
Accurate Pouring using Model Predictive Control Enabled by
Recurrent Neural Network

Tianze Chen, Yongqiang Huang, and Yu Sun

Abstract— Humans perform the task of pouring often and in
which exhibit consistent accuracy regardless of the complicated
dynamics of the liquid. Model predictive control (MPC) appears
to be a natural candidate solution for the task of accurate
pouring considering its wide use in industrial applications.
However, MPC requires the model of the system in question.
Since an accurate model of the liquid dynamics is difficult
to obtain, the usefulness of MPC for the pouring task is
uncertain. In this work, we model the dynamics of water using
a recurrent neural network (RNN), which enables the use of
MPC for pouring control. We evaluated our RNN-enabled MPC
controller using a physical system we made ourselves and
averaged a pouring error of 16.4mL over 5 different source
containers. We also compared our controller with a baseline
switch controller and showed that our controller achieved a
much higher accuracy than the baseline controller.

I. INTRODUCTION

In recent times, researchers are continuously developing
robots that can perform human activities such as cooking and
cleaning. Among the many activities in cooking, pouring is
one of the frequently performed motions in food preparation
based on our Functional Object-Oriented Network (FOON)
video set (FOON is a knowledge representation for robots)
[1], [2]. If the pick-and-place motion in the pouring is
counted as a separated motion, pouring is the second most
frequently performed motion in the FOON video set after
picking-and-placing [1], [3]. Otherwise, pouring is the most
frequently performed motion in the FOON video set [4].
Several studies have paid close attention to the pouring
motion, and dynamics estimation of liquid plays a key role
in successfully performing the pouring motion. In particular,
[5] used vision to perceive the level of liquid, [6] used force
readings to estimate the trajectory of the water being poured,
[7] used fluid dynamics to simplify the pouring process
and [8] used motion harmonics to generate manipulation
trajectory of pouring by taking dynamics into consideration.

MPC belongs to process control and according to [9] it is
the most widely accepted modern control strategy. MPC has
been applied to many industrial applications such as the con-
trol of precisely pouring molten metal into a container [10].
Due to the sensitivity between optimality and computational
speed, traditional MPC approaches, which usually requires
offline calculations in order to achieve better performance,
are typically time and resource consuming. As a result, an
online calculation method for MPC to improve the compu-
tational complexity, modifications of the online method [11]

The authors are with the Department of Computer Science and En-
gineering, University of South Florida, Tampa, FL 33620, USA. Email:
{tianzechen, yongqiang, yusun}@mail.usf.edu

has become a trend. Due to the increasing popularity of deep
neural networks, researchers have attempted to apply deep
learning models into the MPC algorithm. For instance, in
[12], the authors combine MPC with reinforcement learning
in policy search for autonomous aerial vehicles.

Recurrent neural networks (RNN) have particularly seen
an increase of use recently for sequence understanding and
generation. RNN is designed to learn temporal patterns
within a sequence. It has been used to perform tasks such
as successfully synthesize hand writings [13], translate one
language to another [14], generate controllers for object
pushing and placing [15], and to simulate trajectories of
water pouring [6]. It does not suffer from the sequence length
alignment problem in other motion generation approaches
[16].

In this work, we propose using RNN to model the dy-
namics of water while it is being poured. With the dynamics
of water modeled by the RNN, the outcome of applying
different rotation velocities to the source container can be
predicted. Using the predictions, MPC can determine the
optimal velocity to execute. Our work enables the use of
MPC for the task of accurate pouring by using RNN to
estimate, rather than analytically deriving the mechanism
of flowing water. The accuracy of the RNN-enabled MPC
pouring controller depends primarily on the accuracy of the
RNN. With our controller, we are able to achieve a novel
accuracy compared with the prior works.

In the following sections, we first present our proposed
pouring controller from individual components to fullness.
We then show the results of our evaluation of the controller
using a physical system we made ourselves. We evaluate the
proposed controller by using it to pour water from 4 different
source containers and by comparing its pouring accuracy
with that of a baseline switch controller.

