A Motion Taxonomy for Manipulation Embedding

David Paulius, Nicholas Eales, and Yu Sun

Abstract—To represent motions from a mechanical point of
view, this paper explores motion embedding using the motion
taxonomy. With this taxonomy, manipulations can be described
and represented as binary strings called motion codes. Motion
codes capture mechanical properties, such as contact type and
trajectory, that should be used to define suitable distance metrics
between motions or loss functions for deep learning and rein-
forcement learning. Motion codes can also be used to consolidate
aliases or cluster motion types that share similar properties.
Using existing data sets as a reference, we discuss how motion
codes can be created and assigned to actions that are commonly
seen in activities of daily living based on intuition as well as real
data. Motion codes are compared to vectors from pre-trained
Word2Vec models, and we show that motion codes maintain
distances that closely match the reality of manipulation.

I. INTRODUCTION

In robotics and Al, motion recognition is a crucial compo-
nent to the understanding of the intent of humans and learning
manipulations directly from demonstration. In learning to
recognize manipulations in activities of daily living (ADL),
it is important to properly define motions or actions for use in
classifiers. However, it is very difficult to appropriately define
or describe motions — which we describe in human language
in words — in a way that is understood by robots.

Typically, motion recognition is achieved using classifiers,
such as neural networks, to detect actions in sequences of
events. Networks are conventionally trained using one-hot vec-
tors (for each motion class) for motion recognition; however,
distances between motions — i.e. distinguishing what makes
one motion different to another — are not innately measurable
with such vectors. Instead, word embedding allows us to obtain
a better vectorized representation of human language describ-
ing those actions, which can then be used to draw meaningful
relationships in a high-dimensional space. Essentially, words
can be measured against one another for a variety of tasks, and
they have been applied to affordance learning and grounding
[11, [2], [3]. One popular approach to learn embedding directly
from natural language is Word2Vec [4], [5]. However, the
major drawback to Word2Vec, when applied in classifiers for
motion recognition and analysis, is that vectors have no innate
sense of mechanics or functionality required to execute those
motions since they are trained on text. A similar argument
is made in other works that also consider embedding derived
directly from manipulations over Word2Vec [2]. To elaborate
further, with Word2Vec embedding, we cannot explain the

David Paulius, Nicholas Eales, and Yu Sun are with the Department of
Computer Science and Engineering at the University of South Florida, Tampa,
FL, USA. They are all members of the Robot Perception and Action Lab
(RPAL). Nicholas was an undergraduate student when this work was done.
(Contact email: {davidpaulius, yusun}@usf.edu)

difference between two types of actions, which may or may not
share overlapping features, as distances between vectors are
not functionally valid. For instance, let us consider the labels
‘pour’, ‘tap’, and ‘poke’; when comparing them in pairs, with
a pre-trained Word2Vec from Wikipedia [6], the labels ‘pour’
and ‘tap’ are closer to one another than ‘tap’ and ‘poke’, where
the latter is considered to be mechanically closer. Furthermore,
Word2Vec embedding cannot capture multiple meanings of
words. In the prior example, the label ‘tap’ can also refer to
the noun for a source of water, which possibly explains why
it is deemed more similar to ‘pour’ than to ‘poke’.

