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Abstract We report on the lateral pull-in in capaci-
tive MEMS transducers that employ a repulsive elec-
trostatic force. The moving element in this system
undergoes motion in two dimensions. A two degree-
of-freedom mathematical model is developed to inves-
tigate the pull-in quantitatively. The nonlinear electro-
static force, which is a vector function of two spatial
coordinates, is determined by calculating the poten-
tial energy of the system using a boundary element
approach. The equilibrium points are found by numer-
ically solving the nonlinear coupled static equations.
A stability analysis reveals that depending on the val-
ues of the lateral and transverse stiffness, the system
undergoes different bifurcations when the voltage on
the side electrodes is considered as the control param-
eter. Three-dimensional bifurcation diagrams are pre-
sented and discussed to elucidate the nonlinear nature
of the system. The results establish important crite-
ria for designing MEMS transducers with reliable and
robust performance.
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1 Introduction

The robust performance of capacitive MEMS (Micro-
Electro-Mechanical-Systems) transducers such as
accelerometers [1,2], gyroscopes [3,4], pressure sen-
sors [5,6], microphones [7,8], and switches [9] is cru-
cial to the reliable operation of many devices we use on
a daily basis such as our cars and smart phones. There-
fore, identifying and investigating the failure cause(s)
of MEMS transducers is an important step toward cre-
ating functional devices.

There are different modes of mechanical failures for
capacitive MEMS devices [10]. For example, buckling
[11], snap-through [12] and pull-in instability [13,14]
jeopardize the reliable performance of these devices. In
general, the cause of failure for aMEMS device should
be eliminated in the design process when possible [15],
or be controlled and mitigated [16,17].

In this study, we report on the lateral instability
of electrostatic MEMS transducers that are based on
the repulsive force. Repulsive force-based transducers
were introduced to address the pull-in problem inher-
ent in conventional capacitive transducers that utilize
two conductors [18,19]. These two-conductor trans-
ducers come in different design flavors, but theymainly
fall into two categories, parallel plates [20] and comb
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Fig. 1 a A repulsive electrode set, b the schematic of the
microstructure with repulsive electrode sets on its four sides.
The number of the electrode sets on each side is not equal to the

number of the electrode sets in the real microstructure, and this
is for presentation only

drive [4] configurations. The moving structure in the
two-conductor design can be flexible, such as a flexi-
ble microbeam [21–23] above an underlying rigid elec-
trode, or the moving element can be rigid, suspended
with compliant elements above a fixed electrode or sub-
strate [24].

In two-conductor transducers, pull-in happens when
the deflection of the moving electrode exceeds a cer-
tain threshold and goes close to the other electrode
(often one-third of the initial gap between them) [25].
In this situation, because the two electrodes have differ-
ent voltages, the attractive electrostatic force increases
dramatically, and the restoring force of the supporting
elements cannot keep the microstructure stable. As a
result, the moving electrode collapses to the fixed elec-
trode and gets stuck to it. This often leads to permanent
failure of the microstructure. A comprehensive review
of the failure ofMEMSdevices because of pull-in insta-
bility is given in [26].

Pull-in occurs in static and dynamic modes. Static
pull-in could be triggered by increasing the DC voltage
between the two conductors. This phenomenon could
be beneficial in applications such as triggering a switch
[27] in an electrical circuit or be catastrophic in actu-
ators such as micro-mirrors [28]. There are numerous
studies in the literature investigating the static pull-in
in MEMS transducers [13,24,26,29]. Dynamic pull-
in usually happens before the threshold for the static
pull-in is passed [30]. The dynamic pull-in could be
triggered by different factors such as damping condi-
tions [31] and time-varying electrostatic or mechanical

loads [30,32]. Thedynamicpull-in could alsobe advan-
tageous [32] or catastrophic [26]. There are numer-
ous studies in the literature, analyzing dynamic pull-in
instability [26,30–32].