II. METHODOLOGY

In this section, we present the technical detail of our
pouring algorithm. The algorithm bases itself on MPC,
within which it uses RNN to predict the outcomes of different
control inputs. We will first describe the process of pouring,
then we review the basics of both RNN and MPC. After we
have covered the individual components of our algorithm,
we finally present the algorithm in its entirety.

A. Problem Description

We consider the problem of pouring a target amount of
water accurately from a source container to a receiving
container as illustrated in Fig. 1. In this work, we represent

Fig. 1: Illustration of pouring problem.

the amount of the water using volume. The volume of
water that ultimately ends up in the receiving container is
determined by the continual flow of the water from the source
container. To achieve an accurate pour, the source container
must stop rotating or reverse at the proper moment. Neither
stopping the rotation of the source container or reversing
it guarantees instant stopping of the flow of the water, as
the water may still keep flowing out for a brief period of
time. The water has a delayed response to the rotation of the
source container, and to stop its flow at a particular time, the
delay must be taken into account. In other words, a pouring
algorithm must stop or reverse the rotation of the source
container in advance. To do that, the algorithm must be able
to predict the behavior of the water in response to the rotation
of the source container to certain extent.

B. Model Predictive Control

MPC is a process control method that generates control in-
put sequentially, one time step after another. At any time step,
MPC determines the control input by solving an optimization
problem. It first looks several time steps into the future
and predicts the outcomes of different sequences of control
inputs. It then identifies the sequence of control inputs that
gives the optimal outcomes and executes the first control
input in that sequence. The above process keeps repeating
itself until the outcome converges to a desired steady state.
The range in which MPC looks into the future and make
predictions is referred to as the prediction horizon.

The standard MPC algorithm can be represented as below:

xk+1 = Axk +Buk (1)
yk =Cxk, (2)

where xk, uk, yk are the system state, the control input and
the outcome respectively. The variables A, B and C refer
to constants related to the control system parameters. Each
iteration of MPC solves an optimization problem which can
be written as:

min
n

∑
k=1

(yk− ȳ)2 (3)

with the following restriction:

xk ∈ state range, k = 1,2,3, ...,n (4)

uk ∈ input range, k = 1,2,3, ...,n (5)

where ȳ is the steady state, n is the length of prediction
horizon. k is the index for each time step within prediction
horizon. Equation (6) is called objective function. By solving
the optimization problem above, u1 will be chosen as the
input for next time step. The process iterates until the desired
steady state is reached.

C. RNN for Volume Prediction

The recurrent neural network (RNN) is a class of neural
networks that is designed to process sequential data. RNN
differs from ordinary neural networks in that its computation
involves the notion of order or time. At any time step t, the
input to RNN includes two entities: an actual input from
the outside x(t), and the output of the RNN itself from the
previous time step h(t−1), i.e.

h(t) = f (x(t),h(t−1)), (6)

where f (·) represents a non-linear function. The network
is trained using back propagation through time [17]. Un-
fortunately, a RNN implemented exactly as described above
cannot effectively process long sequences because the gradi-
ents that are used for updating the weights either explode or
vanish [18], [19]. One popular solution to the problem is long
short-term memory (LSTM) [18], which introduces memory
cells and gates that therefore allow the network to propagate
gradients properly back in time. In this work, we use a
particular design of LSTM whose mechanism is described
in [20]. Hence, in this paper, all instances of “RNN” refer
to the LSTM design proposed in [20].

We use RNN to model the dynamics of the water and to
predict the volume of water in the receiving container. We
use z to represent static task specifications, which include
any factor that can affect the dynamics of the water in a
particular task and that also does not change with time. In
this work, we determine that z = {h,d,vtotal}, where d and h
are the diameter and height of the source container, and vtotal
is the total volume of water existing in the source container
before the pouring starts.

We determine that the input features to the RNN include
the static task specification z, the rotation angle of the source
container θ(t), and the volume from the last time step v(t−
1). The computation of the RNN can be written as

v(t) = RNN(θ(t),v(t−1),z) (7)

where v(t), the output of the RNN is the prediction of the
volume. Let the actual volume be v′(t). The loss function is
defined as

LRNN =
1
N

N

∑
i=1

1
Ti

Ti

∑
t=1

(v(t)− v′(t))2 (8)

where N is the number of training sequences, Ti is the length
of sequence i.