Our objective in this paper is to introduce a suitable em-
bedding of manipulations that considers mechanics of manip-
ulations (from the point of view of the robot) for measuring
distances. Such a representation from the viewpoint of robots
is important for robot learning and understanding [7] With
suitable distance metrics, motion classifiers can better discern
between motion types or, in the event of uncertainty, suggest
similar yet accurate labels for activity understanding. We
coined the term motion taxonomy for this representation [8].
With regards to existing taxonomies in robotics, grasp tax-
onomies have proved to be extremely useful in robotic grasp
planning and in defining grasping strategies [9], [10], [11],
[12], [13], [14], [15], [16]. These studies further explored
the dichotomy between power and precision grasps based on
the way fingers secure objects contained within the hand.
However, there are no taxonomies that primarily focus on the
mechanics of manipulation motions — specifically contact and
trajectory for each end-effector — for defining motions and
suitable metrics for motion types. Such a taxonomy can also
be used for consolidating motion aliases (i.e. words or ex-
pressions in human language) by representing them as binary
codes, which may help to enforce grasp taxonomies for learn-
ing from demonstration. This taxonomy can be used in a deep
neural network that takes a manipulation sequence as input and
outputs a representation of the motion type in the form of a
binary-encoded string or code. These codes can potentially be
used for motion recognition, analysis, and generation. In terms
of robotic manipulation, using binary codes as word vectors for
motions is better than word embedding from natural language
like Word2Vec. Furthermore, the taxonomy can be used in
manipulation learning to identify skills that can be extended
to other motions and to facilitate affordance learning similar
to prior work [17], [18], [19], [20]. In this paper, we show
how this taxonomy can be used to define a representation that
properly defines distances by comparing projections of various
motions from the taxonomical embedding of labels to those
from existing pre-trained Word2Vec models [4], [6], [21].

II. MoTiON CODES

In this section, we describe the various attributes that are
used to represent manipulations as motion codes using the
motion taxonomy. Briefly, the purpose of this taxonomy is
to translate manipulations into a machine language for the
purpose of motion recognition, analysis and generation. Here,
we define a manipulation motion to be any atomic action
between active and passive objects; an active object is defined
as a tool or utensil (or the combination of a robot’s gripper or
human hand and tool) that acts upon passive objects, which
are objects that are acted upon as a result of motion. Motions
can be effectively embedded as vectors that relates them to
motion feature space. Motions labelled with motion codes
avoid ambiguity from aliases for motion types, especially
when translating between human languages.

A. A Case for the Motion Taxonomy

Deriving a representation of motions using the motion
taxonomy was partially inspired by our own experiences with
annotating labels for robot knowledge. We have observed
that among several annotators, inconsistency of labelling and
defining motions was prevalent. This happens especially with
certain motion types that are hard to discern (such as deciding
between the labels ‘cut’, ‘slice’ or ‘chop’), which requires
revisiting all labels given to videos to ensure consistency.
Furthermore, this is also a problem encountered when using
annotated data sets such as the MPII Cooking Activities
Dataset [22] or EPIC-KITCHENS [23] since they may have
their own labels that may not overlap with each other. In
some cases, labels can be very ambiguous and could be better
described when adopting data sets for affordance learning
For instance, in EPIC-KITCHENS, one verb class provided
is ‘adjust’, which turns out to encompass several actions
such as tapping, poking, pressing or rotating depending on
types of switches; another example is the ‘insert’ class, which
encompasses actions such as pouring to picking-and-placing.

To potentially resolve these issues, we propose a represen-
tation scheme that deviates from natural language since an
effective representation is important for robot learning [7].
Binary-encoded strings called motion codes will inherently
define motions based on key traits defined in the taxonomy.
Ambiguity in human language labels or classes can be better
handled if we represent them in an attribute space, especially
if these can be automatically obtained from demonstration.
Different from this representation, neural networks that are
used for motion recognition typically encode motion labels
using one-hot vectors. When training such networks, we use
the cross entropy loss function, which is defined as:

N
L= —Zk:1xk log)A(k

where N is the total number of classes, x;, is the ground-truth
distribution, and X, is the predicted distribution. For instance,
if we have three labels ‘pour’, ‘sprinkle’, and ‘cut’, these may
be encoded with vectors [1,0,0], [0, 1,0], and [0, 0, 1] respec-
tively; during the prediction stage, we can predict the label

for a given manipulation sequence with the highest confidence
using this equation. Since cross entropy is used to determine
how close predicted distributions are to the actual distribution
using one-hot vectors, distances between classes would not
matter since one-hot vectors are equidistant from one another.
Although we can consider this as a distance metric between
probabilities, this does not consider class features that can
provide a better label for class instances. Following the prior
example, we do not get a sense of similarity between motions:
pouring and sprinkling can be considered as closer motions
than to cutting in terms of manipulation mechanics.