On the other hand, in the repulsive-based approach,
there are three types of electrodes (Fig. 1a). One is the
moving grounded electrode, one is the fixed grounded
electrode, and the last type is two fixed electrodes that
carry voltage and are placed to the side of the grounded
fixed electrode [33]. We call these three types of elec-
trodes moving electrode, bottom electrode, and side
electrodes, respectively. With this configuration and up
to a certain gap between the moving and bottom elec-
trodes, the electrostatic force pushes the moving elec-
trode away from the bottom electrode [34]. After the
certain gap is passed, the electrostatic force changes its
sign and attracts the moving electrode to the bottom
electrode. This nature of the electrostatic force elim-
inates the possibility of the moving electrode being
pulled into the bottom electrode. In fact, even if the
two electrodes come into contact, they would not get
stuck to each other because they both carry the same
voltage [35,36]. For a comprehensive explanation of
this mechanism, see [33,35].

Although this design approach successfully elimi-
nates the pull-in possibility between the moving and
bottom electrodes [15], we have observed experimen-
tally that pull-in could happen between the moving
and side electrodes. There are numerous studies in
the literature where the repulsive force paradigm is
used in which the voltage on the side electrodes is

123



Lateral pull-in instability of electrostatic MEMS transducers 1929

Fig. 2 a Fabricated microstructure, b broken microstructure
because of pull-in

increased to voltage levels up to two orders of mag-
nitudes higher than voltage levels in conventional
two-conductor capacitors [33,35–37]. This ability to
increase the voltage without jeopardizing the device
stability is extremely useful when a MEMS actuator
such as a micro-mirror is needed with a larger range of
displacement or when higher sensitivity is desired for a
MEMS sensor such as microphones or accelerometers.
In the repulsive-based transducers, however, we have
noticed that by increasing the voltage on the side elec-
trodes, the microstructure will eventually pull-in to the
side electrodes.

In this study, we have constructed a two degrees-
of-freedom (DOF) mathematical model to investigate
the static pull-in of these repulsive-based transducers.
The role of the ratio between the lateral to transverse
stiffness in pull-in is analyzed.

The rest of this paper is organized as follows. In
Sect. 2, the pull-in mechanism in a repulsive electrode
set is examined qualitatively. In Sect. 3, a mathemat-
ical model with two degrees of freedom is developed
to analyze the stability of the microstructure and pull-
in threshold quantitatively. In Sect. 4, the components
of the electrostatic force vector on the moving elec-
trode are obtained by calculating the electrical poten-
tial energy of the system. Section 5 presents the stabil-
ity analysis where the Jacobian matrix is constructed
and its eigenvalues are extracted. The pull-in voltage
for different lateral and transverse stiffness scenarios is
obtained and discussed by analyzing these eigenvalues.
In Sect. 6, we have investigated the effect of fabrica-
tion imperfection on the pull-in threshold. Specifically,
we have performed the stability analysis for the case
where the moving electrode is not exactly at the center
location above the bottom electrode. Finally, the con-
clusions are given in Sect. 7.

2 Description of side instability in repulsive-force
electrostatic devices

In this section, the mechanism for the pull-in insta-
bility in repulsive force-based transducers is explained
qualitatively. This qualitative description helps develop
intuition to understand the inherent side instability in
this transduction paradigm, which becomes useful in
the next section where we investigate it quantitatively.

Figure 1 shows the schematic of the microstruc-
ture we have used as an example in our study. This
microstructure consists of a large plate that employs
repulsive electrode sets on its four sides. The plate
is suspended with four serpentine springs. The actual
microstructure is shown in Fig. 2a. For this microstruc-
ture, we increased the voltage slowly on the side elec-
trodes and saw that by passing 120 (V), the microstruc-
ture collapsed to the side electrodes,which led to break-
ing one of its supporting springs (Fig. 2b). We have
observed this breaking of supporting springs and col-
lapsing of themicrostructure to the side in several other
incidents.

The microstructure shown in Fig. 2a has 28 units
of repulsive electrode sets on each side. To understand
the pull-in mechanism, we examine one of these sets,
which is shown in Fig. 1a. In each electrode set, the
side electrodes carry voltage V and themoving and bot-
tom electrodes are grounded. Figure 3 shows the mov-
ing electrode in different positions relative to the other
three fixed electrodes. When the moving electrode is
centered above the bottom electrode (a), the vertical
component of the electrostatic force at the upper sur-
face is larger than the same component on the lower
surface. This is because the bottom electrode shields
the lower surface of the moving electrode. Therefore,
there are fewer electric field lines that go from the side
electrodes to the lower surface of the moving electrode
compared to the number of lines that go to the top sur-
face [33]. As a result, the upward force (Fu) is larger
than the downward force (Fd). The moving electrode
is then pushed away from the bottom electrode.