D. RNN-enabled MPC controller

In order to pour a target volume of water into the
receiving container, we use MPC as the control protocol.
The system model represented by Eq. (4) and (5) is linear

and is incapable of accurately capturing the dynamics of
water. Therefore during the pouring process, we model the
dynamics of water using RNN. Let n be the length of the
prediction horizon, we define the pouring problem as:

min
n

∑
i=1

(vi− vtarget)
2 (9)

with the following restriction:

ωmin ≤|
θi−θi−1

∆t
|≤ ωmax (10)

where θi is the rotation angle of the source container, ωmin,
ωmax are the lower and upper velocity limit for pouring. ∆t
is a fixed value that represents the time interval between
two consecutive time steps. vi is the volume predicted by
the RNN for time step i within the prediction horizon, and
vtarget is the target volume we want to pour (the steady state
of volume in the receiving container).

We define two velocities ωp and ωr in which ωp is the
pouring velocity and ωr is the reversing velocity. We define
the possible velocity at each time step j = 1, . . . ,n inside the
prediction horizon to be either ωp or ωr. This produces a
total of m = 2n different sequences of velocities of length n.
We denote the velocity of sequence i at time step j by wi j.
All of the different sequences of velocities can be represented
using a matrix of the form:

Ω =

 ω11 ω12 ω13 ... ω1n
...

...
...

...
ωm1 ωm2 ωm3 ... ωmn

 , (11)

where ωi j ∈ {ωp,ωr}. Figure 2 is an example of generating

Fig. 2: Example of generating all possible velocity sequences

all the possible velocity sequences. At each time step, only
ωp and ωr are valid value for the velocity, thus the generated
sequences are represented as two binary trees. Here we
choose ωp as the average velocity of the human demonstrated
pouring data we collected and we choose ωr as negative 1.5
times of the value of ωp. Due to the computational com-
plexity, ωp and ωr are scalars. If with higher computational
power we can sample more values to make ωp and ωr to

vectors. Each complete path from the root to a leaf is a ve-
locity sequence, such as {ωp,ωp,ωr, . . .}. In our algorithm,
we only allow the velocity to change sign once. We trim the
sequences that contain an ωr followed by ωp. This trimming
can furthermore reduce the computational complexity. For
instance, if we look into 5 steps into the future, our trimming
method can reduce 80% the computation time.

Let θcur be the current rotation angle of the source
container, the sequence of rotation angles corresponding to
the sequence of velocities is computed by:

θi0 = θcur (12)
θi j = θi(j−1)+ωi j∆t (13)

where i = 1, . . . ,m and j = 1, . . . ,n. The resulting rotation
angles θi j’s can be represented by matrix Θ as:

Θ =

 θ11 θ12 θ13 . . . θ1n
...

...
...

...
θm1 θm2 θm3 . . . θmn

 (14)

The volume vi j for sequence i, time step j can be predicted
using RNN by the following:

vi j = RNN(θi j,vi(j−1),z) (15)

where z is the static task specification that does not change
with time. Let the current volume be vcur, then sequence i
of volume can be predicted by going through sequence i of
rotation angles in time, specifically:

1: vi0 = vcur
2: for j in (1,2, . . . ,n) do
3: vi j = RNN(θi j,vi(j−1),z)
4: end for

where i = 1, . . . ,m. The predicted volumes vi j’s can be
represented by matrix V.

V =

 v11 v12 v13 . . . v1n
...

...
...

