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1 Introduction

Hamiltonian or Hybrid Monte Carlo (HMC) methods are a class of Markov Chain
Monte Carlo (MCMC) methods originating in statistical physics [20] which have
become increasingly popular in various application areas [11,48,53,60,64]. Their suc-
cess is in particular due to empirically observed convergence acceleration compared
to more traditional, random-walk based methods. The basic idea in HMC is to define
an MCMC method with the help of an artificial Hamiltonian dynamics whose only
purpose is to accelerate convergence to equilibrium. This Hamiltonian dynamics is
designed to leave invariant a product of the target measure and a fictitious Gaussian
measure in an artifical velocity variable. First rigorous theoretical results supporting
the empirical evidence have only been established recently. In particular, geometric
ergodicity has been verified in [10,22,49], and quantitative convergence bounds have
been derived in the strongly convex case in [52], and under more general assumptions
in [9], both by applying coupling methods.

Since many applications are high dimensional, a key issue is to understand the
dependence of the convergence bounds on the dimension. Here, we study the problem
of dimension dependence for a special class of models that is relevant for several
important applications including Path Integral Molecular Dynamics (PIMD) [14-
17,31,32,43,44,50,57,58], Transition Path Sampling (TPS) [6,59,63,65], and Bayesian
inverse problems [7,18,41,68]. For the class of models we consider, a correspond-
ing HMC Markov chain relying on a preconditioned Hamiltonian dynamics can be
defined directly on the infinite dimensional state space [3]. This suggests that one might
hope for dimension-free convergence bounds for the corresponding Markov chains on
finite-dimensional discretizations of the state space. Corresponding dimension-free
convergence rates to equilibrium have been established for the preconditioned Crank-
Nicholson (pCN) algorithm [36] and for the Metropolis-adjusted Langevin algorithm
(MALA) [24], but a corresponding result for HMC is not known so far.

The goal of this paper is to fill this gap. To this end we extend the coupling approach
developed for HMC in the finite dimensional case in [9], and combine it with a two-
scale coupling approach for stochastic dynamics on infinite dimensional Hilbert spaces
that originates in [33,34,54,55] and has been further developed in [71]. The splitting
into “low modes” and “high modes” in the two-scale coupling can be traced back
to contraction results for the stochastic Navier-Stokes equations [55], and analogous
results in the deterministic setting [28]; see [54] for a detailed review.

Our object of study is the exact preconditioned HMC algorithm (pHMC) with
fixed durations on a Hilbert space, i.e., the (preconditioned) Hamiltonian dynamics is
exactly integrated (or, in practical terms, the integration is carried out with very small
step sizes). Here, preconditioning corresponds to an appropriate choice of the kinetic
energy which involves picking the mass operator equal to the stiffness operator (or
inverse covariance) associated to the Gaussian reference measure of the target prob-
ability measure. This choice of kinetic energy ensures that the corresponding pHMC
algorithm is more amenable to numerical approximation and Metropolis-adjustment
than HMC without preconditioning [3,11].

We prove that the transition kernel of the Markov chain induced by the pHMC
algorithm is contracting in a suitable Wasserstein/Kantorovich metric with a rate that
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depends transparently on the duration of the Hamiltonian flow, the eigenvalues of the
covariance operator of the Gaussian reference measure, and the regularity of the pre-
conditioned Hamiltonian dynamics. The results are given in a more general setting that
includes pHMC as a special case, and also covers other types of dynamics and precon-
ditioning strategies. As a consequence of our general results, we derive dimension-free
bounds for pHMC applied to finite-dimensional approximations arising in TPS and
PIMD.

Before stating our results in detail, we conclude with a brief outlook. The results
below apply only to pHMC with exact integration of the Hamiltonian dynamics. In
practice, the Hamiltonian dynamics is numerically approximated, to obtain numerical
versions of pHMC that are implementable on a computer. The time integrator of
choice for pHMC is the symmetric splitting integrator introduced in [3]. Unlike other
splittings for the Hamiltionian dynamics, this approximation has an acceptance rate
that is uniform with respect to the spatial step size associated with the discretization of
the Hilbert space [11, § 8]. Time discretization creates a bias in the invariant measure
that can be avoided by a Metropolis adjustment [11,70]. We would expect that for
unadjusted numerical HMC based on the integrator proposed in [3], similar contraction
results as stated below hold if the time step size is chosen sufficiently small (but
independently of the dimension). Under additional regularity assumptions, one could
also hope for dimension free bounds for the Metropolis adjusted version. First steps
in this direction are carried out in [9, § 2.5.4] in the finite dimensional case, and in
[62, § 4] in a strongly convex infinite dimensional case, but a full study in the general
case would be lengthy and go beyond the scope of the current work.

Alternatively to preconditioning, it is also possible (but more tricky) to implement
non-preconditioned HMC, which corresponds to injecting white noise in the velocity
variable. In this case, the corresponding Hamiltonian dynamics is highly oscillatory
in high modes [61]. Therefore, convergence bounds for exact HMC without precon-
ditioning on an infinite dimensional Hilbert space can be expected to hold only if
the durations are randomized [60], and in numerical implementations, strongly stable
integrators [43,44] have to be used in order to be able to choose the step size indepen-
dently of the dimension. Furthermore, scaling limit results show that for Metropolis
adjusted HMC applied to i.i.d. product measures on high dimensional state spaces, the
step size has to be chosen of order O (d~'/4) to avoid degeneracy of the acceptance
probabilities [2,30,42].

We now state our main results in Sect. 2, and consider applications to TPS and
PIMD in Sect. 3. The remaining sections contain the proofs of all results.

2 Main results

Let H be a separable and real Hilbert space with inner product (-, -) and norm |-|.
Let C : 'H — H be a positive compact symmetric linear operator. By the spectral
theorem, the eigenfunctions {e;};cny of C form a complete orthonormal basis of H
with corresponding eigenvalues {};};cy Which we arrange in descending order, i.e.,
A1 = Ay > ---. The positivity condition means that A; > 0 for all j € N, and by
compactness, if dim(H) = oo then lim; .o A; = 0. Any function x € H can be
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represented in spectral coordinates by the expansion
x:ijej where x; 1= (x, ¢j). 2.1

Moreover, for all s € R, the operator C* is defined via the spectral decomposition of
C. We introduce the family of inner products and norms given by

(X, y)s o= (X, C%y) = (C2x,C72y), x|y == (x, x)s/° 2.2)

for x, y € H*. Here for s > 0, H* denotes the Hilbert space consisting of all x € H
with [x|; < oo, whereas for s < 0, H® is the completion of H w.r.t. |x|. Note that
H =H°, and for s > 0, H* C H C H~*. Furthermore, the linear operator C restricts
or extends (depending on whether s > 0 or s < 0) to a linear isometry from #* to
H*+2 which will again be denoted by C. This setup is consistent with the framework for
infinite-dimensional Bayesian inverse problems [3,18,68]. Here, typically, s € (0, 1).

We will now introduce the pHMC method for approximate sampling from a proba-
bility measure u that has a density w.r.t. a Gaussian measure g on one of the Hilbert
spaces H*. Afterwards, in Sect. 2.2, we will introduce a more general family of Markov
chains on Hilbert spaces that includes the Markov chain associated to pHMC as a spe-
cial case. In Sect. 2.3, we introduce a new coupling for these Markov chains that
combines ideas from [9,71]. Then in Sects. 2.4 and 2.5, we state our main contraction
result for these couplings, and derive quantitative error bounds.

2.1 Exact preconditioned Hamiltonian Monte Carlo

Let o = N(0, C) denote the centered Gaussian measure whose covariance operator
w.r.t. the inner product (-, -) is C [5]. If C is trace class then (. is supported on H. More
generally, we fix s € (—o0, 1) and assume that u is supported on the corresponding
Hilbert space H?*. This is ensured by the following assumption:

Assumption 2.1 The operator C1=5 is trace class, i.e.,

oo
1—sy I—s
trace(C ) = ij < 00.
Jj=1
A realization £ from g can be generated using the expansion

o]

§= Z\/T,-p,-ej, {pi} A0, 1).

j=1

For & ~ o, Assumption 2.1 implies E |§|§ = trace(C'™%) < o0, and thus, £ is indeed
a Gaussian random variable on H?.

Remark 2.2 To avoid confusion, we stress that the covariance operator of a Gaussian
measure is a non-intrinsic object that depends on the choice of an inner product. In
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particular, the covariance operator of 1o w.r.t. the 7* inner product is C' ~*. Nonethe-
less, in what follows, we always define the covariance operator with respect to the H
inner product, and in this sense, the measure 1 has covariance operator C.

