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A semiclassical analysis shows that in the process of black hole formation and evaporation, an initial
pure state will evolve to a mixed state, i.e., information will be lost. One way of avoiding this conclusion
without invoking drastic modifications of the local laws of physics in a low curvature regime would be for
the information to be restored at the very end of the evaporation process. It is normally envisioned that this
would require a final burst of particles entangled with the early time Hawking radiation. This would imply
the emission of an extremely large number of particles from an object of Planck size and mass and would
appear to be blatantly ruled out by energy considerations. However, Hotta, Schutzhold, and Unruh have
analyzed a (1þ 1)-dimensional moving mirror analog of the Hawking process and have found that, in this
model, information is restored via entanglement of the early time Hawking radiation with vacuum
fluctuations in the spacetime region to the future of the event where the mirror returns to inertial motion. We
analyze their model here and give a precise formulation of this entanglement by introducing the notion of
“Milne particles.”We then analyze the inertial particle and energy cost of such an entanglement of Hawking
radiation with vacuum fluctuations. We show that, in fact, the entanglement of early time Hawking
radiation with vacuum fluctuations requires the emission of at least as many late time inertial particles as
Hawking particles. Although the energy cost can be made small in the (1þ 1)-dimensional mirror system,
this should not be the case for the (3þ 1)-dimensional evaporating black hole system. Thus, vacuum
entanglement has the same difficulties as the more usual burst scenarios for attempting to avoid information
loss.
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I. INTRODUCTION

The complete gravitational collapse of a body in clas-
sical general relativity is believed to always result in the
formation of a black hole. As discovered by Hawking [1],
particle creation will occur in the vicinity of the black hole
and result in a thermal flux of particles to infinity. In a
semiclassical analysis, this particle flux is described by an
exactly thermal density matrix due to the entanglement of
the Hawking particles reaching infinity with “particles”
inside the black hole [2]. The fact that the Hawking
radiation is in a mixed state before the black hole has
evaporated is not generally considered to be problematic,
since the full quantum state (including the degrees of
freedom (d.o.f.) inside the black hole) is pure. However, the
loss of energy of the black hole due to Hawking radiation
should result in its complete evaporation within a finite
time. In a semiclassical analysis, all that remains after black
hole evaporation is the mixed state of the Hawking
radiation. Thus, semiclassically, an initial pure state will
evolve to a mixed state. For reasons I have not been able to

understand during the course of the past 40 years, this is
widely viewed as being highly problematic. The conflict
between this view and the semiclassical analysis is referred
to as the black hole information loss paradox.
If in order to avoid the conclusion of information loss,

the semiclassical picture that gives rise to this conclusion
must be modified. As reviewed in [3], there are four basic
logical possibilities for doing so: (I) No black hole actually
forms in collapse, e.g., there is tunneling to a “fuzzball” [4].
(II) Major departures from semiclassical theory occur
during the evaporation process, e.g., the event horizon is
converted to a “firewall” [5]. (III) The semiclassical
analysis remains valid until the black hole reaches the
Planck scale, but then the black hole stops evaporating,
leaving behind a “remnant” that keeps the total state pure.
(IV) The semiclassical analysis remains valid until the
black hole reaches the Planck scale, and all of the
“information” stored within the black hole then comes
out in a “final burst.”
Possibilities (I) and (II) require general relativity and/or

quantum field theory to fail catastrophically in a low
curvature regime, where, a priori, one would expect these
descriptions to be valid. If the “remnants” of possibility*rmwa@uchicago.edu
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(III) do not interact with the outside world, it is not clear
what good is done by having “information” present that is
inaccessible; if they do, then they should be thermody-
namically favored over all other types of matter and
presumably should be spontaneously produced at a high
rate. Finally, if the “final burst” of possibility (IV) consists
of emission of particles that are entangled in an ordinary
way with the Hawking radiation particles, then an object of
Planck mass and Planck size would have to emit as many
particles—each, presumably, of Planck frequency—in the
burst as there were particles in the Hawking radiation. This
is not energetically possible.
However, several years ago, an analysis by Hotta,

Schutzhold, and Unruh [6] suggested that there may be
a different way of implementing possibility (IV). These
authors considered the model of a mirror in (1þ 1)-
dimensions that starts in inertial motion and then accel-
erates in such a manner as to emit exactly thermal
Hawking-like radiation for a long period of time. The
mirror then becomes inertial again. This is an entirely
“unitary” process—no black hole or singularity is present—
so the full state of the quantum fieldmust be pure at all times.
The purity of the state during the emission process while
the mirror is accelerating can be understood as a conse-
quence of entanglement of the Hawking radiation with
“partner particles” that are present outside of the mirror.
These partner particles eventually enter the region to the
future of the event at which the mirror becomes inertial
again; they then “bounce off” the mirror and go back out
to infinity at late times. However, the state of the quantum
field in the region to the future of the event at which the
mirror becomes inertial is indistinguishable from the ordi-
nary vacuum state for that inertial mirror. In a sense that will
be made more precise in this paper, these “partner particles”
are, in fact, merely vacuum fluctuations in this region. Thus,
in this model, the Hawking radiation is “purified” by its
entanglement with vacuum fluctuations in the future region.
There is no obvious energy cost to doing this. In the review
[3], we considered such vacuum entanglement to be a
“potentially viable” way of avoiding information loss in
black hole evaporation.
The main purpose of this paper is to analyze the inertial

particle and energy cost of the sort of vacuum entanglement
with Hawking radiation that occurs in the model of Hotta,
Schutzhold, and Unruh [6]. Although there is no “direct
cost” of this entanglement in that all of the “information”
about the Hawking radiation is stored in late time vacuum
fluctuations, there is an “indirect cost” in that these vacuum
fluctuations can no longer be correlated with other vacuum
fluctuations that they would have been correlated with in
the global vacuum state. We will show that this implies that
the number of inertial particles emitted at late times must be
at least as large as the number of Hawking radiation
particles emitted at early times. In the (1þ 1)-dimensional
mirror model, the energy of these late time particles can be

made very small by “turning off” only the acceleration of
the mirror (i.e., keeping its velocity unchanged rather than
returning it to rest) in the final inertial era. However,
if a similar vacuum entanglement occurs in the (3þ 1)-
dimensional evaporating black hole case, causality requires
that these particles emerge from a Planck scale region near
the evaporation event. It follows that for evaporating black
holes, the particle and energy cost of information restora-
tion via vacuum entanglement is the same as for the usual
burst scenario. Thus, we conclude that vacuum entangle-
ment does not provide a viable way of avoiding information
loss for evaporating black holes.
In Sec. II, we briefly review the notion of “particles” in

quantum field theory and the freedom in their definition.
In Sec. III, we consider (1þ 1)-dimensional Minkowski
spacetime and show how the Minkowski vacuum can be
alternatively described in terms of both Rindler particles
and Milne particles. In Sec. IV, we describe the key features
of the moving mirror model of Hotta, Schutzhold, and
Unruh [6]. In Sec. V, we give a precise description of the
final “out” state in this model, using an unconventional
notion of “particles.” In Sec. VI, we then consider the
ordinary inertial particle content of the “out” state and show
that there must be at least as many inertial particles at late
times as there were Hawking particles at early times. If the
mirror is brought to rest at late times, we show that the late
time inertial particles must carry much more energy than
the energy emitted in Hawking radiation. However, we
show that if the acceleration is merely turned off at late
times without changing the velocity of the mirror, then
these particles will carry very little energy. Finally, in
Sec. VII, we consider an analogous vacuum entanglement
of Hawking radiation particles for an evaporating black
hole in (3þ 1)-dimensions. The analogous vacuum entan-
glement also requires the emission of at least as many
inertial particles at late times as there were Hawking
particles at early times, but in this case the inertial particles
must be of Planck scale energy. Thus, the purification of
Hawking radiation by entanglement with vacuum fluctua-
tions in the final Minkowski region suffers from exactly the
same problems as the usual “final burst” scenarios for
avoiding information loss.
We restrict consideration in this paper to the theory of a

free, real, massless Klein-Gordon scalar field. The scale
invariance of this theory will play an essential role in our
analysis.

