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Abstract—How can we characterize different types of corre-
lation between quantum systems? Since correlations cannot be
generated locally, we take any real function of a multipartite
state which cannot increase under local operations to measure
a correlation. Correlation measures that can be expressed as an
optimization of a linear combination of entropies are particularly
useful, since they can often be interpreted operationally. We
systematically study such optimized linear entropic functions,
and by enforcing monotonicity under local processing we identify
four cones of correlation measures for bipartite quantum states.
This yields two new optimized measures of bipartite quantum
correlation that are particularly simple, which have the additional
property of being additive.

I. INTRODUCTION

UANTIFYING the correlations between disjoint sub-

systems of a quantum state is a fundamental problem
in quantum information theory. Since correlations cannot be
generated by local operations, measures of correlation must be
non-increasing under local processing. For measures which are
functions of the von Neumann entropy (S(p) = —Tr plog p),
this is equivalent to being non-increasing under partial trace
1 je.

E(p(A1A2)(Ble)) > E(pAlBl) (1)

for a correlation measure E.

In this work, we will take (1) to be the defining property of
a bipartite correlation measure. This property has been studied
by [1] for linear entropic quantities, but here we wish to
identify bipartite correlation measures formed by minimizing
a linear entropic quantity over all purifications of a state p4p.
More formally, we will study the space of quantities of the
form

Eo(pan) = inf fa(|¢><¢|AA/BB/)

w:TrA’B’ |w><'¢'|AA/BB/:PAB

where o« € R15 and

fa(|¢><¢|AA/BB/) =

agSy

>

0£TC{A,B,A",B'}

(each entry of « corresponds to a non-empty subset of
{A,B, A’ B'}), and identify instances which satisfy (1).
Quantities of this form are of particular interest, since they
often admit operational interpretations, usually in the form of

I'This is because any processing can be written as an isometry followed by
a partial trace, and the isometry will not affect entropies.

bounds on performance in information theoretic tasks. Exam-
ples include the squashed entanglement [2], the entanglement
assisted capacity [3], and the entanglement of purification [4].

In a pure state, the entropy of any subsystem is equal to
the entropy of its complement, so we can remove redundancy
from our search space by rewriting it as the set of quantities
of the form

E.(paB) = inf f(paBv) (2)

paBv:Trtvpapv=paB

where o € R7 and

[*(paBv) = agSy. (3)

>

0£JC{A,B,V}

Note that the minimization is now over all extensions p4pv,
not only purifications [) (%] 4 4/ pp-

By first examining the entanglement of purification, a well-
known instance of (2) which satisfies (1), we are led to
the construction of four convex polyhedral cones in R”.
These four cones consist of a vectors which give rise to
optimized bipartite correlation measures which all satisfy (1).
We examine the extreme rays of these cones and find four
nontrivial rays, two of which are new. We study these two cor-
relation measures and find several useful properties, including
lower and upper bounds, additivity, and a relationship to the
regularized entanglement of purification.

This paper is organized as follows. In Section II we present a
proof of the monotonicity of the entanglement of purification,
in order to illustrate our method for identifying monotones of
the form (2). Guided by the proof in Section II, in Section
IIT we define two different types of monotonicity and identify
all monotones of each type. In Section IV, we examine the
monotones found in Section III and find that many are trivial
in the sense that they are equal to /4.5 or 0. After identifying
some nontrivial monotones in Section IV, in Section V we go
on to prove several important properties of these monotones.

Throughout this paper, for compactness of notation, we will
denote all entropic quantities using subscripts. The entropy of
subsystem A will be denoted S 4, the entropy of A conditioned
on B (= Sap — Sp) will be denoted S, 5, the mutual
information of A and B (= Sa + Sp — Sap) will be denoted
I4.p, and the mutual information of A and B conditioned on
V (= Sav + Spv — Sapv — Sv) will be denoted 14.p)v-
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II. THE ENTANGLEMENT OF PURIFICATION

A well-known example of an optimized bipartite correlation
measure is the entanglement of purification [4]
inf S AV
paBv:TrtvpaBv=paB

Ep(pap) =

ie. agqy = 1 and oy = 0 for all other J. In this section
we prove that (1) holds for E, = FEp, ie. that Ep is
monotonically non-increasing under local processing of both
subsystems of a bipartite state>. The proofs for monotocity
under A-processing and B-processing are different, and point
towards a method for identifying instances of (2) which satisfy
(D).

