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Abstract. Sticky Brownian motion is the simplest example of a diffusion process that can spend finite
time both in the interior of a domain and on its boundary. It arises in various applications
in fields such as biology, materials science, and finance. This article spotlights the unusual
behavior of sticky Brownian motions from the perspective of applied mathematics, and
provides tools to efficiently simulate them. We show that a sticky Brownian motion arises
naturally for a particle diffusing on R+ with a strong, short-ranged potential energy near
the origin. This is a limit that accurately models mesoscale particles, those with diameters
≈ 100nm−10µm, which form the building blocks for many common materials. We intro-
duce a simple and intuitive sticky random walk to simulate sticky Brownian motion, which
also gives insight into its unusual properties. In parameter regimes of practical interest, we
show that this sticky random walk is two to five orders of magnitude faster than alternative
methods to simulate a sticky Brownian motion. We outline possible steps to extend this
method toward simulating multidimensional sticky diffusions.
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1. Introduction. Sticky diffusion processes are solutions to stochastic differential
equations (SDEs) that can “stick” to, i.e., spend finite time on, a lower-dimensional
boundary. The sticking is reversible, so the process can hit the boundary and leave
again, and while on the boundary it can move according to dynamics that are different
from those in the interior, even when continuously extended to the boundary. A sim-
ple example is a (root-2) Brownian motion that can stick to the origin, called a sticky
Brownian motion, whose forward and backward Kolmogorov equations are identically
∂tf = ∂xxf with boundary condition ∂xf |x=0 = κ∂xxf |x=0, where κ ≥ 0 is a parame-
ter measuring how sticky the boundary is. On the other hand, Dirichlet (f |x=0 = 0),
Neumann (∂xf |x=0 = 0), Wentzell (∂xxf |x=0 = 0), and Robin (∂xf |x=0 = κf |x=0)
boundary conditions lead to stopped, reflected, absorbed, and elastic Brownian mo-
tions, respectively [49].

Discovered in the 1950s by Feller in an attempt to find the most general behavior of
one-dimensional diffusion processes at a boundary [28, 81], sticky diffusions have been
studied in the theoretical mathematical literature for several decades. Probabilists
have studied the construction and properties of sticky diffusions via martingales and
other representations such as random walks in random environments or interacting
particle systems [29, 30, 88, 46, 87, 54, 45, 1, 92, 75, 76, 5], and very recently, sticky
diffusions have been used to expand the scope of probabilistic coupling techniques
[44, 21, 97]. In PDE theory, analysts have studied well-posedness and semigroup
generation for parabolic and elliptic problems with sticky boundary conditions, called
generalized Wentzell or Wentzell–Robin boundary conditions in the PDE literature
[68, 94, 2, 3, 26, 25].

In applications, sticky diffusions arise in a variety of models of physical and nat-
ural processes which are naturally described by a set of variables that can change
dimension. Examples arise in biology, where molecules diffuse near a sticky wall or
cell membrane [32, 38]; in epidemics, [10], where the concentration of pathogens in
an individual can be sticky at concentration level zero; in operations research, as
a particular limit of storage processes modeling queues, inventories, insurance risks,
etc. [39]; and in finance, where the evolution of interest rates can be sticky near zero
[66, 47].

Our own interest is in the dynamics of mesoscale particles, those with diameters
of ≈ 100nm−10µm, which occur widely and form the building blocks of common ma-
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166 NAWAF BOU-RABEE AND MIRANDA C. HOLMES-CERFON

terials like paint, toothpaste, concrete, ketchup, and many others [67]. Such particles
interact attractively over ranges typically much smaller than their diameters [71, 42].
Remarkably, systems with short-ranged interactions are often insensitive to the exact
shape of the attractive well of the interaction potential, with most behavior depending
only on one or two parameters such as some combination of the well depth and well
width [77, 82]. Therefore, it is often effective to model such systems in the sticky
limit, where the well width is taken to zero and the well depth to infinity, such that
the probability of forming a contact remains constant. In this limit the dynamics
of the collection of particles approaches a sticky diffusion process, with a boundary
when a pair of particles are exactly in contact [6, 86, 24, 72, 43, 48]. The sticky
boundary conditions behave in a similar way to holonomic constraints in molecular
dynamics, which eliminate fast bond-length or bond-angle vibrations, and thus re-
veal the molecular structure more clearly and allow a larger time step in simulations
[85].

In the sticky limit, one may be interested in studying the forward and backward
Kolmogorov equations to obtain analytical, asymptotic, or numerical solutions that
give physical insight, or in simulating the sticky processes themselves to obtain path-
wise results. However, neither of these goals is readily attainable. In the first case, this
is because sticky processes are relatively unknown in the applied math community,
and so techniques to study them are rare and usually invented on a case-by-case basis.
Indeed, by and large, applied mathematicians focus on PDEs with classical boundary
conditions, and sticky diffusions are beyond this scope, since their transition proba-
bility measures have a part that is singular with respect to the Lebesgue measure in
the domain. In the second case, the goal is unattainable because there are currently
no methods to simulate a sticky diffusion directly: there is no practical way to extend
existing methods for discretizing SDEs based on choosing discrete time steps, such as
Euler–Maruyama or its variants [51, 36, 7], to sticky processes; a rough explanation
for why this holds is that in these methods one will never hit the boundary exactly.
One can approximate a sticky diffusion by a reflecting diffusion with an artificial force
near the boundary to encourage the particle to stay there when it gets near, but for
a good approximation, the force must be strong and short-ranged. Most SDE solvers
are explicit, especially in molecular dynamics applications where evaluating forces is
the most costly step, so one must take a prohibitively small time step to resolve these
forces, which unfortunately severely limits the timescales one can simulate.

Our aim in this article is twofold: First, we wish to bring the topic of sticky
diffusions and their associated PDEs to the attention of the applied math community,
and to introduce tools to study them from an applied math perspective. To this end,
we show how a sticky Brownian motion arises as a limit of reflected Brownian motions
with a strong short-ranged force at the origin, and we discuss the limiting forward
and backward equations, which must be used with care because of their unusual
boundary conditions (section 2). Second, we wish to introduce a numerical method
to simulate a sticky diffusion that simulates the process directly without introducing
an artificial force, and which allows one to take a relatively large time step. The
method is based on discretizing the increments of the process in space, rather than in
time, and constructing a Markov jump process whose generator locally approximates
the generator of the sticky diffusion (section 3). We derive a Feynman–Kac formula
to show that this Markov jump process can be used to solve certain PDEs to second-
order accuracy in the spatial step. Basic implementations of the two main numerical
approximations used in this paper are provided in Appendix A.
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Throughout the paper we focus on a one-dimensional sticky Brownian motion,
because this illustrates most of the key ideas and its differences from traditional
diffusion processes with a minimum of technical difficulty. We discuss the connection
between our approaches to understanding sticky Brownian motion and those taken
in the earlier probability literature (section 4). We expect the methods we introduce
to be fully adaptable to higher-dimensional diffusion processes and outline the steps
required to do so in the conclusion (section 5).

2. Sticky Brownian Motion. In this section we consider how a sticky Brownian
motion (SBM) arises naturally for a particle diffusing in a potential energy landscape
that has a strong, short-ranged potential well near the origin.1 In turn, this motivates
the generator and the backward and forward Kolmogorov equations for a sticky Brow-
nian motion, equations and operators which require working in an unusual function
space because the transition probabilities will have a singular part.

2.1. Setup. Consider a diffusion process Xε
t on R≥0, depending on a parameter

ε > 0, which solves

(2.1) dXε
t = −∂xU ε(Xε

t )dt+
√

2 dWt ,

with a reflecting boundary condition at the origin. Here Wt is a standard Brownian
motion and U ε(x) : R → R is a function parameterized by ε. If Xε

t is the position
at time t of a particle moving on the real axis, then the force it feels is −∂xU ε(Xε

t ).
Recall that if

∫∞
0
e−U

ε(x)dx < ∞, then e−U
ε(x) is the nonnormalized stationary (or

equilibrium) probability density of Xε
t .

Equation (2.1) is a special case of the Brownian dynamics equations, which are a
good model for the dynamics of mesoscale particles in a fluid [31]. For a more gen-
eral system of particles, Xε

t would be the configuration, a vector of particle positions,
U ε(x), would represent the potential energy of a particular configuration (nondimen-
sionalized by temperature), which is usually a sum of the potential energy between
each pair of particles, and the equations may additionally include a friction tensor,
depending on the configuration and the velocity, modeling hydrodynamic interactions
between particles. We specialize to a single scalar equation and ignore friction, but
still think of U ε(x) as a potential energy that represents the energy of the particle Xε

t

as a function of its distance to another particle. Physically, this equation could be
realized by holding one particle in place at the origin while another particle moves on
a line.

An important point is that for mesoscale particles, U ε(x) ≈ 0 outside an interval
that is very narrow compared to the particles’ diameters [71, 42]. For example, for
particles interacting with a so-called “depletion” interaction [4], the range of the
interaction in a typical experiment was estimated to be about 5% of the particles’
diameters [72]. Therefore, when two particles’ surfaces are within this range of each
other, they stay close together for a long time, but when they are further apart they
don’t feel each other at all, and diffuse independently. An even shorter range is
achieved by particles that interact via sticky single-stranded DNA coated on their
surfaces: here, the range of the interaction is the average radius of a coiled DNA
strand, which is typically around 10nm, about 1% of the diameter of a 1µm particle
[91]. Such DNA-coated particles are studied extensively because the DNA allows

1In sections 2–3, what we call a sticky Brownian motion is traditionally called a root-2 sticky
Brownian motion, because it is scaled by a factor of

√
2 from a traditional Brownian motion. In

section 4 we use sticky Brownian motion to refer to a traditional sticky Brownian motion.
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one to code complex interactions between different types of particles, and hence to
program them to assemble into a great many different materials [69, 12, 91, 84, 96].

