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We consider the motion of charged and spinning bodies on the symmetry axis of a non-extremal Kerr-
Newman black hole. If one treats the body as a test point particle of mass, m, charge ¢, and spin S, then by
dropping the body into the black hole from sufficiently near the horizon, the first order area increase, 6A, of
the black hole can be made arbitrarily small, i.e., the process can be done in a “reversible” manner with
regard to the change of parameters of the black hole. At second order, there may be effects on the energy
delivered to the black hole—quadratic in ¢ and S—resulting from (i) the finite size of the body and (ii) self-
force corrections to the energy. Sorce and Wald have calculated these effects for a charged, non-spinning
body on the symmetry axis of an uncharged Kerr black hole and showed that, when these effects are
included, 8%A also can be made arbitrarily small, i.e., this process remains reversible to second order.
We consider the generalization of this process for a charged and spinning body on the symmetry axis of a
Kerr-Newman black hole, where the self-force effects have not been calculated. A spinning body (with
negligible extent along the spin axis) must have a mass quadrupole moment >S5 /m, so at quadratic order in
the spin, we must take into account quadrupole effects on the motion. After taking into account all such
finite size effects, we find that the condition 5?°A > 0 yields a nontrivial lower bound on the self-force
energy, Egr, at the horizon. In particular, for an uncharged, spinning body on the axis of a Kerr black hole
of mass M, the net contribution of spin self-force to the energy of the body at the horizon is Eg; > S2/8M?,
corresponding to an overall repulsive spin self-force. A lower bound for the self-force energy, Eg, for a
body with both charge and spin at the horizon of a Kerr-Newman black hole is given. This lower bound will

be the correct formula for Egy if the dropping process can be done reversibly to second order.
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I. INTRODUCTION

It is commonly asserted that freely falling bodies in
general relativity follow geodesics of the spacetime metric.
However, this result is true only in the limit that both the
size and mass of the body become arbitrarily small. If the
body has finite size, R, then it can have a spin, S, as well as
higher multipole moments, which will result in deviations
from geodesic motion [1,2]. In addition, if the body has
finite mass, m, it will perturb the background spacetime
metric, also resulting in deviations from geodesic motion
in the background spacetime. These deviations can be
described as due to a “self-force.” Similarly, for a charged
body, there will be deviations from Lorentz force motion
caused by the electromagnetic multipole moments of the
body arising from its finite size, and there will be self-force
effects arising from its finite charge. For a charged body in
curved spacetime, there will be electromagnetic self-force
effects even if there is no external electromagnetic field.
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If one neglects the effects of the body on the background
spacetime metric and electromagnetic field—thereby treat-
ing the body as a “testbody” and ignoring self-force effects—
the effects of finite size on the motion can be analyzed in
a systematic fashion. One first must define a suitable notion
of a “center of mass worldline” to describe the motion of
the body. This can be done in a satisfactory manner for
sufficiently small bodies [3,4,5]. Atleading order in the size,
R, of the body, there will be deviations from Lorentz force
motion due to spin [1] and to electromagnetic dipole effects.
At higher orders in the size of the body, higher gravitational
and electromagnetic multipole moments will contribute.
These all can be calculated systematically [2] (see also
Sec. 2.2 of [6]).

It is much more difficult to analyze self-force effects.
Expressions for self-force can be rigorously derived by
considering a suitable limit where the size, R, mass, m, and
charge, ¢, of the body all scale to zero in proportional
manner [7]. In this approach, one finds that the leading
(“Oth-order”) motion is given by Lorentz force motion.
At the next order, the deviations from Lorentz force motion
are given by the leading order self-force effects (i.e., force
expressions quadratic in m and ¢g) as well as the test body
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spin and electromagnetic dipole terms [7,8]. General
expressions have been derived for the gravitational and
electromagnetic self-force in a vacuum background space-
time, and progress has been made toward getting an ex-
plicit self-force expression in electrovac spacetimes [9],
where the coupled Einstein-Maxwell equations are needed.
Second-order calculations (i.e., expressions cubic in m) of
self-force have been given for uncharged bodies with no
spin or quadrupole moment in a vacuum background
spacetime [10,11,12]. However, the analysis of second
order self-force is extremely complex, and it would not
seem feasible at present to carry this type of analysis of self-
force beyond second order.

It would be reasonable to expect that there should be self-
force effects resulting from the spin, S, of the body (as well
as from higher multipole moments). Specifically, the
presence of spin will perturb the metric, and the effects
of the resulting perturbed metric back on the spin should
perturb the motion. Such a “spin self-force” should be
proportional to $? and thus should appear at third order in
the perturbative scheme of the previous paragraph.1 As an
issue of principle, it would be of interest to calculate the
effects of spin self-force. Although these effects presum-
ably would be too small to have a significant effect on, e.g.,
the orbits of extreme mass ratio inspirals, they could be of
importance for avoiding over-spinning of black holes [13].
However, a direct calculation of spin self-force does not
seem feasible.