Because of the upward electrostatic force, the mov-
ing electrode tends to move upward to the point where
the shielding effect of the bottom electrodes becomes
negligible, and therefore the upward and downward
electrostatic force have the same strength (b). At this
point, if the moving electrode goes upward, the verti-
cal component of the net electrostatic force becomes
downward (c), trying to bring the moving electrode
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Fig. 3 Qualitative description of the pull-in in a repulsive-based
electrode set. a–c The change in the vertical components of the
electrostatic force on the top and bottom surface of the moving
electrode at different vertical gaps above the bottom electrode.

d–g The change in the horizontal components of the electrostatic
force on the moving electrode when the moving electrode moves
in the lateral direction

down to where the force is zero. And if the electrode
goes downward, the electrostatic force pushes it in the
upward direction again to the point where the electro-
static force is zero. This is a recipe for a stable equilib-
rium point.

At the same initial position for themoving electrode,
the horizontal component of the electrostatic force is
zero. This is because themoving electrode is at an equal
distance from the two side electrodes. In other words,
the horizontal electrostatic force from the right-side
electrode (Fr) is equal to the horizontal force from the
left-side electrode (Fl).

If the moving electrode is slightly perturbed to the
right (e), or if it is initially displaced from its center
position, then there is an imbalance between the right
and left electrostatic force (Fr > Fl) and therefore, the
moving electrodemoves to the right. This movement to
the right causes more imbalance in the rightward and
leftward forces, leading to more movement to the right.
This is a situation that makes the equilibrium position
at center to be an unstable equilibrium point. As the
moving electrode moves to the right, the force in the
vertical direction changes as well. At some point, the
downward force becomes larger than the upward force
(f) because the shielding of the bottom electrode is no
longer in effect. At that point, the moving electrode
starts to move downward, while it is going to the right.
This means the moving electrode is headed to collapse
with the side electrode. In other words, the moving

electrode is pulled into the side electrode (g). This pull-
in causes the failure of the microstructure.

In a real microstructure with linear restoring force
in both vertical and horizontal directions, the vertical
equilibrium point moves downward. This is because
the restoring force can compensate for an imbalance
between the upward anddownward forces. So, themov-
ing electrode does not need to go to the point where the
electrostatic forces are equal. In the horizontal direc-
tion, the restoring force of the microstructure can resist
the imbalance between the horizontal forces up to a
certain threshold point. After this threshold point, the
linear restoring force cannot keep increasing with the
same rate as the electrostatic force and therefore, the
pull-inwill happen. As the voltage on the side electrode
increases, this threshold goes closer to the center posi-
tion. At a certain voltage this unstable point reaches to
the center and turn the center position to an unstable
equilibrium point. This voltage is the static pull-in volt-
age for the microstructure that establishes a maximum
theoretical limit for static operation of repulsive-force
devices. In the next section, we develop amathematical
model to explore how the increase in the voltage on the
side electrodes leads to the pull-in of the microstruc-
ture.We construct a two-DOFmathematical model that
simulates the motion of the microstructure in vertical
(y) and lateral directions (x).
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3 Mathematical modeling

To model the microstructure’s qualitative behavior that
was explained in the previous section, a two-DOF
mathematical model is developed. Figure 4 illustrates
this model. This figure depicts the electrode set of the
microstructure shown in Fig. 1. The moving electrode
is at an initial distance above the bottom electrode at the
center horizontal position. The total stiffness of the ser-
pentine springs in the lateral and vertical directions are
denoted by Kx and Ky , respectively.A lumped parame-
ter model with two degrees of freedom is considered in
Eq. (15) to simulate the motion of the microstructure in
the horizontal x and vertical directions y. In this equa-
tion, the electrostatic force components are Fx (x, y)
in the x direction and Fy(x, y) in the y direction. The
two functions describe the forces being exerted upon
each moving electrode at point (x, y)when the voltage
on the side electrodes is 1 (V). Because there are sev-
eral electrode sets on the sides of the microstructure as
shown in Fig. 1, the electrostatic force in the y direc-
tion is multiplied by the total number of sets (N ). On
the other hand, when the microstructure is displaced
in the x direction, the electrode sets on only two sides
of the microstructure experience an imbalance in the
electrostatic force in the lateral direction. This is why
the electrostatic force in the x direction is multiplied
by N