II. THE DEFINITION OF “PARTICLES” IN
QUANTUM FIELD THEORY

Quantum field theory is—as its name suggests—the
quantum theory of fields. “Particles” do not play any
fundamental role in the formulation of quantum field
theory. This fact becomes particularly evident in the study
of quantum field theory in a general, nonstationary, curved
spacetime, where there are many inequivalent ways to
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define a notion of “particles,” and no way appears “pre-
ferred.” Well defined physical predictions can be made by
directly considering the field observables and their cou-
pling to other systems, without introducing a notion of
“particles.”
Nevertheless, a natural and very useful notion of “par-

ticles” can be defined in stationary, globally hyperbolic
spacetimes. In essence, for a massless Klein-Gordon field,
one defines defines a “one-particle Hilbert space” H as the
positive frequency solutions to the Klein-Gordon equation

∇a∇aϕ ¼ 0 ð1Þ

with finite Klein-Gordon norm

jjψ jj2KG ¼ 2Im
Z
Σ
ψ̄na∇aψdΣ ð2Þ

where the bar denotes complex conjugation and the integral
is taken over a Cauchy surface Σ with unit normal na. One
can then define a Fock space F ðHÞ associated with this
one-particle Hilbert space. Finally, one defines the quantum
scalar field operator ϕ on F ðHÞ in terms of annihilation
and creation operators on this Fock space. Details of this
construction can be found, e.g., in Sec. 4.3 of [7]. States in
F ðHÞ have a natural particle interpretation, which corre-
sponds to the effects on a quantum mechanical system
(“particle detector”) resulting from interaction with the
quantum scalar field.
The requirement that the spacetime be stationary (with a

globally timelike Killing field) was needed in the above
construction in order to define the notion of “positive
frequency solutions” and to ensure positivity of the Klein-
Gordon norm, Eq. (2). However, the above construction
will work mathematically if one can define any subspace,
P, of smooth, complex solutions to the Klein-Gordon
equation satisfying the following properties: (i) The
Klein-Gordon product Eq. (2). is positive-definite on P.
(ii) The complex conjugate subspace P̄ is orthogonal to P
in the Klein-Gordon product, i.e., for any ψ1;ψ2 ∈ P we
have

Im
Z
Σ
ψ1na∇aψ2dΣ ¼ 0: ð3Þ

(iii) P and P̄ are suitably “complete” in the sense that any
smooth solution, χ, to Eq. (1) with initial data of compact
support can be written as χ ¼ ψ1 þ ψ̄2 with ψ1;ψ2 ∈ P.
Given a subspace P satisfying (i)–(iii), one can defineH to
be the completion of P in the Klein-Gordon norm Eq. (2).
One can then define F ðHÞ and the field operator ϕ on
F ðHÞ as in the previous paragraph. States in F ðHÞ are, of
course, automatically labeled by “particle content,” but
“particles” defined in this manner do not correspond to how
a physical “particle detector” system would behave under
interactions with the quantum field—except in the case of a

stationary spacetime with P chosen to be the positive
frequency solutions.
If one makes two different allowed choices of subspace,

P1, P2, one will obtain two different constructions
ðF ðH1Þ;ϕ1Þ, ðF ðH2Þ;ϕ2Þ of Hilbert spaces and quantum
field operators defined on these Hilbert spaces. One may
ask whether these constructions are unitarily equivalent,
i.e., whether there exists a unitary map U∶F ðH1Þ →
F ðH2Þ such that ϕ2 ¼ Uϕ1U−1. If such a U exists, then
the constructions differ only by a labeling of states in terms
of “particles.” If there were only finitely many linearly
independent solutions of the Klein-Gordon equation (1)—
i.e., if ϕ had only a finite number of “modes”—then unitary
equivalence would always hold. However, since there are
infinitely many modes of ϕ—and thus P andH are always
infinite dimensional—unitary equivalence of different con-
structions need not hold.
If ðF ðH1Þ;ϕ1Þ and ðF ðH2Þ;ϕ2Þ are unitarily equivalent,

it is not difficult to explicitly solve for the unitary map
U∶F ðH1Þ → F ðH2Þ (see, e.g., Sec. 4.4 of [7]). However,
even when ðF ðH1Þ;ϕ1Þ and ðF ðH2Þ;ϕ2Þ are not unitarily
equivalent, one can write down a formal expression for
UΨ1 for any Ψ1 ∈ F ðH1Þ. This formal expression will
involve a divergent sum over infinitely many particle
modes in F ðH2Þ. The divergence of this expression reflects
the fact that no state in F ðH2Þ corresponds exactly to Ψ1

with respect to all field observables.
An interpretation of the formal, divergent expression for

UΨ1 for the case of unitarily inequivalent constructions,
ðF ðH1Þ;ϕ1Þ and ðF ðH2Þ;ϕ2Þ, can be given as follows.
Although no state in F ðH2Þ corresponds exactly to Ψ1 for
all field observables, if one is interested only in a finite
number of field observables, one can suitably truncate the
divergent expression forUΨ1 to obtain a normalizable state
in F ðH2Þ that provides an arbitrarily good approximation1

to Ψ1. In the following sections, we will give formulas for a
state in one representation written as a formal expression
for a state in a unitarily inequivalent representation. These
formulas should be interpreted in the above manner.
The fact that there are (infinitely many) inequivalent

Hilbert space constructions of the theory—and, in general
spacetimes, no construction appears to be “preferred”—
provides the main motivation for formulating the theory via
the algebraic approach. In the algebraic approach, one starts
with an algebra of field observables and defines states as
positive linear functionals on this algebra. The Gelfand-
Naimark-Segal (GNS) construction then shows that every
state in the algebraic sense can, if fact, be realized as a
Hilbert space vector in some representation of the field
algebra. Thus, the algebraic approach allows all states in all
Hilbert space constructions of the theory. It enables one to

1For the case where the field observables are bounded
operators with the structure of a C�-algebra, this statement can
be formulated in a precise manner via Fell’s theorem [8].
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formulate the theory without the awkwardness of effec-
tively being forced to arbitrarily choose a particular Hilbert
space construction from the outset. In the algebraic
approach, one can see clearly that divergent expressions
for states such as we will encounter below are not a
difficulty of the theory but rather an artifact of trying to
write a state as a vector in a Hilbert space representation to
which it does not belong.