Exact preconditioned Hamiltonian Monte Carlo (pHMC) is an MCMC method for
approximate sampling from probability distributions on a Hilbert space that have the
general form

p(dx) o< exp(=U (x)po(dx), o= N(0,C), (2.3)

where U is a function on a Hilbert space on which the Gaussian measure j( is sup-
ported. The pHMC method generates a Markov chain on this Hilbert space with
transition step

x — X'(x) where X'(x) =gqr(x,§&). (2.4)

Here & ~ N(0,C), and the duration 7 : & — R, is in general an independent
random variable with a given distribution v (e.g. v = 8, or v = Exp(A~!)). We will
only consider the case where T' € (0, 00) is a given deterministic constant. Moreover,

¢i(x,v) = (g:(x,v), v (x,v))  (t €[0,00))
is the exact flow of the Hilbert space valued ODE given by

d

—qr = U,

d
= —v; = —q; — CDU(q;), (qo(x,v),vo(x,v)) = (x,v).

dt
2.5
Formally, (2.5) is a preconditioned Hamiltonian dynamics for the Hamiltonian
H(x,v) = U@)+ (x,C'x)/2 4 (v, ) /2,

where the covariance operator C is used for preconditioning. A key property of (2.5)
is that it leaves invariant the probability measure

i(dx dv) o< exp(=U (x)) N(0,C)(dx) N(0,C)(dv), (2.6)

on phase space, and in turn, this implies that the transition kernel of pHMC defined
by 7 (x, B) = P[X'(x) € B] leaves w in (2.3) invariant [3].

Below, our key assumption in this setup will be that U is a gradient Lipschitz
function on the Hilbert space H*® where the reference measure p( is supported:

Assumption 2.3 The target measure p is a probability measure on * that is absolutely
continuous with respect to i1¢. The relative density is proportional to exp(—U) where
U : H* — [0, 0o) is a Frechet differentiable function satisfying the gradient Lipschitz
condition

10,U(x) =y U ()| < Lg |x —yls |hly  forallx,y, h € H*
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for some finite positive constant L.

In Assumption 2.3, 9, U denotes the directional derivative of U in direction &. We
also use the notation DU to denote the differential of U, i.e., (DU)(x) is the linear
functional on H* defined by (DU)(x)[h] = (35, U)(x). Identifying the dual space of
‘H* with H™*, Assumption 2.3 shows that we can view DU as a Lipschitz continuous
function from H* to H™°, i.e

[IDU(x) — DU(y)|_y < Lg |x =yl forall x, y € H’. 2.7

Recalling that C is an isometry from 7 ~* to H#>~*, and 4>~ is continuously embedded
into H*® for s < 1, we see that Assumption 2.3 implies that the drift function

b(x) := —x —CDU (x) 2.8)

occurring in (2.5) is a Lipschitz continuous map from H* to H?.

Remark 2.4 The global Lipschitz condition in Assumption 2.3 is principally the same
as Condition 3.2 in [3] except here the domain H* of the potential energy is defined
in terms of the covariance operator itself rather than in terms of an auxiliary operator
with related eigenfunctions and eigenvalues.

2.2 General setting

We now introduce a more general setup that includes the Markov chain induced by
pHMC as a special case. We fix s € R, and we assume that b : H* — H* is a Lipschitz
continuous function. Let ¢, (x, v) = (g:(x, v), v;(x, v)) denote the exact flow of the
Hilbert space valued ODE given by

d

-4t = U,

o ¢ = b(q), (qo(x,v),vo(x,v)) = (x,v). (2.9

d
—v
dt
As above, we fix a constant duration 7 € (0, o0) and consider the Markov chain on
‘H* with transition step

x > X'(x) = grx, &), &~N(©,CQC (2.10)

where C is a linear operator on H with the same eigenfunctions as C.

Assumption 2.5 C:H—> Hisa symmetric linear operator with elgenfunctlons
{ei}ien and corresponding eigenvalues {A }ieN. Moreover, the operator CC™* is trace
class, i.e.,

o0
trace(CC™) = ZLA;S <00
j=1
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For £ ~ N(0,C), this implies E [£|? = trace(CC™*) < o0, and thus, & in (2.10)
is a Gaussian random variable on H*. Let w(x, B) = P[X'(x) € B] denote the
corresponding transition kernel. In particular, in the case where b is given by (2.8) and
C=cC, we recover the Markov chain associated to pHMC. When C # C, the choice
b(x) = —Cc~'x —CDU (x) ensures that the corresponding partially preconditioned
dynamics in (2.9) leaves invariant the probability measure u(dx)N (0, C )(dv).

Our main result rests on the assumption that the Hilbert space H* can be split into
a finite dimensional subspace H*¢ (“the low modes™) and its orthogonal complement
HS" (“the high modes™) such that b(x) is close to a linear map on H*"*. More precisely,
fix n € N. Let H%¢ : = span{eq, ..., ey}, and let H5-" denote its orthogonal comple-
ment, i.e., H*" is the closure in H* of span{e, 11, €x12, ... }. Thus H® = H ¢ @HS .
For any x € H*, we denote by x¢ and x" the orthogonal projections onto H**¢ and
HSh, respectively.

Assumption 2.6 b is a function from H* to H* such that 5(0) = 0. Moreover it satisfies
the following conditions:

(B1) There exists L € [1, co) such that
b(x) —b(y)ly; < L|x —yl|, forallx,yeH’. (2.11)
(B2) There exists n € N such that
b (x) — b (y) + x" — " = % Ix —y|, forallx,ye H’. (2.12)
(B3) There exist K > 0 and A > 0 such that
(x,b(x))s < —K |x|>+ A forany x € H". (2.13)

Condition (B1) is a global Lipschitz condition. Since »(0) = 0, it implies the linear
growth condition |b(x)|; < L |x|s, and this condition and (B3) imply that K <
L. Condition (B2) says that in the high modes, b(x) behaves essentially as a linear
drift. Finally, Condition (B3) is a standard drift condition which implies that the
Markov chain has a Foster—Lyapunov function. It is similar to other conditions in
the literature that consider Markov processes on unbounded spaces based on second-
order dynamical systems including Hypothesis (H2) in [10], Equation (13) of [66],
Hypothesis 1.1 in [69], Condition 3.1 in [56], and Assumption 1.2 in [25].

Lemma 2.7 (Foster—Lyapunov function) Suppose that Assumptions 2.5 and 2.6 hold.

Then for any T > 0 satisfying LT? < ﬁ % we have

2
E [\X’@)\f] < (1 _ %) X + 5(A + trace(CC ) T? forall x € H'.

The proof of this lemma is given in Sect. 5.

@ Springer



Stoch PDE: Anal Comp

Example 2.1 (pHMC) Suppose that b is given by (2.8) and U satisfies the global
Lipschitz condition in Assumption 2.3 with Lipschitz constant Lg. Then condition
(B1) holds with Lipschitz constant L = 1 + )L%_SL ¢ and Condition (B2) holds with

n =inf{k € N : )L,]er; < 1/(3Lg)}. Indeed, by (2.7),

b) = b, < 1x =yl + [ (DU = DUGY)| = A+ AT Lo lx = ;.

and [b"(x) — b"(y) +x" — Y| < AT L Ix — yly < (1/3)[x — yl, as required.

Moreover, the drift condition (B3) can be verified in examples, see Sect. 3.

2.3 Two-scale coupling

We now introduce a coupling for the transition steps of two copies of the Markov chain
starting at different initial conditions x and y. We use a synchronous coupling of the
high modes in 7*" and a different coupling for the low modes in 7*-* that together
enable us to derive a weak form of contractivity. Note that the covariance operator c
has a bounded inverse on the gnite dimensional subspace HE. Therefcge, forh € H¢,
the Gaussian measure A'(h, C) is absolutely continuous w.r.t. A'(0, C) with relative
density

pn(x) = exp ((5—1h,x> — (', h)/z). (2.14)

Let y > 0 be a positive constant. The precise value of the parameter y will be
chosen in an appropriate way below. The coupling transition step is given by (x, y) —
(X"(x, y), Y'(x, y)) where

X'(x,y) = gr(x,§), and Y'(x,y) = qr(y,n) (2.15)

with & ~ N(0, 5) and 7 defined in high/low components as nt = g"and

¢ {El + yzt if U < p—yz@(‘gg)’ (2.16)

= Rt otherwise.