2.2. Assumptions on the Potential Energy Function. With these remarks in
mind, we consider a family of potential energy functions (U ε(x))ε>0 with a narrow,
deep attractive well, which becomes narrower and deeper as ε → 0. We consider the
dynamics of Xε

t as ε → 0, and call this the sticky limit. Specifically, we impose the
following assumptions on (U ε(x))ε>0.

Assumption 2.1. For any ε > 0, U ε is a function in C2(R) satisfying
(A1) U ε(x), ∂xU

ε(x), ∂xxU
ε(x) ≤ O(ε) for x ≥ ε;

(A2) U ε(x) possesses a unique local minimum in (0, ε) with minimizer x0 and no
local maximum for x > 0;

(A3) there exists κ ≥ 0 such that

(2.2) lim
ε→0

∫ ε

0

e−U
ε(x)dx = κ .

We briefly comment on the physical interpretation of (A1)–(A3). Assumption
(A1) ensures that the potential and its first two derivatives are negligible outside the
interval (0, ε), which we call the boundary layer. Outside the boundary layer, Xε

t feels
virtually no force and simply diffuses.

Assumption (A2) ensures that the dynamics in (2.1) has at most one timescale
within the boundary layer. A typical timescale for a diffusion process is its mean
first passage time (MFPT) to overcome an energy barrier ∆U . Under Assumption
(A2), the barrier to leaving the interval (0, ε) is the depth of the potential at its
minimum, leading to an MFPT of approximately εe∆U [33]. The assumption rules
out pathological potentials with many large oscillations in the boundary layer, which
would give rise to longer dynamical timescales in the boundary layer.

Assumption (A3) is the one that gives rise to stickiness at the origin. It requires
that the measure of (0, ε) with respect to the weighted Lebesgue measure e−U(x)dx,
or in the language of physics, the partition function for this interval, approaches a
constant. This constant κ determines how sticky the origin is: larger κ means the
process will spend longer near the origin on average. For this reason we call κ the
sticky parameter. Applying Laplace asymptotics to (2.2) shows that

√
2π lim

ε→0

e−U
ε(x0)√

∂xxU ε(x0)
= κ ,

where x0 is the minimizer of U ε(x) in (0, ε). Since for small ε we expect ∂xxU
ε(x0) ≈

−U ε(x0)/ε2, the depth must scale very nearly as |U ε(x0)| ∼ | log ε|, the logarithm of
the width of the potential. This implies the timescale computed from the MFPT for
leaving the boundary layer is εe∆U ∼ O(1). If the scaling of the depth of the well is
larger than | log ε|, then large deviation theory would be more appropriate to describe
the dynamics of the limiting process [14, 37]. However, if the scaling is smaller, then
the limiting process spends no time on the boundary and simply reflects off of it, as
we will see momentarily.

The requirement that U ε have two derivatives is not necessary, but is included to
simplify our calculations and avoid dealing with discontinuities in the coefficients of
(2.1). An example of a potential energy function which doesn’t satisfy this condition,
but which is commonly used to model short-ranged potentials, is the square-well
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Fig. 1 Plots of Morse potential energy functions (see Example 2.2) with parameters κ = 1, De as
indicated in the figure legend, a =

√
πeDe/(κ

√
De), and x0 = 1/a. This choice of parameters

is motivated by the asymptotic condition limε→0

∫ ε
0 e
−Uε(x)dx = κ, where ε = 1/

√
a. The

figure illustrates that in this sticky limit the range of the Morse potential shrinks like ε,
whereas the depth increases but more slowly like | log ε|.

potential.2 By introducing a smooth approximation, we expect our asymptotic results
to hold for a square-well potential as well, though we do not pursue this here.

Assumption 2.1 can be verified for two families of potentials frequently used to
model attractive interactions between mesoscale particles, the Morse and the gener-
alized Lennard–Jones potential energy functions [18, 70, 72, 89, 11, 95].

Example 2.2 (Morse potential). Fix κ ≥ 0, let ε > 0, and consider the potential
energy function defined by

U ε(x) = De(1− e−a(x−x0))2 −De

with parameters a = 1/ε2, x0 = ε2, and De defined implicitly via eDe
√
π

a
√
De

= κ. This

potential is illustrated in Figure 1 for several different values of ε. It has a unique
global minimum at x0 ∈ (0, ε) with depth U ε(x0) = −De, and hence (A2) holds. The
width of the basin of attraction of the minimum is O(a−1) = O(ε2). Moreover, U ε(x)
and all of its derivatives are exponentially small for x ≥ ε, which implies that (A1)
holds. Last, as ε → 0, De → ∞ with parameters chosen as above, straightforward
Laplace asymptotics gives that

lim
ε→0

∫ ε
0
e−U

ε(x)dx

e−Uε(x0)
√

2π√
(Uε)′′(x0)

= lim
ε→0

∫ ε
0
e−U

ε(x)dx

eDe
√
π

a
√
De

= 1 .

Thus, (A3) holds.

2Square-well potentials have the form Uε(x) = Cε for x ∈ [0, ε], Uε(x) = 0 for x > ε, and
Uε(x) =∞ for x < 0, where Cε is a constant that depends on ε.
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Example 2.3 (Lennard–Jones (2m,m) potential). Fix κ ≥ 0, let ε > 0, and
consider the potential energy function defined by

U ε(x) = De

((
1

x− x0 + 1

)2m

− 2

(
1

x− x0 + 1

)m)

with parameters m = 1/ε2, x0 = ε2, and De defined implicitly via eDe
√
π

m
√
De

= κ. This

potential has a unique global minimum at x0 = ε2 with depth U ε(x0) = −De, and hence
(A2) holds. The width of the basin of attraction of the minimum is O(m−1) = O(ε2).
Moreover, U ε(x) and all of its derivatives are exponentially small for x ≥ ε, which
implies that (A1) holds. Similar to the preceding example, one can verify that (2.2)
holds. Hence, Assumption 2.1 is satisfied.

2.3. Dynamics of Xε
t for ε � 1. Consider the dynamics of Xε

t in (2.1) when ε
is small. When Xε

t is far enough away from the origin, it feels no force and simply
diffuses, like a Brownian motion. When Xε

t is within a distance of ε from the origin,
it feels a strong force keeping it near the minimum of U ε for a long time, until an
occasional large fluctuation pushes it out of the range of the force.

How long does it stay near the origin, and does this time remain significant as
ε→ 0? We start by computing the MFPT to escape from a region near the origin.

Lemma 2.4. Let τ ε(x) = E (inf{t ≥ 0 | Xε
t > `, X0 = x ∈ [0, `]}) be the MFPT of

Xε
t out of [0, `] for some ` > 0 with initial condition x ∈ [0, `]. Then

(2.3) lim
ε→0

τ ε(0) = κ`+
`2

2
.

When κ = 0, we recover the MFPT of a reflecting Brownian motion starting at 0.
The time scales as the distance squared, τ ε(0) ∼ O(`2), a traditional diffusive scaling.
When κ → ∞, the MFPT is infinite, consistent with the MFPT of an absorbing
Brownian motion starting at 0. For intermediate κ, the MFPT at the origin scales
as τ ε(0) ∼ O(`), which is a ballistic scaling—slower (for small `) than the diffusive
scaling. Therefore, we expect the limiting probability density near the origin to be
correspondingly large.

Proof. The MFPT τ ε(x) satisfies the boundary value problem

∂x(e−U
ε

∂xτ
ε) = −e−U

ε

on [0, `] with b.c. ∂xτ
ε(0) = 0 and τ ε(`) = 0.

By integrating twice, the semianalytic solution to this equation is given by

τ ε(x) =

∫ r

0

∫ `

x

eU
ε(r)−Uε(s)drds

and at x = 0 we obtain

τ ε(0) =

∫ ε

0

e−U
ε(s)

∫ ε

s

eU
ε(r)drds+

∫ ε

0

e−U
ε(s)

∫ `

ε

eU
ε(r)drds

+

∫ `

ε

e−U
ε(s)

∫ `

s

eU
ε(r)drds .
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Assumptions 2.1 (A1) and (A3) imply that the last two terms converge to the right-
hand side of (2.3), while Assumption 2.1 (A3) implies the first term converges to
0.3

To gain further insight into the dynamics, consider the evolution of the probability
density pε(x, t) of Xε

t . It evolves according to the Fokker–Planck equation

(2.4) ∂tp
ε(x, t) + ∂xj

ε(x, t) = 0 ,

where jε(x, t) = −∂xU ε(x)pε(x, t) − ∂xpε(x, t) is the associated probability current,
or probability flux. The equation is to be solved in the domain x > 0, t > 0 with
boundary condition jε(0, t) = 0 for all t ≥ 0, given initial condition pε(x, 0) = φ(x).

