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Abstract—How can we characterize different types of corre-
lation between quantum systems? Since correlations cannot be
generated locally, we take any real function of a multipartite
state which cannot increase under local operations to measure
a correlation. Correlation measures that can be expressed as an
optimization of a linear combination of entropies are particularly
useful, since they can often be interpreted operationally. We
systematically study such optimized linear entropic functions,
and by enforcing monotonicity under local processing we identify
four cones of correlation measures for bipartite quantum states.
This yields two new optimized measures of bipartite quantum
correlation that are particularly simple, which have the additional
property of being additive.

I. INTRODUCTION

Q
UANTIFYING the correlations between disjoint sub-

systems of a quantum state is a fundamental problem

in quantum information theory. Since correlations cannot be

generated by local operations, measures of correlation must be

non-increasing under local processing. For measures which are

functions of the von Neumann entropy (S(ρ) = −Tr ρ log ρ),

this is equivalent to being non-increasing under partial trace
1, i.e.

E(ρ(A1A2)(B1B2)) ≥ E(ρA1B1
) (1)

for a correlation measure E.

In this work, we will take (1) to be the defining property of

a bipartite correlation measure. This property has been studied

by [1] for linear entropic quantities, but here we wish to

identify bipartite correlation measures formed by minimizing

a linear entropic quantity over all purifications of a state ρAB .

More formally, we will study the space of quantities of the

form

Eα(ρAB) = inf
ψ:TrA′B′ |ψ〉〈ψ|

AA′BB′=ρAB

fα(|ψ〉〈ψ|AA′BB′)

where α ∈ R
15 and

fα(|ψ〉〈ψ|AA′BB′) =
∑

∅6=J⊆{A,B,A′,B′}

αJ SJ

(each entry of α corresponds to a non-empty subset of

{A,B,A′, B′}), and identify instances which satisfy (1).

Quantities of this form are of particular interest, since they

often admit operational interpretations, usually in the form of

1This is because any processing can be written as an isometry followed by
a partial trace, and the isometry will not affect entropies.

bounds on performance in information theoretic tasks. Exam-

ples include the squashed entanglement [2], the entanglement

assisted capacity [3], and the entanglement of purification [4].

In a pure state, the entropy of any subsystem is equal to

the entropy of its complement, so we can remove redundancy

from our search space by rewriting it as the set of quantities

of the form

Eα(ρAB) = inf
ρABV :TrV ρABV =ρAB

fα(ρABV ) (2)

where α ∈ R
7 and

fα(ρABV ) =
∑

∅6=J⊆{A,B,V }

αJ SJ . (3)

Note that the minimization is now over all extensions ρABV ,

not only purifications |ψ〉〈ψ|AA′BB′ .

By first examining the entanglement of purification, a well-

known instance of (2) which satisfies (1), we are led to

the construction of four convex polyhedral cones in R
7.

These four cones consist of α vectors which give rise to

optimized bipartite correlation measures which all satisfy (1).

We examine the extreme rays of these cones and find four

nontrivial rays, two of which are new. We study these two cor-

relation measures and find several useful properties, including

lower and upper bounds, additivity, and a relationship to the

regularized entanglement of purification.

This paper is organized as follows. In Section II we present a

proof of the monotonicity of the entanglement of purification,

in order to illustrate our method for identifying monotones of

the form (2). Guided by the proof in Section II, in Section

III we define two different types of monotonicity and identify

all monotones of each type. In Section IV, we examine the

monotones found in Section III and find that many are trivial

in the sense that they are equal to IA:B or 0. After identifying

some nontrivial monotones in Section IV, in Section V we go

on to prove several important properties of these monotones.

Throughout this paper, for compactness of notation, we will

denote all entropic quantities using subscripts. The entropy of

subsystem A will be denoted SA, the entropy of A conditioned

on B (≡ SAB − SB) will be denoted SA|B , the mutual

information of A and B (≡ SA +SB −SAB) will be denoted

IA:B , and the mutual information of A and B conditioned on

V (≡ SAV + SBV − SABV − SV ) will be denoted IA:B|V .

http://arxiv.org/abs/1906.10150v3
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II. THE ENTANGLEMENT OF PURIFICATION

A well-known example of an optimized bipartite correlation

measure is the entanglement of purification [4]

EP (ρAB) = inf
ρABV :TrV ρABV =ρAB

SAV ,

i.e. αAV = 1 and αJ = 0 for all other J . In this section

we prove that (1) holds for Eα = EP , i.e. that EP is

monotonically non-increasing under local processing of both

subsystems of a bipartite state2. The proofs for monotocity

under A-processing and B-processing are different, and point

towards a method for identifying instances of (2) which satisfy

(1).