Here U/ ~ Unif(0, 1) is independent of &, z := x — y, and the reflection operator R is
defined by

R = C12(1 = 2¢'(ef, NE~12, where of = G125ty ‘5—1/2%‘. 2.17)

Due to Assumption 2.6 (B2), the component in H*" of the resulting coupled dynamics
is contracting in a finite time interval as a result of the linear part of the drift in
(2.9). Moreover, the coupling of the components of the initial velocities in H** is
similar to the coupling in [9] which is inspired by a related coupling for second order
Langevin diffusions [25]. It is defined in such a way that & — n* = —yz® occurs
with the maximal possible probability. As illustrated in Fig. 1, and proven later in
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Lfj @—rrrvrrrrnnnnrnnnns ..'.‘. Tr; @—
- ./ M =& + 72
. o— 17, =&
Yi Yi
(a) low modes: 1 <i<mn (b) high modes: i > n

Fig. 1 Two-Scale Coupling. A diagram illustrating the two-scale coupling in the case y = T-! (a)In the
low modes (1 <i < n), the initial velocities are coupled such that the final positions q?(x, &)= ql}(y, n)
are equal when b = 0. (b) In the high modes (i > n), the initial velocities are synchronously coupled

Lemma 4.3, the reason for this choice is that the projection of the difference process
onHS¢, e, qf (x,&)— qf (v, 1), is contracting in a finite time interval if the difference
£¢ —n® of the initial velocities is negatively proportional to the difference of the initial
positions xt — y‘z. Note that if b(x) = 0 or b(x) = —x then the optimal choices
of y would be y = T-! and y = cot(T), respectively, because for these choices,
X'(x,y) =Y'(x,y)ifU < Jo (€%). In the case where £ —nt # —yz¢, areflection
coupling is applied. The corresponding reflection R is an orthogonal transformation
w.r.t. the inner product (x, y)5 = (C™ 1/2x, C~1/2y) induced by the covariance operator
Con H-.

In order to verify that (X’'(x, y), Y/(x, y)) is indeed a coupling of the transition
probabilities 7 (x, -) and 7 (y, -), we remark that the distribution of 7 is A'(0, C) since,
by definition of 5¢ in (2.16) and a change of variables,

Pln' € B]

= E[Ip" + vz pye €I A1) + E [13 (Re) (1= p_yue <s‘>)+]

E[pyer 6 1pE oy € =y A1+ E [IB €9 (1= ooy (R&‘>)+]
= E[13E) 1 A p,u )] + E [@(5‘) (1- pyze(s@))j = Pl¢' € B

for any measurable set B. Here a A b denotes the minimum of real numbers a aI}g b,
I3(-) denotes the indicator function for the set B, and we have used that N'(0, C) is
invariant under the reflection R, Rz% = —z¢, and by (2.14), p_h(x —h)pp(x) = 1. A
similar calculation shows that

Pln" #& +y2'l = E [(1 - pﬂ«(s‘))j = drv(W(0.0). N(y2".0) (2.18)

where drv is the total variation distance. Hence, by the coupling characterization
of the total variation distance, n° = &° + yz* does indeed hold with the maximal
possible probability. Note that if z is not in the reproducing kernel Hilbert space of
the covariance operator C then the probability of the event n¢ # &¢ + yz% in (2.18)
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tends to one as the number of low modes increases. This explains why it is necessary
to split the Hilbert space and apply a two-scale coupling.

2.4 Contractivity

We now state our main contraction bound for the coupling introduced above. We first
define a norm |||-||, on H* where the high modes are weighted by o > 0:

51
lixlle = [E75x¢| +a|"

(2.19)

s

—1/2.5/2

~—1/2 2
i )\'l } and Omax = maxlfifn{)" / S/

Let oypin = minj<;<y {X ;' “A;7}. Note that

omin | < ‘5‘1/2(3”2)56 < Omax xl‘ for all x € H*. (2.20)
N N N
Thus |||-|l, and || are equivalent norms with
min(oy,in, @) |xl; < Ixlle < «/Emax(amax, a) |x|; forallx € H®. (2.21)

Remark 2.8 If the dimension is infinite then the operator C~1C* is unbounded on HE,
because its inverse is trace class. Nonetheless, [||x|||, is a well-defined norm for any
x € H* because the operator G203 appearing in |||x|l|, only acts on the projection
x* of x onto the finite dimensional space H*-¢.

As we will see below, even when U is non-convex, we can still obtain contractivity
with respect to a semimetric p : H* x H* — [0, co) of the form

py) = VLU =yl +elxP ey, xyeH, (222

where f : [0, c0) — [0, 00) is a concave function given by

r 1
£(r) :/ ¢ Iy<pydt = _(1—e—“MR), (2.23)
0 a

and where R > 0, a > 0, and € > 0 are parameters to be specified below. The
semimetric p is similar to the one introduced in [9] in order to prove contractivity of
the HMC transition step in the finite dimensional case. In general, p is not a metric,
since the triangle inequality might be violated. Note that f is non-decreasing, and
constant when r > R.

Remark 2.9 The semimetric (2.22) incorporates, in a multiplicative or weighted way,
the quadratic Foster—Lyapunov function for pHMC from Lemma 2.7 with weight €.
The idea to use semimetrics of this general form to study contraction properties of
Markov processes goes back to [12,35]; see also [26].
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Lemma 2.7 implies that the coupling transition (x, y) — (X'(x, y), Y'(x, y)) also

has a quadratic Foster—Lyapunov function: If LT? < ﬁ % then

2
E[[X @} + Y@ nl] < (1 - K2T> (1x12 + [y12) + 10(A + trace(@C ) T2,

We fix a finite, positive constant R satisfying

R > 8v40(A + trace(CC™*)) 2 0mar LK V2. (2.24)

In our main result below, we choose o := 40,4, L. In this case, the choice of R in
(2.24) guarantees that a strict drift condition

E[[ Xl + Ve nf] = (1-kT24) (B + 1D @25

holds for all (x, y) satisfying |||x — y|ll, > R, because by (2.21) and since L > 1,

fllx — y|||a = 4\/§UmaxL |x — y|s = 8UmczxL\/ |x|? + |y|§ (2.26)

The asymptotic strict drift condition in (2.25) allows us to split the proof of contractivity
into two parts: (i) [|x — y|ll, = R where any coupling is contracting in p due to (2.25),

and (ii) [|lx — y|ll, < R, where p is contracting due to the specially designed two-scale
coupling.

Theorem 2.10 Suppose that Assumption 2.6 holds. Let T > 0 satisfy

1K1 :
Imax 1 12 < min <——, —2"”””) (2.27)
Omin 48 L 256LR% 04y

Let o, y, a, and € be given by

o = 4ou L, (2.28)
y = min (T_l, R—1/4) , (2.29)
a=T"", (2.30)
€ := (1/160)(A + trace(CC~*)) e R/T. (2.31)

Then for any x, y € 'H*, we have

Elp(X'(x,y),Y'(x,y)] < e “p(x,y), where (2.32)
1 1
¢ =min( —KT? —Tmax(R, T)e M™xRD/T)
16 128
(2.33)

The proof of this theorem is given in Sect. 6.

@ Springer



Stoch PDE: Anal Comp

Remark 2.11 The rate in (2.33) is similar to the rate in the finite-dimensional case
found in Theorem 2.3 of Ref. [9]. The main difference is that the condition on LT? in
(2.27) now reflects the effect of preconditioning.

2.5 Quantitative bounds for distance to the invariant measure

Theorem 2.10 establishes global contractivity of the transition kernel 7 (x, dy) w.r.t.
the Kantorovich distance based on the underlying semimetric p, which for probability
measures v, 17 on H*® is defined as

Wy(w,n) = inf /,O(X,y))/(d)fdy) = inf  E[pX"Y)]
yeC(v,n) X'~ Y ~n

where the infimum is over all couplings y of v and 1. Moreover, it implies quantitative
bounds for the standard L' Wasserstein distance

WS, ) = inf '/|x—y|x ydxdy)= inf E[|X —Y'|]
yeC(v,n) X'~ Y ~u

with respect to the invariant measure p on H*. Let M (v) := f [x]g v(dx).

Corollary 2.12 Suppose that Assumption 2.6 holds. Let T € (0, R) satisfy (2.27).
Then for any k € N and for any probability measures v, n on H*,

W,k nrky < ek w, ., ), and (2.34)
WSk, ) < € (1 4+ VeMi(v) + (1/4)K 12~ RICDy o =ck (2 35)

where the rate ¢ and the constant € are given explicitly by (2.33) and (2.31), and

C = max (2Tcr_1 23 (A + trace(@C_S))l/zeR/(zT)) ) (2.36)

min’

In particular, for a given constant § € (0, 00), the L Wasserstein distance A(k) =
WS (rk, ) w.rt. w after k steps of the chain with initial distribution v satisfies
A(k) < 8 provided

—1/2,—R/QT)
k> llOgC(1+«/EM1(V)+((31/4)K e ).
C

(2.37)

The corollary is a rather direct consequence of Theorem 2.10. A short proof is
included in Sect. 6.

Remark 2.13 (Quantitative bounds for ergodic averages) MCMC methods are often
applied to approximate expectation values w.r.t. the target distribution by ergodic
averages of the Markov chain. Our results (e.g. (2.34)) directly imply completely
explicit bounds for bias and variances, as well as explicit concentration inequalities for
these ergodic averages in the case of pHMC. Indeed, the general results by Joulin and
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Ollivier [40] show that such bounds follow directly from an L ! Wasserstein contraction
w.r.t. an arbitrary metric p, which is precisely the statement shown above.