III. RINDLER AND MILNE PARTICLES IN (1 + 1)-
DIMENSIONAL MINKOWSKI SPACETIME

Consider a massless Klein-Gordon scalar field in
(1þ 1)-dimensional Minkowski spacetime, ðR2; ηabÞ.
Minkowski spacetime possesses a globally timelike trans-
lational symmetry, which can be used to define a notion of
“positive frequency solutions,” which, in turn, can be used
to define a notion of “particles” and a corresponding Fock
space construction of the quantum field theory. In fact,
however, infrared divergences arise in this construction: For
test functions f∶R2 → R for which

R
d2xf ≠ 0, the pos-

itive frequency part of the advanced minus retarded
solution with source f has infinite Klein-Gordon norm,
Eq. (2). We will deal with this issue, in the Fock space
construction, by defining the smeared field operator, ϕðfÞ,
only for test functions f for which

R
d2xf ¼ 0. This

restriction will be of no consequence for our considerations
below.
Minkowski spacetime also possesses Lorentz boost

symmetry. The Lorentz boost Killing field is given in
terms of global inertial coordinates ðt; xÞ by

ba ¼ κ½xð∂=∂tÞa þ tð∂=∂xÞa� ð4Þ
where we have chosen to normalize ba so that baba ¼ −1
on the worldline with acceleration a ¼ κ. In terms of the
null coordinates

u ¼ t − x; v ¼ tþ x ð5Þ
we have

ba ¼ κ½−uð∂=∂uÞa þ vð∂=∂vÞa�: ð6Þ

The boost Killing field is null on the two “Rindler
horizons,” i.e., the two null straight lines u ¼ 0, v ¼ 0
passing through the origin. The Rindler horizons divide
Minkowski spacetime into 4 wedges, as illustrated in
Fig. 1. The orbits of the boost Killing field ba are future-
directed timelike in “Rindler wedge I” and are past-directed
timelike in “Rindler wedge II.”We can treat each of wedge
I and wedge II as a stationary, globally hyperbolic space-
time in its own right. We can thereby perform the stationary
quantization construction described in the previous section
in wedges I and II, using ba and −ba, respectively, to define
a notion of “time translation symmetry.” The notion of
“particles” thereby obtained in wedges I and II corresponds

to the response of a “particle detector” following an orbit of
ba, i.e., to the particle content “seen” by a uniformly
accelerating observer.
Let HI denote the one-particle Hilbert space obtained in

Rindler wedge I using the boost Killing field, ba, to define
“positive frequency” there. Similarly, let HII denote the
one-particle Hilbert space obtained in Rindler wedge II
using −ba (which is future directed in wedge II) to define
“positive frequency” there. The key fact that underlies the
Unruh effect is as follows: Let fIω be a wave packet in
region I that is positive frequency with respect to ba, with
frequency peaked sharply about ω. Let fIIω be the wave
packet in region II obtained by wedge reflection of fIω
followed by complex conjugation, i.e., in wedge II (i.e., for
u > 0 and v < 0) we define

fIIωðu; vÞ ¼ f̄Iωð−u;−vÞ: ð7Þ

Then fIIω is positive frequency with respect to −ba in
wedge II. It follows that

F1ω ¼ fIω þ e−πω=κf̄IIω ð8Þ
and

F2ω ¼ fIIω þ e−πω=κf̄Iω ð9Þ
are purely positive frequency with respect to inertial time
(see, e.g., Sec. 5.1 of [7]). This implies that the Minkowski
vacuum j0iM is given in terms of Rindler particles by2 [7]

j0iM ¼ Πi

�X
n

e−nπωi=κjniiIjniiII
�
: ð10Þ

Here the product Πi is taken over a basis ffiIg of HI, jniiI
denotes the state of n Rindler particles in the mode fiI, and
jniiII denotes the state of n Rindler particles in the mode
fiII. Thus, j0iM consists is an entangled state of Rindler
particles in wedges I and II. When restricted to a single

FIG. 1. (1þ 1)-dimensional Minkowski spacetime, divided
into the wedges I, II, III, and IV.

2The right side of eq. (10) does not define a normalizable state
in F ðHIÞ ⊗ F ðHIIÞ. This formula should be interpreted in the
manner described near the end of Sec. II.
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Rindler wedge j0iM is precisely a thermal state at temper-
ature T ¼ κ=2π. This latter fact holds much more generally
(i.e., not just for a free field), as implied by the Bisognano-
Wichmann theorem [9].
From the point of view of an inertial observer, the Rindler

particles that are present in theMinkowski vacuum state j0iM
can be interpreted as a manifestation of the presence of
vacuum fluctuations. The excitation of a particle detector
carried by an accelerating observer would be viewed by an
inertial observer as having been caused by a vacuum
fluctuation. The entanglement between Rindler particles in
wedges I and II seen in Eq. (10) is a manifestation of the fact
that vacuum fluctuations in wedges I and II are correlated.
The above result expressing the Minkowski vacuum in

terms of Rindler particles is very well known. It is much
less well known—but, nevertheless, not unknown (see, e.g.,
Sec. IVof [10])—that for scale invariant fields, such as the
massless Klein-Gordon field, a similar quantization can be
performed in wedges III and IV of Fig. 1. Here we use the
dilation conformal Killing field

ka ¼ κ½tð∂=∂tÞa þ xð∂=∂xÞa� ¼ κ½uð∂=∂uÞa þ vð∂=∂vÞa�
ð11Þ

to define a notion of time translation symmetry in wedge
III, and we use −ka in wedge IV. In this case, it is essential
that the quantum field be scale invariant, since otherwise ka

would not define a symmetry. We have chosen the
(arbitrary) normalization of ka to correspond with our
(arbitrary) normalization of ba. Note that wedges III and
IV are (1þ 1)-dimensional Milne universes [11], i.e., they
are Friedmann-Lemaitre-Robertson-Walker (FLRW) mod-
els, with the orbits of ka defining the FLRW observers and
with the hyperbolas orthogonal to ka defining the FLRW
time slicing. The time coordinate associated with ka is the
usual FLRW conformal time coordinate.
We can define the one-particle Hilbert space HIII for

wedge III as the solutions in that wedge that are positive
frequency with respect to ka. We can similarly define HIV
for wedge IVas the solutions in that wedge that are positive
frequency with respect to −ka. We will refer to this
quantum field construction in wedges III and IV as
“Milne quantization” and will refer to the elements of
HIII and HIV as “Milne particles.” Although “Rindler
particles” in wedge I could be detected in a straightforward
manner using a rigid particle detector carried by an
accelerating observer, a particle detector of “Milne par-
ticles” in wedge III would need to expand with the Milne
observers and be coupled to the field in a scale invariant
manner.
In fact, the Milne positive frequency solutions in wedges