First we show that EP (ρAB) is monotone under B-

processing. For each extension ρAB1B2V of ρAB1B2
, we will

construct an extension of ρAB1
whose value of SAV is no

greater than that of ρAB1B2V . Given the extension ρAB1B2V

of ρAB1B2
, consider the state

ρ′AB1V
= TrB2

[ρAB1B2V ] ,

which is an extension of the state ρAB1
. Now note that

S′
AV ≡ S

(

TrB1

[

ρ′AB1V

])

= S (TrB1B2
[ρAB1B2V ]) ≡ SAV .

Therefore, every value of SAV achievable by an extension

of the unprocessed state ρAB1B2
can also be achieved by an

extension of the processed state ρAB1
. Thus, the minimum

value of SAV for extensions of the processed state is no

greater than the minimum value of SAV for extensions of the

unprocessed state, which is exactly the statement that

EP (ρAB1B2
) ≥ EP (ρAB1

).

This was a roundabout way of saying that EP (ρAB) is

monotone under B-processing because SAV itself (without the

minimization) is monotone under B-processing.

Now we show that EP (ρAB) is monotone under A-

processing. Our method is the same, i.e., for each extension

ρA1A2BV of ρA1A2B , we construct an extension of ρA1B

whose value of SAV is no greater than that of ρA1A2BV .

Given the extension ρA1A2BV of ρA1A2B , consider the state

ρ′
ÂBV̂

= ρ′
A1B(A2V ), where Â = A1 and V̂ = A2V . This

is the same global state but written as an extension of the

processed state ρA1B . Now note that

S′
ÂV̂

≡ S
(

TrB[ρ
′
A1B(A2V )]

)

= S (TrB [ρA1A2BV ]) ≡ SAV ,

so we have shown that

EP (ρA1A2B) ≥ EP (ρA1B),

which completes the proof of inequality (1).

2This was first shown by [4], using a different method from the one used
here.

III. MONOTONES

A. Monotonicity types

The main point to take away from the previous section is

that for quantities of the form (2), there are two types of

monotonicity we can identify. One way for a quantity Eα to

be monotonic under processing of a subsystem X ∈ {A,B}
is for the associated fα to be monotonic under processing of

X . In this case, monotonicity of Eα is proved by starting with

an extension of an unprocessed state and constructing from it

an extension of an X-processed state by simply tracing out

a subsystem X2 of X = X1X2, as in the above proof of

monotonicity of EP under B-processing. The monotonicity of

fα then implies the monotonicity of Eα. This type of mono-

tonicity (under, say, A-processing) is therefore characterized

by the inequality

fα(ρA1A2BV ) ≥ fα(ρA1BV ). (4)

But, as we saw for EP , monotonicity of fα is not necessary

for monotonicity of Eα. All that is necessary is for fα to be

monotonic under some operation which constructs an exten-

sion of a processed state from an extension of an unprocessed

state. One such operation is a rearrangement of the subsystems

making up the unprocessed state, as in the proof of monotonic-

ity of the EP under A-processing. In this case, monotonicity

of Eα under A-processing is implied by monotonicity of fα

under the operation ρA1A2BV → ρA1B(A2V ), i.e. placing A2

with V in order to write the state as an extension of the

processed state ρA1B . This type of monotonicity, again under

A-processing, is therefore characterized by the inequality

fα(ρA1A2BV ) ≥ fα(ρA1B(A2V )). (5)

We will refer to monotonicity of the types characterized by (4)

and (5) as 0-monotonicity and 1-monotonicity, respectively.

A quantity Eα can now be monotonic under both A- and

B-processing in four (not mutually exclusive) ways that we

can identify. These quantities can be 00-, 01-, 10-, or 11-

monotonic, where the first bit indicates whether Eα is 0- or

1-monotonic on A, and the second on B. As an example, we

have shown EP to be 10-monotonic.