In this paper, we will present indirect evidence for the
existence of a spin self-force and will give a nontrivial
lower bound for the “spin self-force energy” of a spinning
body on the symmetry axis of a Kerr-Newman black hole at
the horizon. We will do so by reversing the logic of a
calculation done in the appendix of a paper by Sorce and
Wald [14]. Similar ideas were previously proposed by Hod
[15] for the case of a charged particle with orbital angular
momentum. Sorce and Wald considered lowering a small
body of charge ¢ to the horizon of a nonextremal Kerr black
hole along its symmetry axis and then dropping it in. At
linear order in ¢, the body can be dropped arbitrarily close
to the horizon and no energy is delivered to the black hole.
At this order in ¢, there is no change in the mass and area
of the black hole, i.e., 6M = 0 and A = 0. At second order
in g, the change in the black hole charge 6Q = ¢ will

'"There should also, in general, be self-force effects propor-
tional to mS, which would appear at second order in the above
perturbative scheme. However, our analysis will concern only the
integrated self-force energy involved in lowering a spinning body
to the horizon of a black hole along the symmetry axis. A term in
the integrated self-force energy of the form mS could take either
sign depending on the orientation of the spin and cannot be
present if the lowering process can be done reversibly when
S = 0, since by choosing the appropriate orientation, one could
decrease the area of the black hole. In any case, we will consider
here only the self-force effects proportional to S2.

contribute to a change, 6%A, of the area of the black hole.
However, at order g2, there are two effects that giverise to a
change 6 M in the mass of the black hole: (i) Assuming that
the body is spherical in shape, the electromagnetic self-
energy contribution to its mass is >¢*/2R, where R is its
proper radius. But one cannot lower such a body closer than
a proper distance R from the horizon. It follows that an
energy of at least [14]

L)

Ep = 2’<q (1)
must be delivered to the black hole, where « is the surface
gravity of the black hole. (ii) Charge self-force effects alter
the energy delivered to the black hole. Specifically, work
must be done by an external agent in overcoming the self-
force when slowly lowering the body to near the horizon of
the black hole. Since the charge self-force is repulsive, the
external agent delivers an additional energy to the body
(and ultimately to the black hole) given by

Eg = / ® F() T Grrdr. 2)

where r,. = M + VM? — a? is the radial coordinate of the
horizon and f(r) is the locally measured charge self-force
on a static charged body (with the sign of f chosen so that
f > 0 for a repulsive force). For the case of a Kerr black
hole—where f(r) is known—Eg is evaluated to be [14]

2
q

Egp = . 3

SF Ar, (3)

Sorce and Wald [14] showed that if the second order change
of mass is given by Er + Egr with Er given by Eq. (1) and
Egp given by Eq. (3), we have §°A = 0. In other words, by
dropping the charge as close as one can to the horizon, the
area change of the black hole can be made to vanish to
second order. Thus, the process of adding a charge to a Kerr
black hole can be done “reversibly” [16] to second order.

Sorce and Wald [14] used the known expression for
charge self-force to prove that the process of dropping a
charged body with no spin into a nonextremal Kerr black
hole from the horizon at the symmetry axis is reversible,
ie., is such that §A = 5°A = 0. As we will show in
Secs. 1V, V, and VI below, the process of dropping a
charged and spinning body into a nonextremal Kerr-
Newman black hole from the horizon at the symmetry
axis is reversible at first order, 5A = 0. However, self-force
effects have not been calculated (except in the above case of
a charged, nonspinning body on the axis of a Kerr black
hole), so we cannot compute Egr, as needed to compute
5?A. Nevertheless, assuming that nonextremal Kerr-
Newman black holes are stable, we know that if 6A = 0,
then we must have §°A > 0. We will show that this gives
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rise to a nontrivial lower bound on Egp. If, in fact, the
process is reversible to second order, then this lower bound
will yield the exact expression for Egp.

An important issue that we have to consider in our
analysis is whether there is any analog of the energy
contribution Er, Eq. (1), for a spinning body that arises
from its finite size. As we shall see in Sec. V below, a
spinning body must have a “size” R > 25/m. However, in
this case, R represents the radius of a ring in a plane
perpendicular to the symmetry axis; the size along the
symmetry axis can be made arbitrarily small. Thus, the
finite size of the spinning body does not provide an obstacle
to lowering the body arbitrarily close to the black hole.
However, such a ring will have a mass quadrupole moment
of order S?/m. This mass quadrupole moment could
potentially affect the motion and the energy of the body
at order S°. Thus, it will be necessary for us to analyze
quadrupole effects. We will see that, in fact, quadrupole
effects do not prevent us from carrying out the dropping
process nor do they contribute to the energy delivered to the
black hole. Thus, only the spin self-force makes a con-
tribution to the energy at order S?, and the requirement that
82A > 0 then places a lower bound on the spin self-force
energy.

In Sec. II, we analyze the motion of a charged and
spinning test body on the symmetry axis of a stationary,
axisymmetric, electrovac spacetime. In addition to charge,
mass, and spin, the body is allowed to have a mass
quadrupole moment, but it is assumed that all other
electromagnetic and gravitational multipole moments van-
ish. After reviewing properties of the Kerr-Newman metric
in Sec. IIl, we illustrate our method in Sec. IV by
considering the dropping of a nonspinning charged body
into a Kerr-Newman black hole from just outside the
horizon on the symmetry axis. Our analysis runs in parallel
with that of the appendix of [14] except that the self-force is
not known in this case. Thus, instead of calculating Egy and
showing that it yields 6°A = 0, we assume that 5°A > 0 and
use this to obtain the lower bound Eq. (59) for Esr. We then
apply the same method in Sec. V to obtain the lower bound
Eq. (80) for the spin self-force energy of a spinning body on
the horizon of an uncharged Kerr black hole. Finally, in
Sec. VI we obtain the lower bound Eq. (84) for the total
self-force energy in the general case of a charged and
spinning body at the horizon of a Kerr-Newman black hole.