First we show that Ep(pap) is monotone under B-
processing. For each extension pap,B,v of pap,B,, we will
construct an extension of pap, whose value of Say is no
greater than that of pap, p,v. Given the extension pap, B,v
of paB, B,, consider the state

/
Pag,v = TrB, [paB, B V],

which is an extension of the state p4p,. Now note that

Sy =8 (Tep, [Pap,v]) = S (Trpyp, [paB,Bov]) = Sav.

Therefore, every value of S,y achievable by an extension
of the unprocessed state pap, B, can also be achieved by an
extension of the processed state p4p,. Thus, the minimum
value of Sy for extensions of the processed state is no
greater than the minimum value of S 4y for extensions of the
unprocessed state, which is exactly the statement that

Ep(paB.B,) > Ep(pas,)-

This was a roundabout way of saying that Ep(pap) is
monotone under B-processing because S 4y itself (without the
minimization) is monotone under B-processing.

Now we show that Ep(pap) is monotone under A-
processing. Our method is the same, i.e., for each extension
pA,A,BV Of pa,a,B, We construct an extension of pa,p
whose value of Sy is no greater than that of pa,a,Bv.
Given the extension pa, 4, BVAof PA;AsB> cgnsider the state
p;iBV = p;xlB(Aw)’ where A = A; and V = A,V. This
is the same global state but written as an extension of the
processed state p4, . Now note that

Sy =S (TTB [p;llB(A2V)]) = S (Trg [pa,a,Bv]) = Sav,
so we have shown that

Ep(pa,a,8) > Ep(pa,B),

which completes the proof of inequality (1).

2This was first shown by [4], using a different method from the one used
here.

III. MONOTONES
A. Monotonicity types

The main point to take away from the previous section is
that for quantities of the form (2), there are two types of
monotonicity we can identify. One way for a quantity E, to
be monotonic under processing of a subsystem X € {A, B}
is for the associated f“ to be monotonic under processing of
X. In this case, monotonicity of E, is proved by starting with
an extension of an unprocessed state and constructing from it
an extension of an X-processed state by simply tracing out
a subsystem Xy of X = X;Xo, as in the above proof of
monotonicity of E'p under B-processing. The monotonicity of
f< then implies the monotonicity of E,,. This type of mono-
tonicity (under, say, A-processing) is therefore characterized
by the inequality

fa(pAlAzBV) > fa(pA1BV)- 4)

But, as we saw for E'p, monotonicity of f¢ is not necessary
for monotonicity of F,. All that is necessary is for f to be
monotonic under some operation which constructs an exten-
sion of a processed state from an extension of an unprocessed
state. One such operation is a rearrangement of the subsystems
making up the unprocessed state, as in the proof of monotonic-
ity of the Ep under A-processing. In this case, monotonicity
of E, under A-processing is implied by monotonicity of f¢
under the operation pa, 4,Bv — pA,B(4.V), 1.€. placing As
with V' in order to write the state as an extension of the
processed state p4, g. This type of monotonicity, again under
A-processing, is therefore characterized by the inequality

fH(pa,a,Bv) = [ (paBa,vy)- (5)

We will refer to monotonicity of the types characterized by (4)
and (5) as O-monotonicity and 1-monotonicity, respectively.
A quantity F, can now be monotonic under both A- and
B-processing in four (not mutually exclusive) ways that we
can identify. These quantities can be 00-, 01-, 10-, or 11-
monotonic, where the first bit indicates whether E, is 0- or
1-monotonic on A, and the second on B. As an example, we
have shown Ep to be 10-monotonic.

Note that there is still a redundancy in the « vectors, due to
a purification symmetry. Given an extension papy of pap, we
can form a canonical dual extension by purifying to papvw,
and tracing out V' to form p4pw . Now, given f¢, there exists
£? for which f*(papv) = [*(papw) (implying Eq = Eg).
Using the fact that entropies of complimentary subsystems are
equal in a pure state, we see that 54 = apy, Bpy = aav,
Bapy = ay, and By = aapy. Also note that this symmetry
takes O-monotones to 1-monotones, and vice-verse. To see this,
observe that under the purification symmetry, the operations
defining 0- and 1-monotonicity (pa,a,Bv — pa,Bv and
PALA BV —F PA, B(A,V), Tespectively) become

0: PALABV = PAIABVW — PALBV(AsW) — PA; B(AW)
1 PAABY = PALALBVW — PA,B(AsV)W — PA, BW -

This means we need only study the 00- and 10-monotones,
since the 11- and O1-monotones are redundant via the purifi-
cation symmetry.