With Word2Vec embeddings [4], cosine distances between
vectors suggest relatedness between word labels, where re-
latedness is determined by context. These models are trained
either using continuous bag-of-words (CBOW), n-grams or
skip-grams to identify word pairs that are frequently used
or seen together. However, these vectors do not explicitly
define why motions differ, which is one key purpose of motion
codes; since Word2Vec derives vectors for singular words, we
also can run into issues when defining variations of motions.
For example, pushing a solid or rigid object is mechanically
different to pushing a soft object since the object we are
pushing changes in shape, but we cannot represent these
variations with Word2Vec. With motion codes, we can be more
descriptive with our characterization of motions. It is important
to note that the proposed motion taxonomy is not claimed to
be the ideal way of representing motions; rather, it can be used
to tentatively reduce the amount of features needed to label
and compute meaningful distances between motions.

III. EXAMINING CHARACTERISTICS OF MOTION CODES

The mechanics of motions can be broken down into contact,
force and trajectory. Hence, our taxonomy considers the fol-
lowing attributes based on contact and trajectory information:
contact interaction type, engagement type, contact duration,
trajectory type and motion recurrence. Motion codes also
indicate whether the active object is solely a hand/gripper or
if it is a combination of a hand or tool. Motion codes can be
defined for each end-effector used in the manipulation. When
considering contact, we examine whether objects used in the
manipulation make contact with one another and we describe
what happens to these objects when this contact is established.
These features, shown in Figure 1, are further described below.

A. Describing Contact Type and Features

Motion types can be classified as contact or non-contact
interaction types. Contact motion types are those that require
contact between an active object (i.e. the actor’s hands or
the object that is typically grasped in the actor’s hands) and
passive object(s) (i.e. the object(s) that is/are manipulated upon
when in contact with an active object) in the work space. As
opposed to the taxonomy found in [8], we may consider the
hand or end-effector as a tool. Conversely, non-contact motion
types are those where no contact is established between active
and passive objects or there is no force exerted upon passive
objects. Contact can be observed with vision (for instance,

INTERACTION

TYPE

|
- 000 '—I

I
Non-contact Contact
(No touching) (Touching)

CONTACT/FORCE ATTRIBUTES

AND
CONTACT
DURATION

L I —
Rigid Elastic/Soft Discontinuous Continuous
L | | |
10 1 1
STRUCTURAL
OUTCOME
—— OR—
" Non-deforming Deforming
w I |
-
= 00 — OR_|
E Temporary Permanent
= 1 Iy
=
% 10 1
g TRAJECTORY
a TYPE
o
L
o AND
s [) 1
Prismatic Revolute
g Recurrence (Translation) (Rotational)
g | | |
< —OR—] — OR—| — OR—
L'-J No Yes No Yes No Yes
w (Acyclical) (Cyclical) | |
I~
o (') l 00 00
I — I —
1axis 2axes 3axes 1 axis 2axes 3 axes
L [[[[[[
01 10 11 01 10 11
<[ACTIVE
- DESCRIPTOR
2
] ——®R—
w Hand Only Hand + Tool
a | |
zZ L 0 1

Fig. 1: Illustration of the hierarchy of attributes in the motion taxonomy. A motion code
is formed by appending contact features, the active object’s structural bits, the passive
object’s structural bits, the active trajectory and passive trajectory bits, and a bit descriptor
of the active object by following the tree.

by the objects’ borders or bounding boxes overlapping) or
using force sensors mounted on objects. An example of a
contact motion is mixing, where the active tool makes contact
with contents within a passive container. As for a non-contact
motion, pouring is a prime example: when pouring from one
container to another, the active container held in the hand is not
required to make contact with the passive receiving container.