For this one-dimensional problem we could compute pε(x, t) to high accuracy by
solving the PDE (2.4) numerically. However, such an approach won’t work in the high
dimensions characteristic of systems of particles, so to illustrate the difficulties that
may arise, we simulate 106 trajectories of (2.1) numerically and estimate the density
by kernel density estimation. We use a Morse potential for U ε as in Example 2.2, and
a symmetrized Euler–Maruyama (SEM) approximation to solve (2.1), a method that
is first-order weakly accurate for domains with a smooth enough boundary [36, 7].
The method works as follows: given a timestep size δt, we set tk = kδt for k ∈ N≥0,

and compute the approximation X̃k to Xε(tk) as

(2.5) X̃k+1 = |X̃k − ∂xU ε(X̃k)δt+
√

2(W (tk+1)−W (tk))| , X̃0 = x ≥ 0 .

See Appendix A for MATLAB code implementing this method. Unfortunately, when
the Morse potential used is short-ranged and strong, an accurate approximation re-
quires a small time step size: for κ = 1, a ≈ 118 the time step size required for a
qualitatively correct solution is approximately δt ≤ 2.5 × 10−6. Figure 2 shows that
larger time steps fail to see the boundary layer entirely.

Figure 3 plots pε(x, 1) on a log scale for various values of ε and shows that as ε
decreases, pε(x, 1) has an increasingly large peak in density near the origin. Although
the width of the peak decreases, the total probability in the peak remains nearly
constant with ε. Therefore, we expect the probability density to contain a singularity
of the form δ(x) when ε→ 0.

Furthermore, notice that pε(x, 1) is slowly varying for x ≥ ε and rapidly varying
for 0 ≤ x ≤ ε. This suggests using the method of matched asymptotic expansions to
study (2.4) as ε→ 0 [41, 50]. This approach, which is very similar to boundary-layer
theory in fluids, proceeds by finding a local “inner” solution near the origin and a
local “outer” solution far enough away from the origin, and then matching these local
solutions in an intermediate region.

3To see this last point, let x0 be the minimizer of U(s) on [0, ε], and let u∗ = maxs∈[x0,ε] U(s)
be the maximum of the energy to the right of the minimum. By Assumption 2.1 (A2), there is at
most one point x∗ ∈ [0, x0) such that U(x∗) = u∗, and since the energy monotonically increases as
s decreases below x∗, we have −(U(s) − U(r)) ≤ 0 for r ≥ s, s ≤ x∗. For s > x∗, r ≥ s, we have
−(U(s)− U(r)) ≤ −U(s) + u∗. Therefore, by Assumption 2.1 (A3),∣∣∣∣∫ ε

0
e−U

ε(s)

∫ ε

s
eU

ε(r)drds

∣∣∣∣ ≤ ∫ ε

0

∫ ε

s
e0∨(−U(s)+u∗)drds→ 0 as ε→ 0 .D
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Fig. 2 Realizations of SEM (2.5) driven by the same realization of Brownian motion with initial
condition X̃0 = 3, and with Uε(x) defined as the Morse potential in Example 2.2 with
sticky parameter κ = 1, potential depth De = 5, and potential range a ≈ 118. The case
δt = 1.25 × 10−6 (in dark gray) corresponds to a converged numerical solution. However,
when δt = 10−5 (in light gray), the trajectory is indistinguishable from a pure reflecting
Brownian motion (in black). Corresponding empirical densities at t = 1 are shown in the
inset; note the empirical density for δt = 10−5 (in light gray) is on top of the empirical
density of the pure reflecting Brownian motion (in black). This shows that the time step size
requirement for qualitatively correct solutions of (2.5) is stringent. For a quantitative test,
see Figure 6.
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Fig. 3 A plot of the solution to (2.4) with a point mass initial condition at x = 3 and Uε defined as
the Morse potential given in Example 2.2 with sticky parameter κ = 1 and potential depths
De as indicated in the figure legend. The horizontal axis is a log scale and shows that the
probability densities change rapidly near 0, but are otherwise slowly varying. The small kinks
in the plot are due to Monte Carlo error.D
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2.4. Asymptotics of the Probability Density in the Sticky Limit. We pursue
the method of matched asymptotic expansions to show that the leading-order proba-
bility density of Xε

t (leading-order in the sense of a measure) is

(2.6) %(x, t) = p(x, t)(1 + κδ(x)) ,

where p(x, t) solves

(2.7) ∂tp = ∂xxp with b.c. κ∂xxp = ∂xp at x = 0 ,

with a given initial condition p(x, 0) = φ(x). We assume that φ is continuously
differentiable on [0,∞) and that φ and φ′ are bounded on [0,∞); these assumptions
guarantee that (2.6) is well-posed [80, Theorem 1]. Equations (2.6) and (2.7) are
the main results of this section, and describe the evolution of probability of a sticky
Brownian motion [28].

To derive these equations we adopt a formal approach to highlight the main ideas,
but we expect that the argument could be turned into a more rigorous proof of weak
convergence by the interested reader.

Let us make the ansatz that the solution to (2.4) away from the origin (x ≥ ε),
or the outer solution, and the solution near the origin (x ≤ ε), or the inner solution,
have the asymptotic expansions, respectively,

pε(x, t) ∼

{
p0(x, t) + p1(x, t) + · · · , x > ε ,

q0(x, t) + q1(x, t) + · · · , x ≤ ε ,
(2.8)

where p0(x, t) and q0(x, t) are the leading-order terms in the expansions, and p1 � p0,
q1 � q0 as ε → 0. We do not assume any particular scaling for these terms, nor for
the leading-order solutions; it will turn out that p0 ∼ O(1) but q0 ∼ O(ε−1), because
of Assumption 2.1 (A3).

By Assumption 2.1 (A1), the outer solution p0(x, t) satisfies the following linear
PDE to leading order as ε→ 0:

(2.9) ∂tp0 = ∂xxp0 , x ≥ ε ,

with p0(x, 0) = φ(x). Near the origin, the density changes rapidly so it is convenient
to change variables to X = x/ε. Keeping the leading-order terms gives

(2.10) 0 = ∂X(∂XU
ε(εX)q0) + ∂XXq0 , X ≤ 1,

with the reflecting boundary condition ∂XU
ε(0, t)q0(0, t) + ∂Xq0(0, t) = 0. We have

used Assumption 2.1 (A2) and the timescale it implies to argue that ∂tq0 is of lower
order than the terms retained in (2.10).

Equation (2.10) is the equation for the stationary density of a particle diffusing
in a potential U ε with a reflecting boundary condition at the origin. The solution is

(2.11) q0(εX, t) = a(t)e−U
ε(εX) , X ≤ O(1) ,

where a(t) is some unknown function of time, to be determined by matching to the
outer solution.

Now we match the outer solution p0(x, t) and the inner solution q0(εX, t) at x = ε,
X = 1. Unlike the traditional method of matched asymptotic expansions, we do not
match in an overlap region, but rather at a single point, which is possible because the
perturbation is not singular (the diffusion terms do not change with ε.) We match
using two conditions: one, probability is continuous, and two, probability is conserved.
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The first condition requires that

p0(ε, t) = q0(ε, t) =⇒ a(t) = p0(0, t)

to leading order in ε, where we have used that e−U
ε(ε) ∼ 1, by Assumption 2.1 (A1),

and p0(ε, t) ∼ p0(0, t). The condition that probability be conserved requires that

d

dt

(∫ ε

0

q0(x, t) dx+

∫ ∞
ε

p0(x, t) dx

)
= 0 =⇒ κa′(t)− ∂xp0(0, t) = 0

to leading order in ε. We have moved the time derivative into the integrals, substituted
for ∂tp0 using (2.9), and substituted κ using Assumption 2.1 (A3).

Putting these results together gives a boundary condition for the outer solution
p0 at the origin, which can be written in two ways:

(2.12) κ∂tp0|x=0 = ∂xp0|x=0 ⇐⇒ κ∂xxp0|x=0 = ∂xp0|x=0 .

Combining with (2.9) and removing the subscript on p gives (2.7).
To obtain (2.6), notice that by continuity of probability, the leading-order density

is p0(x, t)e−U
ε(x). Assumption 2.1 implies that e−U

ε(x) converges weakly to 1 + κδ(x)
as ε→ 0, giving a limiting density of (2.6).

2.5. Fokker–Planck Equation. We make a few remarks concerning the limiting
dynamics (2.7) and their relationship to a sticky Fokker–Planck equation.

Notice that, as expected, the limiting probability density (2.6) is singular with
respect to Lebesgue measure on R+. Its structure shows that a sticky Brownian
motion can spend finite time on any interval in its domain, as well as at the origin,
{0}, sets with intrinsically different dimensions. This is an unusual property for
diffusion processes; it does not occur for processes with the more typically studied
Dirichlet, Neumann, or Robin boundary conditions.

It turns out that the measure 1 + κδ(x) in (2.6) is infinitesimally invariant and is
proportional to the invariant measure if the sticky Brownian motion is confined to a
compact space, as the following lemma shows.

Lemma 2.5. Suppose the function p in (2.6), (2.7) additionally satisfies a reflect-
ing boundary condition px = 0 at x = L > 0. Then the unique invariant probability
measure π is

(2.13) π(x) = Z−1(1 + κδ(x)) , where Z = κ+ L .

This is also the measure obtained as the weak limit of the stationary densities for
(2.4).

Proof. Solve for the steady-state solution of (2.7) to obtain p(x, t) = c for some
constant c ∈ R, and use (2.6) to obtain (2.13).

It is sometimes helpful to work with a formulation of (2.7) directly in terms of
the probability density. This is made possible by first writing the density % as a sum
of densities on the different manifolds in its support, as

(2.14) %(x, t) = %0(t)µ0 + %1(x, t)µ1 ,

where µ0(dx) is the delta function measure on {0} and µ1(dx) is the Lebesgue measure
on (0,∞). We must impose a “continuity condition”

(2.15) %0(t) = κ%1(0, t)
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to be consistent with the asymptotic derivation. Calculating ∂t% using (2.7) and (2.6)
gives the system of equations

(2.16)
∂t%0 = ∂x%1 for x = 0 ,

∂t%1 = ∂xx%1 for x ∈ (0,∞) .