B. Monotonicity cones

Expanding (4) and (5) in terms of the coefficients a s and
moving all terms to one side, we see that quantities £, which
are 0- or 1-monotonic on A are those for which « satisfies

aaSa,a, T @aBSA,| A, B
+aavSa,a,v + @apvSa,ia,Bv >0 (6-0A)

or

aaSa, A, T @aBSA, A, B

—apySa, BV —avSa,v =20, (6-1A)

respectively. Here S AB = Sap — Sp is the conditional
entropy. Swapping the roles of A and B in inequalities(6-0A)
and (6-1A) gives inequalities

apSp,|B, + @ABSB,|B, A
+ aBvSp,|B,v + ¥aBVSB, B,Av = 0 (6-0B)

and

apSp,|B, + @ABSB,|B, A

— aavSp,jay — aySp,v >0, (6-1B)

satisfied by those « for which E, is 0- or 1-monotonic on
B, respectively. The set of all « € R” for which (6-0A) or
(6-1A) is implied by strong subadditivity (SSA) (I4.5|c = 0)
[5], [6] and weak monotonicity (WM) (Scia + Sc|p = 0) [5]
of the von Neumann entropy, for any 4-partite state pa, 4,Bv»
form convex polyhedral cones in R”. Similarly, the set of all
a € R7 for which (6-0B) or (6-1B) is implied by SSA and WM
for any 4-partite state pap, B,y also form convex polyhedral
cones. Since the intersection of two convex polyhedral cones is
a convex polyhedral cone, the set of all 00-, 10-, 01-, and 11-
monotonic quantities (i.e., those o which satisfy, respectively,
(6-0A) and (6-0B), (6-1A) and (6-0B), (6-0A) and (6-1B),
(6-1A) and (6-1B)) each form a convex polyhedral cone. Using
SAGE’s® rational convex polyhedral cone module, together
with the constraints on entropy vectors implied by SSA, one
can determine that the 00- and 10-cones are generated by the
extreme rays given by the rows of Table L.

C. Non-negativity in V
For certain «, E,, is —oo. If, for some «,

Y ag <o, )

JC{A,B,V}
veJ

then we can achieve an arbitrarily large negative value of
f& for any state pap by choosing an extension of the form
paBvy = pap ® Ix/k, for sufficiently large k. So for «
satisfying (7), E, is —oo. Therefore we are only interested
in those o which satisfy

Y. az=0,

JC{A,B,V}
veJ

3SAGE is a Python-based open-source mathematics software available at
www.sagemath.org

TABLE I
ROWS ARE THE EXTREME RAYS OF TI-;E 00- AND 10-MONOTONE CONES IN
R".
Cone | an | ap | @y | aaB | @av | aBV | @ABV
00 1 1 0 -1 0 0 0
1 0 0 0 -1 0 0
0 0 0 0 1 1 -1
0 0 0 1 0 0 -1
0 1 0 0 0 -1 0
0 0 1 0 0 0 0
0 0 -1 0 0 0 0
10 1 1 0 -1 0 0 0
0 0 -1 0 0 1 -1
1 0 -1 0 0 0 0
0 1 0 0 0 0 -1
1 1 0 0 0 -1 0
0 0 -1 1 0 0 -1
0 0 0 0 1 0 0
0 0 0 0 -1 0 0
or equivalently, those o which satisfy
a-(0,0,1,0,1,1,1) > 0. ®)

The set of all « satisfying (8) form another convex cone C
in R7, in fact they form the halfspace whose boundary is the
plane through the origin with normal vector (0,0,1,0,1,1,1).
Now we can intersect each of the three cones shown in Table
I with the cone C, in order to keep only those « satisfying
(8). The resulting cones (also obtained via SAGE’s rational
convex polyhedral cone module) are given by the extreme rays
in Table IL

TABLE 11
ROWS ARE THE EXTREME RAYS OF THE CONES FORMED BY
INTERSECTING THE CONES OF 00- AND 10-MONOTONES WITH THE CONE
C OF VECTORS @ € R7” WHICH ARE NON-NEGATIVE IN V' (I.E. SATISFY
(8)).