Once an object interacts with another through physical con-
tact, we classify their engagement as either rigid or soft. Rigid
engagement is where an active object’s interaction with passive
objects does not result in deformation — i.e. their structure
is not compromised or changed —, whereas soft engagement
is where objects deform as a result of the interaction or
the objects allow admittance or are permeable. Furthermore,
we can also consider the structural integrity (or state) of
the objects used in order to describe deformation. Active
and passive objects can either undergo no deformation (non-
deforming) or structural change (deforming). We consider the

cutting action as a soft engagement motion, as an active knife
object will permanently deform the passive object into smaller
pieces or units; even in the action of mixing items within a
bowl, the contents within the bowl can be regarded as the
passive objects being acted upon and deformed. As for a rigid
motion, actions such as tapping or poking a solid object show
no structural change among objects as a result of contact. In
spreading with a knife, neither the knife nor the surface (like
bread) incurs a significant change in their shape. Deformation
can be further distinguished as temporary or permanent, which
is attributed to an object’s material or texture. For instance,
when we squeeze a passive sponge object, it returns to its
original shape, signifying that this motion temporarily deforms
it. However, in the cutting example from before, this state
change is permanent. Poking or tapping an object could be
classified as soft engagement if we engage an elastic object.

In addition to the prior attributes, it may be useful to
note whether the active tool makes persistent contact with
passive objects. If the actor only makes contact for a short
duration in the manipulation, we consider that contact to be
discontinuous; however, if the contact between the active tool
and passive object is persistent, we consider that contact to be
continuous. However, this perspective changes depending on
what is considered to be the active object. If we consider the
robot’s hand to be the active tool only, then we can assume
that once it is grasping a tool for manipulation, there would be
continuous contact between the hand and the tool. This is why
we consider the active tool to be either the hand (if there is no
tool acting upon other objects) or both the hand and tool as
a unit (if there are other objects in the manipulation). Contact
duration can be determined visually (by timing the overlap of
bounding boxes, for instance) or physically with force sensors.
For the sake of this work, we rely on demonstration videos to
identify contact duration by intuition.

B. Describing Trajectory of Motion

We can describe an object’s trajectory as prismatic (or
translational), revolute (or rotational), or both. Previously, we
solely encoded the active object’s observed trajectory in mo-
tion codes [8], but in this work, we have included the passive
object’s trajectory. Prismatic motions are manipulations where
the object is moved along a certain axis or plane of translation.
Prismatic motions can be 1-dimensional (along a single axis),
2-dimensional (confined to a plane) or 3-dimensional (confined
to a manifold space); this can be interpreted as having 1 to
3 DOF of translation. Revolute motions, on the other hand,
are manipulations where the object is rotated about an axis
or plane of rotation; a robot performing such motions would
rely on revolute joints to execute manipulations of this nature.
Similar to prismatic motions, revolute motions can also range
from 1-dimensional to 3-dimensional motion (i.e. from 1 to
3 DOF of rotation); typically, revolute motions are confined
to a single axis of rotation in world space. A motion is not
limited to one trajectory type, as these properties are not
mutually exclusive; therefore, we can say that a motion can
be prismatic-only, revolute-only, neither prismatic nor revolute

TABLE I: Motion codes for manipulations based on the taxonomy illustrated in Figure
1. The attributes of each motion correspond to those observed in source demonstrations.
These codes are best viewed in colour, as each binary bit is colour-coded based on Figure
1. Motion codes are 17 bits long. Underlined substrings correspond to the active object.

Motion Code

Motion Types

000000000001000001
000000010100000001
100000000100000000
101000000000000000
101000000001000010
101000000100000001
101000000100001000
101000000101001010
101000000101001011
101000001000000001
101000001000000010
101000001000010000
101000010001100011
101000010001100010
101000010100101000
110001000100000001
110001000101001001
110001100101001001
110110000100000001
111000000100000001
111001000000000000
111001000101001010
111001011000000001
111001100000000000
111001100100001000
111001100100000001
111001100100100010
111001101000000001
111001111000000001
111100000100001001
111100001000010001
111110000000001001

pour
sprinkle

poke, press (button), tap

grasp, hold

open/close (jar), rotate, turn (key, knob), twist
spread, wipe

move, push (rigid)

flip (hand)

flip (turner, spatula)

spread, wipe (surface)

open/close (door)

move (2D), insert (placing), pick-and-place
fasten, loosen (screw)

shake (revolute)

shake (prismatic)

dip

scoop (liquid)