III and IV coincide precisely with the Rindler positive
frequency solutions in wedges I and II. Specifically, a left-
moving Rindler particle mode in wedge I will cross the
horizon at x ¼ t with x > 0 and become a Milne particle

mode in wedge III. Similarly, a right-moving Milne particle
mode in wedge IV becomes a Rindler particle mode in
wedge I, a left-moving Milne particle mode in wedge IV
becomes a Rindler particle mode in wedge II, and a right-
moving Rindler particle mode in wedge II becomes a Milne
particle mode in wedge III. These results follow immedi-
ately from the fact that, by inspection, ba ¼ ka when x ¼ t,
whereas ba ¼ −ka when x ¼ −t. By definition, a Rindler
particle mode in wedge I is a solution in wedge I that
positive frequency with respect to ba. A left moving Rindler
particle mode in wedge I will propagate through the horizon
x ¼ t, x > 0 that forms the boundary between wedges I and
III. On the horizon, the modewill be positive frequency with
respect to ba. But since ka ¼ ba on the horizon, it is also
positive frequency with respect to ka on the horizon. It then
follows immediately that the solution will be positive
frequency with respect to ka throughout wedge III, as
claimed. The other claims follow similarly. Thus, if we
decompose the one-particle Hilbert spacesHI,HII,HIII, and
HIV into their left and right moving parts, we have

HIL ≡HIIIL;HIR ≡HIVR;HIIL ≡HIVL;HIIR ≡HIIIR:

ð12Þ
It follows immediately from Eq. (12) that the relationship

between inertial positive frequency solutions and positive
frequency solutions with respect to “Milne time” in wedges
III and IV is exactly the same as the relationship between
inertial positive frequency solutions and positive frequency
solutions with respect to Rindler time in wedges I and II.
Consequently, using Eq. (10), we can immediately write
down the following expression for the Milne particle
content of the Minkowski vacuum

j0iM ¼ Πi

�X
n

e−nπωi=κjniiIIIjniiIV
�

ð13Þ

Here jniiIII is a state of n Milne particles in wedge III
in mode fiIII that is sharply peaked near frequency
ωi, whereas jniiIV is the corresponding state of n Milne
particles in wedge IV in the mode, fiIV, obtained by
reflection of fiIII through the origin followed by complex
conjugation. Again, the product over a basis of such modes
is taken. Thus, j0iM is an entangled state of Milne particles
in wedges III and IV. When restricted to a single Milne
wedge, j0iM is precisely a thermal state of Milne particles
at temperature T ¼ κ=2π. This result also is a consequence
of the Hislop-Longo theorem [12]. As in the Rindler
case, from the point of view of an inertial observer, the
Milne particles that are present in the Minkowski vacuum
state j0iM would be interpreted as a manifestation of the
presence of vacuum fluctuations. The entanglement of the
Milne particles in wedges III and IV seen in Eq. (13) would
be interpreted as a manifestation of the correlations in
vacuum fluctuations in wedges III and IV.
Using Eq. (12), we may also write Eq. (10) in terms of

right and left moving particles as

PARTICLE AND ENERGY COST OF ENTANGLEMENT OF … PHYS. REV. D 100, 065019 (2019)

065019-5



j0iM ¼ Πi;j

�X
n

e−nπωi=κjniiIIIRjniiIR
�

×

�X
m

e−mπωj=κjmijIIILjmijIIL
�

ð14Þ

This shows that in the Minkowski vacuum, the right
moving Milne particles in region III are entangled with
corresponding right moving Rindler particles in region I
(across the horizon x ¼ t), whereas left moving Milne
particles in region III are entangled with left moving
Rindler particles in region II (across the horizon x ¼ −t).
Finally, we comment that for Minkowski spacetime of

dimension d > 2, the boost Killing field ba is timelike in
the wedges I and II defined by the null planes t ¼ �x.
Rindler quantization can again be carried out in these
wedges, and the Minkowski vacuum again can be
expressed in terms of Rindler particles by Eq. (10). On
the other hand, the dilation conformal Killing field ka is
timelike in the future and past null cones t ¼ �r. For a
massless scalar field, Milne quantization can again be
carried out in these future and past light cones, and the
Minkowski vacuum can again be expressed in terms of
Milne particles by Eq. (13). However, it is only in 1þ 1
dimensions that the null planes and null cones coincide, so
that the Rindler and Milne particles can be identified. Thus,
although Eqs. (10) and (13) hold in Minkowski spacetime
of any dimension, Eqs. (12) and (14) hold only in (1þ 1)-
dimensions.

IV. THE MOVING MIRROR SPACETIME OF
HOTTA, SCHUTZHOLD, AND UNRUH

We turn now to consideration of the moving mirror
spacetime considered by Hotta, Schutzhold, and Unruh [6].
The set-up is illustrated in Fig. 2. The thick black line
represents the trajectory of a mirror in (1þ 1)-dimensional
Minkowski spacetime. The motion of the mirror can be
divided into the following 3 eras:
(1) At early times, t < −C (with C > κ, with κ being the

constant appearing in Eq. (15) below), the mirror is
at rest at x ¼ 0.

(2) At u ¼ −C, the mirror begins to accelerate to the
left. After a transition period (shown as a sharp
corner in the figure, but the actual transition is
assumed to be smooth), the mirror follows a trajec-
tory given in terms of the null coordinates v ¼ tþ x
and u ¼ t − x by

v ¼ −
1

κ
e−κu: ð15Þ

It follows this trajectory starting at retarded time u ¼
0 and continuing until u ¼ u1, where κu1 ≫ 1. Note
that this trajectory asymptotes to the null line v ¼ 0.

(3) Beginning at u ¼ u1, the mirror begins transitioning
back to inertial motion, and it is assumed to have
become inertial by the retarded time u ¼ u0 at which
the mirror trajectory intersects the null line v ¼ 0.
(The line v ¼ 0 is shown in Fig. 2 as the black
dashed line with slope −1; the line u ¼ u0 is shown
as the black dashed line with slopeþ1.) In Fig. 2 the
mirror is shown as returning to rest at late times, but
all that is necessary is that the mirror be inertial for
v > 0. Indeed, a case of interest in our analysis will
be one where the velocity of the mirror remains very
large at late times. The return to inertial motion is
assumed to be smooth, even though it is depicted as
a sharp transition in Fig. 2.

A massless quantum scalar field is assumed to be present
in the spacetime to the right of the mirror and to satisfy
Dirichlet boundary conditions at the mirror. In the initial
period, where the mirror is at rest, the scalar field is
assumed to be in its ground/vacuum state for the
Minkowski half-space with a static mirror. Our analysis
of the behavior of the scalar field in this spacetime will be
based upon the following two key observations:

(i) By assumption, the mirror is in inertial motion for
u ≥ u0. Consider the spacetime region u > u0, i.e.,
the region lying above the black dashed line with
slope þ1 shown in Fig. 2. We claim that the state of
the quantum field in this region is identical to that of
the ground/vacuum state for the given inertial
motion of the mirror in this region. To see this,
we note that the backwards in time propagation of
the field starting from any event in the region u > u0

FIG. 2. The moving mirror spacetime of Hotta, Schutzhold, and
Unruh (see text).
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is determined by the past-directed null geodesics
starting in this region. The null geodesics that move
towards the right (going backward in time) go
directly to past null infinity. The null geodesics that
move towards the left (going backwards in time)
bounce off the mirror when it is in its final inertial
state and then go to past null infinity. Thus, none of
the null geodesics starting in the region u > u0 “see”
the noninertial motion of the mirror. It follows that
the quantum field ϕ also does not “see” the non-
inertial motion, i.e., all of the correlation functions
hϕðx1Þ…ϕðxnÞi of the quantum field in the region
u > u0 are identical to the correlation functions that
would occur if the mirror was in its final inertial
motion at all times.