Cone ap | ap | ay | aap | aay | apy | aaBy label

CcnNoo 0 0 1 0 0 0 0 1
1 1 0 -1 0 0 0 2
0 0 -1 0 1 1 -1 3
0 0 1 1 0 0 -1 4
0 1 1 0 0 -1 0 5
1 0 1 0 -1 0 0 6

cn1o 0 0 0 0 1 0 0 7
1 1 0 -1 0 0 0 8
0 0 -1 0 1 1 -1 9
1 1 0 0 1 -1 0 10
0 0 -1 1 2 0 -1 11
0 1 0 0 1 0 -1 12
1 0 -1 0 1 0 0 13

IV. A CLOSER LOOK AT THE MONOTONE CONES

The extreme rays of a convex polyhedral cone generate the
cone via conical combinations (real linear combinations with
non-negative coefficients), so any conical combination of the
extreme rays of one of the two cones above gives a monotonic
E,*. But in some cases these quantities can be trivial. We will

4Since the infimum of a conic combination is not generally equal to the
conic combination of infima, the extreme rays are somewhat less priveleged
in the optimized setting. In other words there may be interesting quantities in
these cones, other than the ones given by the extreme rays. In this paper we
do not discuss these quantities, but study the extreme rays as a starting point.



see that many of the rays in the cones in Table II give E, = 0,
or B, xIa.B.

We first examine C N 00. Extreme ray 1 gives f* = Sy,
which is non-negative and achieves the value O for any pap
via the trivial extension. So for this «, we have E, = 0.
Ray 2 gives f* = I4.p, which gives F, = I4.p and the
minimum is achieved by any extension. Rays 4, 5, and 6 give,
respectively, f* = Iap.v, f = Ip.v, and f* = I 4.y, which
are non-negative and achieve the value 0 for any p4p via the
trivial extension. So for these three a’s we also have E, = 0.
So the only extreme ray of C N 00 which is not minimized by
the trivial extension and does not have £, =0 or E, = Ia.B
is ray 3, which gives Eo(pap) = Esq(pap) (the squashed
entanglement [2], Es,(pap) = inf,,,, (1a:5)v)). So any ray
in C N 00 which can be written as a conical combination
of extreme rays that does not include the F,, ray will give
Eo(pap)  I4.p and is therefore trivial.

C N 10 is where we will find an abundance of nontrivial
quantities. There are only three trivial extreme rays, and they
cannot be simultaneously minimized as in the two previous
cones. Ray 8 is equal to rays 15 and 2, and again gives
E, = I4.5. Ray 12 gives f* = Ip.4y, which SSA implies
is bounded below by I4.p, and achieves the value I4.p via
the trivial extension. Ray 13 gives f* = Sy + Sav — Sv,
which WM implies is bounded below by 4.5, and achieves
the value [4.p via any purification of p4p.

The four remaining extreme rays of C N 10 are non-
trivial. Ray 9 is E, which, interestingly, appears in all four
monotonicity cones. Rays 7, 10, and 11 are (up to a scaling
by 1/2, the reason for which will be clear in the next section)

P =Sav
1
9= §(SA+SB+5Av—SBv)

1
= E(SAB +2Sav — Sapv — Sv),

respectively. f gives Ep, which we expected to find. Eg and
Er are new, and we will see that Eg and Er have several
useful properties.

V. PROPERTIES OF Eg AND Eg

A. Lower and upper bounds
Theorem 1. 3 Eq and Eg satisfy

1 .
51,4:3 < E(pap) <min{S4, Sp}. 9

Proof. We start with the upper bound. Both f® and fF
achieve a value of S via the trivial extension, and a value
of Sp via any purification. Therefore Eg and ER satisty the
upper bound. To prove the lower bound in (9) for Eg, observe
that

2f9 — Iy.p = Sav + Sap — Spv
> Sav +8Sap — S — Sv =S +Sa >0,

5This was proven for E'p in [4]

where the first inequality follows from subadditivity and the
second from WM. Therefore F(, satisfies the lower bound. To
prove the lower bound for E'r, observe that

2ff — In.p = (Sap + Sav — Sapv — Sa)
+ (Sap + Sav — Sv — SB)
=Ipvia+ S+ Sav 2 Ip.via >0,

where the first inequality follows from WM and the second
from SSA. Therefore E'r satisfies the lower bound. O

B. Additivity
Theorem 2. Eq and Er are additive’, i.e.

E(pAlBl ® pAsz) = E(pAlBl) + E(pAsz)'

Proof. For brevity we will exclude the factor of 1/2. Fix two
bipartite states pa,p, and pa,p,, and form the bipartite state
PAB = PA B ® PAB, with A = A1 A5 and B = B1Bs. We
start with E¢. First we show that

EQ(pAlBl ® pAsz) > EQ(pAlBl) + EQ(pAsz)'

Let papy be an extension of pap. Now let V3 = A5V and
V5 = B1V and consider the extensions pa, B,v, and pa,B,v,
of pa,B, and pa,p,. Since pa = pa, ®pa, and pp = pp, ®
pPB,, We have

FOpaBivi) + [P (passavs)
= (84, +SB, + Sa,vi —SBiw1)
+ (Sa, + 5B, + Sa,v, — Sova)
=Sa+ S+ Sav — SB,a,v + Sp,a,v — Sy
=S4+ Sp+Sav — Spv = f%(panv).

