-nt p4-siRNAs [26]. However, allele-specific
transcriptome data indicates that loss of paternal 21/22-nt siRNAs has little impact on the
maternal expression bias observed in paternal excess endosperm [42], suggesting that these

pollen siRNAs impact seed abortion without changing the ratio of effective parental ploidies.

RdDM mediates trans-chromosomal methylation

A fundamental aspect of sexual reproduction is the combining of different haploid genomes.
Recently, we are learning that epigenetically-distinct alleles can influence each other after
fertilization in a process called Trans-Chromosomal Methylation (TCM) [45]. Hybridization
between different genotypes or between genetically identical but epigenetically distinct parents
(epi-hybrids) results in gain or loss of methylation, especially at loci that epigenetically vary

between parents [46-54]. P4-siRNAs are required to establish TCM in F1 Arabidopsis
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intraspecific hybrids, suggesting that p4-siRNAs produced from one allele act in trans at the
homologous allele [50,52]. Indeed, production of siRNAs at a non-allelic site is sufficient to
trigger heritable methylation in tomato [54], indicating that chromosome pairing is not required.
Loss of methylation following hybridization (Trans-Chromosomal demethylation, TCdM)
suggests that there might be a critical p4-siRNA dosage needed to sustain methylation [50].
Interestingly, loci exhibiting TCdM have higher genetic variation, supporting the model that p4-
siRNAs from one allele function in trans, but only at perfectly complementary sites [52]. Addition
of a similar but distinct locus must be sufficient to dilute cis-acting p4-siRNAs and trigger loss of

methylation.

In light of the discussion of RADM during gametogenesis and early embryogenesis, it is
interesting to note that there is no evidence for parental bias in TCM [47,48], suggesting that
methylation is transferred at a point when both parental genomes contribute equally to p4-
siRNA production. The identification of TCM in F1 leaves indicates it occurs during
embryogenesis or early vegetative development [46-48,50-53], although there is also evidence

that TCM at the HO6 locus in tomato occurs during reproductive development [54].

RdDM pre-dates the evolution of flowering plants

The emphasis on seed and endosperm development in RADM research might lead one to
believe that RdDM is an angiosperm-specific pathway. In fact, most subunits of Pol IV and Pol V
exist in all land plants, including bryophytes like Marchantia polymorpha and Physcomitrella
patens [55-57] (discussed further below). Small RNA sequencing also indicates that 24-nt
siRNAs are present throughout land plants, including gymnosperms [58-60], ferns [61],
lycophytes [62], and bryophytes [56,63,64], although their accumulation is substantially lower
than in angiosperms. In gymnosperms and bryophytes, 24-nt siRNAs are associated with CHH

methylation at transposons and other repetitive DNA, suggesting that the molecular role of the
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pathway is largely conserved [56,58,63,65]. In P. patens, genetic analysis of nrpd1, nrpe, rdr2,
and dcl3 mutants demonstrated that 23/24-nt siRNAs are produced in a manner analogous to
angiosperms and should be considered canonical p4-siRNAs [56]. In addition, P. patens dcl3
mutants lose CHH methylation from p4-siRNA producing loci, while maintaining CG and CHG
methylation at the same sites [63], further indicating that the basic mechanism of RdDM

predates the radiation of land plants.

24-nt siRNAs are found primarily in reproductive tissues in gymnosperms, suggesting that
RdDM has a role in seed development outside of double fertilization [58,59]. Reproduction is
fundamentally different in bryophytes, which have a haploid-dominant life cycle: the zygote has
only a short lifespan before meiosis, and the gamete grows vegetatively before differentiation of
the reproductive structures [66]. Nevertheless, 24-nt siRNAs are more abundant in M.
polymorpha reproductive structures [64], indicating that RADM might have an ancient role in
sexual reproduction. Consistent with this, CHH methylation increases during sexual
reproduction in M. polymorpha, with high levels in the male and female reproductive structures
[67]. CHH methylation also increases during maturation of the sporophyte, which mirrors the
increase in CHH methylation during Arabidopsis embryogenesis [67]. RADM might have roles
outside of reproduction as well, as P. patens nrpd1, rdr2, dcl3, and nrpe1 mutants have altered

gametophyte growth and development [56,63].

Duplication of RdDM components leads to elaboration of RADM-like pathways

Although the RdDM pathway appears to have an ancient role in de novo methylation of
transposons, particularly during sexual reproduction, the earliest land plants did not have the
same RdDM machinery as angiosperms. Bryophytes contain dedicated NRPD1, NRPE1, and
NRP(D/E)7, but do not encode for NRP(D/E)4 or NRPES, which first arose in angiosperms and

seed plants, respectively [55,57]. Non-seed plants also do not have a dedicated RDR2, but
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rather have RDR1/2, which is equally related to RDR1 and RDR2 [55]. Whether the RDR1
function of viral siRNA evolved later, or the RDR1/2 in non-seed plants has dual functions is

unknown. DCL3 and the AGO4 clade both existed in the earliest land plants [55].