3 Applications
3.1 Transition path sampling

Here we discuss the use of pHMC in transition path sampling (TPS). As an application
of Theorem 2.10, we obtain dimension-free contraction rates for exact preconditioned
HMC in this context. Fix a time horizon T > 0 (not to be confused with the duration
parameter in preconditioned HMC which we denote by T'). The aim of TPS [4,37,
38,65] is to sample from a diffusion bridge or conditioned diffusion, i.e., from the
conditional law v, , of the solution X : [0, T] — R4 to a d-dimensional stochastic
differential equation of the form

dX(t) = =V (X(t)) ds + dW(t) 3.1
given both initial and final conditions
X(0)=a and X(r)=0>.

Here W : R? — R is a given potential energy function and W is a d-dimensional
standard Brownian motion. TPS is particularly relevant to molecular dynamics where
the states a and b represent different configurations of a molecular system [6,59,63].

We first recenter: Let u = v o 01;11 denote the law of the recentered bridge where
Oy (x) = x — M is the translation on path space by the mean M(t) = a + (t/7)(b —a)
of the Brownian bridge from a to b. Then by Girsanov’s theorem, the measure w is
absolutely continuous with respect to the law 1 of the Brownian bridge from 0 to
0 [4,39]. Moreover, the measure jtq is the centered Gaussian measure on the Hilbert
space H = L%([0, 7], R9) with covariance operator C = —ABI where Ap is the
Dirichlet Laplacian, and the relative density of . with respect to ¢ is proportional to
exp(—U (x)) where the function U (x) is defined in terms of the so-called path potential
energy function G : R — R as follows

Ux) = /T G(x(t) + M(t))dt where G() = %|V\D(-)|2 - %A\IJ(-). (3.2)
0

In the main convergence result given below, we make the following regularity assump-
tion on G.

Assumption 3.1 The function G : R — R is continuously differentiable. Moreover,
VG(0) = 0, and VG is uniformly bounded and globally Lipschitz continuous, i.e.,
there exist finite constants Mg, L such that for all x, y € RY,

IVG()| = Mg, and |[VG(x) = VG(y)| = Lglx — yl.
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This regularity assumption frequently holds in molecular dynamics applications, since
the configuration space of molecular systems is usually taken to be a fixed cubic box
with periodic boundary conditions [1,8,13,23,29,46,67]. In this case, we can lift the
TPS problem to the covering space R? by extending the path potential to a periodic
function on this space. Thus after recentering the coordinate system, Assumption 3.1
is satisfied whenever G is C2.

To implement TPS on a computer, we use the finite difference method to approx-
imate the infinite-dimensional distribution wu(dx) o exp(—U (x))N (0, C)(dx) by a
finite-dimensional probability measure p,,. Other approximations, e.g., Galerkin or
finite-element, are also possible and should yield similar results. We focus on the finite
difference method because it is widely used in practice. Discretize the interval [0, 7]
into m + 2 evenly spaced grid points

ti=tj/m+1), j=0,...,m+1. (3.3)

The space of paths on R? is then approximated by the finite-dimensional space R”¢.
Specifically, we write x € R”¢ as

xX=X1q,..., xm+1:m+d)
where the j-th component xj11.j14 := (Xj+1,...,X4+4) is a d-dimensional vector
that can be viewed as an approximation of x(t;) for j = 1, ..., m. The Dirichlet

Laplacian Ap is approximated by the md x md Dirichlet Laplacian matrix Ap
with (i, j)-th entry

—2(z/m+ 1)) ifli — j| =0,
(Apwij =14 @/m+1)"2  ifli—jl=d,
0 otherwise.

The covariance operator C is approximated by the md x md matrix C = —AB}m, and
the Hilbert space H is represented by R”¢ with inner product given by the weighted

dot product (x, y) = ;.=7x e y. The functional (3.2) is discretized as

m
T
Un(®) =~ Gu(®), where Gn(®) =) G js1j+a + M(t;).
j=1

Note that if the vector x contains the grid values of a smooth function x, then
Un(x) - U(x) as m — oo. In summary, the infinite-dimensional path distribu-
tion w(dx) is approximated by the finite-dimensional probability measure i, (dx)
with non-normalized density exp (— Uy (x) — £ (x, C™'x)).

To approximately sample from p,,, we use pHMC with transition step in (2.10).
This corresponds to a Markov chain on R”? with transition step

x X)) = qr(x.£), & ~/\/(o, mT“c> (3.4)
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where ¢, solves

d d
=V, v =b(g), (qox,v),v(x, ) = (x,v) € R¥™ - (3.5)

with b(x) = —x — CVG,,(x). Let 7, denote the transition kernal of (3.4).
Theorem 3.2 (Transition Path Sampling) Suppose that Assumption 3.1 holds. Let k :=

2(¢?/m®)Lg, me = |3k, n = med, and m* = [(mg + 1)7/2]. Let R, ¢, C and €
be defined as

R := 16v20mk'2(1 + 1) ((r/7)* ME + d)'/2, (3.6)
¢ := min((1/32)T?, (1/128)T? max(R, T)e~ M&xRD/Ty (3.7)
C := max(T't,23((z7 /Y ME + d?/3) /2RIy, (3.8)
€= (POME)~leRIT, (3.9)

Suppose that the duration parameter T € (0, R) satisfies

| 1
233k (1 4 1)T? i : 3.10
\/_/c( + k) < mln(96(1+K)’512\/§(1+K)R2) ( )

Then for any m > m*, k € N, and probability measure v,, on R"?,
WO Wtk tim) < Ce™ (14 VeMy ) + (1/8)R/CD) @)

Remark 3.3 Note that the upper bound in (3.11) depends on dimension only through
the initial distribution. The dimension independence in the other terms of this bound
reflects that the finite-dimensional pHMC algorithm in (3.4) converges to an infinite-
dimensional pHMC algorithm whose transition kernel satisfies an infinite-dimensional
analog of this quantitative bound.

A proof of this result is given in Sect. 7.1.

3.2 Path integral molecular dynamics

Here we discuss the use of pHMC for path-integral molecular dynamics (PIMD),
and as an application of Theorem 2.10, obtain dimension-free contraction rates for
preconditioned HMC in this context. PIMD is used to compute exact Boltzmann
properties and approximate dynamical properties of quantum mechanical systems
[14]. The technique is based on Feynman’s path-integral formulation of quantum sta-
tistical mechanics [27], and the observation that the quantum Boltzmann statistical
mechanics of a quantum system can be reproduced by the classical Boltzmann statis-
tical mechanics of a ring-polymer system [14].
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Consider N interacting quantum particles in 3D with potential energy operator
given by .

V=V(@i,...,qn) (3.12)
where §; is the three-dimensional position operator of particle i and V : RY — Risa
potential energy function where d = 3N [32]. The thermal equilibrium properties of
this system are described by the quantum mechanical Boltzmann partition function,

0 =Tr[e P (3.13)

where § is an inverse temperature parameter. For some a > 0, suppose that the
potential energy function can be written as

1
V() =al- ?+G()

where G : RY — R. Then the partition function Q can be written as the expected
value of a Gaussian random variable on loop space as follows

0 =E[eY®], where &~ pug=N(Q,Cs), (3.14)

and the covariance operator C, of the Gaussian reference measure is defined in terms
of the Laplacian with periodic boundary conditions A p on L2([0, Bl, R9) as follows

Ca=(-Ap+al)™!,

where / is the identity operator and the potential energy U (x) is given by

B
U(x) =/ G(x(1))dt. (3.15)
0

The probability measures 1o and u(dx) o exp(—U (x)) N(0, C3)(dx) are supported
on the loop space consisting of all periodic continuous paths x : [0, 8] — R<. They are
similar to the corresponding measures considered for Transition Path Sampling, but
there is an additional, artificially introduced parameter a appearing in C,. This param-
eter is essential because A p is not invertible since it has a zero (leading) eigenvalue
corresponding to the ‘centroid mode’ [50].

To implement PIMD on a computer, we use finite-differences to truncate the infinite-
dimensional path distribution w to a finite-dimensional one u,, by discretizing the
interval [0, B8] into m + 1 grid points

tj=gj/m, j=0,....m. (3.16)

The space of loops on R? is approximated by the finite-dimensional space R”¢ . Specif-
ically, we write x € R as

X =X1d, . Xmtlintd)
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where X j11.j4q = (Xj41,...,Xj4q) is a d-dimensional vector that can be viewed
as an approximation of x (t;) for j = 1,..., m.

Remark 3.4 Comparing (3.3)—(3.16), note that the number of grid points in TPS,
resp. PIMD, is m + 2, resp. m + 1. Nonetheless, in both cases path and loop space
are approximated by R”¢. The difference in the number of grid points is due to the
boundary conditions: in TPS the Dirichlet boundary conditions eliminate two unknown
d-dimensional vectors, whereas in PIMD the periodic boundary conditions eliminate
only one unknown d-dimensional vector. Thus, the total number of unknowns in both
cases is md.