II. MOTION OF A CHARGED, SPINNING TEST
BODY WITH A QUADRUPOLE MOMENT ON
THE SYMMETRY AXIS OF A STATIONARY,
AXISYMMETRIC ELECTROVAC SPACETIME

Consider a body with stress-energy 7., and charge-
current j* in an arbitrary curved spacetime with metric g,
in which an electromagnetic field A, is present. We treat the
body as a test body, i.e., we neglect its effect on g,;, and A,

and thus do not include self-force effects. In the following
sections, the failure to achieve 624 >0 in black hole
processes in the test body approximation will be used to
deduce information about self-force.

By conservation of stress-energy and charge-current,
we have

V,T% = Fj, 4)
vaja =0, (5)

where F,, =V, A, — V,A,. Equations of motion for the
body were derived from these relations by Dixon [2]. For
the case of a body that has no gravitational multipole
moments other than mass, spin, and mass quadrupole
moment and has no electromagnetic multipole moments
other than charge, the equations of motion are [2]

Dp” 1 c 1 cde
D—T = qvauh - ERuhcdvbS d + 8 (ub’[;h)J d fvaRcdef
(6)
DS la ,,b] 4 ¢\ ydefla b]
Dr 2ptty +§(“cv JTCTER 4o (7)

Here p“ is the 4-momentum of the body, S is its spin
tensor, J?*°? is its mass quadrupole tensor (which also
includes effects of momentum and stress), and ¢ is its
charge. The spin tensor is antisymmetric, S = —§%¢, and
the quadrupole tensor has the symmetries of the Riemann
tensor. The mass of the body is given by m? = —p?p,
and u“ is defined by u® = p*/m. The quantity v“ is the
4-velocity of the center of mass worldline and D/Dr =
19V ,. Note that v need not be colinear with p“. The spin
tensor and 4-momentum satisfy the relation p,S* = 0 as
a consequence of the definition of the center of mass.
We refer the reader to Dixon’s paper [2] (see also Sec. 2.2
of [6]) for the definitions of p®, §?°, J*<? and the center of
mass worldline, as well as for the derivations of Egs. (6)
and (7). Note that there is no equation of motion for J*b<?;
its evolution will depend on detailed properties of the body
that go beyond the general conservation laws Eqgs. (4)
and (5).

Now suppose that the spacetime admits a Killing field y*
that is also a symmetry of A, so that

L,gar =0, L,A, =0. (8)

Then Egs. (4) and (5) imply that
V(T %0 + A% 2a) = 0, 9)

which, in turn, implies that the quantity
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a= / V=9(T® + A% )y, dZ, (10)
z

is conserved, i.e., independent of the surface X over which
the integral in Eq. (10) is taken. This conserved quantity
can be expressed in terms of the 4-momentum, charge, and
spin tensor by [2]

1
a=—(p,+9A)x" — ES“bVaxb- (11)

Note that the quadrupole moment tensor does not enter the
expression for a (nor would other gravitational or electro-
magnetic multipole moments enter this expression if they
were nonzero). One may directly verify the constancy of «
from the equations of motion (6)—(7) by the following
calculation:

Da Dp DA\
—_ 7 _ e “"7a _ A bv a
D (DT +a—4- );{ (Pa +qA)V"Vipy

1 DS 1 X
Va;(h - 5 S“hv"vcva)(h

2 Dr

1
= g)fa‘]deevaRbcde - q)(avaab - q)(avbvbAa

2
— qA V"V + gJCde[aRcdeb]va)(b

1
= g‘ladeE;(Rabcd - ’l}aﬁ){Aa = 0, (12)
where V.V v, = —R % was used in the second line.

Now consider a stationary and axisymmetric spacetime
with timelike (at infinity) Killing field £ and axial Killing
field w“. Then the corresponding conserved quantities are
naturally referred to as the energy, €, and angular momen-
tum, j, of the test body

1
€= _(pa +qAa)§a _Esabvaébv (13)

. 1
J=(pa+ qA )y + ES‘”’V“W- (14)

Despite the presence of these constants of motion, the
analysis of solutions to Eq. (6) and Eq. (7) in a stationary,
axisymmetric spacetime can be quite complex. However,
the analysis simplifies significantly if we restrict our
attention  to axisymmetric test bodies, L, T,, =
L,j, =0. The center of mass of such a body must lie
on the symmetry axis, w* = 0. The “symmetry axis” is a
two-dimensional timelike surface, so the motion in this
case is in only one spatial dimension. It is convenient to
introduce an orthonormal basis 79, 2%, ¢, $° at each
event on the symmetry axis as follows: We choose
14 = £1/(—¢£2¢,)71/2. We choose 2% to lie tangent to the
symmetry axis (and orthogonal to 7%), and we choose %¢

and ¢ to be orthogonal to the symmetry axis, with the x4,
¥4, 2% chosen to have positive orientation and be such that
V,w, = 29" — $9%b. Since, by symmetry, p® must be
tangent to the symmetry axis, and since p,S% =0, it
follows that S** takes the form

S = S(315" - 3°3°), (15)

where we refer to S as the spin of the body. The conserved
quantity j of Eq. (14) is then simply

j=S. (16)

so the spin is conserved.