System (2.16) and the continuity condition (2.15) can be interpreted as the Fokker–
Planck equation for the evolution of the probability density %. If we write the system
formally as ∂t% = L∗% for some linear operator L∗, then (2.16) shows that L∗ should,
formally at least, be interpreted as being a different partial differential operator for
the densities on each different manifold in the support of the process. Indeed, it turns
out that for higher-dimensional sticky diffusions one can impose different dynamics
in the interior of a domain and on the boundary, and these dynamics don’t have to
bear any relation to each other [45].

The system (2.16) gives a more physical interpretation of the boundary condition
in (2.7). It shows that the boundary condition simply balances fluxes: the rate of
change of the probability at the origin, ∂t%t|x=0 = ∂t(κp)|x=0, equals the flux of
probability which leaves the open interval (0,∞) on the left, ∂x%1|x=0 = ∂xp|x=0.
Here again we see how the sticky boundary condition interpolates between a reflecting
condition, when κ = 0 and the condition is ∂xp|x=0, and an absorbing one, when
κ→∞ and the condition approaches ∂tp|x=0 = 0.

2.6. Generator. We now consider how to obtain the generator L of a sticky
Brownian motion, starting from the Fokker–Planck equation (2.16). The generator
forms the basis for our numerical method and is in fact the more fundamental quantity
describing a Markov process. Recall that the generator is the operator L that is the
formal adjoint of L∗, i.e., 〈f,L∗%〉 = 〈Lf, %〉 for all densities % of the form (2.6), and
all test functions f ∈ C2

c ([0,∞)) that satisfy an appropriate boundary condition at
zero (to be determined). Because properly defining L∗ is somewhat subtle due to
the singularities at the origin, we find it more transparent to work with a weakly
equivalent formulation, which asks that L satisfy

(2.17) 〈f, ∂t%〉 = 〈Lf, %〉 .

To proceed, compute the left-hand side of (2.17) as

〈f, ∂t%〉 = (fκ∂tp)|x=0 +

∫ ∞
0

f∂tp dx

= (fκ∂xxp)|x=0 − (f∂xp)|x=0 + (p∂xf)|x=0 +

∫ ∞
0

p∂xxf dx

= (p∂xf)|x=0 − (κp∂xxf)|x=0 +

∫ ∞
0

%∂xxf dx .

In the first step we have substituted ∂xxp for ∂tp and integrated by parts, assuming
a decay condition at x = ∞, and in the second step we have used the boundary
condition on p at x = 0 and rewritten the integral in terms of %.

We see that (2.17) is satisfied if we choose the generator and its associated bound-
ary conditions to be

(2.18) Lf = ∂xxf with b.c. κ∂xxf = ∂xf at x = 0 .

For a sticky Brownian motion, the generator and its formal adjoint are equal.
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Notice that if in (2.17) we had replaced % with p, the function solving (2.7),
we would not have found appropriate boundary conditions for f . This shows the
importance of interpreting the weak formulation of (2.7) in the correct function space.

From the generator we obtain another way to verify that π in (2.13) is an infinites-
imally invariant measure, by showing 〈Lf, π〉 = 0 for all test functions f satisfying the
appropriate boundary conditions. Calculations very similar to the above show that
this equation holds.

2.6.1. Example: MFPT of a Sticky Brownian Motion. As a simple application
of (2.18), we directly calculate the MFPT of a sticky Brownian motion.

Lemma 2.6. The MFPT of a sticky Brownian motion out of [0, `] with initial
condition x ∈ [0, `] is τ(x) = −κx − (1/2)x2 + κ` + (1/2)`2. In particular, τ(0) =
κ`+ (1/2)`2.

Proof. The MFPT of a sticky Brownian motion satisfies the boundary value prob-
lem Lτ(x) = −1, τ(l) = 0, plus any other boundary conditions associated with L.
Specifically,

∂xxτ(x) = −1 on [0, `] with b.c. κ∂xxτ(0) = ∂xτ(0) and τ(`) = 0 .

The solution is τ(x) = −(1/2)x2 + c1x+ c2, where c1 and c2 are constants determined
by imposing the boundary conditions.

Note that τ(0) = limε→0 τ
ε(0), the limit of the MFPT for the reflecting diffusions,

as in Lemma 2.4.

2.6.2. Example: Transition Rates between Sticky Points. As another applica-
tion of (2.18), we consider a Brownian motion on a line segment with sticky endpoints
and calculate the transition rates between the endpoints. Such a setup is a good model
for the transition paths between clusters of mesoscale particles, and it quantitatively
predicts their transition rates [79]. Suppose the endpoints have sticky parameters
κ1, κ2 and the line has length L, as shown below:

κ1 κ2

L0

The generator for this problem is

(2.19) LLf = ∂xxf on [0, L] with b.c.

{
κ1∂xxf = ∂xf at x = 0 ,

κ2∂xxf = −∂xf at x = L .

The sign of ∂xf is reversed for the boundary condition at L, because the probability
flux is in the opposite direction from the flux at 0.

A framework for calculating transition rates between disjoint sets A, B exactly is
given by transition path theory [20]. These transition rates can be determined from
empirical averages by using the limit relations

kA→B = lim
T→∞

NT
TA

, kA→B = lim
T→∞

NT
TB

,

where T is the time of observation, NT is the total number of transitions observed
from A to B in time T , and TA, TB are the total times during which the process last
hit A,B, respectively; they satisfy TA + TB = T . We apply transition path theory to
the sets A = {0} and B = {L} to compute the quantities above, and refer the reader
to [20] for more justification of these calculations.
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Lemma 2.7. Consider a process with generator LL defined in (2.19), and let A =
{0}, B = {L}. Then the stationary distribution is π(x) = 1

L+κ1+κ2
(1 + κ1δ(x) +

κ2δ(x− L)), and the transition rates are

kA→B =
1

κ1L+ L2/2
, kB→A =

1

κ2L+ L2/2
.

It is worth noting that the transition rates depend inversely on L, the total
distance that the process must diffuse. This is in contrast to theories of transition
rates derived from the Arrhenius formula or transition state theory, for which the
transition rates depend only on local properties of critical points, such as the energy
difference between critical points and their curvatures [33]. In the problem above, the
energy differences are contained solely in κ1, κ2.

Proof. One can verify that 〈LLf, π〉 = 0 for all twice-differentiable functions f
satisfying the boundary conditions, so π given above is the stationary distribution.
Now we turn to calculating the transition rates. We first calculate the committor
function q(x), a function that gives the probability of hitting B first before A starting
from x. It solves the boundary value problem

LLq = 0, q(A) = 0, q(B) = 1 ,

whose solution is q(x) = x/L. Next we calculate the overall rate of transition ν =
limT→∞

NT
T as ν = π(x)∂xq(x) for any x ∈ (0, L), giving ν = L−1(L + κ1 + κ2)−1.

Then, we calculate the “reactive probabilities” %A = limT→∞
TA
T , %B = limT→∞

TB
T .

These are computed as %A =
∫ L

0
π(x)(1− q(x))dx, %B =

∫ L
0
π(x)q(x)dx, giving %A =

(κ1 +L/2)/(L+ κ1 + κ2), %B = (κ2 +L/2)/(L+ κ1 + κ2). Finally, the reaction rates
are computed as kA→B = ν/%A, kB→A = ν/%B , giving the result above.

3. Numerical Method to Simulate a Sticky Brownian Motion. It is not obvi-
ous from either the Fokker–Planck equation or the generator how one should simulate
trajectories of a sticky Brownian motion. One option is to return to the derivation
as a limit as ε → 0 of Xε

t , and to choose a small ε and simulate (2.1). However, our
earlier calculations (see Figure 2) showed that for small ε one must use a very small
time step; for large ε the solution will be inaccurate.

Therefore, we turn to an entirely different method, based on constructing a
continuous-time Markov chain whose generator Q approximates the generator L of a
sticky Brownian motion. Specifically, we spatially discretize the infinitesimal genera-
tor and boundary conditions of the sticky Brownian motion, for example, using a finite
difference approximation, to obtain the generator of a Markov jump process on the set
of discretization points. This Markov jump process may be simulated using a simple
Monte Carlo method known variously as the stochastic simulation algorithm, kinetic
Monte Carlo, the Doob–Gillespie algorithm, or the Gillespie algorithm [16, 17, 34, 35].

These approximations of sticky diffusions go back to the Markov chain approxi-
mation method invented by Harold Kushner in the 1970s to approximate optimally
controlled diffusion processes [52, 62, 63, 53, 54, 55, 56, 61, 57, 58, 59, 60]. However,
because of their interest in stochastic control problems, these works mainly focus on
numerical solutions with gridded state spaces and use numerical linear algebra to
construct an approximation. In the physics literature, a Monte Carlo method was
developed to construct the approximation [22, 90, 73, 74, 64], an approach which
seems to go back to at least [22]. More recently, a new “gridless” framework was
introduced for constructing Markov jump process approximations for diffusions [9],

D
ow

nl
oa

de
d 

07
/0

8/
20

 to
 1

31
.2

20
.2

49
.1

77
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.si
am

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

178 NAWAF BOU-RABEE AND MIRANDA C. HOLMES-CERFON

which allows the domain of the diffusion process to be unbounded, does not require
that the diffusion process is symmetric, and does not assume that the infinitesimal
covariance matrix of the diffusion process is diagonally dominant. This generalization
allows the jump size of the numerical solution to be uniformly bounded, which makes
it easier to treat boundary conditions numerically. Very recently, these ideas have
been extended to SPDE problems [8].