The periodic Laplacian Ap is approximated by the md x md discrete periodic
Laplacian matrix A p_, with (i, j)-th entry

—2(B/m)~* if|i — j| =0,
(Ap,m)i,j = (,B/m)_2 if (i — j) mod (md) =d or (j —i) mod (md) =d
0 otherwise.

Naturally, the covariance operator C, is approximated by the md x md matrix C; =
(—Apm + al pasma)”" where I,,4xma is the md x md identity matrix, and the
infinite-dimensional Hilbert space H is r ﬁpresented by R”? with inner product given
by the weighted scalar product (x, y) = ;-x e y. The functional in (3.2) is discretized
as

Un(x) = %Gm(x), where G, (x) = ZG(xj+1:j+d)-
j=I

In summary, the infinite-dimensional path distribution p(dx) is approximated by the
finite-dimensional distribution g, (dx) o exp(—Uy, (x))N (0, %Ca)(dx).

In this context, pHMC generates a Markov chain on R”¢ with invariant measure
Wm and with transition step given by

x> X'(x) = qr(x.£), &~ N(O, %ca) (3.17)

where g, solves (3.5) with b(x) = —x — C3V G, (x).

Theorem 3.5 Path Integral Molecular Dynamics Suppose that Assumption 3.1 holds.
Letk :=6a 'Lg, my = [v3LG/2(B/7)], n = 2med — d, and m* = [2mwmy]. Let
R, ¢, C and € be defined as

R := 16v20(1 4+ ©)**((1/2)Ba~ M2 + 2d(B*a + 1))/?, (3.18)
¢ := min((1/32)T2, (1/128)T? max(R, T)e~ ™&*R1/Ty (3.19)
C := max(2Ta'/?,23((1/2)pa > Mg +2d(a " + p*)'/2eR/CTH (3.0
€ := (1/80)a*(BMZ)~te R/T, (3.21)
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Suppose that the duration parameter T € (0, R) satisfies

(14 x)¥*T? < min ! , ! . (3.22)
- 96(1 4 k) 256(1 + k)3/2R>

Then for any m > m*, k € N, and probability measure v,, on R™?  (3.11) holds for
the transition kernel of (3.17).

A proof of this result is given in Sect. 7.2.

3.3 Numerical illustration of couplings

Before turning to the proofs of our main results, we test the two-scale coupling defined
by (2.15) numerically on the following distributions.

e A TPS distribution with the three-well path potential energy function illustrated
in Fig. 2a. The initial conditions of the components of the coupling are taken to be
paths that pass through the two channels that connect the bottom two wells located
atx* & (£1.048, —0.042).

e A PIMD distribution where the underlying potential energy is the negative loga-
rithm of the normal mixture density illustrated in Fig. 2b. The mixture components
are twenty two-dimensional Gaussian distributions with covariance matrix given
by the 2 x 2 identity matrix and with mean vectors given by 20 independent sam-
ples from the uniform distribution over the rectangle [0, 10] x [0, 10]. The energy
barriers are not large. The potential energy in this example is adapted from [45,47].
The initial paths are taken to be two unit circles one centered at (1, 1) and the other
centered at (9, 9). The parameter a is selected to be 0.1.

e A PIMD distribution where the underlying potential energy is the negative loga-
rithm of the Laplace mixture density illustrated in Fig. 2c. The mixture components
are twenty two-dimensional (regularized) Laplace distributions using the same
covariance matrix and mean vectors as in the preceding example. However, unlike
the preceding example, in this example the underlying potential is only asymp-
totically convex. The initial paths are taken to be two unit circles one centered at
(1, 1) and the other centered at (9, 9). The parameter a is selected to be 0.1.

e A PIMD distribution where the underlying potential energy is the banana-shaped
potential energy illustrated in Fig. 2d. This function is highly non-convex and
unimodal with a global minimum at the point (1, 1). This minimum lies in a
long, narrow, banana shaped valley. The initial paths are taken to be small circles
centered at (+4, 16). The parameter a is selected to be 1.0.

For the TPS and PIMD distributions we use the finite-dimensional approximations
described in Sects. 3.1 and 3.2, respectively. The resulting semi-discrete evolution
equations are discretized in time using a strongly stable symmetric splitting integrator
[3,43,44]. We describe this integrator in the specific context of TPS, since a very similar
method is used for PIMD with C, replacing C in the dynamics, and the covariance
matrix (m/B)C, replacing ((m + 1)/7)C in the velocity randomization step. First,
split (3.5) with b(x) = x — CVG,,(x) into
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(A): q,=v,, v, =—q, (3.23)
B) : q,=0, v, =-CVGu(q,) (3.24)

with corresponding flows explicitly given by

o™ (g0, v0) = (cos(t)qq + sin(1)vo, — sin(1)gq + cos(1)vo)
%(B)(qo, vo) = (g9, vo —tCVGp(qy)).

Given a time step size At > 0, and using these exact solutions, a At step of the
symmetric splitting integrator we use is given by

B A B
Var =@ 09k © P (3.25)

In order to mitigate the effect of periodicities or near periodicities in the underlying
dynamics, we choose the number of integration steps to be geometrically distributed
with mean 7'/ At. The idea of duration randomization has a long history [10,11,13,19,
21,51]. The initial velocity is taken to be an md-dimensional standard normal vector
with covariance matrix ((m + 1)/7)C and a Metropolis accept/reject step is added to
ensure the algorithm leaves invariant &, [11,70]. In summary, we use the following
transition step in the simulations.

Algorithm 3.1 (Numerical Randomized pHMC) Denote by T > 0 the duration param-
eter and let Y5, be the time integrator described in (3.25). Given the current state of
the chain x € R™¢, the algorithm outputs the next state of the chain X € R™? as
follows.

Step 1 Generate a d-dimensional random vector & ~ N (0, ((m + 1)/7)C).

Step 2 Generate a geometric random variable k supported on the set {1, 2, 3, ...}
with mean 7'/ At.

Step 3 Output X = y§ + (1 — y)x where (§, B) = ¥%, (x, &), and given &
and k, y is a Bernoulli random variable with parameter « defined as

o = min{1, exp (—[E(q;., %) — E(x, ©)])}

where £(x, v) = (1/2)(v, C"'v) 4+ U, (x) + (1/2)(x, C " 'x).

We stress that & and k from (Step 1) and (Step 2) are mutually independent and
independent of the state of the Markov chain associated to pHMC. We pick the time
step size At of the integrator sufficiently small to ensure that 99% of proposal moves
are accepted on average in (Step 3).

Realizations of the coupling process are shown in Fig. 2. We chose parameters only
for visualization purposes. The different components of the coupling are shown as
different color dots. The insets of the figures show the distance between the components
of the coupling as a function of the number of steps.

Figure 3 shows the average time after which the distance between the components
of the coupling is for the first time within 10~'2. To produce this figure, we generated
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(d)

Fig. 2 Realizations of Two-Scale Coupling. This figure illustrates realizations of the coupling with 7 =
y_l. The different components of the coupling are shown as different color dots. A contour plot of the
underlying potential energy function is shown in the background. The inset plots the distance r; between
the components of the coupling as a function of the step index i. The simulation is terminated when this
distance first reaches 10712, In (a), (b), (c), and (d), this occurs in 34, 44, 38, and 88 steps, respectively

one hundred samples of the coupled process for one hundred different values of the
duration parameter 7'. As indicated in the figure legends, the coupling parameter y is
set equal to either:

e y = 0 which corresponds to a synchronous coupling of the initial velocities;

e y = T~ which corresponds to the optimal coupling of the initial velocities when
b(x) = 0; and,

e y = cot(T) which corresponds to the optimal coupling of the initial velocities
when b(x) = —x.

4 A priori bounds

In this section we gather several bounds for the dynamics and for the coupling that
will be crucial in the proof of our main result.
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Fig. 3 Mean Coupling Times. This figure illustrates the average of the random time 7 after which the
distance between the components of the coupling is for the first time within 10~8. The estimated average
is plotted as a function of the duration 7' of the Hamiltonian dynamics for y = 0 (black), y = 7! (gray),
and y = cot(T) (light gray). In all cases, note that the minimum of the function is smaller and occurs at a
smaller value of 7 when y = T !or y = cot(T), and the difference between the minima for y = 7!
and y = cot(7T) is slight, because these minima occur at 7 < 1 where cot(7') ~ 71

4.1 Bounds for the dynamics
In the following, we assume throughout that Assumption 2.6 is satisfied, and

Li* < 1. 4.1
Recall that ¢; = (g;, v;) denotes the flow of (2.9). With the exception of using a

different norm, the proofs of Lemmas 4.1 and 4.2 below are identical to the proofs of
Lemmas 3.1 and 3.2 in Ref. [9] and therefore not repeated.