Note that there is still a redundancy in the α vectors, due to

a purification symmetry. Given an extension ρABV of ρAB , we

can form a canonical dual extension by purifying to ρABV W ,

and tracing out V to form ρABW . Now, given fα, there exists

fβ for which fα(ρABV ) = fβ(ρABW ) (implying Eα = Eβ ).

Using the fact that entropies of complimentary subsystems are

equal in a pure state, we see that βAV = αBV , βBV = αAV ,

βABV = αV , and βV = αABV . Also note that this symmetry

takes 0-monotones to 1-monotones, and vice-verse. To see this,

observe that under the purification symmetry, the operations

defining 0- and 1-monotonicity (ρA1A2BV → ρA1BV and

ρA1A2BV → ρA1B(A2V ), respectively) become

0 : ρA1A2BV → ρA1A2BVW → ρA1BV (A2W ) → ρA1B(A2W )

1 : ρA1A2BV → ρA1A2BVW → ρA1B(A2V )W → ρA1BW .

This means we need only study the 00- and 10-monotones,

since the 11- and 01-monotones are redundant via the purifi-

cation symmetry.
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B. Monotonicity cones

Expanding (4) and (5) in terms of the coefficients αJ and

moving all terms to one side, we see that quantities Eα which

are 0- or 1-monotonic on A are those for which α satisfies

αASA2|A1
+ αABSA2|A1B

+ αAV SA2|A1V + αABV SA2|A1BV ≥ 0 (6-0A)

or

αASA2|A1
+ αABSA2|A1B

− αBV SA2|BV − αV SA2|V ≥ 0, (6-1A)

respectively. Here SA|B = SAB − SB is the conditional

entropy. Swapping the roles of A and B in inequalities(6-0A)

and (6-1A) gives inequalities

αBSB2|B1
+ αABSB2|B1A

+ αBV SB2|B1V + αABV SB2|B1AV ≥ 0 (6-0B)

and

αBSB2|B1
+ αABSB2|B1A

− αAV SB2|AV − αV SB2|V ≥ 0, (6-1B)

satisfied by those α for which Eα is 0- or 1-monotonic on

B, respectively. The set of all α ∈ R
7 for which (6-0A) or

(6-1A) is implied by strong subadditivity (SSA) (IA:B|C ≥ 0)

[5], [6] and weak monotonicity (WM) (SC|A+SC|B ≥ 0) [5]

of the von Neumann entropy, for any 4-partite state ρA1A2BV ,

form convex polyhedral cones in R
7. Similarly, the set of all

α ∈ R
7 for which (6-0B) or (6-1B) is implied by SSA and WM

for any 4-partite state ρAB1B2V also form convex polyhedral

cones. Since the intersection of two convex polyhedral cones is

a convex polyhedral cone, the set of all 00-, 10-, 01-, and 11-

monotonic quantities (i.e., those α which satisfy, respectively,

(6-0A) and (6-0B), (6-1A) and (6-0B), (6-0A) and (6-1B),

(6-1A) and (6-1B)) each form a convex polyhedral cone. Using

SAGE’s3 rational convex polyhedral cone module, together

with the constraints on entropy vectors implied by SSA, one

can determine that the 00- and 10-cones are generated by the

extreme rays given by the rows of Table I.

C. Non-negativity in V

For certain α, Eα is −∞. If, for some α,
∑

J⊆{A,B,V }
V ∈J

αJ < 0, (7)

then we can achieve an arbitrarily large negative value of

fα for any state ρAB by choosing an extension of the form

ρABV = ρAB ⊗ Ik/k, for sufficiently large k. So for α
satisfying (7), Eα is −∞. Therefore we are only interested

in those α which satisfy
∑

J⊆{A,B,V }
V ∈J

αJ ≥ 0,

3SAGE is a Python-based open-source mathematics software available at
www.sagemath.org

TABLE I
ROWS ARE THE EXTREME RAYS OF THE 00- AND 10-MONOTONE CONES IN

R
7 .