2 . In Eq. (15), d represents the initial fabrication
gap between moving and bottom electrodes. The stiff-
ness of the microstructure in the vertical direction is
calculated by measuring its natural frequency exper-
imentally, while there is no voltage on the side elec-
trodes. This natural frequency can be used along with
the mass of the microstructure to calculate the stiff-
ness in the vertical direction. For the lateral direction,
we will perform a parameter sweep on kx to solve the
equations for different cases. We will also solve Eq.
(15) for different ky values to shed light on the dynam-
ics of the system. All the other parameters in Eq. (15)
are given in Table 1. It is worthmentioning that because
of the symmetry in the x and z directions, the analy-
sis for the x direction will hold true for the z direction
as well. This means that as we extract the pull-in con-
ditions from this model, the pull-in might happen in
either the x or z direction.

{
mẍ + kx x = ( N

2

)
V 2Fx (x, y)

mÿ + ky(y − d) = (N )V 2Fy(x, y)
(1)

Fig. 4 Two-DOF mathematical model of the microstructure

Table 1 Dimensions for the microstructure in Fig. 1

Parameter Symbol Value

Plate length (µm) – 1000

Plate width (µm) – 1000

Moving electrode length
(µm)

L 200

Total number of electrode
sets

N 112

Moving electrode width
(µm)

– 6

Side electrode width (µm) – 4

Bottom electrode width
(µm)

– 16

Gap between side and
bottom electrodes (µm)

– 6

Moving electrode thickness
(µm)

– 1.5

Bottom and side electrode
thickness (µm)

0.5

Initial gap between moving
and bottom electrodes
(µm)

d 2.75

Mass of microstructure (ng) m 2907

Nominal mechanical
stiffness (N/m)

k 0.203

Natural frequency (Hz) fny 1330

Time constant (S) Tn 1/ fny

4 Electrostatic analysis

In this section, the electrostatic force on the moving
electrode is obtained. This electrostatic force will then
be used in Eq. (15) to find the equilibrium points of
the system. To find the electrostatic force, first we cal-
culate the electrical potential energy that is stored in
each electrode set when the moving electrode is at
(x, y). We compute the potential energy based on the
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boundary element approach that is explained in [38].
In this approach, each conductor’s surface is divided
into elements with unknown charge distribution den-
sity. Because the electrodes are maintained at constant
voltages, the voltage on each element is known. Fig-
ure 5 shows this discretization along all four sides of
each electrode schematically. For calculating the poten-
tial energy, we have used 200 elements on each hori-
zontal side of the electrodes and 40 elements on each
vertical side of the electrodes. The length of each ele-
ment is denoted by Li . Therefore, the amount of charge
on each element can be obtained by Eq. (2).

qi = Ci jv j (2)

where Ci j is the capacitance matrix representing the
capacitance between each pair of elements. If we
denote the inverse of the capacitance matrix by Gi j ,
then the components of this matrix can be calculated
based on the geometry of the elements and their relative
position as the following,

Gi j = C−1
i j

{
≈ − log(Ri j )

2πε
(i �= j)

= − 1
2πε

log
(
Li − 3

2

)
(i = j)

(3)

where Ri j is the distance between the midpoint of ele-
ments i and j , and Li is the length of element i . There-
fore, the charge, qi , on each element could be calcu-
lated by solving the following system of linear alge-
braic equations.

Gi jqi = v j (4)

By having the charge and voltage of each ele-
ment, the total electrical potential energy of the two-
dimensional conductors can be calculated usingEq. (5).