Now we show that

EQ(pAlBl) + EQ(pAsz) > EQ(pAlBl ® pAsz)'

Let PA By and PA2BV, be extensions of PAL1 By and PA2Bs>
and consider the extension of p4p given by

PABV = PABV: @ PA3BaVs, (10

with V' = V; V4. Now using the fact that pav = pa, v, ®pa,vs,

and ppv = pB,v; ® pB,v, We have

f9(papv) = Sa+ Sp + Sav — Spv
=S54, +54,+5SB,+S8,+(Sa,vi +Sa.v,)—(SByv, +5B,v4)
= (84, +SB,+54,vs =SB, vy )+(Sa,+SB, +S 4,1, —SB, 15 )
= ?parsvi) + [2(PasBava)-

Therefore Eg is additive.
Now we wish to prove the same thing for ER, i.e.

Er(pa,B, @ pa,B,) = Er(pa,B,) + Er(pa,B.)-

First we show that
Er(pa,B, @ pa,B,) > Er(pa,B,) + Er(pa,B,)-

SEp is believed to be non-additive [7].



Let papy be an extension of pap. Now let V3 = A5V and
Vo = A1V (see [8]) and consider the extensions pa,s,v;
and pa,B,v, Of pa,p, and pa,p,. We wish to show that

fR(PABV) > fR(pAlBlvl) + fR(pAszVz)a ie.

SAlAgBlBg + 2SA1A2V - SAlAzBlBQV - SV
Z (SAlBl + 2SA1VA2 - SA131VA2 - SVAQ)

+ (SAQBQ + 2SA2VA1 - SAQBQVAl - SVAl) (11)
Note that inequality (11) is equivalent to
IA1:A2|V + IBl:BQ‘AlAQV Z IAlBltAng' (12)

Since 14, B,:4,B, = 0 by assumption, (12) is true by SSA.
Now we show that
Er(pa,B,) + Er(pa,B,) > Er(pa,B, ® pa,B,)-

Let PA1B1Vy and PA2B2 Vs be extensions of PAL1 By and PA:2Bs>
and as we did with Eg, consider the extension of psp given
by

PABV = PA,B1Vi @ PA3BsVas (13)
with V' = V; V5. Now using the fact that systems 1 and 2 are
in a product state, we have

fR(papv) = Sap +2Sav — Sapy — Sy
=Sa4,B, +Sa,B, +2(Sa,v; + Sa,w)
— (Sa,Bivi + Sa.B,v5) — (Svy + Svy)
=Sa,B, +254,vi —Sa,Bvy — Sv;
+ SA.B, + 254, — Sa,B.ve — Sv
= [ (parBivi) + T (pasBavs)-

Therefore E'r is also additive. O

C. Relationship to regularized Ep
The regularized E'p, defined as

Ep (paB) = nhjgo EEP(pr)v (14)

has an important operational interpretation. £ is the number
of EPR pairs required to create pap using only local op-
erations and asymptotically vanishing communication [4]. In
general, £’ is difficult to calculate. But there is a relationship
between EP and the quantities Eg and Er, which may
provide a way to learn about E3.

Theorem 3.
E(pas) < Ep (pas),

for E = Eq, ER.
Proof. First note that
fo—F =

1
= _E(SV\A + Sv|B)
<0

(Sa+ S —Sav —Sgv)

N~

and
1
fr—fF= E(SAB —Sv —Sasv)

1
= —5(5v +Svjan)
<0

)

where both inequalities follow from WM. Therefore Ep is
lower bounded by both Eg and Er. Additivity of Eg and
Er (Thm. 2) now allows us to write

1 n 1 n
E(pan) = ~E(p3p) < —Er(pip) Vn,

for E = Eg, Er. Taking the n — oo limit gives the theorem.
O

VI. EVALUATION OF Ep, Eg AND Eg
A. Pure state

For any pure state [¢) ,, all extensions are of the form
papv = |[VX¢| 45 ® pv, which makes calculation of Ep,
Eg, and ER trivial:

Ep([¥) ap) = pij}afv Sav = pif}?fv(SA +Sv) =S54

L.
Eq([¥)ap) = 5 me(SA + Sp + Sav — Spv)

=S54+ - inf (SA+Sv—SB—Sv)
2PABV
— 9,
1.
Er([Y) 45) = 3 p;lefv(SAB +2Sav — Sapv — Sv)

So for a pure state, Ep = Eg = Egr = 5S4 = Sp.