(ii) Consider a wave packet hðuÞ at future null infinity of
(inertial) positive frequency peaked near ω that
emerges at a retarded time corresponding to the
era when the mirror undergoes the motion Eq. (15),
as illustrated in Fig. 2. Propagate this wave packet
backwards in time. This wave packet will “bounce
off” of the mirror and become a wave packet with
time dependence at past null infinity that goes as

h̃ðvÞ ∼ expð−iωuðvÞÞ ∼ exp

�
i
ω

κ
lnð−κvÞ

�
: ð16Þ

Thus, the blueshift of the wave packet resulting from
its reflection by the mirror is the same as would
occur if the wave packet propagated near the horizon
of a black hole of surface gravity κ in the Hawking
effect—which is why the mirror motion Eq. (15) was
chosen. Thus, by the same analysis as originally
given for the Hawking effect [1,2], the mirror will
emit Hawking radiation to Iþ during the era 0 <
u < u1 where its motion is given by Eq. (15). Note
that if we identify the region v < 0 of I− in fig. 2
with the portion v < 0 of I− of Fig. 1 corresponding
to the Milne wedge IV, then for the normalization of
ka given by Eq. (11), h̃ðvÞ has frequency ω with
respect to Milne time −κ−1 lnð−vÞ.

V. VACUUM ENTANGLEMENT OF HAWKING
RADIATION IN THE MOVING MIRROR

SPACETIME

We now consider particle creation in the spacetime of
Fig. 2. To do so, we need definitions of “ingoing particles”
at past null infinity, I−, and “outgoing particles” at future
null infinity, Iþ. We have a natural notion of (inertial) time
translation symmetry at both I− and Iþ and, of course, it
would be completely standard to use the positive frequency
solutions with respect to inertial time at I− and Iþ to
define ingoing and outgoing particle states. We will indeed
use the standard definition of ingoing particles at I−, i.e.,
we define Pin (see Sec. II) to be the subspace of solutions

that are positive frequency with respect to v at I−, and we
define Hin to be the corresponding one-particle Hilbert
space. In the next section, we will be concerned with the
inertial particle content of the outgoing state, and in that
section we will define Pout andHout in the usual manner in
terms of the solutions that are positive frequency with
respect to u at Iþ. However, in this section, it will be very
useful for analyzing the entanglement of the Hawking
radiation emitted by the mirror to use a nonstandard
definition, H0

out, of outgoing particles at Iþ. Basically,
we wish to defineH0

out by (i) using the usual inertial notion
of particles—i.e., positive frequency solutions with respect
to u—at early and intermediate times with u ≪ u0;
(ii) using the Rindler notion of particles—i.e., positive
frequency with respect to −κ−1 ln ju − u0j—for u < u0
with u ∼ u0; and (iii) using the Milne notion of particles
—i.e., positive frequency with respect to κ−1 lnðu − u0Þ—
at late times, u > u0. We cannot do this literally/exactly
because any solution that is positive frequency with respect
to u cannot vanish in any open region in u and thus cannot
vanish identically in the region where we wish to use the
Rindler and Milne notion of particles. Nevertheless, we can
define H0

out to be given by the subspace, P0
out, of solutions

(see Sec. II) spanned by: (a) Wave packets that are positive
frequency with respect to inertial time, u, that reach Iþ at
u ≪ u0 and have negligible “tails” extending to u ≳ u0.
(We may then slightly modify these wave packets to make
them strictly vanish for u≳ u0.) (b) Wave packets that reach
Iþ at times near u0 with u < u0 and are purely positive
frequency with respect to Rindler time, −κ−1 ln ju − u0j.
(c) Wave packets that reach Iþ at times u > u0 and are
purely positive frequency with respect to Milne time,
κ−1 lnðu − u0Þ. (d) An arbitrary choice of additional sol-
utions needed to “complete” P0 so that it satisfies con-
ditions (i)–(iii) of Sec. II. Thus, as desired, elements ofH0

out
correspond to ordinary inertial particles for u ≪ u0, cor-
respond to Rindler particles for u ∼ u0 with u < u0, and
correspond to Milne particles for u > u0. Note that since we
may take u0 to be arbitrarily large, the regime u ≪ u0 may
be assumed to include an arbitrarily long era where the
mirror undergoes acceleration given by Eq. (15).
We now calculate the particle creation occurring in the

spacetime of Fig. 2. Nontrivial particle creation with
respect to our notion of “in” and “out” particles starting
from j0iin occurs if a solution in Pin does not lie entirely in
P0

out, i.e., if, after evolution to Iþ, it has a part lying in P̄0
out.

We are primarily concerned with the properties of the
Hawking radiation emitted at 0 < u ≪ u0 while the mirror
undergoes the motion Eq. (15). To analyze this, we proceed
in the same manner as used to analyze particle creation by
black holes [1,2]: We start with a normalized (i.e., unit
Klein-Gordon norm) positive frequency wave packet, hðuÞ,
at Iþ that is composed of frequencies near ω and that is
localized in time during the “intermediate era” where
Eq. (15) holds, but with u ≪ u0. We propagate this wave
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packet backwards into the past, where it reflects off of the
mirror and evolves to the wave packet h̃ðvÞ at I−, as
illustrated in Fig. 2. As already noted above, the wave
packet h̃ðvÞ will have time dependence given by Eq. (16),
and thus will be purely positive frequency (with frequen-
cies peaked near ω) with respect to Milne time in the region
v < 0. The wave packet h̃ðvÞ will not be positive frequency
with respect to v. However, define the wave packet f̃1ðvÞ
on I− by reflecting h̃ðvÞ about v ¼ 0 and then taking its
complex conjugate

f̃1ðvÞ ¼ ¯̃hð−vÞ: ð17Þ

Then f̃1 is purely positive frequency with respect to Rindler
time for v > 0, and will have unit Klein-Gordon norm. By
exactly the same calculation as led to Eqs. (8) and (9)
above, we find that the quantities

F̃1ðvÞ ¼ f̃1ðvÞ þ e−πω=κ ¯̃hðvÞ ð18Þ

and

F̃2ðvÞ ¼ h̃ðvÞ þ e−πω=κ ¯̃f1ðvÞ ð19Þ

are purely positive frequency with respect to inertial time v.
If we propagate the solution given by the data h̃ðvÞ at I−

forward in time, we will, of course, get back the original
wave packet hðuÞ at Iþ. This outgoing solution lies in P0

out.
If we propagate the solution given by f̃1ðvÞ at I− forward
in time, it will reflect off the mirror while the mirror is in
inertial motion, given by

v ¼ αðu − u0Þ ð20Þ

where α ¼ ð1þ VÞ=ð1 − VÞ, where V is the final velocity
of the mirror. The resulting wave packet f1ðuÞ, at Iþ will
therefore have time dependence of the form

f1ðuÞ ¼ − ¯̃hð−vðuÞÞ ∼ exp½−iω=κ lnðκαðu − u0ÞÞ�: ð21Þ

Thus, f1 is purely positive frequency—with frequencies
peaked at ω—with respect to Milne time κ−1 lnðu − u0Þ in
the region u > u0. Thus, f1 also lies in P0

out. Note that by
conservation of the Klein-Gordon inner product, the wave
packet f1 will have unit Klein-Gordon norm.
Let us now evolve the initial positive frequency solutions