3.1. Numerical Algorithm. To apply this approach, let us discretize the interval
[0,∞) into a set of grid points Rh = {0, h, 2h, . . .}, where h is the spacing between
neighboring grid points. Let f ∈ C4

b (R) and let f0, f1, . . . be the values of the function
at the grid points, i.e., fk = f(kh) as illustrated below:

−h 0 h 2h

f−1 f0 f1 f2

. . .

The white dot indicates a ghost grid point, which we recruit in our construction.
At each interior grid point, the generator Lf (see (2.18)) can be approximated by

(3.1) (Lf)(kh) =
fk+1 − 2fk + fk−1

h2
+O(h2) , k ≥ 1 .

This approximation is a second-order centered finite difference approximation to the
second derivative operator ∂xx. At the boundary grid point, k = 0, we do not know
the value of the “ghost” point f−1 that is needed in (3.1), so we solve for it using the
boundary condition in (2.18). The discretized boundary condition is

κ
f1 − 2f0 + f−1

h2
=
f1 − f−1

2h
+O(h2)⇔ f−1 =

4κf0 + (h− 2κ)f1

h+ 2κ
+O

(
h4

h+ 2κ

)
,

where again we have used a second-order centered finite difference scheme to evaluate
∂xf . Using this equation to eliminate f−1 in (3.1) with k = 0 gives an approximation
to the generator at the boundary as

(3.2) (Lf)(0) =
2f1 − 2f0

h2 + 2κh
+O

(
h2

h+ 2κ

)
.

This local error estimate suggests that this approximation is globally second-order
accurate in h when κ > 0. When κ = 0, which corresponds to a reflecting Brownian
motion, the remainder term in (3.2) may lead one to surmise that the approximation
is only first-order spatially accurate. However, it turns out that even in this case, the
global error is still second order in h because, roughly speaking, the local error at the
boundary is also proportional to the mean occupation time of a reflecting Brownian
motion near the boundary, which is O(h).

Now, we construct a continuous-time Markov chain Yt with state space Rh, whose
generator Q is the discrete approximation to L. That is, we set

(3.3) (Qf)k =


fk+1 − 2fk + fk−1

h2
, k = 1, 2, . . . ,

2f1 − 2f0

h2 + 2κh
, k = 0.

The infinite matrix associated to the generator Q has nonzero entries Qkj = 1/h2 if
j = k±1 and k ≥ 1, Qkk = −2/h2 if k ≥ 1, Q01 = 2/(h2+2κh), Q00 = −2/(h2+2κh).
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Fig. 4 Independent realizations of the sticky random walk Yt with κ = 1 and with space step h = 0.2
(top), h = 0.02 (bottom), over a time interval of length 2. As h decreases, realizations of Yt
approach realizations of a sticky Brownian motion.

One can verify that Q is the generator of a continuous-time Markov chain, since the
coefficients Qkj with k 6= j are nonnegative, and

∑
j Qkj = 0. Note that when κ = 0

in (3.3) one obtains the generator of a reflecting random walk.
Realizations of this sticky random walk Yt can be simulated exactly using a simple

Monte Carlo method [16, 17, 34, 35]. Suppose Yt0 = kh at time t0. The process is
updated in two steps.

• Pick a state ν ∈ {(k+1)h, (k−1)h} with probabilities proportional to Qk,k+1,
Qk,k−1, respectively. Specifically, for k = 1, 2, . . . , we jump to the left or right
states with equal probability, and for k = 0 we always jump to k = 1.

• Choose a random time τ ∼ Exp(−Qkk), where Exp(λ) is the distribution of
an exponential random variable with mean 1/λ. Set Yt0+t = kh for 0 < t < τ
and set Yt0+τ = ν; that is, the process jumps to a new state ν after a random
time τ .

To summarize, the process Yt is a continuous-time random walk, a “sticky random
walk” (SRW), with mean waiting time h2/2 at interior grid points and κh+ h2/2 at
the sticky boundary. See Appendix A for MATLAB code implementing this method.

Realizations of Yt for κ = 1 and different values of h are plotted in Figure 4.
Away from 0, the process is a random walk with random waiting times, which looks
increasingly like a Brownian motion as h → 0. When the process hits 0, however, it
spends much longer there on average than it does at interior points. Overall the
process looks like a Brownian motion which has been “slowed down” near 0, an
observation that can be made rigorous as we discuss in section 4.

3.2. Properties of the Numerical Solution. This difference in the scaling with
h of the waiting times at boundary and interior points nicely illustrates the unusual
behavior of a sticky Brownian motion at the origin and gives insight into why it is
sticky there. The mean waiting time at interior points is h2/2, the usual scaling for
diffusion motion, which requires that E(∆Y )2/τ → cst, where ∆Y = ±h is the jump
at each step of the algorithm. The mean waiting time at the origin is κh + h2/2 =
κh+ o(h), longer by a factor of about h, so the scaling is ballistic at the origin. The
amount of time the process spends at the origin is the same as it would spend at
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Fig. 5 Realizations of the sticky random walk with h = 0.25 and varying κ. Each realization is
producing by running the Monte Carlo method described in the text using the same sequence
of uniform random variables, but with varying κ. Note that each realization hits the value
zero only once in the third jump, and as κ is increased, the amount of time spent at zero
increases as illustrated.

about κ/h interior grid points, which is the number one would use to discretize an
interval of length κ. Therefore, we expect this sticky random walk to spend a finite,
nonzero amount of time at the origin as h→ 0, an amount of time which increases in
proportion to κ.

Interestingly, although the sticky random walk spends finite time at the origin
as h → 0, in the limit it never spends a whole interval of time at the origin. This is
evident from the numerical solution, since the waiting time at the origin approaches
zero as h→ 0. This implies that every time a sticky Brownian motion hits the origin,
it leaves right away, just as a Brownian motion does, yet somehow the total measure
of the points at which it equals zero is positive.

We have seen the ballistic scaling of times near the origin before, in Lemmas 2.4
and 2.6. Indeed, the mean holding time of the sticky random walk Yt at 0 is identically
the MFPT of a sticky Brownian motion with ` = h (see Lemma 2.6). The additive
property of the MFPT then implies the following lemma.

Lemma 3.1. Given h > 0 and ` ∈ Rh, the MFPT of Yt out of [0, `] with initial
condition x ∈ [0, `] ∩ Rh is τ(x) = −κx − (1/2)x2 + κ` + (1/2)`2. In particular,
τ(0) = κ`+ (1/2)`2.

Another useful property of Yt is that once a simulation has been performed for
some fixed κ, one can obtain a trajectory for any other value κ′ 6= κ simply by scaling
the holding time of the jumps that leave the origin, since the probabilities of jumping
to each state do not change; see Figure 5 for an illustration. This is a useful property
as it allows one to investigate multiple values of κ with one single simulation.D
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De = 2.5
a ≈ 13.6
ε ≈ 0.27

De = 3.5
a ≈ 31.4
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10−5 40% 7.6% 134.7%
5 · 10−6 40% 7.2% 54.5%

2.5 · 10−6 40% 7.0% 2.9%
1.25 · 10−6 40% 6.5% 2.1%
6.25 · 10−7 40% 6.3% 3.5%

(a) (b)

Fig. 6 Accuracy of simulating a sticky Brownian motion with κ = 1 with various methods and time
steps. Panel (a) shows the accuracy of the sticky random walk and panel (b) shows the
accuracy of simulating (2.1) directly using the SEM scheme with a Morse potential for Uε.
Accuracy is measured with respect to the local solution u(0, 1) of (3.4) in section 3.4, with
initial condition φ(x) = exp(−(x − 3)2). As benchmark solution, we use the semianalytical
solution given in Theorem 1 of [80]. In (a), we see that the sticky random walk is within 1%
accuracy with a mean time step of about 0.1, and it is second-order accurate in the mean
time step. In (b), we see that about 2% accuracy requires a potential width a−1 ≤ 118−1

and a time step size δt ≤ 1.25 × 10−6. For smaller values of a, the relative error is large
because the range of the interaction potential is too large for the sticky limit to be accurate.

3.3. Accuracy and Efficiency of the Numerical Method. The calculations in
section 3.1 showed that the generator Q of a sticky random walk Yt is a locally
consistent approximation of the generator L of a sticky Brownian motion, which
is second order in space step h. Figure 6 (a) shows that the method produces a
trajectory Yt that is also second order accurate, in a weak sense, where the order is
measured using the mean time step. The mean time step is computed empirically
for each h, since the actual time step is random and varies with position. For this
comparison we used κ = 1. This figure also shows that 1% accuracy for the sticky
random walk requires a mean time step of about 0.1. Contrast this case with a
method that approximates a sticky Brownian motion by simulating (2.1) using an
SEM approximation (2.5) and a Morse potential for U ε(x), whose accuracy is shown
in Figure 6 (b). With this method, an accuracy of about 2% requires a potential
width no more than about 118−1 and a time step of about 1.25×10−6. The time step
of the sticky random walk method must be about five orders of magnitude larger, to
obtain a comparable level of accuracy.