Lemma4.1 Forany x,v € H*,

sup |g,(x,v) — (x +rv)|y < Lt? max(|x|,, |x + tvly), and “4.2)
r<t

Sllp Ivr(x, U) - U|s S Lt SuP |QF(xs v)'s

r<t r<t

< Lt(1 + Le®)y max(|x|, , |x +tv]y).  (4.3)
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In particular,
sup g, (x, v)|; < 2max(|xlg, |x +1vl), and “4.4)
r=<t
sup v, (x, v)|; < |vly + 2Lt max(|x| , |x + tvly). 4.5)
r<t

Lemma4.2 Foranyx, y,u,v € H’,

sup lgr (x, u) —q,(y,v) — (x —y) —r(u —v)l;

r<t
< Lt*max (Jx — ylg, [(x —y) + 1@ —v)l,), and (4.6)
sup vy (x, u) — vp(y, v) — (u — V)| < Lt suplg,(x,u) — q,(y, v)l,
r<t r<t
< Li(1+ Le*) max (Ix — yl;, [(x — ) + 1@ — v)]) . 4.7)
In particular,

sup g, (x,u) — g (v, v)l; < (14 Le)max(lx — ylg, [(x —y) + 1 —v)|,). (4.8)

r<t

Lemma 4.1 is used in the proof of the Foster—Lyapunov drift condition in
Lemma 2.7. Lemma 4.2 is used in the proof of Lemma 4.3 below.

4.2 Bounds related to two-scale coupling
The following lemma is used in the proof of Theorem 2.10 to obtain a contraction for
the two-scale coupling when the distance between the components of the coupling is

sufficiently small, i.e., [|x — ylll, < R.

Lemma 4.3 Suppose that y > 0 and t > 0 satisfy yt < 1 and Lt*> < 1/4. Then for
any x, vy, u, v € H* such that v" = u" and v* = u® 4 y (x* — y*), we have

(i)

A s 5 m — s
C2CH (gf (x, 1) — g (v, ”))’S < (1 —yt+ gaﬂm) CaCr(xt — yf)(s

Omin

N

5
+ gama)th2 |xh - yh|

.. 1 I _ 51,5
(ii) |q,h(x, u) — qth(y, v)|x < (1 — Zﬂ) |xh _ yh|s+26milnt2 ‘C 2C2(xt — yz)‘s

Proof Let G(x) = b(x) + x,2; = q;(x, u) — q;(y, v), and w; = %. By (2.9),

d d

o= wl Sl = b ) = b @),

d d

i =l Sl = =g+ G (g w) = G (g (3. v)),
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with wg = —yzé. These are second order linear ordinary differential equations, per-
turbed by a nonlinearity. A variation of constants ansatz shows that they are equivalent
to the equations

t
= A-ynzf+ /O (t =) (b (v w) = b (g, (v v) )

2

t
cos(1)zf + /0 sin(t — 1) (" g, (v, ) = 6" (g, (v, v))) dr

Since 12 < L2 < 1/4, yt <1, and by Assumption 2.6 (B1) and (B2) and (2.20),

~ 1 s ~ s
‘CijCQZf < (U-vyp ‘C C2z ‘ + Omax L / (t—r) |Zr|s dr,
s
-1os Lt?
< (I—y1) ‘C 2C2z ‘ + Omax —— 3 sup |Zr|x s 4.9
r<t
h h l : _
Z;| = |cos(t)] 20|+ Ism(t rllzlsdr,
s
t2
< 1——+ ‘Zo‘ +—sup|zr|s, (4.10)
2 6 r<t

Here in (4.10) we used that ¢+ < 1/2, and hence | cos(r)| < 1 — (1/2)t% + (1/24)¢*,
and | sin(t — r)| < t. Since wg = —yzé and yt < 1, Lemma 4.2 and (2.20) imply

hs)'

&

S
S)SZ(mtn

5
sup |z, [y < —(‘zé‘ + )z'o’
4 s

r=<t

~ s
RTET
N

Inserting this estimate into (4.9) and (4.10), and again using > < 1/4 yields,

< (1 yit ”’”Lt2> (C”%C%zg
N

m}

Recall that the two-scale coupling that we consider ensures that £ — ¢ = —yz*
with the maximal possible probability, where z = x — y. The following lemma enables
us to control the probability that £¢ — n¢ £ —y z¢ for small distances ||z, < R.

Lemma 4.4 For any choice of y, P[€" — nt # —yz'] < ‘J/gf%c%%) /N2m.
N

. 5 . 5 1 o5 .
Since CC™* is a trace class operator on H?*, note that C 3C7 is not a bounded

operator. Nonetheless, the bound appearing in Lemma 4.4 is finite because the operator

103 appearing in that bound only acts on z*

z onto the finite dimensional space H*-¢.

, 1.e., the n-dimensional projection of
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Fig.4 The total variation distance between the one-dimensional normal distributions (0, 1) and N (h, 1)
equals one minus the area of the shaded region. Therefore, dv (N'(0, 1), N'(h, 1)) = 2N (0, 1D[(0, h/2)]

Proof Recall from (2.18) that P[&* — n¢ # yz‘] = dry(N(0,C), N(yz4, C)). Let
Ct denote the restriction of C to H’. Then since z¢ € H¢, and by scale invariance of
the total variation distance,

Pl — 0 # —yz'1 = divIN'(0,CYH, N(y2',CY)
= divIN O, 1), N(yC~ 225, 1)) = divN (O, 1), N(1yC~ /22|, 1)
= 2N D[, T2 2)] < T,

see Fig. 4 for the last equation. O

Next we gather some elementary inequalities on the function f in (2.23) needed in
the proof of Theorem 2.10. To state these results, let f denote the left derivative of
f which satisfies

e % forr <R,

f- = {0 for r ; R.

Lemma4.5 Forall r,7 > 0, the function f in (2.23) satisfies:

() f) = f(r) < fL(GT —r).
(i) fGF) = f(r) <a” ' fL(r).
(iii) If r < R then max(1, aR)e™ ™LaR) < e/ )/ f(r) < 1.

Proof Property (i) follows from the fact that f is concave. Since f is non-decreasing
and constant for r > R, (ii) is trivially true in the cases 7 < r and r > R. In the case
r < min(7, R),

1 . 1
F® =) = = (e —ememn@R) < =g ),
a a

Combining these cases gives (ii). Let

x rfL(r)
gx) = 1 so that 10 = g(ar).
Property (iii) then follows because g decreases with x, lim,_.o g(x) = 1 and g(x) >
max (1, x)e max(l.x) O
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5 Proof of Foster-Lyapunov drift condition

Before giving the proof of Lemma 2.7, here are some preparatory results. Using the
shorthand notation o(t) = |¢;(x, §)|§ and p(t) = v, (x, §)|§, (2.9) implies

0'(t) = 2{gi(x, &), v (x, )y,
0"(1) = 2(p(1) + (g1 (x, &), b(g: (x, §)))s) ,
¢'(1) = 2{vr(x, §), b(g:(x, §)))s.

Hence, by Assumption 2.6 (B1) and (B3), we have the differential inequalities
"(1) <2(p() — Ko+ A) , —0"(t) <2Lo(). (5.1)

The following formula comes from two applications of integration by parts and is
valid for any k € N and for any twice differentiable function g : R — R,

g(())]k ! g/(O)ik 2 / g//(r)a —I’)k 2
S —)
0

T
J— k ==
/Og(’)(T DA =TT TR DG 12 k+ Dk +2)

We also require the following inequalities

sup o(r) < 4(Ixl; + T [£1)° < 8(0(0) + T?¢(0)), (5.3)

r<T

sup p(r) < 8L2T%0(0) 4+ 2(1 + 2LT?)?p(0) < 8L2T2g<0>+§¢<0>, (5.4)

r<T

which follow from Lemma 4.1 and the assumption LT? <1 /48.