We now make the further assumption that the back-
ground spacetime metric is “electrovac,” i.e., a solution to
the FEinstein-Maxwell equations. As shown in the
Appendix, this implies that on the symmetry axis we have
R, 191" = Rypn®n® = 0, where 14 = (14 4 3%)/V/2, n® =
(7 — 2*)/\/2. From the general form of the Riemann tensor
on the symmetry axis, it is shown in the Appendix that the
“torque term,” J4/1R,, %I, in Eq. (7) vanishes on the
symmetry axis. Since DS /Dz also vanishes, it follows
from Eq. (7) that p* and v“ are colinear, so p® = mv“.

It remains to solve Eq. (6). The analysis of this equation
can be greatly simplified by using the constant of motion
Eq. (13). Let 7, z be coordinates on the symmetry axis such
that (0/0t)% = & and (0/0z)% = 24, i.e., t is a Killing
coordinate and z is a proper distance coordinate on the
symmetry axis. Since p* = mv“ we have

paéa = mgniv (17)

where the overdot denotes d/dz, where 7 is the proper time
along the center of mass worldline. Using Eq. (15), we have

SN &y = P(2)S. (18)
where
Bz) = (VoY) V. (19)
Thus, we obtain
€ = —mg,t + q® — %ﬂS, (20)

where we have written ® = —A &%, Equation (20) can be
used to solve for ¢

i_m{e—qé—i—%ﬁS} (21)

This can then be substituted into the equation
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—1 =, = g,1* + 2* (22)

to obtain

1 1 ]2
zz—m{e—qurzﬂs} - 1. (23)

In this equation, g, and f are known functions of z
determined by the background spacetime metric, and €
and S are constants of motion, determined by the initial
conditions of the body.

By conservation of charge, g also is a constant of motion.
However, m is not in general a constant of motion. Indeed,
its evolution is determined by contracting p* into Eq. (6).
We obtain

dm? Dp, 1 D
" _nypaFa Jabcd_R . 24
dr P pr =3™ Dr bed (24)

Thus, if the quadrupole moment is nonvanishing, we must
solve Eq. (24) along with Eq. (23). In order to solve
Eq. (24), we must know the evolution of J*“?, which is not
determined from the conservation relation (4) alone. In
Sec. V below, we will solve Eq. (24) in Kerr for the case of
a spinning ring of minimal radius for its spin.

Note that the quadrupole moment tensor does not enter
Eq. (23). Thus, the quadrupole moment of the body affects
its motion along the symmetry axis only by affecting its rest
mass via Eq. (24). This is not how quadrupole effects are
normally described in Newtonian gravity, so it is worth-
while explicitly seeing how Newtonian behavior arises for
an uncharged body undergoing nonrelativistic motion
along the z-axis in a nearly Newtonian spacetime.2

In a nearly Newtonian spacetime, we have

gy —(1+24). B0, (25)
where ¢ is the Newtonian potential. By assumption, we
have |¢| < 1 and time derivatives of ¢ are negligibly small.
For a nonrelativistic body, we have

Jabed o, % (793¢ {4 — jbje ad — jajdfbe 4 phpdpac)  (26)
where H has purely spatial components, given by

HU = /xixjp(x)d3x. (27)
To linear order in ¢, the Riemann tensor is given by

*The Newtonian behavior of such a body also could be derived
directly from Eq. (6). The aim of the calculation below is to
show how Eq. (23)—wherein the quadrupole effects enter solely
via changes to the rest mass—is compatible with Newtonian
behavior.

Rabcd ~ ;b?daaac‘ﬁ - ?a?dabacqs - 2bicaa8d¢ + }aicabadgb’

(28)
To linear order in ¢, Eq. (23) yields
L, €
Z :W(l—Z(ﬁ)—l. (29)
Equation (24) yields
b — 1 /wﬂ/)a :
m = 6‘] z(R;w/lp)Z
1 .
= EH/‘”(GZ@ﬂavgﬁ)z. (30)

Differentiating Eq. (29) with respect to 7 and, again,
neglecting higher order terms in ¢, we obtain

€2 €?
235 =~ < 20.0): -2, (31)
m m

We now may substitute Eq. (30) for 7. For nonrelativistic
motion, we can ignore the difference between proper time 7
and coordinate time 7, i.e., we may set f ~ 1. We also may
approximate € ~ m on the right side of Eq. (31) since, by
Eq. (20), (¢ — m) is of order ¢. Thus, we obtain

d?z
mll

1
pri —m0,p — EH”D((?Z@”@DQ’)). (32)

This is exactly what Newton would have expected. Of
course, Newton would have attributed the first term on the
right side as being due to a “gravitational force” rather than
geodesic motion in a curved spacetime, and he would not
have associated the quadrupole force with the change in the
rest mass of the body.