F̃1 and F̃2 from I− to Iþ. The solution F̃1 evolves to
f1ðvÞ þ e−πω=κh̄ðvÞ. These two terms give, respectively, its
decomposition into P0

out and P̄0
out. Similarly, F̃2, evolves to

hðvÞ þ e−πω=κf̄1ðvÞ, which also provides its decomposition
into P0

out and P̄0
out. It follows immediately by the same type

of analysis as used to calculate particle creation by black
holes [2] that the “out” state Ψ ∈ F ðHoutÞ takes the form

Ψ ¼
�X

n

e−nπω=κjnihjnif1
�

⊗ Ψ0: ð22Þ

Here jnih is a outgoing state of n inertial particles in the
Hawking mode hðuÞ, jnif1 is an outgoing state of n Milne
particles in the mode f1ðuÞ, andΨ0 describes the state of the
system with respect to the modes that are orthogonal to
both h and f1 in our one-particle “out” Hilbert space Hout.
Equation (22) shows that the Hawking particles that are
emitted at u ≪ u0 are entangled with outgoing Milne
particles in the region u > u0. These Milne particles are
the “partner particles” of the Hawking radiation particles in
the sense of [6] (see also [13]). Tracing Eq. (22) over the
Milne particle d.o.f., we see that the Hawking particles are
described by a precisely thermal density matrix at
T ¼ κ=2π. Tracing Eq. (22) over the Hawking particle
d.o.f., we see that the Milne particles also are in precisely a
thermal state at T ¼ κ=2π. As we saw in Sec. III, this fact is
compatible with the fact that the state of the scalar field for
u > u0 is the ground/vacuum state for the final inertial
motion of the mirror.
In the moving mirror spacetime of Fig. 2, there is no

black hole or singularity of any kind present, so there can
be no “information loss.” As in the black hole case, the
Hawking radiation is emitted in a mixed thermal state. As
seen from Eq. (22), the “information” needed to purify the
Hawking radiation emerges to infinity in the form of Milne
particles at late times (u > u0), i.e., after the mirror has
returned to inertial motion. As discussed in Sec. III,
from the inertial point of view, a thermal distribution of
Milne particles corresponds to vacuum fluctuations. Thus,
Eq. (22) can be interpreted as saying in a precise sense
that the Hawking radiation is entangled with vacuum
fluctuations, i.e., in the moving mirror spacetime of
Fig. 2, the information needed to purify the Hawking
radiation is contained in the vacuum fluctuations of the
quantum field that are present in the late time region
u > u0.

VI. THE INERTIAL PARTICLE AND ENERGY
COST OF VACUUM ENTANGLEMENT

The discussion at the end of the previous section may
suggest that the purification of the Hawking radiation in the
moving mirror spacetime Fig. 2 is “cost free” with regard to
(inertial) particles and energy. The vacuum fluctuations in
the region u > u0 provide an infinite reservoir of “infor-
mation” to entangle with the Hawking radiation. Yet, this
vacuum region contains no energy and no apparent inertial
particle content. Thus, it might appear that the Hawking
radiation can be purified without requiring a “final burst” of
inertial particles and without requiring the emission of
energy.
However, we will now show that, in fact, there is a large

cost in inertial particle emission. Specifically, the number
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inertial particles that must be emitted near u ∼ u0 is at least
as great as the total number of Hawking particles that were
emitted during the phase where the mirror motion was
given by Eq. (15). The basic reason why this is so can be
understood as follows: In the outgoing state jΨi of Eq. (22),
the Milne particles in mode f1 are entangled with the
Hawking particles in mode h. However, according to
Eq. (14), in the vacuum state, the Milne particles in mode
f1 would be entangled with corresponding Rindler particles
in mode f2—where f2 is obtained by reflecting f1 on Iþ
about u ¼ u0 and then taking its complex conjugate, i.e.,

f2ðu − u0Þ ¼ f̄1ðu0 − uÞ: ð23Þ
But the Rindler particles in mode f2 cannot be entangled
with the Milne f1-particles since the f1-particles are
already entangled with Hawking particles. Thus, the
Rindler particles in mode f2 cannot be in a state where
they can be interpreted as vacuum fluctuations. Inertial
particles must be present.
The considerations of the previous paragraph can be

made precise as follows. We are interested in the inertial
particle content of the outgoing state jΨi of Eq. (22). Thus,
we wish to express jΨi as a state in F ðHoutÞ, whereHout is
the usual one-particle Hilbert space of solutions that are
positive frequency with respect to inertial time u at Iþ. The
relationship between F ðHoutÞ and F ðH0

outÞ is given by a
Bogoliubov transformation. A key observation concerning
this Bogoliubov transformation is that—by the same
calculation as in Eqs. (8)–(9) and Eqs. (18)–(19)—the
“late time” outgoing solution3

F1ðuÞ ¼
f1ðuÞ þ e−πω=κf̄2ðuÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − e−2πω=κ
p ð24Þ

is purely positive frequency with respect to inertial time.
Let a; a† denote the annihilation and creation operators on
F ðHoutÞ and let b; b† denote the annihilation and creation
operators on F ðH0

outÞ. Equation (24) implies that

aðF1Þ ¼
bðf1Þ − e−πω=κb†ðf2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − e−2πω=κ
p ð25Þ

Consequently, the expected number of outgoing inertial
particles in mode F1 is given by

hNðF1Þi ¼ hΨja†ðF1ÞaðF1ÞjΨi

¼ 1

1 − e−2πω=κ
½hΨjb†ðf1Þbðf1Þ

− e−πω=κb†ðf1Þb†ðf2Þ − e−πω=κbðf1Þbðf2Þ
þ e−2πω=κbðf2Þb†ðf2ÞjΨi� ð26Þ

From the form of Ψ, Eq. (22), it follows immediately that
hΨjb†ðf1Þb†ðf2ÞjΨi ¼ hΨjbðf1Þbðf2ÞjΨi ¼ 0, i.e., the
middle two terms on the right side of Eq. (26) vanish.
The last term on the right side of Eq. (26) is manifestly
positive. Thus, we obtain

hNðF1Þi >
1

1 − e−2πω=κ
hΨjb†ðf1Þbðf1ÞjΨi

> hNðf1Þi ¼ hNðhÞi ð27Þ
Here hNðf1Þi is the expected number of Milne particles in
mode f1 in the outgoing state Ψ of Eq. (22), and the last
equality reflects the fact that this is equal to the expected
number of Hawking particles in mode h. Thus, the expected
number of inertial particles emitted in mode F1 always is
larger than the expected number of Hawking particles
emitted in mode h. Since this is true for all Hawking
particles—or, at least, those emitted at u ≪ u0—the total
number of non-Hawking inertial particles emitted at late
times must be greater than the total number of Hawking
particles emitted.
We now consider the energy cost of the emission of these

late time inertial particles. Since the mode Fi1 associated
with the Hawking mode hi is not an eigenstate of inertial
energy and since the different Fi1 modes may overlap at
Iþ, we do not know of a simple way to obtain a rigorous
lower bound on the total energy EB associated with late
time emission. Nevertheless, if we let eðFi1Þ denote the
classical energy of the mode Fi1 and we let NðFi1Þ denote
the expected number of particles emitted in mode Fi1, then
the formula