Proof of Lemma 2.7 Apply in turn (5.1), then (5.2) with g(r) = o(r), and then (5.1)
again, to obtain

E[[X@[] = Elo) = p© + T Elp' @1+ fo - nE[e 0] dr
< x>+ 2/0T(T —r) E[p(r) — Ko(r) + Al dr
<(1—KT*» x>+ AT? + 2fOT(T —r)E [@(r)]dr
—2KfT uE [0 (r)]dr
]
<(1—KTH x>+ AT> + T*E [rsE;Tw(r)} + éKLT‘* E |:r51<11T)Q(r):|

4 9 4
< (1 — KT?+8L*T* + §KLT“) Ix|> 4+ AT? + (5 + §KLT“) T’E |£)?
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where in the last step we applied (5.3) and (5.4). Since we assume LT? <
(1/48)(K /L), note that 8L>T* < (1/6)K T2, and since also KT> < LT? < 1/4,

E [|x’(x)|f] < (1 - KT2/2) x| + S(trace(CC™) + A)T>

as required. O

6 Proofs of main results

Proof of Theorem 2.10 The parameters y, a and € have been chosen in (2.29), (2.30),
and (2.31) such that the following conditions are satisfied:

yT <1, (6.1)
YR < 1/4, (6.2)

al =1, (6.3)

(Omax [Omin) LT <y /4, (6.4)
€(A + trace(CC™)) = max(1, R/T) e ™*R/T) /160, (6.5)

Indeed, (6.1) and (6.2) hold by selection of y in (2.29); (6.3) holds by selection of a
in (2.30); (6.4) holds because (2.27) implies that

(Omax/Omin) T < min(T~1 /4, R71/16) = y /4 (6.6)

by selection of y in (2.29); and (6.5) holds by selection of € in (2.31).
Letz=x—y,W=¢&-n7r =zl R = [|X'x,y) = Y'(x, ]|, G =
L4 elxl2+ 192, G = 1+ e XS+ YD) F = f(r) and F' = f(R). We
consider separately the cases where » < R and r > R.
(i) Contractivity for r < R. Expand

I=E[F -F, W = -7,

‘ . 6.7)
O=E[F—F, W #—z].

E[F'— F]=1+1, where {

Let Zr = qr(x,&) — gqr(y,n). By Lemma 4.5 (i), Lemma 4.3, (6.4) and (2.28),

I < f'(EIR —r; Wi=—ypzY
- e[| —foiese| sl -] wim
5 1 N .
< f'(r) (_VT+_%LT2+—O’_.1O[T2) ‘C_%Ciz@
8 Omin 4 mn s
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1 5
+ (70T + S0 LT || ) (1— PIW* # —yz])
S

1 ~ 1 s
< —f'(r) (3—zyT ‘C*%sz‘ + %oeTz )zh) )(1 — PIW' £ —yZ']) (6.8)

N N

Moreover, by Lemmas 4.4 and 4.5 (ii),

T V2m T AVar 107

a ()Pt # —y'] < f’(r)%yT Eies

and (6.9)

II

IA

(6.10)

N

where in (6.9) we used (6.2) and in (6.10) we used (6.3) and /27 > 5/2.
Inserting (6.8), (6.9), and (6.10) into (6.7), and using Lemma 4.5 (iii), gives

E[F —F] < f'(r) (—éyT ’5*%6%%(3 — poT’ ‘Zh‘s)

IA

— 15 min(y T, 7% rf'(r)
< _% min(1l, T/(4R), T2) max(1, R/T) efmax(],R/T) £
< —c F. (6.11)

Here we have introduced ¢; := (1/12)T? max(1, R/T)e~ ™>*(LR/T) "and we have
used (2.29), (6.3), and the fact that 72 < min(1, T /(4R)) by (6.6).
Furthermore, by Lemma 2.7,

E[G' — G] < 10€(A + trace(CC*)T? < (3/4)c1G, 6.12)

where in the last step we eliminated € using (6.5).
The Cauchy-Schwarz inequality, (6.11) and (6.12) now imply

Elp(X', Y] = EIVF'G'] < VEIF1/EIG'] (6.13)
<V —c)FJ(1+3c1/4HG < J1—c1/4FG
< exp (—c1/8) p(x, ), (6.14)

where in the last step we used 1 — x < e™* with x = ¢ /4.

(ii) Contractivity forr > R.In this case, by (2.24) and (2.26), we have |x| +y[? >
40(A + trace(CC™*))/K, and we can apply the Foster—Lyapunov drift condition in
(2.25) to (6.13) to obtain

2 1/2

Elp(X'. Y] < VFVE[G] < VF (1 te (1 - %) (Ix2 + |y|§))
2 1/2

<VF (1 - ;e(A + trace(CC ™) T2 + € (1 _ %) (x? + |y|§)>
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<(1—c)"p(x.y) < exp(—c2/2) p(x, y) (6.15)
where ¢; := min (KT?/8, T? max(1, R/T)e™mx(1LR/T) /64).

(iii) Global Contraction. Let ¢ := min(c1/8, c2/2) = c2/2. By combining the
bounds in (6.14) and (6.15), we see that for any x, y € H*,

E[p(X", YNl <e “p(x,y).
O
Proof of Corollary 2.12 The Wasserstein contraction in (2.34) follows directly from
Theorem 2.10, see e.g. [9, Corollary 2.8] for a similar result. The bound in (2.35) then
follows from (2.34) by comparing p to the metric on H*. Indeed, recall that by (2.23)

and (2.30), f(r) = (1 — e~ ™MnCR/TYT Tetx,y € H*, and let r = [|x — yll,-
Suppose first that » < T. Then f(r) > r/e, and thus

p(x,y) = fr) = Jrie = r/VeT > |x — yl, min(opin, @)/veT

where in the last step we used (2.21). Now suppose that 7 > 7. Then since also R > T
by assumption, f(r) > (1 — e~ )T, and thus we obtain

p(.y) = VU —e DTe e +1y2 = (- e hTe21x -y,

Combining both cases and noting that by (2.28), « > 0,,i,, we see that
|x — yl, < max (\/eT/omm, «/z/\/(l — e—l)Te) p(x,y) forall x,y,

which implies an analogue bound for the corresponding Wasserstein distances /*:!
and W,. Conversely, since f(r) < T forall r,

plx,y) < ﬁ\/1+e|x|§+e|y|2. < VT + Jelxl + elyly) forallx,y.
Therefore, with C defined by (2.36), we obtain

Wl r ) = wolorh, ur®y < ™12 w,wn*, ux®)
<CT 2 W,(0, ) < C(1+VeMi(v) + VeMi(w) e

for all k € N and all probability measures v on 7. Finally, by Lemma 2.7 and (2.31),
we have /e M () < (1/4)K~1/2e=R/CT), 0
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7 Proofs of results from Sect. 3 (applications)
7.1 Proofs of results for TPS

To prove Theorem 3.2, we compare the eigenvalues of C to C. Note that these eigen-
values each have multiplicity d, and to account for this, define the index function
@(k, j) = d(k — 1) 4 j. Then the eigenvalues of C are

T \2 )
)‘w(k,j)=<g), keN, 1<j<d, (7.1

and the eigenvalues of C are

A ) U S Ty By (7.2)
i) = 1 s = s S=K=m, = =da. .
ek =*own \ Gran ) % T 2m 1D /

The following lemma helps estimate the error of the eigenvalues of the approximation
C relative to those of C.

Lemma7.1 Foranym € N, forall 1 <k <m, and for1 < j <d,

k22 72
ED [Apk, j) — 2ot )| = Aok, j) — Aok, j) = A<p<k,j>6(m T2 bm )2

A 1/2 A 1/2 2
@ () (o) ()
Agk, j) Aok, j) 16(m + 1)

Proof This lemma is an easy consequence of the elementary inequalities

1 62 sin(9) 0 02 5
-—<l—-—x< <1 and 1 < — <l4+— <= (7.3)
2 6 0 sin(6) 4 3

which are valid for 0 < 6 < 7/2. Indeed, (7.1), (7.2) and (7.3) imply

Ao,y = 2o, )| = Mok, j) — Aok, j)

0 2
= Ayt i k 1
e ((sin(ew) )
_ N O _
= o)) (sin(@k) + 1) (sin(@k) 1)

k2x? 72

YD Gm+ 1?2 T 6(m + 1)?

<202 =2

as required for (E1). For (E2), we use (7.2) to write

( Ay )”2_( A )l/zsin(ek) 6,
Ay, j) Ao (k. j) O sin(@)"
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Hence, by (7.3),

Al 12 Al 12 912 A 12 2
Aok = ) = U T fom+ 12
ok, j) ok, j) ek, j) m

as required for (E2). O

Proof of Theorem 3.2 This result is an application of Corollary 2.12. Since C is a finite-
dimensional matrix, Assumption 2.1 holds for C with s = 0, and since we choose
C = C, Assumption 2.5 also holds with s = 0. Therefore, to apply Corollary 2.12,
it suffices to check that: (i) Assumption 2.6 holds with dimension-free constants L,
n, K, and A, (ii) the dimension-free R defined in (3.6) satisfies condition (2.24), and
(iii) the dimension-free condition (3.10) on the duration 7" implies (2.27) holds. We
then invoke Corollary 2.12 to conclude convergence in the standard L' Wasserstein
distance.
Verify Assumption 2.6 (BI)-(B3). For (B1), note that

[b(x) —b(y)l < (1 +A1Lg)|x — yl
< (14+20Lo)lx — yl = (1 +2(z* /7)) Lg)lx — y|
where in the last step we used Lemma 7.1 (E1) which implies that A; — A} <
amm?/(6(m + 1)%) < Aq since m > 1. Thus, (B1) holds with L = 1 + « since
k = 2(t?/n?)Lg. For (B2), since n = myd = ¢(mg,d), n + 1 = @(my + 1, 1) and

1" (x) + x" = b"(y) — y"| < Apn,+1.LaIx — ¥l
< dgme+1,HLG1x = I+ (Apne+1,1) — Apme+1,0)Llx — ¥l
< 2hpme+1.nLglx =yl < (1/3)|x — y|

where in the second to last step we used
Agmp+1,1) = dgmet1,1) < ApGmp+1,1) (e + D22 /(6(m + 1)?) < Agomet1,1)

which follows from Lemma 7.1 (E1) since m > (m, + 1)r/2, and in the last step, we
used that my + 1 > /6L t/m. Hence, (B2) holds with n = md. For (B3),

—[x|? + [X[|CVG (%) < —(1/2)[x]* + (1/2)|CV G (x)|?
—(1/2)|x1> + (1/2)A?MET < —(1/2)|x|> + 23t M}

(x, b(x))

IA

A

where in the last step we used
A} =33 =2h1 (A1 — A1) + (A — A% <4

which follows from (E1) since m > 1. Thus, (B3) holds with K = 1/2 and
A = MtMZ = (v /7*)M},. To summarize, Assumption 2.6 holds with dimension-
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independent constants L = 1 + x, n = myd where m; = Lmj, K =1/2, and
A= (T /nhME.