...
vm1 vm2 vm3 . . . vmn

 (16)

We define the loss function at time step j using the squared
difference between the predicted volume vi j and the target
volume vtarget :

li j =

{
(vi j− vtarget)

2, vi j ≤ vtarget

λ (vi j− vtarget)
2, vi j > vtarget

(17)

where i = 1, . . . ,m. Particularly, when over-pour occurs, i.e.
when vi j > vtarget , we increase the loss value significantly
by multiplying it with a coefficient λ >> 1. The reason we
greatly penalize velocities that cause over-pour is because
over-pour is a state from which a pouring system is never
able to recover. We define the loss of each sequence to be
the sum of the losses for all the time steps in that sequence:

Li =
n

∑
j=1

li j, i = 1, . . . ,m (18)

Fig. 3: An illustration of the pipeline of our pouring control algorithm. First, we generate several sequences of velocities
and put them into Ω. We then compute the corresponding sequences of angles, which we put in Θ. Using each sequence
of angles, we predict the sequence of volume, which we put in V . Using the target volume vtarget , we compute the loss for
each sequence of volume. The index of the minimum-loss sequence is identified and the first velocity in that corresponding
sequence of velocities is executed. The real system proceeds to the next time step and the above process is repeated.

The losses for difference sequences Li’s can be grouped into
a vector l

l =

 L1
...

Lm

 (19)

We find the minimum loss in l

imin = argmin
i

l (20)

The system executes the velocity at the first time step (j = 1)
in velocity sequence imin and proceeds to next step:

ω = ωimin1. (21)

The above control algorithm is described more concisely
in Algorithm 1. We use flag to check whether the source
container has started to reverse. Once it starts reversing, the
control algorithm keeps running for breakvalue iterations and
then stops generating velocities. Then, the source container
returns to θ = 0 at a fixed speed. We also illustrate the
algorithm in Fig. 3.

III. EXPERIMENTS AND EVALUATION

In this section, we present our experiment results and
evaluate our algorithm’s performance. We also compare our
algorithm with a simple pour-and-reverse pouring algorithm.
We use the mean and standard deviation of the pouring
error to represent the accuracy of a trial. We use fixed
pouring velocity and reversing velocity. The source container
only reverses once, which means it will only reverse when
the algorithm generates the reverse velocity ωr and then
afterwards, it keeps executing ωr. Obtaining the reading of
volume is not straightforward without the use of a measuring
cup. However, volume can be converted from weight f if
the density of the liquid and the gravitational acceleration
is known. Thus, in the experiment, we use a force sensor to
measure the weight f of the water in the receiving container,
and convert the weight f to volume v.

Algorithm 1 Pouring algorithm

1: Initialize ω and vcur
2: count← 0
3: f lag← 0
4: while count < breakvalue do
5: Sample the velocity matrix Ω

6: Calculate the angle matrix Θ using Ω and ∆t
7: Predict the volume matrix V from Θ using RNN
8: Calculate the loss vector l
9: Find minimum-loss sequence imin = argmin l

10: From Ω, retrieve velocity sequence imin, i.e.
[ωimin1,ωimin2, . . . ,ωiminn]

11: ω ← ωimin1
12: if source container rotates back then
13: f lag← 1
14: end if
15: if f lag == 1 then
16: count← count +1
17: end if
18: end while

A. Data Collection

We collected 316 trials of human pouring water from
different source containers to the same receiving container,
which is part of the USF RPAL Daily Interactive Manipula-
tion (DIM) dataset[21], [22]. We used the Polhemus Patriot
motion sensor to record the rotation of the source containers
and ATI mini40 force sensor to record the weight of the
water in the receiving container. We also measured the total
weight of water in the source container before the start
of each trial, as well as the height and diameter of each
source container. The DIM dataset contains recordings of 32
types of manipulations. At the moment, it is the only open
manipulation dataset that contains both motion and force
[23].

Fig. 4: The structure of the implemented RNN. 8FC refers to fully connected layer with 8 units. Input x(t) = {θ(t), f (t−
1),d,h, ftotal} and output y(t) = f (t). The volume v is represented using weight f .

Fig. 5: The model’s prediction on one of the test sequence,
the force are negative since they are pointing to the gravity
direction

B. Training the RNN

The architecture of our RNN is shown in Fig. 4. It has
4 LSTM layers, followed by 2 fully connected (FC) layers.
Each LSTM layer has 12 LSTM units. The first FC layer has
8 units and the second FC layer has 1 unit and is the output
layer. Dropout is used to the output of the fourth layer, and
we choose 0.7 as the dropout rate, which means we will
randomly drop 30% of the units in the network. We divide
the data into training, validation and test with the percentages
of 60%, 20%, 20%. We train the network for 2500 epochs
with a batch size of 64. The average test loss on our model
is 2.6051523e− 05lb f which is equalivent to 2.32mL. One
of the testing results generated by our trained RNN model
is shown in figure 5.