EB ∼
X
i

NðFi1ÞeðFi1Þ ð28Þ

should provide a reasonable estimate of the non-Hawking
emitted energy. Since we already know that there are at
least as many Fi1-particles as Hawking particles in mode
hi, the key issue is how large eðFi1Þ is. This can be
estimated as follows:
Consider a Hawking mode hiðuÞ that is localized near

retarded time ui at Iþ, where 0 < ui < u1, so the mirror
motion is given by Eq. (15) at this retarded time. When
propagated backwards into the past, this Hawking mode
will bounce off the mirror near advanced time vi ¼
−1=κ expð−κuiÞ. The (forward in time) velocity of the
mirror at this time is

Vi ¼ −
1 − e−κui

1þ e−κui
: ð29Þ

After it bounces off the mirror in its backward in time
evolution, the frequency of the wave packet with respect to
inertial time will be blueshifted by the factor

1 − Vi

1þ Vi
¼ expðκuiÞ: ð30Þ3We have inserted the factor of ½1 − expð−2πω=κÞ�−1=2 in

Eq. (24) so that F1 will have unit Klein-Gordon norm.
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Thus, the wave packet h̃iðvÞ at I− will be composed of
inertial frequencies peaked around

ω̃i ¼ ωi expðκuiÞ ð31Þ

where ωi is the peak frequency of the original Hawking
wave packet hiðuÞ at Iþ. The wave packet f̃i1ðvÞ at I− will
therefore also have inertial frequencies peaked about ω̃i.
Now, suppose that the mirror returns to rest at u ¼ u0.

Then when the wave packet f̃1ðvÞ is propagated forward
and bounces off the mirror at u > u0, there will be no
change in the inertial frequencies of this wave packet.
Consequently, the Milne particle wave packet fi1ðuÞ at Iþ
will also have inertial frequencies peaked about ω̃i,
eq. (31). The Rindler particle wave packet fi2ðuÞ will also
have inertial frequencies peaked about ω̃i. Thus, the inertial
mode Fi1 will have energy

eðFi1Þ ∼ ω̃i ¼ ωi expðκuiÞ: ð32Þ

For κui ≫ 1, this is enormously greater than the energy, ωi,
of the original Hawking mode hiðuÞ. Thus, if the mirror
returns to rest at u ¼ u0, there will be an enormous burst of
energy emitted at u near u0 associated with the purification
of the Hawking radiation. This burst of energy is much
greater than the total energy emitted in Hawking radiation
during the entire era where the mirror undergoes the
motion Eq. (15).
However, suppose that instead we simply turn off

the acceleration at some time u1 with u1 < u0 (but with
κu1 ≫ 1 as we have been assuming), e.g., suppose that for
0 < u < u1 the mirror motion is given by Eq. (15), but for
u > u1 the mirror motion is given by

v ¼ −
1

κ
e−κu1 þ e−κu1ðu − u1Þ: ð33Þ

Then the final velocity, Vf of the mirror will be

Vf ¼ −
1 − e−κu1

1þ e−κu1
: ð34Þ

Consequently, when the wave packet f̃i1ðvÞ is propagated
forward in time and bounces off the mirror at u > u0, its
inertial frequencies will be redshifted by the factor
expð−κu1Þ. Thus, the Milne particle wave packet fi1ðuÞ
at Iþ will have inertial frequencies peaked about
ωi exp½−κðu1 − uiÞ�. In this case, the inertial particle mode
Fi1 will have energy

eðFi1Þ ∼ ωi exp½−κðu1 − uiÞ�: ð35Þ

Consequently, the energy required to purify the Hawking
radiation in this case is much less than total energy emitted

in the Hawking radiation, i.e., it should be possible to
purify the Hawking radiation at a negligible energy cost.
It should be noted that the above redshifts and blue-

shifts also have a corresponding effect on the time spread of
the wave packets. If the Hawking wave packet hiðuÞ has
time spread Δui ≳ 1=ωi about ui at Iþ, then the corre-
sponding wave packet h̃i at I− will have spread of order
Δui expð−κuiÞ about vi ¼ −κ−1 expð−κuiÞ. In the case
where the mirror returns to rest for u > u0, it follows that
the mode Fi1 at Iþ will be peaked near u − u0 ¼
�κ−1 expð−κuiÞ with spread of order Δui expð−κuiÞ.
Thus, assuming that κui ≫ 1, the purification of the
Hawking radiation occurs in a “final burst” that is highly
localized near u ¼ u0. However, in the case where
the mirror follows the trajectory Eq. (33) for u > u0, the
mode Fi1 at Iþ will have a time spread of order
Δui exp½κðu1 − uiÞ�, so the purification of the Hawking
radiation will occur over a very long period of time. It also
should be noted that in this case the modes Fi1ðuÞ will be
sufficiently spread out in time that they will significantly
overlap with each other,4 so interference effects may be
important and the estimate Eq. (28) may not be reliable.
The above conclusions on the energy cost of purifying

the Hawking radiation can be confirmed from the formula
for energy emission associated with moving mirror motion.
For a mirror moving on the general trajectory

v ¼ pðuÞ ð36Þ

the energy flux to Iþ is given by [14]

Tuu ¼
1

16π

��
p00

p0

�
2

−
2

3

p000

p0

�
ð37Þ

where the primes denote derivatives with respect to u.
During the era where the mirror trajectory is given by
Eq. (15), the energy flux is given by

Tuu ¼
1

48π
κ2 ð38Þ

which corresponds to a thermal energy flux of Hawking
radiation at temperature T ¼ κ=2π. Since the mirror fol-
lows the trajectory Eq. (15) for 0 < u < u1, the total energy
radiated in Hawking radiation is

EH ¼ 1

48π
κ2u1: ð39Þ

4Indeed, they may even overlap with the early time Hawking
emission, resulting in possible inconsistencies in our definition of
H0

out
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We can return the mirror to rest at u ¼ u0, v ¼ 0 by
having it follow the trajectory5

pðuÞ ¼ −
�
1

κ
þ 1

α

�
e−κu1 þ e−κu1

1

α
eαðu−u1Þ ð40Þ

for u1 < u < u0, where α is a constant and the coefficients
in Eq. (40) were chosen so as to match the mirror position
and velocity of Eq. (15) at u ¼ u1. In order that v ¼ 0 at
u ¼ u0 we must have pðu0Þ ¼ 0, so we require

1

α
ðeαðu0−u1Þ − 1Þ ¼ 1

κ
: ð41Þ

In order that the mirror be at rest when v ¼ 0, u ¼ u0, we
must have p0ðu0Þ ¼ 1, so we also require

eαðu0−u1Þ ¼ eκu1 : ð42Þ
These relations imply that

α ¼ κðeκu1 − 1Þ ≈ κeκu1 ð43Þ
where we have used κu1 ≫ 1. We also have

u0 ≈ u1ð1þ e−κu1Þ: ð44Þ
The mirror is then assumed to follow the inertial trajectory
pðuÞ ¼ u − u0 for u > u0.
For the motion Eq. (15) followed by Eq. (40), and then

followed by inertial motion, pðuÞ and p0ðuÞ are continuous,
but p00ðuÞ is discontinuous at u ¼ u1 and u ¼ u0. These
discontinuities yield δ-function contributions to Tuu,
Eq. (37). Taking these contributions into account, we have
for u1 ≤ u ≤ u0,