E(x, y) = 1

2
qTv, (5)

where qT denotes the transpose of q. The electrostatic
force on each electrode is the gradient of the potential
energymultiplied by the length of themoving electrode
(L).

F = Fx (x, y)î + Fy(x, y) ĵ = ∇(E(x, y)) × L (6)
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Fig. 5 Discretization of the electrodes surfaces to calculate the
potential energy
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Fig. 6 The lateral component of the electrostatic force
(Fx (x, y)). For presentation purposes, the range for x and y are
smaller than the range considered to solve Eq. (8)

where ∇ is the gradient operator. For the detailed
derivation of the potential energy, one could refer to
[38].We have calculated the potential energy and there-
fore the electrostatic force for − 20µm ≤ x ≤ 20 µm
and 0.1µm ≤ y ≤ 25µm with a grid step of 0.1µm.
Figures 6 and 7 show the electrostatic force surfaces as
a function of the position of themoving electrode (x, y)
for a part of the considered domain. Thesefigures reveal
the nonlinear dependence of the electrostatic force on
the position of the moving electrode, making Eq. (15)
a set of coupled nonlinear ordinary differential equa-
tions. It is worth mentioning that the electrostatic force
in the repulsive paradigm can be measured experimen-
tally according to the procedure explained in [39]. In
the next section, we investigate the nonlinear dynamics
of the system by constructing the Jacobian matrix and
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Fig. 7 The transverse component of the electrostatic force
(Fy(x, y)). For presentation purposes, the range for x and y are
smaller than the range considered to solve Eq. (8)

performing stability analysis for equilibrium points of
the system.

5 Stability analysis and static pull-in

To perform the stability analysis, we first non-
dimensionalize Eq. (15) using parameters given in Eq.
(7).

x̂ = x

d
, ŷ = y

d
, t̂ = t

Tn
(7)

where d and Tn are given in Table 1.Using these param-
eters to rewrite Eq. (15), and then dropping the hats, we
can write:

{
ẍ + (ωx Tn)2x = NT 2

n V
2

md Fx (x, y)

ÿ + (ωyTn)2(y − 1) = NT 2
n V

2

2md Fy(x, y)
(8)

To find the equilibriumpoints of the system,we need
to solve the static version of Eq. (8), which is obtained
by setting all the time-varying terms equal to zero [Eq.
(9)]. Equation (9) is a set of two nonlinear algebraic
equations that can be solved numerically to yield the
equilibrium points of the system, which are denoted by
xst and yst.

{
(ωx Tn)2xst = NT 2

n V
2

md Fx (xst, yst)

(ωyTn)2(yst − 1) = NT 2
n V

2

2md Fy(xst, yst)
(9)

Equation (8) can be rewritten in the state space using
the following variables.

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x = x1
ẋ = x2
y = x3
ẏ = x4

(10)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1 = x2 = f1(x1, x2, x3, x4)

ẋ2 = −(ωx Tn)2x1 + NT 2
n V

2

md Fx (x1, x3)

= f2(x1, x2, x3, x4)

ẋ3 = x4 = f3(x1, x2, x3, x4)

ẋ4 = −(ωyTn)2x3 + NT 2
n V

2

2md fy(x1, x3)

= f4(x1, x2, x3, x4)

(11)

Assuming the static solution of the system at voltage
Vdc to be (x∗

1 , x
∗
3 ), then we can construct the Jacobian

matrix as

J =

⎡
⎢⎢⎢⎣

∂ f1
x1

∂ f1
x2

∂ f1
x3

∂ f1
x4

∂ f2
x1

∂ f2
x2

∂ f2
x3

∂ f2
x4

∂ f3
x1

∂ f3
x2

∂ f3
x3

∂ f3
x4

∂ f4
x1

∂ f4
x2

∂ f4
x3

∂ f4
x4

⎤
⎥⎥⎥⎦ (12)

By solving the eigenvalue problem for this Jacobian
matrix, we can perform the stability analysis,

|J − λI | = 0 (13)

where I is the unity matrix.