B. Classically correlated state

We can also evaluate all three correlation measures for the
classically correlated state

Pap = Zpi |i0)(i1| o -

K2

First note that an arbitrary extension of p% 5 takes the form
Papy = Z VPip; |1)ji] ® py,
i.J

with Tr pg = 0;;. From this we can see that p%y =
22 pi|iNily @ py, and phy = 32, pi |i)il g © pyy-

1) Ep: Since Syja = Zip;iS(pii) > 0, we have that f¥ =
Sa+ SV| A > S4, which is saturated by the trivial extension.
Therefore Ep(pS5) = Sa.

2) Eg: From the form of p%, and p%y,, we see that
Sav = Spyv for any extension of p% 5, so fQ = %(SA +
Sp+8av — Spv) = Sa, so Eq(pip) = Sa = H({p:}).



3) Eg: By 9), Eg > 31a.3 = $H({p;}) for the state
Pap. It is easy to check that this value is achieved by the
extension

Papv = Zpi |i1i)idi] 4 g

K2

s0 Er(p4p) = 31a:8 = H({pi}).

C. Symmetric or antisymmetric state

For states with support entirely within the symmetric or
antisymmetric subspace, we have

1) Ep: In this case, [9] showed that Ep = S, and that
FEp is additive.

2) Eq: States papy with the reduced state on pap sup-
ported within the symmetric or antisymmetric subspace are
invariant under the swap operator Fap =}, [ijXjil 4, i-€.

ppav = (Fap @ Iy)papv(Flz ® Iv) = pasv.

To see this, note that the most general pure state |¢) , 5, for
which Try |¢)(1)| 451, is supported entirely in the symmetric
or antisymmetric subspace of H4 ® Hp is of the form

V) apy = Z |9i) ap |€i)e s (15)
where all |¢;) 4 5 are symmetric or all |¢;) , 5 are antisymmet-
ric. In the former case we have

Fap [Y) apy = Z (Fapl9i) ap) l&i)e = V) apy »

while in the latter case we have

Fap |1/)>ABV = Z (FAB |¢i>AB) |§1>c = - |1/)>ABV :

In both cases, we see that

Fap [UXY| 4y FIXB = [V)XY|apy -

Since papy with symmetric or antisymmetric pap is gen-
erally a mixture of states of the form (15), invariance under
F4p follows. In particular, this means that for any extension
papy of a symmetric or antisymmetric state p4p, we have
Say = Sgy. Therefore f@ = Sy, so Eq(paB) = Sa.

3) Egr: Again, for any extension p4py, we have Sqy =
SBV’ SO

= =(Sap + (Sav + Spv) — Sv — Sasv)

1
2
1
= 5(3,43 +14.Bv)-
Therefore Er(pap) = %SAB + Esq(paB).

VII. CONCLUSION

We have identified four quantities of the form (2) which
have the properties of monotonicity and the lower and upper
bounds in (9). Two of them, the entanglement of purification
and the squashed entanglement, have appeared in the literature
[4][51[2] and have been thoroughly studied. The other two,
which we have called Eg and Eg, are new. We have shown
that these two quantities are additive. We have also shown

that they are lower bounds for EF’, which could potentially
provide a calculational handle for £ .

It should be noted that the search method used in this paper
is not exhaustive. In particular, we are restricted to showing
monotonicity by (4) and (5), while there may be other in-
equalities which imply monotonicity of a optimized correlation
measure. A possible future research thrust is identifying such
new correlation measures, or confirming their non-existence.
Additionally, we have not yet found operational interpretations
for the correlation measures Eg and Epr identified in this
paper. The examples presented in Section VI suggest that while
E¢g and Er capture both classical and quantum correlation,
Er distinguishes between the two, whereas Eg seems not
to tell them apart. Finally, we have considered only bipartite
correlations in this work, but we expect that a search for
optimized multipartite correlation measures may yield new and
exciting formulas to study and interpret. Understanding the
two new correlation measures identified here, as well as other
possibly new optimized correlation measures (both bipartite
and multipartite) will be a step forward towards the broader
goal of understanding the structures of quantum correlations.
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