Cone αA αB αV αAB αAV αBV αABV

00 1 1 0 -1 0 0 0
1 0 0 0 -1 0 0
0 0 0 0 1 1 -1
0 0 0 1 0 0 -1
0 1 0 0 0 -1 0
0 0 1 0 0 0 0
0 0 -1 0 0 0 0

10 1 1 0 -1 0 0 0
0 0 -1 0 0 1 -1
1 0 -1 0 0 0 0
0 1 0 0 0 0 -1
1 1 0 0 0 -1 0
0 0 -1 1 0 0 -1
0 0 0 0 1 0 0
0 0 0 0 -1 0 0

or equivalently, those α which satisfy

α · (0, 0, 1, 0, 1, 1, 1)≥ 0. (8)

The set of all α satisfying (8) form another convex cone C
in R

7, in fact they form the halfspace whose boundary is the

plane through the origin with normal vector (0, 0, 1, 0, 1, 1, 1).
Now we can intersect each of the three cones shown in Table

I with the cone C, in order to keep only those α satisfying

(8). The resulting cones (also obtained via SAGE’s rational

convex polyhedral cone module) are given by the extreme rays

in Table II.

TABLE II
ROWS ARE THE EXTREME RAYS OF THE CONES FORMED BY

INTERSECTING THE CONES OF 00- AND 10-MONOTONES WITH THE CONE

C OF VECTORS α ∈ R
7 WHICH ARE NON-NEGATIVE IN V (I.E. SATISFY

(8)).

Cone αA αB αV αAB αAV αBV αABV label

C ∩ 00 0 0 1 0 0 0 0 1
1 1 0 -1 0 0 0 2
0 0 -1 0 1 1 -1 3
0 0 1 1 0 0 -1 4
0 1 1 0 0 -1 0 5
1 0 1 0 -1 0 0 6

C ∩ 10 0 0 0 0 1 0 0 7
1 1 0 -1 0 0 0 8
0 0 -1 0 1 1 -1 9
1 1 0 0 1 -1 0 10
0 0 -1 1 2 0 -1 11
0 1 0 0 1 0 -1 12
1 0 -1 0 1 0 0 13

IV. A CLOSER LOOK AT THE MONOTONE CONES

The extreme rays of a convex polyhedral cone generate the

cone via conical combinations (real linear combinations with

non-negative coefficients), so any conical combination of the

extreme rays of one of the two cones above gives a monotonic

Eα
4. But in some cases these quantities can be trivial. We will

4Since the infimum of a conic combination is not generally equal to the
conic combination of infima, the extreme rays are somewhat less priveleged
in the optimized setting. In other words there may be interesting quantities in
these cones, other than the ones given by the extreme rays. In this paper we
do not discuss these quantities, but study the extreme rays as a starting point.
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see that many of the rays in the cones in Table II give Eα = 0,

or Eα ∝ IA:B .

We first examine C ∩ 00. Extreme ray 1 gives fα = SV ,

which is non-negative and achieves the value 0 for any ρAB

via the trivial extension. So for this α, we have Eα = 0.

Ray 2 gives fα = IA:B , which gives Eα = IA:B and the

minimum is achieved by any extension. Rays 4, 5, and 6 give,

respectively, fα = IAB:V , fα = IB:V , and fα = IA:V , which

are non-negative and achieve the value 0 for any ρAB via the

trivial extension. So for these three α’s we also have Eα = 0.

So the only extreme ray of C ∩ 00 which is not minimized by

the trivial extension and does not have Eα = 0 or Eα = IA:B

is ray 3, which gives Eα(ρAB) = Esq(ρAB) (the squashed

entanglement [2], Esq(ρAB) = infρABV
(IA:B|V )). So any ray

in C ∩ 00 which can be written as a conical combination

of extreme rays that does not include the Esq ray will give

Eα(ρAB) ∝ IA:B and is therefore trivial.

C ∩ 10 is where we will find an abundance of nontrivial

quantities. There are only three trivial extreme rays, and they

cannot be simultaneously minimized as in the two previous

cones. Ray 8 is equal to rays 15 and 2, and again gives

Eα = IA:B . Ray 12 gives fα = IB:AV , which SSA implies

is bounded below by IA:B , and achieves the value IA:B via

the trivial extension. Ray 13 gives fα = SA + SAV − SV ,

which WM implies is bounded below by IA:B , and achieves

the value IA:B via any purification of ρAB .