III. THE KERR-NEWMAN BLACK HOLE AND ITS
FIRST AND SECOND ORDER AREA VARIATIONS

The Kerr-Newman metric of mass M, charge Q, and
angular momentum J = aM is given in Boyer-Lindquist
coordinates by

g — A — a*sin’0 e 2asin’0(r? + a*> — A) drdg
z z
> 2 2\2 _ A 2a3 29
T G M LNV
A z
(33)
where
A=rr+ad®+Q%-2Mr, (34)
Y =r? + a®cos? 0. (35)
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The vector potential is given by
A, dx? = —% (dt — asin®0d¢). (36)

These solutions describe black holes when Q% + a> < M>.
The horizon of the black hole is located at

r=r,=M+\/M*-d*- Q> (37)

The area of the horizon is given by
A =4z(rt + a?). (38)

The angular velocity of the horizon is given by

a

Q=2
r+a?

(39)

The horizon Killing field is y¢ = & + Quy“. We define
O = —A, y% The electrostatic potential at the horizon is
given by

Or,
Oy =0 =——">. 40
H (ry) Pt (40)
The surface gravity of the horizon is
ro—M
= . 41
. r%r +a® (41)

We restrict consideration in this paper to the nonextremal
case, k > 0, i.e., 0> + a* < M>.

In this paper, we will be concerned with the first and
second order area changes of the black hole when a
charged, spinning body is dropped into the black hole.
Thus, we consider one parameter families of metrics g,,(4),
stress-energies T,,(1), and charge-currents j%(4), corre-
sponding to spacetimes where, initially, one has a Kerr-
Newman black hole of parameters (M, Q,J) with charged
matter outside the black hole; one then drops the charged
matter into the black hole and lets the black hole settle
down to a final state Kerr-Newman black hole with
parameters (M (1), Q(4),J(1)). One can choose the
stress-energy and charge-current of the matter so that the
matter carries no charge and angular momentum beyond
first order, so that we have

0(2) = 0 + 280, (42)
J() =T+ 28], (43)

where for any quantity X we write

0X 5 >*X

0X = (8&) i X = (8/12> RS (44)
As stated above, we take 8°Q = 6°J = 0. However, the
second order change in mass of the black hole will be
affected by the finite size and self-force energy of the body,
so we cannot assume that 8>M vanishes.

The first order change in the area of the final state Kerr-
Newman black hole is given by the first law of black hole
mechanics

Si(SA — 5M — Q6] — DyS0. (45)
T

Below, we will primarily be concerned with the case where
8A = 0. In this case, using 8°Q = 6°J = 0, the second
order variation of area will be given by

8£52A = &M - 5(Qy)8] — 5(Dy)50.  (46)
T

i.e., it will have a contribution from §°M and from terms
quadratic in the first order variations. Since 6A = 0, we can
express 6M in terms of 6Q and 6J by Eq. (45), so the
quadratic terms in Eq. (46) can be written purely in terms of
60 and 6/J.

IV. SELF-FORCE ENERGY FOR A CHARGED
BODY IN KERR-NEWMAN BLACK HOLE

In this section we illustrate our method by considering a
body of charge ¢, and mass m—but no spin or higher
multipole moments—on the symmetry axis of a Kerr-
Newman black hole. Sorce and Wald [14] treated the case
of an uncharged Kerr black hole—where the charge self-
force is known—and showed that the process can be done
reversibly to second order, A = §’A = 0, if the charge is
dropped as near as possible to the horizon. Here, we
consider the case of a Kerr-Newman black hole, where the
charge self-force is not known. We will use the fact that we
must have 6°A > 0 when A = 0 to deduce a lower bound
for the charge self-force energy at the horizon. This lower
bound will yield the exact expression for the self-force
energy if the process is, in fact, reversible to second order.

Consider a body on the symmetry axis of a Kerr-
Newman black hole with mass m and charge ¢ but with
S =0 and J°? = 0. We initially treat the body as a test
body of arbitrarily small size. By Eq. (24), m is constant.
The energy is given by

€ = —mgy,t + q®. (47)
The motion of the body is determined by Eq. (23).

Replacing the proper distance coordinate z by the Boyer-
Lindquist radial coordinate r, we obtain
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mzi’z + Veff(r) == 0, (48)

where

2 A
Vie(r) = — <€ . iraz) 4 m2 <r2 4 a2> (49)

We now drop the body from rest at » = r(. Since = 0 at
r = ry, we have

Vet (ro) =0, (50)

which can be used to solve for € in terms of m, ¢, and r

€=4q ero + m< Alro) >1/2.

r0—|—a2 r%—i—a2

(51)
In order that the body initially falls toward the black hole,

we must have

d Veff

—<L(ry) > 0. (52)

This relation requires

r5—a’ A(ry)
Mry— Q*rg—a*M \| rj + a*

m>qQ (53)

For r, sufficiently close to the horizon, it can be checked
that if Eq. (53) holds, then Vg (r) < 0 for rp < r < ry, so
there will be no turning points, and the body will go into the
black hole.