λ4 +
(

(ωx Tn)
2 + (ωyTn)

2 − NT 2
n V

2

2md

(
∂Fx
∂x

+ 2
∂Fy

∂y

))
λ2

− NT 2
n V

2

2md

(
2(ωx Tn)

2 ∂Fy

∂y
+ (ωyTn)

2 ∂Fx
∂x

)

+
(
NT 2

n V
2

2md

)2 (
2
∂Fx
∂x

∂Fy

∂y
− 2

∂Fx
∂y

∂Fy

∂x

)
+(ωxωy)

2T 4
n = 0 (14)

Equation (14) is a quadratic equation in λ2, that can
be solved using the quadratic formula for the roots of a
second-degree algebraic equation. For each case of kx
and ky , we calculate the eigenvalues at each equilibrium
point for a range of voltages. If the real parts of all
the four eigenvalues are smaller than or equal to zero,
the equilibrium point is stable (or marginally stable).
Otherwise, the equilibrium point is considered to be
unstable.
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Fig. 8 Bifurcation diagram for the horizontal position of the equilibrium points and their stability for different lateral to transverse
stiffness ratios as the voltage on the side electrode changes. The transverse stiffness is kept constant at ky = 0.203 (N/m)
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Fig. 9 Bifurcation diagram for the vertical position of the equilibrium points and their stability for different lateral to transverse stiffness
ratio as the voltage on side electrode changes. The transverse stiffness is kept constant at ky = 0.203 (N/m)

Fig. 10 Three-dimensional bifurcation diagram for different lateral to transverse stiffness ratios. The transverse stiffness is kept constant
at ky = 0.203 (N/m)
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Fig. 11 Imaginary (a) and real (b) parts of the eigenvalues for
the equilibrium points at the center, where xst is zero (ky = 0.203
(N/m) and kx = 2.5ky). The real parts of all the eigenvalues are
zero up to the bifurcation point (Vdc = 76 (V)). The imaginary
parts of two of the eigenvalues, (λ1 and λ2) go to zero at the

bifurcation point. After bifurcation happens, the real part of λ1
becomes a nonzero positive number, indicating that the equilib-
rium point at the center turns to a saddle point and is unstable
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Fig. 12 Imaginary (a) and real (b) parts of the eigenvalues for
the equilibriumpoints on the side of the center position,where xst
is not zero (ky = 0.203 (N/m) and kx = 2.5ky). The real part of
λ1 has a positive value, which means the side equilibrium points

are unstable. At bifurcation point (76 V), two of the eigenvalues
go to zero as the side solutions merge with the stable solution at
the center, destroying its stability
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Fig. 13 The pull-in voltage for different ratios of lateral to
transverse stiffness. At the given transverse stiffness, beyond
the bifurcation point, there is no stable equilibrium point for
the microstructure. The transverse stiffness is kept constant at
ky = 0.203 (N/m)

To illustrate the stability of the equilibriumpoints the
bifurcation diagrams with the control parameter of DC
voltage are depicted in Figs. 8, 9 and 10. In Fig. 8a, the
lateral stiffness is chosen to be 2.5 times larger than the
transverse stiffness. This figure shows that for the small
voltages up to 19 (V) there is only one equilibriumposi-
tion for the system, which is stable. This stable point
is at the center position where the electrostatic force
from the right side electrode is equal to the force from
the left side electrode. As the voltage is increased, two
unstable equilibrium points appear on both sides of the
center position. By increasing the voltage, these two
unstable equilibrium positions get closer to the center
position. The existence of these two unstable side solu-
tions means that if the microstructure is subjected to
a lateral displacement from an unwanted load such as
the mechanical shock load, the microstructure might
collapse because of pull-in. This establishes a lateral
shock load threshold for microstructures built on the
repulsive electrode sets that should be considered by
theMEMSdesigner. By continuing to increase the volt-
age, these two side branches eventually merge with the
stable equilibrium point at the center, making it unsta-
ble through a subcritical pitchfork bifurcation. Beyond
this point (76 (V)), there is no stable equilibrium posi-
tion for the system, which means that the microstruc-
ture is going to be pulled-in to the side electrodes. This
voltage limit establishes another design criterion for
microstructures based on the repulsive electrode sets,
limiting the maximum allowed voltage for them. It is

worth mentioning that the dynamic pull-in might still
happen at lower voltages, but this study focuses only
on the static pull-in.