The four remaining extreme rays of C ∩ 10 are non-

trivial. Ray 9 is Esq which, interestingly, appears in all four

monotonicity cones. Rays 7, 10, and 11 are (up to a scaling

by 1/2, the reason for which will be clear in the next section)

fP = SAV

fQ =
1

2
(SA + SB + SAV − SBV )

fR =
1

2
(SAB + 2SAV − SABV − SV ),

respectively. fP gives EP , which we expected to find. EQ and

ER are new, and we will see that EQ and ER have several

useful properties.

V. PROPERTIES OF EQ AND ER

A. Lower and upper bounds

Theorem 1. 5 EQ and ER satisfy

1

2
IA:B ≤ E(ρAB) ≤ min{SA, SB}. (9)

Proof. We start with the upper bound. Both fQ and fR

achieve a value of SA via the trivial extension, and a value

of SB via any purification. Therefore EQ and ER satisfy the

upper bound. To prove the lower bound in (9) for EQ, observe

that

2fQ − IA:B = SAV + SAB − SBV

≥ SAV + SAB − SB − SV = SA|V + SA|B ≥ 0,

5This was proven for EP in [4]

where the first inequality follows from subadditivity and the

second from WM. Therefore EQ satisfies the lower bound. To

prove the lower bound for ER, observe that

2fR − IA:B = (SAB + SAV − SABV − SA)

+ (SAB + SAV − SV − SB)

= IB:V |A + SA|B + SA|V ≥ IB:V |A ≥ 0,

where the first inequality follows from WM and the second

from SSA. Therefore ER satisfies the lower bound.

B. Additivity

Theorem 2. EQ and ER are additive6, i.e.

E(ρA1B1
⊗ ρA2B2

) = E(ρA1B1
) + E(ρA2B2

).

Proof. For brevity we will exclude the factor of 1/2. Fix two

bipartite states ρA1B1
and ρA2B2

, and form the bipartite state

ρAB = ρA1B1
⊗ ρA2B2

with A = A1A2 and B = B1B2. We

start with EQ. First we show that

EQ(ρA1B1
⊗ ρA2B2

) ≥ EQ(ρA1B1
) + EQ(ρA2B2

).

Let ρABV be an extension of ρAB . Now let V1 ≡ A2V and

V2 ≡ B1V and consider the extensions ρA1B1V1
and ρA2B2V2

of ρA1B1
and ρA2B2

. Since ρA = ρA1
⊗ρA2

and ρB = ρB1
⊗

ρB2
, we have

fQ(ρA1B1V1
) + fQ(ρA2B2V2

)

= (SA1
+ SB1

+ SA1V1
− SB1V1

)

+ (SA2
+ SB2

+ SA2V2
− SB2V2

)

= SA + SB + SAV − SB1A2V + SB1A2V − SBV

= SA + SB + SAV − SBV = fQ(ρABV ).

Now we show that

EQ(ρA1B1
) + EQ(ρA2B2

) ≥ EQ(ρA1B1
⊗ ρA2B2

).

Let ρA1B1V1
and ρA2B2V2

be extensions of ρA1B1
and ρA2B2

,

and consider the extension of ρAB given by

ρABV = ρA1B1V1
⊗ ρA2B2V2

, (10)

with V ≡ V1V2. Now using the fact that ρAV = ρA1V1
⊗ρA2V2

and ρBV = ρB1V1
⊗ ρB2V2

we have

fQ(ρABV ) = SA + SB + SAV − SBV

= SA1
+SA2

+SB1
+SB2

+(SA1V1
+SA2V2

)−(SB1V1
+SB2V2

)

= (SA1
+SB1

+SA1V1
−SB1V1

)+(SA2
+SB2

+SA2V2
−SB2V2

)

= fQ(ρA1B1V1
) + fQ(ρA2B2V2

).

Therefore EQ is additive.

Now we wish to prove the same thing for ER, i.e.

ER(ρA1B1
⊗ ρA2B2

) = ER(ρA1B1
) + ER(ρA2B2

).

First we show that

ER(ρA1B1
⊗ ρA2B2

) ≥ ER(ρA1B1
) + ER(ρA2B2

).