From Eq. (51) and Eq. (53) we see that for the body to go
into the black hole, we must have

(54)

with equality arbitrarily close to being achieved in the limit
as the dropping point r( approaches r, . If the body goes
into the black hole, we have 6M = ¢ and 6Q = ¢. From
Eq. (45), we have

K Qr,
—O0A =M — D60 =€ — 0 55
87 noQ =e qriJraz_) (55)

in the limit ry — 7.

At second order, we take 5°Q = 0, i.e., we do not add
additional charge to the black hole. As already discussed in
the Introduction, there are two effects that contribute to
8°M. The first arises from the fact that the electromagnetic
self-energy of the body provides a lower bound to the mass,
m > q>/2R, where R is the proper radius of the body.
However, a finite R prevents one from lowering the body to
closer than a proper distance R from the horizon of the

black hole. This finite size effect implies that an energy of
at least’

Ep = 3’ (56)
2
must be delivered to the black hole [14].

The second effect is that of charge self-force, which
contributes an energy Er. This energy is given by Eq. (3)
for the case of an Kerr black hole but is not known for the
case of a charged Kerr-Newman black hole. The total
second order change in mass,4 %52M , should therefore be
given by

1
ElszM :EF+ESF' (57)

Substituting this expression in the formula for the second
variation of area, we obtain

K524 = &M - 5(0,,)60
87

oD 0P
) _ H H
= &M q(éQ—aQ + oM )
a’Q’
M(r% +a*)?

,

=2(Ep+Esp) — ¢*5——— ¢
(Er + Esr) qri-i—az q
5 a2Q2

—2Fc—qg? .
s—4 M(r% + a*)?

— 58
ri+a? 4 (58)

Thus, we see that in order that 54 > 0, we must have

q2

Esp ZW(WF(& +a’) +a’0%),  (39)

which gives a nontrivial lower bound on the self-force
energy Eq. (2). When Q = 0, this lower bound yields the
actual self-force energy Eq. (3).

V. SPIN SELF-FORCE ENERGY IN KERR

In this section, we consider the case of an uncharged
spinning body of mass m and spin S on the symmetry axis
of an uncharged Kerr black hole that is dropped into the

*Here we have assumed that the charged body is spherical in
shape. We could lower the body closer to the horizon by taking it
to be smaller in one spatial dimension than the others, at only a
modest cost in the self-energy, thereby decreasing Er. However,
the body would then acquire an electric quadrupole moment,
which would contribute to the self-force. Since we are interested
in the self-force associated with a “pointlike” spherical body, we
take the charge to be spherically distributed. In that case, the self-
energy is minimized by distributing the charge as a spherical shell
of radius R.

The factor of 1/2 comes from the Taylor coefficient, which
we chose not to incorporate into our definition of 6% in Eq. (44).
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black hole from very near the horizon. The body is assumed
to be axisymmetric, as analyzed in Sec. II. On account of
its spin, the body must have a finite extent R ~S/m
perpendicular to the symmetry axis, so we will need to
take quadrupole effects into account at order S2.

As in the previous section, we initially treat the body as a
test body. Converting the proper distance coordinate z of
Eq. (23) to the Boyer-Lindquist coordinate r, we find that
the motion is given by

mzi’z + Veff(r) = O, (60)

where

r 2 A
chf(r) :—<€—2M61Sr2+a2> +m2m (61)

At first order, we neglect the quadrupole moment, in which
case m is constant. If we drop the body from rest at r = r,
we have Vg (ry) = 0, which implies

A 1/2
e=aMas— "0y m( BN )
(r5 +a”) rota

In order that the body initially fall towards the black hole,
we must have

d Veff
dr

(ro) > 0. (63)

This relation requires

m > 2as$ (3;{2’ - Cf) < Alro) )1/2. (64)

r3 + a

It can be checked that, for r, sufficiently close to r, if
Eq. (64) holds, then Vg (r) <0 for r, < r < ry, so there
will be no turning points, and the body will go into the
black hole.

From Eq. (62) and Eq. (64) we see that for the body to go
into the black hole, we have

¢>2MaS—s0 (65)

(r3 +a*)*’

with equality arbitrarily close to being achieved in the limit
as the dropping point r( approaches r,. If the body goes
into the black hole, we have M = ¢ and 6J = S. From
Eq. (45), we have

K a
K sA =M —-Qué) =e— L
87 " ¢ ri +a?

s.  (66)

Thus we see that A — 0 in the limit ry — r,, where we
have used the fact that 2 + a®> = 2Mr, in Kerr.

At second order, we take 527 = 0, but we have to take
into account effects of order S? associated with (i) the finite
size of the body and (ii) spin self-force corrections to the
energy. We will be able to deduce a bound on the spin self-
force energy if we can calculate the effects of finite size, so
we turn our attention now to finite size effects.