In applications, one may wish to use a sticky Brownian motion to model a poten-
tial with a small, but not infinitesimal range. How much more efficient is the sticky
random walk in capturing the statistics of (2.1) for finite range ε, and how accurately
does it do so? To test this we ran simulations of a process Xt solving the SDE (2.1)
using a Morse potential with sticky parameter κ = 30 and range parameters a ≈ 30,
characteristic of certain depletion interactions [72, 79], and a ≈ 100, characteristic of
certain DNA-mediated interactions [91]. We computed two statistics at time t = 1,
EX1 and P(X1 < 0.15), and compared them to statistics estimated using the sticky
random walk with κ = 30. Figure 7 shows that the sticky random walk gives virtually
the same estimates for all time steps; in particular, the largest mean time step used,
δt ≈ 10−2, is as good as any smaller time step. By contrast, statistics computed from
a direct simulation of (2.1) are nowhere near their converged values until a time step
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Fig. 7 Estimates of E(X1) (panel (a)) and P (X1 < 0.15) (panel (b)) with initial condition 0.2
and sticky parameter κ = 30, obtained using the SEM approximation of (2.1) with a Morse
potential, as a function of step size δt. Also plotted are sticky random walk approximations
of these quantities. All estimates used 107 samples. The parameter values a = 30, 100 for
the Morse potential are characteristic of depletion interactions and certain DNA-mediated
interactions, respectively. In all cases, sticky random walk is converged at a mean time
step several orders of magnitude larger than SEM, because in the sticky limit the strong
short-ranged interactions are eliminated.

of δt = 3× 10−5, 2× 10−6 for a ≈ 30, 100, respectively, over two and three orders of
magnitude smaller, respectively, than for the sticky random walk.

The sticky random walk will always have a nonzero relative error no matter what
the mean time step is, since it is only an approximation to the true dynamics. The
relative error for the mean, EX1, between the sticky random walk and the high-
resolution simulation is 40%, 13% for a ≈ 30, 100, respectively, and for P(X1 < 0.15),
the relative errors are 6%, 2%. While the relative error in computing the mean may
seem high, notice that the mean is sensitive to the range and shape of the poten-
tial, since we are computing this statistic at short times so most of the probability
is concentrated in the boundary layer associated with the potential. In practice, ex-
perimental measurements of a quantity that depends so sensitively on the shape of
a short-ranged potential are infeasible, because measurement noise is typically larger
than the width of the potential [79]. In addition, the quantity of interest would usu-
ally be the particle diameter plus the mean distance, which would have a significantly
smaller relative error, less than 1% for a 1µm particle. A coarser statistic such as
P(X1 < 0.15) is more practical to measure, and hence is a better test for the accuracy
of the sticky random walk model; here the relative errors are much smaller.

3.4. PDEs that Can Be Solved by Running a Sticky Random Walk. We now
show that local consistency of the generator implies that the sticky random walk Yt
converges in a certain sense to a sticky Brownian motion on finite time intervals.
Specifically, we show that from trajectories of Yt, one can numerically solve certain
PDEs associated to a sticky Brownian motion to second-order accuracy in the space
step h. These results are used to benchmark our numerical solution in section 3.3,
and may be of independent interest since they lead to new Feynman–Kac formulae
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STICKY BROWNIAN MOTION 183

for a sticky diffusion process. The approach we take is similar to how one shows
convergence of numerical PDE schemes: discretize the PDE and boundary conditions
in space to obtain a semidiscrete system of ODEs over finite times. An additional step
in this case is deriving a stochastic representation of the solution to this semidiscrete
system of ODEs in terms of a sticky random walk [19].

Consider the heat equation with Feller’s more general boundary condition,

(3.4)


∂tu(x, t) = ∂xxu(x, t), x ≥ 0, t ≥ 0,

u(x, 0) = φ(x), x ≥ 0,

p1u(0, t)− p2∂xu(0, t) + p3∂xxu(0, t) = 0, t ≥ 0,

where φ : [0,∞) → R and p1, p2, p3 are parameters satisfying p1 + p2 + p3 = 1 and
p1, p2, p3 ≥ 0 [28, 30, 46]. This equation can be viewed as the backward equation for a
Brownian motion on a halfline with prescribed behavior on the boundary x = 0 [78].
Special cases of this boundary condition include:

(1) p1 = 1: Dirichlet boundary condition corresponding to a stopped Brownian
motion;

(2) p2 = 1: Neumann boundary condition corresponding to a reflecting Brownian
motion;

(3) p3 = 1: Wentzell boundary condition corresponding to an absorbed Brownian
motion;4 and,

(4) p3 = 0: Robin boundary condition corresponding to an elastic Brownian
motion.

The general case where p1, p2, p3 > 0 corresponds to a Brownian motion that exhibits
a combination of stopping, stickiness, and reflection [46].

The following result shows how to solve (3.4) numerically when p2 > 0 using the
sticky random walk developed in section 3. The case p2 = 0 can be solved in a similar
manner using a continuous-time random walk with absorbing boundary conditions at
0, but for notational brevity we omit this case.

Theorem 3.2. Assume p2 > 0, and set

κ = p3/p2 , c = −2p1/(hp2 + 2p3) .

Suppose further that (3.4) has a solution u(x, t) whose first four derivatives are con-
tinuous and bounded. Let Yt be a sticky random walk, i.e., a Markov jump process on
the grid Rh with generator Q defined by (3.3). At every grid point xi ∈ Rh, define
the function

(3.5) uhi (t) = Exi
(
φ(Yt) exp

(
c

∫ t

0

1{0}(Ys)ds

))
,

where Exi denotes expectation conditional on Y0 = xi. Then for all T > 0 and for all
h > 0 sufficiently small, there exists C(T ) > 0 such that

sup
i≥0,t∈[0,T ]

|uhi (t)− u(xi, t)| ≤ C(T )h2 .

4An absorbed Brownian motion is one where the Brownian motion has a fixed point at the
boundary, which is consistent with what happens as the sticky parameter in (2.7) becomes infinite;
by contrast, a stopped Brownian motion corresponds to a Brownian motion that is terminated at
the boundary.

D
ow

nl
oa

de
d 

07
/0

8/
20

 to
 1

31
.2

20
.2

49
.1

77
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.si
am

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

184 NAWAF BOU-RABEE AND MIRANDA C. HOLMES-CERFON

When c = 0, (3.5) reduces to uhi (t) = Exi (φ(Yt)), so uhi (t) is simply the expected
value of φ(Yt), starting at initial point Y0 = xi. This is the standard functional con-
sidered for the backward equation, which shows how to locally solve linear parabolic
PDEs such as (3.4) using trajectories of a stochastic process, or conversely how to
evaluate expected values of functions of a stochastic process via solutions to PDEs.
The case |c| > 0 corresponds to the process being absorbed at rate |c| when it is on
the boundary, so the statistic is weighted by the probability the process is still alive
at time t [78].

We included the existence and regularity of u(x, t) as an assumption of Theo-
rem 3.2, because, although there are well-posedness and semigroup generation results
for the heat equation with generalized, two-sided Feller boundary conditions in a
bounded domain [25, 26], we are not aware of such results for the heat equation on
the halfline with Feller boundary conditions.

Proof. Our proof will proceed in two steps. First, we show that a second-order
spatial discretization of the PDE (3.4) using finite differences is given by the solution
uh(t) ∈ Rh to the linear, infinite-dimensional system of ODEs

(3.6) u̇hi (t) =


uhi+1(t)− 2uhi (t) + uhi−1(t)

h2
, i = 1, 2, 3, . . . ,

2uh1 (t)− 2uh0 (t)

h2 + 2hκ
+ cuh0 (t), i = 0 ,

with initial condition uh(0) = φ|Rh . Together with the regularity of u(x, t), this will
imply that uhi (t) and u(xi, t) are close in an `∞ norm over Rh. Second, we show that
the solution uhi (t) to (3.6) admits the stochastic representation (3.5).

Note that another way to write (3.6) is to define uh(xi, t) = uhi (t) and write

(3.7) ∂tu
h(xi, t) = Quh(xi, t) + cuh(xi, t)1{0}(xi) , uh(xi, 0) = φ(xi) ,

where Q is the generator of Yt defined in (3.3). The difference between (3.7) and the
backward equation associated with Yt is the presence of the term cuh0 , which causes
u(0, t) to decrease in time (recall c < 0).

For the first step, i.e., obtaining the discretization of the PDE (3.9), notice that
the ODEs (3.6) for k ≥ 1 are obtained by replacing ∂xx in (3.4) by the centered finite
difference given in (3.1); and the ODE at k = 0 is obtained by incorporating a finite
difference discretization of the boundary condition into a centered finite difference
approximation of ∂xx at 0. Specifically, given a function f that satisfies the boundary
condition in (3.4), use a ghost grid value f−1 combined with a centered finite difference
approximation to f ′(0) and f ′′(0) to obtain

p1f0 − p2
f1 − f−1

2h
+ p3

f1 − 2f0 + f−1

h2
= O(h2) .

Using the above equation to eliminate f−1 from (3.1) when k = 0 gives an approxi-
mation to ∂xx at the boundary as

(3.8) ∂xxf(0) =
p2

h(hp2 + 2p3)
(f1 − f0) + cf0 +O

(
h2

hp2 + 2p3

)
.

Substituting p3 = κp2 into the first term then gives the ODE in (3.6) for k = 0.
For the second step, define

Ms = uh(Ys, t− s)ec
∫ s
0

1{0}(Yr)dr .
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Applying Itô’s formula for jump processes (see, e.g., [83]) we obtain that

EMs − EM0 = E
∫ s

0

(
− ∂tuh(Yr, t− r) +Quh(Yr, t− r)

+ cuh(Yr, t− r)1{0}(Yr)
)
ec

∫ r
0

1{0}(Yr′ )dr
′
dr .