C. Physical System

To evaluate our pouring algorithm, we made a physical
system which consists of a Dynamixel MX-64 servo motor
and the same force sensor with which we collected the
pouring data. The source container was attached to the motor
and the receiving container was placed on top of the force
sensor. The algorithm reads force from the force sensor
and rotation angle from the motor. The motor executes the
velocity issued by the algorithm. The physical system is
shown in Fig. 6.

Fig. 6: The physical system mainly consists of a servo motor
which executes the velocity and a force sensor which obtain
the weight of the water

D. Pouring with the proposed controller

We used the proposed controller to pour water from 5
different source containers. For each source container, we
performed 8 trials. The target volume ranges from 40mL to
180mL, with an increment of 20mL. The lowest observed
pouring velocity in our data is 20 deg/sec. Therefore, we
specify the pouring velocity ωp = 20 deg/sec, and the revers-
ing velocity ωr =−30 deg/sec for the evaluation. We specify
the length of the prediction horizon to be 5 due to limited
computation capability. The system runs at 30Hz. Among the
5 cups with which we conducted the experiments, only the
red cup is used for training the RNN. Table I shows the mean
and standard deviation of the pouring error for all cups. As
examples, Fig. 7 shows the actually poured volume of each
trial for the glass cup and the fat cup.

TABLE I: Results of pouring with the proposed controller

cup
cup

diameter
(mm)

cup
height
(mm)

in
training

error
mean
(mL)

error
std

(mL)
red 88.0 81.0 Yes 7.25 4.92

glass 80.0 103.0 No 14.25 9.11
bottle 23.0 218.0 No 15.88 5.13

fat 85.0 109.0 No 18.25 8.30
bubble 88.0 121.0 No 26.13 6.29

E. Pouring with the baseline controller

We compare our controller with a baseline controller. The
baseline controller is a switch controller that pours with a

Fig. 7: Results of MPC-based pouring, where: (a) is the result for the glass cup, (b) is the result for the fat cup.

certain pouring velocity until the volume of water in the
receiving container reaches the target volume, then the source
container is reversed right away using a certain reversing
velocity.

We evaluated the accuracy of the baseline controller using
two sets of pouring and reversing velocity: set A (ω = 5
deg/sec, ωr = −7.5 deg/sec) and set B (ω = 20 deg/sec,
ωr =−30 deg/sec). In set A, both the pouring and reversing
velocity are very small which makes accurate pouring an
easy problem because the speed at which the water flows
will be slow. Set B includes the same pouring and reversing
velocity as used for our RNN-enabled MPC controller as
mentioned in Sec. III-D. With ωp and ωr the same, the
difference between our proposed controller and the baseline
controller set b lies in our controller’s ability of looking into
the future to prevent overpour. Using each baseline controller,
we pour with 2 different source containers: the red cup and
the bubble cup since they represent the best and the good
results for the proposed controller (RNN+MPC). For each
source container, we performed 8 trials. The target volume
ranges from 40mL to 180mL, with an increment of 20mL.

Table II shows the comparison of accuracy between the
proposed controller and the 2 baseline controllers. Fig. 8
shows the actual poured volume for each trial conducted by
the proposed controller and 2 baseline controllers using the
red cup, and Fig. 9 using the bubble cup.

In Table II, Fig. 8 and 9 we can see that the baseline con-
troller set A, i.e. the slow baseline controller always achieves
the highest accuracy among the three controllers. This is
understandable because as the pouring velocity decreases,
so does the difficulty of controlling the pouring volume. The
extreme case of a slow baseline controller is one that drips
water into the receiving container, for which no difficulty of
controlling the pouring volume will be encountered. For a
daily pouring task, if the velocity of pouring is too slow then
the efficiency of the task will be very low, which disobeys
the initial purpose of designing our controller - to learn
pouring from human’s demonstration. Hence it is important
for our controller to perform the whole pouring motion at
the average pouring velocity of human. When the baseline

Fig. 8: Accuracy of proposed controller against 2 baseline
controllers with the red cup as the source container.

controller adopts the same pouring velocity as the proposed
controller, it achieves much lower accuracy than that of the
proposed controller.