Figure 11 shows the imaginary and real parts of
the eigenvalues for the equilibrium points at the center
(xst = 0). At the bifurcation point, the imaginary parts
of the eigenvalues, which represent linearized natural
frequencies, go to zero. The real parts of all the eigen-
values are zero up to the bifurcation point, where the
voltage on the side electrodes is 76 (V). Therefore, the
Jacobianmatrix has a zero eigenvalue at 76 (V)which is
a sign for bifurcation [25]. The real part of λ1 becomes
a nonzero positive number after bifurcation happens,
which means the equilibrium point at the center turns
to a saddle point and is unstable. This qualitative change
in the behavior of the system is another sign for bifurca-
tion [25]. Figure 12 shows the real and imaginary parts
of the eigenvalues for the equilibrium points on the side
of the center position, where xst is not zero. The real
part of λ1 has a positive value, which means the side
equilibrium points are unstable. At bifurcation point
(76 V), two of the eigenvalues go to zero as the side
solutions merge with the stable solution at the center,
destroying its stability.

Figure 8b, c displays the horizontal position of the
stable and unstable equilibrium points when the lat-
eral stiffness is 5 and 10 times larger than the trans-
verse stiffness, respectively. These figures reveal that
by increasing the lateral stiffness, the bifurcation can be
postponed to higher voltages. In particular, they suggest
that if the microstructure is designed to sense or actuate
only in the transverse direction, it is better to have the
lateral stiffness to be larger so that the device can oper-
ate even at higher voltageswithout pull-in failure.How-
ever, increasing the lateral stiffnessmight not always be
a safe design option in terms of providing flexible sup-
ports that allow for the release of residual fabrication
stress in the plate without causing the plate to buckle.
So, for each microstructure based on the application,
the fabrication process, and the expected performance
from the device, this bifurcation point should be con-
sidered alongwith other design criteria to build a robust
and reliable MEMS device. Figure 9 shows the bifur-
cation diagram for the vertical position of the stable
and unstable equilibrium points as the voltage on the
side electrode changes for different stiffness scenar-
ios. Because the mathematical model of the system has
two DOFs, the real bifurcation diagram for the sys-
tem is a three-dimensional (3D) graph that shows how
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Fig. 14 Bifurcation diagram for the horizontal position of the equilibrium points for different transverse to lateral stiffness ratios as
the voltage on side electrode changes. The lateral stiffness is kept constant at 2.5k

Fig. 15 Three-dimensional bifurcation diagram for different lateral to transverse stiffness ratios. The lateral stiffness is kept constant
at 2.5k

the horizontal and vertical positions of the equilibrium
points change with the control parameter, voltage (V).
Figure 10 shows the 3D bifurcation diagrams for each
stiffness scenario.

Because the bifurcation point determines the max-
imum allowed voltage for the microstructure, it is
important to know its variation with the ratio of the
lateral and transverse stiffness, see Fig. 13.

The bifurcation threshold’s dependence on the value
of transverse stiffness is not intuitive. For instance, for a
constant lateral stiffness (kx ), the bifurcation threshold
would actually decrease with an increase in the trans-
verse stiffness (ky). By increasing the transverse stiff-
ness, the vertical components of the equilibrium points
(yst) will decrease. This is because the restoring force
of the microstructure is able to hold the microstructure
at lower gaps where the net vertical component of the

electrostatic force (Fy) is larger. On the other hand,
because the horizontal component of the electrostatic
force (Fx ) is larger at lower vertical gaps (see Fig. 6),
the horizontal stiffness of the microstructure would not
be able to resist the electrostatic force in the lateral
direction.