There are a number of lineage-specific duplications of RdADM components, but rarely are these
paralogs conserved outside of close relatives. One exception is duplication of DCL3 to create
DCL3 and DCL5 in monocots [68,69]. Both enzymes produce 24-nt siRNAs from dsRNA
precursors; DCL3 dices Pol IV/RDR2 products while DCL5 dices longer dsRNA initiated by Pol
11 [69,70]. Duplication of DCL3 appears to be a case of subfunctionalization, as the 24-nt
phasiRNAs it generates are found in dicots, which lack DCL5 [71]. Whether these 24-nt
phasiRNAs target de novo methylation to homologous sites, and thereby perform a type of non-
canonical RdDM, is unknown, however production of 24-nt phasiRNAs is required for complete

male fertility in maize [72].

Other interesting duplications of RADM machinery are NRPE1 and NRP(D/E)2 in the grass
family [73]. These duplications are conserved in nearly all grass species and show signs of
neofunctionalization, suggesting the formation of a sixth DNA-dependent RNA Polymerase [73].
It will be interesting to discover whether this putative Pol VI has a function within canonical

RdDM or has evolved for a novel function like DCLS5.

Conclusions

Like much plant molecular biology, RdDM research is moving into a new phase of exploring
non-model species. Recently-described RADM mutants in tomato [74,75], rice [76-78], and
Brassica rapa [34] demonstrate that the RADM pathway is essential for reproductive success.
Understanding the function of RADM in additional species — especially those with haploid-

dominant lifecycles — will not only help us determine the developmental significance of RADM,
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but also uncover variations and related pathways.

Figures

nucleus

Figure 1. Routes for siRNA programming of RdDM during embryogenesis. siRNAs might
enter the egg cell from the central cell before fertilization (a), or be delivered with the sperm cell
during fertilization (b) to initiate RADM during embryogenesis. Alternatively, programming of
embryogenic RADM might be ongoing through movement of siRNAs from the endosperm (c),
seed coat (d), or other maternal tissues such as fruit (e). RdDM in the embryo might also be

entirely autonomous and directed by siRNAs produced in the embryo (f).
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Figure 2. Endosperm development is determined by the ratio of maternal:paternal
effective ploidy. Endosperm is unbalanced when the maternal:paternal ratio deviates from 2:1.
Maternal excess (orange box) can arise due to excess chromosomes (absolute ploidy) or due to
increase maternal effective ploidy. Similarly, paternal excess (purple box) can be due to
changes in absolute or effective ploidy. The factors influencing effective ploidy are unknown, but
crosses that lack p4-siRNAs mimic several features of paternal excess crosses, including
increase expression of AGAMOUS-LIKE transcriptional factors, delayed endosperm

cellularization, and maternal bias of many transcripts.
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Highlighted References

Bouyer:
= Together with [29] and [30], this paper describes the elevated methylation in mature embryos
and highlights the connection between early endosperm epigenomic changes and elevated

embryo methylation.

Erdmann:
= Together with [26] and [42], this paper demonstrates that tetraploid nrpd7 fathers do not
trigger paternal excess lethality like wild-type tetraploid fathers. The manuscript also reports a

maternal bias in endosperm transcription following loss of RADM.

Grover:
* This research describes seed development phenotypes associated with loss of RADM in
Brassica rapa, highlighting the importance of diverse experimental systems to understand

RdDM.

Ingouff:
» The authors develop novel methylation-binding fluorescent reporters to study context-specific

methylation patterns during early reproductive development.



294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

Kawakatsu:
*» Together with [31] and [30], this manuscript uncovers elevated methylation in mature embryos,

which is dramatically lost following germination.

Martinez:
*» Together with [41], and [42] this paper reports that seed lethality due to paternal genome
excess can be overcome by loss of paternal NRPD1. The authors propose that Pol IV produces

21/22-nt siRNAs in pollen that counteract Pol IV dependent-siRNAs in endosperm.

Narsai:
» Together with [31] and [29], this paper demonstrates the extensive demethylation that occurs

during germination.

Satyaki:

» Together with [41] and [26], this paper defines the machinery necessary for lethality in paternal
excess crosses. It also demonstrates that the levels of MRNA and DNA methylation in
endosperm do not substantially changed in lethal paternal excess crosses compared to viable
paternal excess crosses, and that paternal excess endosperm has a maternal transcriptional

bias.

Teng:
= This paper describes the phenotype of a dc/6 mutant in maize, highlighting the functional
diversification that follows duplication of RdADM components and demonstrating the importance

of studying small RNA pathways in multiple species.
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