Our proposed controller managed to achieve a much higher
accuracy than baseline controller set b supports our design
philosophy that the accuracy of pouring will be improved if
the velocity selection process takes into account the future
outcomes a velocity may cause.

TABLE II: Accuracy of proposed controller against 2 base-
line controller

controller cup ωp
(deg/sec)

err mean
(mL)

error std
(mL)

RNN+MPC red 20 7.25 4.92
baseline red 20 33.50 7.76
baseline red 5 4.50 1.87

RNN+MPC bubble 20 26.13 6.29
baseline bubble 20 56.25 5.85
baseline bubble 5 22.25 4.29

F. Limitations

There are two factors that we think influence the accuracy
of the pouring. The first factor is the lack of fine velocity
control. Our algorithm does not provide a proper decrease of

Fig. 9: Accuracy of proposed controller against 2 baseline
controllers with the bubble cup as the source container.

the velocity when the source container is about to reverse,
which, if exists, is expected to help increase the pouring
accuracy. The second factor is the insufficient length of the
prediction horizon. Due to the computational complexity, we
can only look into 5 steps into the future.

IV. CONCLUSIONS

In this work, we present a controller for accurate pouring.
The controller bases itself on the MPC algorithm. It uses
RNN to model the dynamics of water, with which it is able
to predict the outcomes of different velocities applied to the
source container, and then determine the optimal rotation
velocity to execute. The dynamics modeling RNN plays an
essential role in the design of the controller, and its training
accuracy affects the accuracy of the controller. The accuracy
of our controller relies on the prediction of the RNN model.
In another word, our controller will not generalize well if
the RNN model doesn’t learn well. The next step should be
methods on how to train a RNN model that can have good
generalization ability.

We evaluated the controller using a physical system that
we made ourselves. We used the controller to pour water
from 5 different source containers which averaged a pouring
error for 16.4 mL. The 5 different source containers represent
three commonly used pouring containers in our daily pouring
activity: rectangular shape containers(red cup and glass cup),
trapezoid shape containers(fat cup and bubble cup) and con-
tainers with narrow opening but relatively long body(water
bottle), which indicates the good generalization ability of our
controller. We then compared our controller with a baseline
switch controller and our controller achieved a much higher
accuracy than the baseline controller.

ACKNOWLEDGMENTS

This material is based upon work supported by the Na-
tional Science Foundation under Grants No. 1421418, No.
1560761 and No. 1812933.

REFERENCES

[1] D. Paulius, Y. Huang, R. Milton, W. D. Buchanan, J. Sam, and Y. Sun,
“Functional object-oriented network for manipulation learning,” in
2016 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), Oct 2016, pp. 2655–2662.

[2] D. Paulius and Y. Sun, “A survey of knowledge representation in
service robotics,” Robotics and Autonomous Systems, vol. 118, pp.
13–30, 2019.

[3] D. Paulius, A. B. Jelodar, and Y. Sun, “Functional object-oriented
network: Construction & expansion,” 2018 IEEE International Con-
ference on Robotics and Automation (ICRA), pp. 1–7, 2018.

[4] D. Paulius, Y. Huang, J. Meloncon, and Y. Sun, “Manipulation motion
taxonomy and coding for robots,” in 2017 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2019, pp. 1–6.

[5] C. Schenck and D. Fox, “Visual closed-loop control for pouring
liquids,” in 2017 IEEE International Conference on Robotics and
Automation (ICRA), May 2017, pp. 2629–2636.

[6] Y. Huang and Y. Sun, “Learning to pour,” in 2017 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS), Sept
2017, pp. 7005–7010.

[7] Z. Pan and D. Manocha, “Motion planning for fluid manipulation using
simplified dynamics,” in 2016 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), Oct 2016, pp. 4224–4231.