6
EP is believed to be non-additive [7].
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Let ρABV be an extension of ρAB . Now let V1 ≡ A2V and

V2 ≡ A1V (see [8]) and consider the extensions ρA1B1V1

and ρA2B2V2
of ρA1B1

and ρA2B2
. We wish to show that

fR(ρABV ) ≥ fR(ρA1B1V1
) + fR(ρA2B2V2

), i.e.

SA1A2B1B2
+ 2SA1A2V − SA1A2B1B2V − SV

≥ (SA1B1
+ 2SA1V A2

− SA1B1V A2
− SV A2

)

+ (SA2B2
+ 2SA2V A1

− SA2B2V A1
− SV A1

). (11)

Note that inequality (11) is equivalent to

IA1:A2|V + IB1:B2|A1A2V ≥ IA1B1:A2B2
. (12)

Since IA1B1:A2B2
= 0 by assumption, (12) is true by SSA.

Now we show that

ER(ρA1B1
) + ER(ρA2B2

) ≥ ER(ρA1B1
⊗ ρA2B2

).

Let ρA1B1V1
and ρA2B2V2

be extensions of ρA1B1
and ρA2B2

,

and as we did with EQ, consider the extension of ρAB given

by

ρABV = ρA1B1V1
⊗ ρA2B2V2

, (13)

with V ≡ V1V2. Now using the fact that systems 1 and 2 are

in a product state, we have

fR(ρABV ) = SAB + 2SAV − SABV − SV

= SA1B1
+ SA2B2

+ 2(SA1V1
+ SA2V2

)

− (SA1B1V1
+ SA2B2V2

)− (SV1
+ SV2

)

= SA1B1
+ 2SA1V1

− SA1B1V1
− SV1

+ SA2B2
+ 2SA2V2

− SA2B2V2
− SV2

= fR(ρA1B1V1
) + fR(ρA2B2V2

).

Therefore ER is also additive.

C. Relationship to regularized EP

The regularized EP , defined as

E∞
P (ρAB) = lim

n→∞

1

n
EP (ρ

⊗n
AB), (14)

has an important operational interpretation. E∞
P is the number

of EPR pairs required to create ρAB using only local op-

erations and asymptotically vanishing communication [4]. In

general, E∞
P is difficult to calculate. But there is a relationship

between E∞
P and the quantities EQ and ER, which may

provide a way to learn about E∞
P .

Theorem 3.

E(ρAB) ≤ E∞
P (ρAB),

for E = EQ, ER.

Proof. First note that

fQ − fP =
1

2
(SA + SB − SAV − SBV )

= −1

2
(SV |A + SV |B)

≤ 0

and

fR − fP =
1

2
(SAB − SV − SABV )

= −1

2
(SV + SV |AB)

≤ 0,

where both inequalities follow from WM. Therefore EP is

lower bounded by both EQ and ER. Additivity of EQ and

ER (Thm. 2) now allows us to write

E(ρAB) =
1

n
E(ρ⊗n

AB) ≤
1

n
EP (ρ

⊗n
AB) ∀n,

for E = EQ, ER. Taking the n → ∞ limit gives the theorem.

VI. EVALUATION OF EP , EQ AND ER

A. Pure state

For any pure state |ψ〉AB , all extensions are of the form

ρABV = |ψ〉〈ψ|AB ⊗ ρV , which makes calculation of EP ,

EQ, and ER trivial:

EP (|ψ〉AB) = inf
ρABV

SAV = inf
ρABV

(SA + SV ) = SA

EQ(|ψ〉AB) =
1

2
inf

ρABV

(SA + SB + SAV − SBV )

= SA +
1

2
inf

ρABV

(SA + SV − SB − SV )

= SA

ER(|ψ〉AB) =
1

2
inf

ρABV

(SAB + 2SAV − SABV − SV )

=
1

2
inf

ρABV

(2(SA + SV )− (SAB + SV )− SV )

= SA.

So for a pure state, EP = EQ = ER = SA = SB .

B. Classically correlated state

We can also evaluate all three correlation measures for the

classically correlated state

ρcAB =
∑

i

pi |ii〉〈ii|AB .

First note that an arbitrary extension of ρcAB takes the form

ρcABV =
∑

i,j

√
pipj |ii〉〈jj| ⊗ ρijV ,

with Tr ρijV = δij . From this we can see that ρcAV =
∑

i pi |i〉〈i|A ⊗ ρiiV , and ρcBV =
∑

i pi |i〉〈i|B ⊗ ρiiV .