By (3.7), the right-hand side is zero. Evaluating this equation at s = t and using the
initial condition in (3.4) gives

uh(xi, t) = Exi
(
φ(Yt)e

c
∫ t
0

1{0}(Yr)dr
)
,

as required.

One can similarly solve Dirichlet–Poisson problems. For example, consider the
boundary value problem

(3.9)

{
∂xxu(x) = −φ(x) , x ∈ (0, `) ,

p1u(0)− p2∂xu(0) + p3∂xxu(0) = 0 , u(`) = 0 ,

where φ : [0, `] → R is a given function and p1, p2, p3 are parameters satisfying p1 +
p2 + p3 = 1 and p1, p2, p3 ≥ 0. This kind of equation arises when solving for MFPT
problems, as in section 2.6.1, and in transition rate problems, as in section 2.6.2. We
have the following result.

Theorem 3.3. Assume p2 > 0, set κ = p3/p2 and c = −2p1/(hp2 + 2p3), and
suppose that (3.9) has a solution u(x) whose first four derivatives are continuous and
bounded. Let Yt be a sticky random walk, i.e., a Markov jump process on the grid Rh
with generator Q defined by (3.3). For every grid point xi ∈ Rh ∩ [0, `], define the
function

(3.10) uhi = Exi

(∫ τh

0

φ(Yt) exp

(
c

∫ t

0

1{0}(Ys)ds

)
dt

)
,

where Exi denotes expectation conditional on Y0 = xi and τh is the random stopping
time τh = inf{t ≥ 0 | Yt = `}. Then for all h > 0 sufficiently small, there exists
C > 0 such that

sup
xi≤`
|uhi − u(xi)| ≤ Ch2 .

A proof of this theorem is like the proof of Theorem 3.2 and is therefore omitted.

4. Other Characterizations of Sticky Brownian Motion. Interestingly, sticky
boundary conditions were discovered in the pure mathematics literature, well before
they were used in applied mathematics or physics. This section summarizes some of
the other ways of characterizing sticky Brownian motion that have been developed
in the mathematical literature, and connects them to our numerical and asymptotic
approach. A nice history focusing especially on Feller’s contribution to the develop-
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ment is given in [81]. To more easily make a connection to the existing literature,
we consider in this section a traditional sticky Brownian motion, whose generator is
L0f = 1

2∂xxf with boundary condition ∂xf |x=0 = κ∂xxf |x=0. The numerical solution
of this process is the same as that given in section 3, but with numerical generator
Q0 = Q/2, where Q is the generator for a root-2 sticky Brownian motion, defined in
(3.3).

Sticky diffusion processes were discovered in the 1950s by Feller, who sought to
identify the most general boundary conditions for the generator of a one-dimensional
diffusion [28, 30]. For a process on [0,∞) with continuous sample paths that behaves
like a Brownian motion in (0,∞), the possible boundary conditions have the form
[28, 46, 81]

(4.1) p1f(0)− p2f
′(0) + p3f

′′(0) = 0 ,

with p1, p2, p3 ≥ 0 and p1 + p2 + p3 = 1 (cf. (3.4)). Feller said of his result [28]:

This is the second instance of a concrete problem with physical significance
where physical intuition failed, but our abstract methods provided a clue.

Feller was referring to problems in genetics, which have certain singularities in the
diffusion coefficients when a population size hits zero, but his remark could equally
well apply to the sticky boundary condition f ′(0) = p3

p2
f ′′(0); physical intuition does

not immediately show why this should be associated with stickiness and a singularity
in the transition probabilities.

Subsequently, Itô and McKean showed how to construct a sticky Brownian motion
from a time change of a reflecting Brownian motion [46]. Let B+

t be a standard
reflecting Brownian motion, which can be constructed from a standard Brownian
motion Bt as B+

t = |Bt|. Let

l0t (B
+) = lim

ε→0

1

2ε

∫ t

0

1(B+
s < ε)ds

be the local time accumulated at 0 by B+ over [0, t]. Define

At = t+ 2κ l0t (B
+) .

Since l0t (B
+) is continuous and nondecreasing, At is continuous and strictly increasing,

so it has an inverse T (t) = A−1(t). Define

(4.2) B∗t = B+
T (t) .

Then B∗t is a sticky Brownian motion [46].
The process B∗t is simply a time change of a reflecting Brownian motion, making

it run on clock T (t) instead of clock t. When B∗t 6= 0, then dA/dt = dT/dt = 1 so the
process runs at the same rate as B+

t . When B∗t = 0, then A(t) increases faster than
t because of the local time, so the clock T (t) runs more slowly and B∗t slows down at
0.
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STICKY BROWNIAN MOTION 187

To see why it slows down in a way that changes its measure at zero, let’s compute
the MFPT for B∗t to leave the interval [0, h], starting at 0. Let τ = inf{t > 0 : B+

t > h}
be the first exit time of B+

t from [0, h], so that E(τ) = h2 and the MFPT of B∗t is
given by

E(Aτ ) = h2 + 2κE(`0τ (B+)) = h2 + 2κ lim
ε→0

1

2ε
E
(∫ τ

0

1(B+
s < ε)ds

)
.

By a Feynman–Kac formula, the expected value u(x) = Ex(
∫ τ

0
1(B+

s < ε)ds) can be
calculated by solving the boundary value problem

1

2
u′′(x) = −1[0,ε](x) , x ∈ [0, h] , u′(0) = 0, u(h) = 0 ,

whose local solution at zero is u(0) = 2εh − ε2. Hence, E(`0τ (B)) = h and E(Aτ ) =
h2+2κh, which is twice the mean waiting time we derived for a root-2 sticky Brownian
motion in Lemma 2.6 and, in particular, this waiting time is not diffusive like the mean
waiting time of B+

t .
A different discrete approximation to a sticky Brownian motion was derived by

Amir [1], who showed how to obtain the process as a limit of random walks. Recall
that one can construct a standard Brownian motion starting from a random walk by
using Donsker’s theorem [15]. Let

S∆x(t) = ∆x

k∑
i=1

Xi for k∆t ≤ t < (k + 1)∆t

be a rescaled random walk, where {Xi}∞i=1 is a sequence of independent, identically
distributed random variables with P (Xi = 1) = P (Xi = −1) = 1

2 . As ∆x → 0 with
∆t = (∆x)2, the process S∆x(t) converges in distribution to a Brownian motion Bt
[15, 27].

Amir [1] showed that one can construct a sticky (nonreflecting) Brownian motion
by modifying S∆x as follows: every time S∆x(t) hits zero, wait there for a time interval
of length

√
∆t, instead of ∆t. For example, one can let ∆x = 2−n, ∆t = 2−2n for

some integer n, and then the process must wait 2n time steps each time it hits zero.
As n → ∞, the modified process S∗n(t) converges to a sticky nonreflecting Brownian
motion. A sticky reflecting Brownian motion is then the limit of |S∗n(t)|.

Finally, we remark that a sticky Brownian motion B∗t solves the following SDE,
which should be interpreted in an integrated sense (see [45, 23], and references therein):

(4.3) dB∗t =
1

2κ
1(B∗t = 0)dt+ 1(B∗t > 0)dBt .

This equation has a unique weak solution, but no strong solution [23]. That it cor-
responds to the sticky boundary condition can be seen by noting that5 the generator
away from the origin is Af = 1

2∂xxf , and at the origin it is Af = 1
2κ∂xf , so to be

consistent the function f must satisfy the sticky boundary condition 1
2∂xxf = 1

2κ∂xf .
It may seem quite remarkable that changing the diffusion coefficient at a single

point, the origin, can have such a dramatic effect on the process. To see why this is so,

5This perspective is due to R. Varadhan (personal communication).
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consider widening the region near the origin by some amount ε � 1, approximating
the drift as constant in this interval, and estimating the increment ∆B∗t over a small
time interval ∆t. If B∗t < ε, the increment is ∆B∗t ≈ 1

2κ∆t, so it takes the process
a time of about ∆t ≈ 2κε to leave the interval [0, ε). If B∗t > ε, the increment has
magnitude |∆B∗t | ≈ |∆Bt| ≈

√
∆t, so it takes the process a time of about ∆t ≈ ε2

to travel the length of any other interval of length ε. We recover the same scalings
as for the time-changed formula (4.2), showing that the slowdown near the origin
has a singular effect on its transition densities. Even though the diffusion coefficient
changes at only one point, the difference between dt and dBt at that point gives rise
to the singular change in timescales.

5. Conclusion and Outlook. We have considered a reflecting Brownian motion
on a halfline with a deep but short-ranged potential energy near the origin. As the
potential becomes narrower and deeper, the process approaches a “sticky” Brownian
motion, which has finite probability of being found in any interval on the halfline,
as well as finite probability of being found exactly at {0}; counterintuitively it never
spends an interval of time at 0. The process is characterized by a nonclassical bound-
ary condition for its generator, involving second derivatives. We have shown that
simulating trajectories of a process that is close to sticky using a traditional Euler–
Maruyama discretization of its SDE requires very small time steps. This motivated us
to introduce an alternative method, based on discretizing space first and construct-
ing a continuous-time Markov chain on the set of discretization points, which allows
for time steps more than 2–5 orders of magnitude larger in parameter regimes of
physical relevance, at the expense of making a small error in estimating the transi-
tion probability. The method results in a random walk on the nonnegative integers
with random holding times, with a larger holding time at 0. The holding times
give insight into why the process has a singular probability density at zero, since
the holding time scales ballistically with step size at the origin, rather than diffu-
sively.