To further illustrate this, the static equation is solved
for three different transverse stiffnesses. The results
for the stability analysis of the equilibrium points are
shown in Figs. 14 and 15. Figure 14 shows that for the
extreme case where the transverse stiffness is zero, and
the bifurcation point, beyond which there is no stable
solution for the microstructure, happens at 110 (V).
However, by increasing the transverse stiffness to 10
times larger than the lateral stiffness, this bifurcation
point happens at the lower voltage of 40 (V). In another
extreme case where the lateral stiffness is significantly
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Fig. 16 Two-DOF mathematical model of the microstructure
when the moving electrode is not at the center position

larger than the horizontal stiffness (1000 times larger)
(Fig. 14) (c), the system exhibits another bifurcation,
a saddle-node bifurcation. In this case, there are five
equilibrium points for the system at certain levels of
voltage. Two of these equilibrium points are unstable,
while three of them are stable. It is interesting to notice
that the center horizontal position becomes unstable at
41 (V) even though the transverse stiffness is 100 times
larger compared to the transverse stiffness in Fig. 14b.
However, for the higher stiffness case, there are two
stable side solutions up to 52 (V), beyond which there
is no stable equilibrium point.

Figure 15 shows the 3D stability diagrams for the
three cases shown in Fig. 14, illustrating subcriti-
cal pitchfork and saddle-node bifurcations. This fig-
ure shows when the transverse stiffness is zero, the
microstructure tends to go to the vertical position at
the center where the vertical component of the elec-
trostatic force is zero. When the transverse stiffness is
significantly large, the microstructure stays close to its
initial fabrication gap.

6 The effect of fabrication imperfection

In this section, we have investigated the effect of an
initial lateralmisplacement for themoving electrode on
the pull-in voltage. Such a misplacement might happen
because of fabrication imperfections. Figure 16 shows
the initial positionof themoving electrodeoff the center
position by δ.

In this case, the governing equation of motion can
be written as follows:

{
mẍ + kx (x − δ) = ( N

2

)
V 2Fx (x, y)

mÿ + ky(y − d) = (N )V 2Fy(x, y)
(15)

0 26 75 103 120
Vdc

-10

-5

0

5

10

x st
 (

m
)

- - - Unstable
- - - Stable

Fig. 17 Bifurcation diagram for the horizontal position of the
equilibrium points when δ = 0.5 µm. The transverse and lateral
stuffiness are ky = 0.203 (N/m) and kx = 5ky , respectively

Performing the stability analysis similar to that of
Sect. 5, the equilibrium points can be extracted for the
voltages on the side electrodes. Figure 17 shows the x
components of the equilibrium points when themoving
electrode is initially misplaced by 0.5µm in the lateral
direction. Comparing this figure with the results for
when the moving electrode is at center (Fig. 8) shows
that the subcritical pitchfork bifurcation is replaced by
a saddle-node bifurcation. The stable and unstable solu-
tions destroy each other at 103 (V). Beyond this volt-
age, there is no equilibrium point for the microstruc-
ture. This bifurcation point establishes the pull-in volt-
age for the microstructure. Figure 18 shows how the
saddle-node bifurcation point depends on the stiffness
ratio for different initial misplacements. As illustrated
in this figure, the pull-in threshold will decrease notice-
ably by increasing the initial misplacement, δ.

7 Conclusion

The lateral instability of electrostatic MEMS devices
based on the repulsive force is reported. The instability
mode is explained qualitatively in terms of static pull-in
of themicrostructure. A two degree-of-freedommathe-
matical model is developed to investigate the pull-in of
the microstructure. The results from the stability anal-
ysis of the model show the existence of pull-in instabil-
ity for electrostatic transducers that utilize the repulsive
force. Different stiffness scenarios are discussed, and
the bifurcation diagrams are extracted from analyzing
the eigenvalues of the Jacobian matrix. It is shown that
the ratio between the lateral to transverse stiffness is a
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Fig. 18 Effect of lateral misplacement on the pull-in voltage for
different ratios of lateral to transverse stiffness. The transverse
stiffness is kept constant at ky = 0.203 (N/m)

very important design parameter for building reliable
and robust transducers based on the repulsive scheme.
This study shows that the voltage on the side elec-
trodes cannot be increased without limitation. Depend-
ing on the ratio of the stiffness, there is a voltage limit
beyond which there is no stable equilibrium point for
the microstructure. This will impose a limit for max-
imum voltage that is allowed for the microstructure
without jeopardizing the its structural integrity. The
effect of fabrication imperfection is analyzed by ini-
tially displacing the moving electrode from the center
position. The results show a noticeable decrease in the
pull-in threshold as a result of such imperfection.
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