We take as a model of a spinning body in flat spacetime
in cylindrical coordinates (t,p, ¢, z)

k) s(2)8(p — R). (67)

Tub —
27R

where

1
k= (1,0,—,0), (68)
P

i.e., k* is a null vector in the ¢-direction. This corresponds
to having a ring of matter of cylindrical radius R and
negligible z-extent that is rotating as rapidly as possible
consistent with stress-energy conservation and the domi-
nant energy condition. Here m is the mass of the body

m = /Tabt”tbd3x. (69)
The angular momentum of the body is given by
a b g3 1
S=- Tubt ¢ d’x = EmR (70)

Using the definition of quadrupole moment tensor given in
[2] specialized to flat spacetime, we find that the non-
vanishing components of the mass quadrupole tensor are

3
JEIxt . pyivt ngz. (71)

If we put such a body on the symmetry axis of a Kerr
black hole, the curvature corrections to the structure of the
body will be negligible at the order to which we work.
However, if we drop the body, then as we found in Sec. II,
its mass will no longer be constant due to quadrupole
effects. Since S = mR/2 is constant, the radius of the body
also must change correspondingly. The nonvanishing
components of the quadrupole moment tensor are given
by Eq. (71) in the body’s rest frame. Thus, the quadrupole
moment tensor is given by

3
Jabed — En,lR2 (X[avb]x[cvd] + 3\7[‘11);]]3\7[61]‘1]). (72)
Thus, using Eq. (70), we have
mJabed = 687 (&leyPlzlepd 4 glaybigleyd) — (73)

Since v*V,v* = O(S), to order S? we have
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D
D—(m]“’”d) = v°V,(mJ%ed) = 0. (74)
7

Therefore, by Eq. (24), we have

dm2 _ 1 Jabcd D R
dr —3m Dy abed
1d
= g% (mJadeRabcd)
d (r(r*-3a?)
Thus, we find
2-3a%) r,(r2—-3d?)
2= oms (T oo . (76
m(r)”=mg+ <(r2+a2)3 2+ a2y (76)

where my, is the initial mass of the body when it is dropped
from r = ry. We may then plug Eq. (76) into Eq. (61) to get
the effective potential for the motion of the body including
the quadrupole moment.

We now have all of the results needed to analyze the
finite size effects. Unlike the charged case analyzed in the
previous section, the spinning ring need only have size R in
the directions perpendicular to the symmetry axis. Thus,
there is no obstacle arising from the finite size of the body
to lowering it arbitrarily close to the horizon. In addition, as
discussed in Sec. II, there also is no quadrupole moment
contribution to the energy. Nevertheless, the quadrupole
moment affects the motion in the manner indicated in the
previous paragraph. Specifically, it will alter V. and
thereby affect the condition given by Eq. (63). The
modification to Vg also could potentially result in the
existence of new turning points between r, and r, thereby
possibly giving rise to additional restrictions for the body to
enter the black hole. Finally, turning points could also result
from m? going through 0 in Eq. (76). However, it is easily
checked one can choose mg sufficiently large that
(i) Eq. (63) is satisfied, (ii) V(r) <O for ro > r>r,,
(i) m*(r) >0 for ry>r>r,, and such that (iv) e
approaches the lower bound Eq. (65) arbitrarily closely
as ry — r,. Thus, we conclude that for a spinning body
there are no finite size corrections to the energy at order S2,
i.e., we have

Ep =0. (77)

Thus, the entire second order change in mass must be
due to the self-force energy

1
552M - ESF' (78)

The second order change in the area of the black hole is
therefore given by

K 524 = &M — 5(Qy)6]

87
0Qy 19,9)%
=M -S| 6] —= 4+ M —=
( o7 " 8M>
SZ
= 0F ¢ ———. 79
SF 4M3 ( )

Thus, in order that 5°A > 0, the spin self-force energy must
satisfy

Egp>—. 80

2 (80)
Again, the lower bound yields the actual spin self-force
energy if the process of dropping a spinning ring into a Kerr
black hole is a reversible process to second order.

VI. TOTAL SELF-FORCE ENERGY FOR
A CHARGED AND SPINNING BODY
IN KERR-NEWMAN

Finally, we consider the general case of a charged,
spinning body in the Kerr-Newman metric. If the matter
responsible for the charge is the same as the matter
responsible for the spin, then the spinning charge would
create a magnetic dipole moment, and the asymmetric
charge distribution would create an electric quadrupole
moment. These electromagnetic multipole moments would
greatly complicate our analysis. However, there is no need
to require that the charge and spin are produced by the same
constituents of the body. In particular, we may assume that
the charged matter in the body is distributed in a spherical
shell and is nonrotating, whereas another uncharged con-
stituent of the body is a rotating ring as considered in the
previous section. Thus, it is consistent for us to assume that
there are no electromagnetic multipole moments apart from
the charge, ¢, of the body.

The analysis of this case can be done in complete parallel
to that of the special cases of Secs. IV and V. The energy, ¢
now has contributions from both the charge and the spin, as
given by Eq. (13). At first order, we find

Ory 2Mry — Q?

€ > +a )
9 r(2) + a2 (r% + a?)?

(81)

with equality arbitrarily close to being achieved as
ro = ro. It follows that by dropping the body from
arbitrarily close to the horizon, we can make 0A arbitrarily
close to 0.

The finite size correction to *M due to the charge is
again given by Eq. (56). Again, there is no finite size
correction due to spin. Thus, we have

1 1
552M =Ep+ Egp = Elcqz + Egp. (82)
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Thus, the second order change in area is given by

Si(s?A = M — 5(Q)5J — 5(®p)50
T

@ ) Ty (Sr. —qaQ)?
=0M~-q 55— 2 232
ri+a* M(ri+a*)

r.—M r (Sr, —qaQ)?