[8] Y. Huang and Y. Sun, “Accurate robotic pouring for serving
drinks,” CoRR, vol. abs/1906.12264, 2019. [Online]. Available:
http://arxiv.org/abs/1906.12264

[9] B. Kouvaritakis and M. Cannon, Model Predictive Control: Classical,
Robust and Stochastic, ser. Advanced Textbooks in Control and
Signal Processing. Springer International Publishing, 2015. [Online].
Available: https://books.google.com/books?id=DmoiCwAAQBAJ

[10] S. Qin and T. A. Badgwell, “A survey of industrial model predictive
control technology,” Control Engineering Practice, vol. 11, no. 7, pp.
733 – 764, 2003. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S0967066102001867

[11] Y. Wang and S. Boyd, “Fast model predictive control using online
optimization,” IEEE Transactions on Control Systems Technology,
vol. 18, no. 2, pp. 267–278, March 2010.

[12] T. Zhang, G. Kahn, S. Levine, and P. Abbeel, “Learning deep con-
trol policies for autonomous aerial vehicles with mpc-guided policy
search,” in 2016 IEEE International Conference on Robotics and
Automation (ICRA), May 2016, pp. 528–535.

[13] A. Graves, “Generating sequences with recurrent neural networks,”
CoRR, vol. abs/1308.0850, 2013. [Online]. Available: http://arxiv.org/
abs/1308.0850

[14] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence
learning with neural networks,” CoRR, vol. abs/1409.3215, 2014.
[Online]. Available: http://arxiv.org/abs/1409.3215

[15] R. Rahmatizadeh, P. Abolghasemi, and L. Bölöni, “Learning
manipulation trajectories using recurrent neural networks,” CoRR,
vol. abs/1603.03833, 2016. [Online]. Available: http://arxiv.org/abs/
1603.03833

[16] Y. Huang and Y. Sun, “Generating manipulation trajectory using
motion harmonics,” in 2015 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE, 2015, pp. 4949–4954.

[17] P. J. Werbos, “Backpropagation through time: what it does and how
to do it,” Proceedings of the IEEE, vol. 78, no. 10, pp. 1550–1560,
Oct 1990.

[18] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, no. 8, pp. 1735–1780, Nov. 1997.

[19] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term depen-
dencies with gradient descent is difficult,” Trans. Neur. Netw., vol. 5,
no. 2, pp. 157–166, Mar. 1994.

[20] W. Zaremba, I. Sutskever, and O. Vinyals, “Recurrent neural network
regularization,” CoRR, vol. abs/1409.2329, 2014.

[21] Y. Huang and Y. Sun, “A dataset of daily interactive manipulation,”
The International Journal of Robotics Research, vol. 38, no. 8,
pp. 879–886, 2019. [Online]. Available: https://doi.org/10.1177/
0278364919849091

[22] “USF RPAL daily interactive manipulation (DIM) dataset,” http://rpal.
cse.usf.edu/datasets manipulation.html, accessed: 2019-07-31.

[23] Y. Huang, M. Bianchi, M. Liarokapis, and Y. Sun, “Recent data sets on
object manipulation: A survey,” Big data, vol. 4, no. 4, pp. 197–216,
2016.

http://arxiv.org/abs/1906.12264
https://books.google.com/books?id=DmoiCwAAQBAJ
http://www.sciencedirect.com/science/article/pii/S0967066102001867
http://www.sciencedirect.com/science/article/pii/S0967066102001867
http://arxiv.org/abs/1308.0850
http://arxiv.org/abs/1308.0850
http://arxiv.org/abs/1409.3215
http://arxiv.org/abs/1603.03833
http://arxiv.org/abs/1603.03833
https://doi.org/10.1177/0278364919849091
https://doi.org/10.1177/0278364919849091
http://rpal.cse.usf.edu/datasets_manipulation.html
http://rpal.cse.usf.edu/datasets_manipulation.html

	INTRODUCTION
	METHODOLOGY
	Problem Description
	Model Predictive Control
	RNN for Volume Prediction
	RNN-enabled MPC controller

	Experiments and Evaluation
	Data Collection
	Training the RNN
	Physical System
	Pouring with the proposed controller
	Pouring with the baseline controller
	Limitations

	Conclusions
	References