1) EP : Since SV |A = ΣipiS(ρ
ii
V ) ≥ 0, we have that fP =

SA + SV |A ≥ SA, which is saturated by the trivial extension.

Therefore EP (ρ
c
AB) = SA.

2) EQ: From the form of ρcAV and ρcBV , we see that

SAV = SBV for any extension of ρcAB , so fQ = 1
2 (SA +

SB + SAV − SBV ) = SA, so EQ(ρ
c
AB) = SA = H({pi}).
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3) ER: By (9), ER ≥ 1
2IA:B = 1

2H({pi}) for the state

ρcAB . It is easy to check that this value is achieved by the

extension

ρcABV =
∑

i

pi |iii〉〈iii|ABV ,

so ER(ρ
c
AB) =

1
2IA:B = 1

2H({pi}).

C. Symmetric or antisymmetric state

For states with support entirely within the symmetric or

antisymmetric subspace, we have

1) EP : In this case, [9] showed that EP = SA and that

EP is additive.

2) EQ: States ρABV with the reduced state on ρAB sup-

ported within the symmetric or antisymmetric subspace are

invariant under the swap operator FAB =
∑

ij |ij〉〈ji|AB , i.e.

ρBAV = (FAB ⊗ IV )ρABV (F
†
AB ⊗ IV ) = ρABV .

To see this, note that the most general pure state |ψ〉ABV for

which TrV |ψ〉〈ψ|ABV is supported entirely in the symmetric

or antisymmetric subspace of HA ⊗HB is of the form

|ψ〉ABV =
∑

i

|φi〉AB |ξi〉C , (15)

where all |φi〉AB are symmetric or all |φi〉AB are antisymmet-

ric. In the former case we have

FAB |ψ〉ABV =
∑

i

(FAB |φi〉AB) |ξi〉C = |ψ〉ABV ,

while in the latter case we have

FAB |ψ〉ABV =
∑

i

(FAB |φi〉AB) |ξi〉C = − |ψ〉ABV .

In both cases, we see that

FAB |ψ〉〈ψ|ABV F †
AB = |ψ〉〈ψ|ABV .

Since ρABV with symmetric or antisymmetric ρAB is gen-

erally a mixture of states of the form (15), invariance under

FAB follows. In particular, this means that for any extension

ρABV of a symmetric or antisymmetric state ρAB , we have

SAV = SBV . Therefore fQ = SA, so EQ(ρAB) = SA.

3) ER: Again, for any extension ρABV , we have SAV =
SBV , so

fR =
1

2
(SAB + (SAV + SBV )− SV − SABV )

=
1

2
(SAB + IA:B|V ).

Therefore ER(ρAB) =
1
2SAB + Esq(ρAB).

VII. CONCLUSION

We have identified four quantities of the form (2) which

have the properties of monotonicity and the lower and upper

bounds in (9). Two of them, the entanglement of purification

and the squashed entanglement, have appeared in the literature

[4][5][2] and have been thoroughly studied. The other two,

which we have called EQ and ER, are new. We have shown

that these two quantities are additive. We have also shown

that they are lower bounds for E∞
P , which could potentially

provide a calculational handle for E∞
P .

It should be noted that the search method used in this paper

is not exhaustive. In particular, we are restricted to showing

monotonicity by (4) and (5), while there may be other in-

equalities which imply monotonicity of a optimized correlation

measure. A possible future research thrust is identifying such

new correlation measures, or confirming their non-existence.

Additionally, we have not yet found operational interpretations

for the correlation measures EQ and ER identified in this

paper. The examples presented in Section VI suggest that while

EQ and ER capture both classical and quantum correlation,

ER distinguishes between the two, whereas EQ seems not

to tell them apart. Finally, we have considered only bipartite

correlations in this work, but we expect that a search for

optimized multipartite correlation measures may yield new and

exciting formulas to study and interpret. Understanding the

two new correlation measures identified here, as well as other

possibly new optimized correlation measures (both bipartite

and multipartite) will be a step forward towards the broader

goal of understanding the structures of quantum correlations.
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