Our motivation came from studying systems of mesoscale particles (diameters
≈ 100nm–10µm), which have attractive interactions that are very short-ranged com-
pared to their diameters. For such particles, the structures and dynamics are often
more effectively studied by considering the system in the sticky limit [43, 79, 42].
Our goal is to eventually create numerical methods to simulate such particle sys-
tems directly in the sticky limit, for which we hope to see a similarly large gain in
efficiency.

Achieving this goal will require building on the ideas in this paper to han-
dle higher-dimensional sticky diffusions with more complicated boundary conditions.
There are several steps involved. The first is to create methods to handle d-dimensional
diffusions that are sticky on a half-space of dimension d− 1. The new ingredient here
is that the diffusion can move directly along the boundary, with dynamics that are
different from those in the interior. This will be feasible by discretizing the generators
in the domain and on its boundary, as we have done in this paper. We expect such a
method to be efficient even when d is too large to solve PDEs numerically, since the
generator must only be discretized locally, using two points per dimension, and not
globally over the whole domain [9].

A second step is to adapt these methods to work on manifolds, since a collection
of interacting sticky particles performs a diffusion on the manifold corresponding to
certain fixed distance constraints [43]. It may be a challenge to retain the method’s
second-order accuracy when on a manifold; however, it may not be necessary to do

D
ow

nl
oa

de
d 

07
/0

8/
20

 to
 1

31
.2

20
.2

49
.1

77
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.si
am

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

STICKY BROWNIAN MOTION 189

so, since the sticky limit is an approximation anyway. Other methods have considered
how to sample probability densities directly on manifolds and have shown themselves
to be significantly more efficient than using short-range forces to keep a process near
a manifold (e.g., [13, 65, 93]).

A third step, and perhaps the most challenging, will be to adapt the method
to processes which are sticky on even lower-dimensional “corners.” For example,
a d-dimensional process may stick to a (d− 1)-dimensional boundary, from which
it may stick to a (d− 2)-dimensional boundary, and so on. Physically, this could
correspond to a system of particles forming one bond, then two, then three, and so
on. The number of intersecting boundaries increases as one moves down in dimension,
and dealing with the whole collection of boundaries together may require further
approximation.

One may also wish to include longer-range forces between the particles, such as
electrostatic, magnetic, or other interactions. Including such forces is straightfor-
ward provided they act over distances much longer than the range of the short-range
attractive force binding particles together. The interested reader can derive the corre-
sponding sticky equations by adding an ε-independent drift term to (2.1) and following
the asymptotic derivation in section 2.4 nearly verbatim. The result is an extra drift
term in (2.7) with a slightly modified boundary condition. By using weighted central
difference approximations [9], one can also easily extend the sticky random walk to
this situation.

We have focused in this paper exclusively on one-dimensional sticky Brownian
motion, in order to build intuition into this unusual process and to introduce it to
the applied mathematics community. Along the way we have discussed some of its
connections to the probabilistic approaches to studying sticky diffusions. We hope
these ideas will be useful for other researchers studying sticky diffusions in the myriad
of contexts in which they may arise, from biology to materials science to finance to
operations research, and onward to other applications yet to be imagined.

We wrote down the forward Kolmogorov equations, infinitesimal generators, and
boundary conditions for these processes, and showed precisely how sticky boundary
conditions arise in the sticky limit, and result in transition probabilities with a sin-
gular part. In addition, we introduced a simple and intuitive sticky random walk to
directly approximate sticky Brownian motions. In a parameter regime of practical
interest, we showed that this sticky random walk is several orders of magnitude faster
than a symmetrized Euler–Maruyama approximation of the corresponding reflecting
diffusion. We also applied this sticky random walk to numerically solve the heat
equation with Feller’s boundary condition. Our eventual goal is to extend the sticky
random walk to simulate a system of sticky particles, or more generally systems with
stiff but reversible bonds such as those found in biophysics [82].

Appendix A. Listings. In the MATLAB file SEM.m in Listing 1, we apply the
symmetrized Euler–Maruyama scheme to the SDE (2.1) with U ε(x) a Morse potential
energy function (see Example 2.2) with parameters De = 8.5, a =

√
πeDe/(κ

√
De),

and x0 = 1/a, and the sticky parameter set at κ = 30. A single realization of a
discretized Brownian motion is produced over [0, 1] with δt = 10−6.

This realization of Brownian motion is used to drive SEM operated at two time
step sizes δt and Rδt, where R = 16 [40]. We set the seed for MATLAB’s random
number generator, arbitrarily, to be 88 using the command rng. The plotted paths
illustrate that the time step size of SEM has to be sufficiently small in order for the
method to accurately represent the strong, short-ranged Morse potential force.
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Listing 1 Symmetrized Euler–Maruyama: SEM.m.

%SEM Symmetrized Euler -Maruyama method applied to IVP

% dX = f(X) dt + sqrt (2) dW , X(0) = X0 >= 0

% with a reflection b.c. at the origin where f is defined below.

%

% Discretized Browian motion uses timestep dt.

% SEM uses timestep dt or R*dt.

rng (88);

kappa =30.0; % sticky parameter

De=8.5; % well depth

a=sqrt(pi)/ kappa*exp(De )*1.0/ sqrt(De); % inverse potential range

r0=1/a; % minimizer of Morse potential

% Morse potential force with parameters De , a, and r0

f=@(r) (r<1/ sqrt(a)).*( -2.0*a*De*exp(-a*(r-r0))*(1.0 - exp(-a*(r-r0 ))));

T=1; % time interval of simulation

dt=1e-6; % small time step size

nsteps=ceil(T/dt);

dW=sqrt (2.0* dt)*randn(nsteps ,1); % discretized Brownian increments

X=zeros(nsteps ,1); t=zeros(nsteps ,1);

X(1)=0.2; t(1)=0.0;

for i=2: nsteps +1

t(i) = t(i-1) + dt;

X(i) = abs(X(i-1) + dt*f(X(i-1)) + dW(i -1));

end

R=16; Dt=R*dt;

XX=zeros(nsteps/R,1); tt=zeros(nsteps/R,1);

XX (1)=0.2; tt (1)=0.0;

for i=2: nsteps/R+1

dWW=sum(dW(R*(i -2)+1:R*(i -1)));

tt(i) = tt(i-1) + Dt;

XX(i) = abs(XX(i-1)+ Dt*f(XX(i-1)) + dWW);

end

figure (1); clf; hold on;

plot(t,X,’k’, ’LineWidth ’ ,2);

plot(tt ,XX,’color ’ ,[0.6 0.6 0.6], ’LineWidth ’ ,2);

lh=legend ({[’$\delta t=$’ num2str(dt,’%7.6f’)], ...

[’$\delta t=$’ num2str(Dt ,’%7.6f’)]}, ...

’location ’, ’best’, ’Interpreter ’,’latex’, ’fontsize ’ ,20);

set(lh ,’fontsize ’,20,’NumColumns ’ ,2);

xlabel(’$t$’,’fontsize ’,20,’Interpreter ’,’latex ’);

ylabel(’$X$’,’fontsize ’,20,’Interpreter ’,’latex ’ ,...

’Rotation ’,0,’HorizontalAlignment ’,’right ’);

set(gca ,’Ytick’ ,0:1:3,’FontSize ’ ,20);

set(gca ,’Xtick’ ,[0 1/2 1],’xticklabel ’,{’0’, ’1/2’, ’1’},’FontSize ’ ,20);

xlim ([0 T]); ylim ([0 3]);

Listing 2 displays the MATLAB file SRW.m, which produces a realization of the
sticky random walk over the time interval [0, T ] with initial condition x0 = 0.2, sticky
parameter κ = 30, and spatial step size h = 0.01. The simulation is terminated after
the time update first exceeds T . We set the seed for MATLAB’s random number
generator, arbitrarily, to be 999 with the command rng. A single sample path is
plotted as a stairstep graph using the command stairs.
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Listing 2 Sticky Random Walk: SRW.m.

%SRW Sticky random walk method with sticky parameter kappa

% and spatial step size h.

%

clc;

rng (999);

kappa =30;

T=1;

h=0.01; h2=h*h;

x0=0.2;

Y=[x0]; t=[0]; i=1;

while (1)

u0=rand; u1=rand;

if (Y(i)<0.1*h)

mean_dt =0.5* h2+kappa*h;

Y(i+1)=Y(i)+h;

else

mean_dt =0.5* h2;

gamm=(u1 <0.5);

Y(i+1)=Y(i)+h*gamm -h*(1-gamm);

end

dt=-log(u0)* mean_dt;

t(i+1)=t(i)+dt;

if (t(i+1)>T)

break;

end

i=i+1;

end

figure (1); clf; hold on;

stairs(t,Y,’k’, ’LineWidth ’ ,2);

xlabel(’$t$’,’fontsize ’,20,’Interpreter ’,’latex ’);

ylabel(’$Y_t$ ’,’fontsize ’,20,’Interpreter ’,’latex’ ,...

’Rotation ’,0,’HorizontalAlignment ’,’right ’);

set(gca ,’Ytick’ ,0:1:3,’FontSize ’ ,20);

set(gca ,’Xtick’ ,[0 1/2 1],’xticklabel ’,{’0’, ’1/2’, ’1’},’FontSize ’ ,20);

xlim ([0 T]); ylim ([0 1]);
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