Verify Conditions (2.24) & (2.27). To show that R defined in (3.6) satisfies condi-
tion (2.24) and that condition (3.10) on the duration parameter implies condition (2.27),
in this paragraph we gather some additional bounds. Since m; < +/3k, we have

Omar = A 1) = dr 1y (S0, ) /On) < mem/T < /6L, (14)
o) = AP =P 40P O /sin0) — 1) <20F =21/, (15)

ﬂ‘ll}’l

where in (7.4) and (7.5) we used (7.3). Moreover, by Lemma 7.1 (E2),

A 1/2 2 172 >
Omax _ ( 1 ) < ( 1 ) (1 + 7'[—2> <2my (7.6)
Omin Agme,1) Aome,1) 16(m + 1)

since m > 1 and \/A1/Ay(m,,1) = my¢, and by Lemma 7.1 (E1),

md
trace(C) < trace(C) + Z(A,’ — X)) < trace(C) + (dt%/6) m/(m + 1)?
i=1
< 2trace(C) = dt2/3, since trace(C) = d12/6. 7.7)

Let R,, = 8v40(A + trace(C))'/20,ax LK ~'/? denote the RHS of (2.24). Then
using (7.4), (7.7), L = 1 +«, K = 1/2,and A = M%7’ /7*, we have
2 <128 x 40 x 6L (1 + x)>((x /7Y MZ + trace(C))
m — G

<256 x 20 x k(1 + ) (3(r3/n2)Mé n dnz)

<256 x 2072k (1 + «)*((r/m)* M% + d) = R?

which implies that R defined in (3.6) satisfies (2.24). Moreover, by (7.6),

Imax 1 < 2my(1 4 k) < 243%(1 + ). (7.8)

Omin

Inserting (7.8) into the LHS and RHS of (2.27) gives (3.10). Thus, whenever T satisfies
condition (3.10) then condition (2.27) holds.

Invoke Corollary 2.12. By Corollary 2.12 and using K = 1/2, as long as T satisfies
(3.10),

WO s ) < Cne™* (14 JemMi o) + (1/8)e™F/ED) - (7.9)
holds with the dimension-free rate in (3.7) and the constants:

Cpn = max(ZTGmm, 23(A + trace(C)) /2Ry,

7.10
em = (1/160)(A + trace(C))_le—R/T ) ( )
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These dimension-dependent constants can be upper bounded by dimension-free con-
stants C and € given in (3.8) and (3.9), by using A = (‘L’S/JT4)M2, (7.5) and (7.7).
Thus, (3.11) holds. O

7.2 Proofs of results for PIMD

To prove Theorem 3.5, we compare the eigenvalues of C; to C;. The leading eigenvalue
of C, has multiplicity d, while all of the other eigenvalues have multiplicity 2d. If m
is odd, then the leading eigenvalue of both C, has multiplicity d, while all of the other
eigenvalues of C; have multiplicity 2d. However, if m is even, then the trailing and
leading eigenvalues of C, have multiplicity d, while all of the other eigenvalues of of
C, have multiplicity 2d. To account for these multiplicities, it is helpful to define the
index function

J ifk=1 1=<j=d,

k, j) =
D= otk —2 4 j+d ifk>1. 1<) <2d.

For any k € N, the eigenvalues of C, are

a~! iftk=1, 1<j<d,
N o= 1
Motk S ifk>1, 1<) <2d (7.11)
a+wp
Forallm e Nand k € {1, ..., [(m + 1)/27}, the eigenvalues of C, are
a~! ifk=1, 1<j<d,
Ao, j) = 1 ifk>1&k #5+1, 1<j<2d, (7.12)
a+orsin?(Op) /07 |ifk =% +1, 1<j<d,
Here we have introduced
k—1 4(k — 1)%7?
o= FTDT W? = Ak —Dfm” (7.13)

’32

Note that the definition in (7.12) includes odd or even values of m. The following
lemma estimates the error of the eigenvalues of Cj, relative to those of C,.

Lemma7.2 Foranym € Nandk € {1,...,[(m + 1)/2]},

ED |Apk.1) = 2otk = Api1) — Aok 1) < Aok, 1)267-

A 12 ) 1/2
@ () =G)
Agk,1) Aok, 1)

Proof This lemma is an easy consequence of the inequalities in (7.3). For k = 1, (E1)
and (E2) trivially hold since Ay, 1) = Apk,1) = a—!.Fork > 1, (7.12), (7.11), and
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(7.3) imply
1Age, ) = Aot pl = Aok, jy = Aok, )
- ([a + w2 sin2(00) /021" = ho. j>)
< ([a +w? — w202/317" = A, ,)) since sin?(6)/62 > 1 — 62/3
= Aotk ) ([1 — wp7/B@+ o)™ — 1)

< Ao B2 /3(1 = 67 /37
< )L(p(k,j)ZGkZ as required for (E1).

For (E2) with k > 1, by (7.12), (7.11), and (7.3),

2 a2 2
A :]+ﬂw§l+%:)\_].
Apik.j a a etk
Taking square roots of both sides then gives (E2). O

Proof of Theorem 3.5 This proof is very similar to the Proof of Theorem 3.2 with some
differences which are highlighted below.

Verify Assumption 2.6 (BI)-(B3). Since both C, and C, have leading eigenvalue
a—!', (B1) holds with L = 1 + 6a~'Lg. Similarly, (B3) holds with K = 1/2 and
A = (1/2)BrIME = (1/2)Ba=2M2. Moreover, (B2) holds with n = 2m¢d —d =
o(mg,d),sincen +1=q@me+1,1),mg > /3Lc/2(B/m), and m > 2mwmy.

Verify Conditions (2.24) & (2.27). By (7.12) and (7.13),

172
Omin =2, opax = B (Ba+am—177%) T < Va+ 6L, (114)

since mg — 1 < +/3Lg/2(B/m). Moreover, by Lemma 7.2 (E2),

o\ 1/2 2 2\ 12 1/2
w 4 —1 6L
Imax <1+%> - (1+M> <1+_G) . (7.15)

Omin ,323

Furthermore, by Lemma 7.2 (E1),

[(m+1)/2]
trace(C,) < trace(Cy) + 2d Z Ak, 1) — Aok, 1))
k=1
dp 2 2
< trace(Ca) + dB* = + 4,/a ( " evah — 1) ap
<2d@ + 8% (710

where in the last step we used 1 + 2/(e2x — 1) < x+ x~ ! valid for all x > 0.
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Let R,, = 8/40(A + trace(C))'/?0,0x LK ~1/? denote the RHS of (2.24). Using
L=1+4+6a"'Lg, K =1/2, A= (1/2)(B/a*>)MZ, (7.14), and (7.16),

Ry,

IA

128 x 40a(1 + 6Lga )3 ((1/2)Ba M2 +2d(B> +a~ 1))
256 x 20(1 + 6Lga~ 1) ((1/2),3a’1M(2; +2d(B%a + 1))

A

<256 x 20(1 4 «)* ((1/2)ﬂa—1M§; +2d(B%a + 1)) = R,

which implies that R defined in (3.18) satisfies (2.24). Moreover, by (7.15),

(U’”—x> L<(1+x)¥2 (7.17)

Omin

Inserting (7.17) into (2.27) gives (3.22).

Invoke Corollary 2.12. By Corollary 2.12, as long as T satisfies (3.22), (7.9)
holds with the dimension-free rate in (3.19) and the constants in (7.10) with C
replaced with C,. Moreover, the dimension-dependent constants in (7.10) can be upper
bounded by dimension-free constants C and € given in (3.20) and (3.21), by using
A = (1/2)BM%a=2, (7.14) and (7.16). Thus, (3.11) holds for the transition kernel of
(3.17). O
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