Tuu ¼
1

48π
α2 −

1

24π
ðαþ κÞδðu − u1Þ þ

1

24π
αδðu − u0Þ:

ð45Þ
Thus, the total energy radiated in the “burst” between u1
and u0 is

EB¼
Z

u0

u1

Tuudu¼
1

48π
α2ðu0−u1Þ−

1

24π
κ≈

1

48π
κ2u1eκu1 :

ð46Þ
Thus, we have EB=EH ≈ expðκu1Þ ≫ 1. This is in accord
with the estimate that would be obtained from our particle
analysis [see Eq. (32)].
On the other hand, we can return the mirror to inertial

motion by simply setting the acceleration of the mirror to
zero at u ¼ u1, without changing its velocity, i.e., by

having the mirror follow the trajectory Eq. (33) for
u > u1. In that case, the only contribution to the energy
flux for u ≥ u1 arises from the discontinuity in p00 at
u ¼ u1, which yields

Tuu ¼ −
κ

24π
δðu − u1Þ: ð47Þ

Consequently, the magnitude of the resulting (negative)
integrated energy flux is ∼κ, which is far less than the total
Hawking energy flux Eq. (39).
In summary, the purification of the Hawking radiation in

the moving mirror spacetime of Fig. 2 always requires the
emission of at least as many late time inertial particles as
the total number of Hawking particles emitted. In the case
where the mirror returns to rest by v ¼ 0, this requires a late
time burst of energy far larger than the total energy
contained in the Hawking radiation. However, in the case
where the mirror transitions to inertial motion without
changing its velocity, the purification of the Hawking
radiation can occur with negligible energy cost.

VII. VACUUM ENTANGLEMENT IN BLACK
HOLE EVAPORATION

As discussed in the Introduction, if the semiclassical
description is valid until the final (Planck scale) stage of
black hole evaporation and if information is not lost in
the process of black hole formation and evaporation, then
the information stored within the black hole during the
evaporation process must emerge at the final Planckian
stage. The moving mirror example that we have analyzed in
the previous sections suggests an interesting possibility as
to how this might occur.
Figure 3 is a conformal diagram of a black hole that

forms by gravitational collapse and subsequently evapo-
rates by emission of Hawking radiation, leaving behind
empty, flat spacetime. (Note that there is considerable
distortion of distances and times in Fig. 3.) Figure 3 differs
from the usual depiction of black hole evaporation in that
the thick line we have labeled as “high curvature” normally
would be shown as a singularity, and the final moment of
evaporation normally would be depicted as a point rather
than a sphere of order Planck radius lP. (A new “origin of
coordinates” would then normally be depicted as emerging
from the evaporation event.) In such a usual spacetime
depiction of black hole evaporation, information would
necessarily be lost into the singularity. In order to avoid
information loss without modifying the semiclassical
description until Planck scale curvatures are reached, we
must replace the singularity by a high curvature regime
through which the quantum fields—or whatever describes
matter and gravity in this regime—can propagate, as we
have done in Fig. 3.
The spacetime path of a Hawking mode hðuÞ of inertial

frequency ω is depicted in blue in Fig. 3. Just as in Fig. 2,
the backward in time propagation of hðuÞ yields the mode

5We chose the form of pðuÞ in Eq. (40) because extremization
of Eq. (37) suggests that the motion that minimizes the total
energy emission should be such that p0ðuÞ depends exponentially
on u. We believe that Eq. (46) below should provide a good
estimate of the minimum energy emission needed to return the
mirror to rest at v ¼ 0, but we have not attempted to prove this.
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h̃ðvÞ at I− (not shown in Fig. 3), although now the change
in inertial frequency from hðuÞ to h̃ðvÞ is produced by the
gravitational blueshift associated with the collapse rather
than produced by a Doppler blueshift from reflection by a
mirror. The reflection of h̃ðvÞ about v ¼ 0 at I− (where
v ¼ 0 is the advanced time at which the horizon forms)
yields a “partner mode,” whose spacetime path is shown in
red in Fig. 3. In a semiclassical analysis, the Hawking
particle will be entangled with this partner mode. As in the
mirror case, the Hawking radiation is in a mixed, thermal
state. If the partner mode were to propagate into a
singularity, then the final state of the quantum field would
be mixed, i.e., information would be lost. However, if,
instead, the partner mode were to propagate through a high
curvature regime and out to infinity as illustrated in Fig. 3,
then information loss could be avoided.
We do not know the physics that would apply in the high

curvature regime of Fig. 3, so we do not know the fate of
the partner mode if/when it propagates through the high
curvature region. But an interesting possibility is that—just
as in the mirror spacetime of Fig. 2—it becomes a Milne
mode of Milne frequency ω in the final Minkowski region.
(Note that the future of the evaporation “event” at r ∼ lP
depicted in Fig. 3 is essentially a future light cone of
Minkowski spacetime—with a Planck radius sphere instead
of a point at the vertex of the cone.) In that case, in analogy
with Eq. (22), for any Hawking mode hðuÞ, the final “out”
state would be of the form

Ψ ¼
�X

n

e−nπω=κjnihjnif1
�

⊗ Ψ0 ð48Þ

where f1 denotes the Milne particle mode entangled with
the Hawking mode h. In other words, if Eq. (48) holds, then
the information stored within the black hole during its
evaporation would emerge at the end of the evaporation
process as vacuum fluctuations in the Minkowski region
that are entangled with the Hawking radiation.
In our review [3], Unruh and I considered this possibility

to be a potentially viable way of restoring information in
black hole evaporation. However, the analysis of the
particle and energy cost of vacuum entanglement in the
moving mirror spacetime with final state of the form
Eq. (22) can be taken over directly to the black hole
spacetime with final state of the form Eq. (48). By the same
analysis as given in Sec. VI, the final state Eq. (48) must
contain as many late-time inertial particles as the total
number of Hawking particles emitted during the evapora-
tion process. In the mirror case, we could make the total
energy associated with these late time particles very small
compared with the energy emitted in Hawking radiation
by turning off the acceleration of the mirror at the end of
the Hawking process without changing its velocity, so
that the late time particles have extremely low inertial
frequencies. However, there is no plausible analog of this
in the black hole case. By causality, the Milne modes f1
depicted in Fig. 3 must emerge from a Planck scale region
of the final Minkowski portion of the spacetime. The
inertial frequencies of these modes therefore must be of
essentially Planck scale, and the corresponding inertial
particles must be of essentially Planck energy. Unlike the
moving mirror case, there is no “external agent” who can
supply this energy. Thus, the final state Eq. (48) is not
energetically possible.
In summary, the purification of Hawking radiation

via entanglement with vacuum fluctuations in the final
Minkowski region provides an interesting possibility for
avoiding information loss. However, our analysis shows
that—just as in other previously considered scenarios
where the information emerges in a “final burst”—it
requires the emission of as many Planck scale inertial
particles as Hawking particles and it is not energetically
possible.
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FIG. 3. A spacetime diagram of a black hole that forms by
gravitational collapse and evaporates with no information loss
(see text).
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