—=2FE 2+ 2 + _ + i

sF+d r2++a2 1 r2 +a? M(r2++az)2

(83)

where we used the formula (41) for «.

Thus, the condition 5°A > 0 gives the following lower
bound on the total self-force energy in the general case of a
charged and spinning body

¢*M?(r} +a*) + (Sry — qaQ)?

Egp >
SF= 2M(P + a?)?

(84)

Again, the lower bound would be the exact expression for
self-force energy if the dropping process from the horizon
is reversible to second order.

As can be seen from Eq. (84), the self-force energy
is always positive, corresponding to an overall repulsive
self-force. It is interesting that “cross-terms” in S and ¢
arise in Eqr when both a #0 and Q # 0. This is not
unreasonable, because when Q # 0, the charge perturbs the
metric to first order, which can then interact with the spin.
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APPENDIX: RIEMANN TENSOR ON
THE SYMMETRY AXIS

In this appendix, we establish properties of the Riemann
tensor on the symmetry axis of a general stationary,
axisymmetric spacetime. In the case where the spacetime
is a solution of the source free Einstein-Maxwell equations,
we will show that the “quadrupole torque term” of Eq. (7)
vanishes.

Let p be a point on the symmetry axis. It is convenient to
introduce a null tetrad n¢, [4, m*, m® at p, where [* and n?
are real, future directed null vectors tangent to the sym-
metry axis, and m® is a complex spacelike vector orthogo-
nal to the symmetry axis. As usual, the null tetrad is
normalized so that

—l'n, =m,m* =1, (A1)

and all other inner products vanish.

We can expand R,,.,; in the basis defined by this null
tetrad. Under the rotations ¢p — ¢ + y associated with the
axisymmetry of the spacetime, /“ and n“ remain invariant,
but m® changes by a phase, m® — e%m“. Since the
Riemann tensor must be invariant under these rotations,
this implies that an equal number of m“®’s and m“’s must
occur in each term in this basis expansion. Taking account
of this fact together with the Riemann symmetries R ,;,.; =
—Rpuecq and R,p.q = R.4., as well as the reality of the
Riemann tensor, we see that the possible terms that can
occur in its basis expansion are

Rapea = Aljgnylieng + Bmygimymimg + iC(Ianymi.ing
+ mygimylieng) + D(lampn g + npgig licmg)
+ D(Ijgipyniemg) + nigmp lcing)
+ E(ligmplicing + L liemg)

+ F(nigmynimg + ngmyniemg), (A2)
where the basis expansion coefficients A, B, C, E, F are real
and D is complex. The additional Riemann symmetry
Rupeja = 0 yields the further condition, D — D = iC, thus
reducing the general form of the Riemann tensor on the
symmetry axis to six real parameters. It can be seen that
there is a 4-parameter freedom in the components of the
Ricci tensor and a 2-parameter freedom in the components
of the Weyl tensor. The Weyl tensor has “type D” form on
the symmetry axis, with repeated principal null directions
[* and n“.

We now make the additional assumption that the
spacetime metric satisfies Einstein’s equation with electro-
magnetic stress-energy source

1
Rab - EgabR = 87ZTE£/[, (A3)
where
EM 1 1 d
Tgb = FacFCb __gachdFC . (A4)

Az 4

We can expand F;, in our null tetrad basis. Axisymmetry
of F,, again implies that an equal number of m“’s and m*’s
must occur in each term in this basis expansion. Since
F ., = —F},, this restricts F,;, on the symmetry axis to the
form

Fab = Gl[al’lb] + iHm[aﬁlb]. (AS)

where G and H are real. It follows immediately that
laFp)cl© =0,

n[an]ch = 0, (A6)

i.e., [ and n“ are principal null directions of F . It then
follows immediately from Egs. (A4) and (A6) that
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TEMjagh — TEMpayh — g, (A7)
The Einstein field equation (A3) then implies
R, 141" = R ,n“n® = 0. (A8)

This, in turn, implies that the coefficients £ and F in
Eq. (A2) must vanish
E=F=0. (A9)
Finally, the trace of Eq. (A3) yields R = 0, which implies
that D + D = —(A + B)/2.
The quadrupole tensor J,;.; of an axisymmetric body

has the symmetries of the Riemann tensor, and thus has a
basis expansion of the same general form as Eq. (A2), i.e.,

Japea = Hignyleng + Jmpgimymcing + iK (lnpmimg)
+ mygimgleng) + L(lampnieimg + ngigliemg)
+ L(ljgmpnpemg) + nigmplcing)
+ M(l[amb]l[cnﬁd] + l[amb]l[cmd])

+ N(ngmpnicing + nimynmy), (A10)

with L —L = iK. One can now calculate the quantity
JabedR ¢ directly from the formulas (A2) and (A10).
Using the fact that £ = F = 0 in the Riemann expansion,
one may verify that the result is symmetric in d and e.
Thus, J*<“R . =0, ie., the torque term in Eq. (7)
vanishes.
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