SCoop

crack (egg)

insert, pierce

squeeze (in hand, elastic)

fold, unwrap, wrap

beat, mix, stir (liquid)

squeeze (in hand)

flatten, press, squeeze, pull apart, peel (hand)
chop, cut, mash, peel, scrape, shave, slice
roll

saw, cut (2D), slice (2D)

beat, mix, stir

brush, sweep, spread (brush)

brush, sweep (surface)

grate

or both prismatic and revolute. From the perspective of the
active object, an example of a prismatic-only manipulation is
chopping with a knife since the knife’s orientation is usually
fixed, while an example of a revolute-only motion is fastening
a screw into a surface using a screwdriver. However, a motion
such as scooping with a spoon will usually require both
prismatic and revolute movements to complete the action.
We can also describe a motion’s trajectory by its recur-
rence, which describes whether the motion exhibits repetitive
behaviour in the tool’s movement. A motion can be acyclical
or cyclical, which may be useful depending on the context
of motion. For instance, mixing ingredients in a bowl may
be repeated until the ingredients have fully blended together,
or in the case of loosening a screw, the screwdriver will
be rotated until the screw is completely out of the surface.
Learned acyclical motions can be made cyclical simply by
repeating them, which is a decision that can be left up to the
robot during motion generation if it is not finished with its
task or it failed to execute the manipulation successfully.

C. Translating Motions to Code

We now discuss how motion codes can be assigned to
motions using the example of the cutting action. Using the
flowchart shown as Figure 1, we construct codes in the follow-
ing manner: first, we ascertain whether the motion is contact or

non-contact. In cutting, the active knife object makes contact
with the passive object, and so we will follow the contact
branch. If the motion was better described as non-contact,
then we will start with the string ‘000°. Since there is contact,
we then describe the type of engagement between the objects
and how long the contact duration is throughout the action.
Following our example, the knife cuts through an object and
maintains contact with it for the entirety of the manipulation,
hence making it a soft engagement (‘//’) and with continuous
contact (‘1’). After describing contact, we describe the state of
the active and passive objects after the manipulation occurs. In
our example, the active object does not deform (‘00’) while
the passive object deforms permanently since the knife cuts
it into a different state (‘/7°). After describing the structural
integrity of the objects, we then describe their trajectories.
When cutting an object, the active trajectory is typically a
1D prismatic motion as we swing the knife up and down
and without any rotation (‘00100’), while there is no passive
trajectory (‘00000’), as the passive object is usually immobile.
If we are observing repetition in cutting, then we would assign
the recurrent bit ‘7’ instead of ‘0’ in the active trajectory
substring. Finally, we indicate whether the active object is
solely the hand or hand/tool pair; in our example, we would
assign it a bit of ‘/’ since we have a hand and knife pairing
as an active object. With all of these substrings, we end up
with the single motion code ‘71100110010000001".

We compiled a list of motion labels that can be found
across several sources of manipulation data such as EPIC-
KITCHENS, MPII Cooking Activities, FOON [24], [25] (in-
spired by our prior work on object affordance for robot manip-
ulation [26], [27]), and Daily Interactive Manipulations (DIM)
[28], and we show their respective codes in Table I. Several
motions can share the same motion code due to common
mechanics, such as cutting and peeling since they are both
1D-prismatic motions that permanently deform the passive
objects. We can also account for variations in manipulation;
for instance, certain motions like mixing and stirring can
either temporarily deform or permanently deform the target
passive object, which depends on its state of matter, or we
can identify non-recurrent or recurrent variants of motion. It
is important to note that motion codes can be assigned to
each hand or end-effector used in a manipulation since they
are not necessary to perform the same manipulation in the
same action. For instance, when chopping items, usually it
is necessary to hold the object in place with one hand and
then use the knife to chop with the other. Because of this, the
structural or state outcome of performing those actions could
be extrinsic to the actions; in the aforementioned example,
the passive object deforms but it is not directly an outcome
of just holding the object. In Table I, we simplify this to the
single-handed perspective of performing those actions.

D. Obtaining Motion Codes from Demonstration

Ideally, a neural network (or a collection of networks for
a group of attributes) can be developed to output codes for
different motion types. In detail, such a network structure

Mini40 FT sensor

handle I I

Patriot PO sensor

Q® inwards
© outwards

world frame

Fig. 2: An illustration of adapter used for data collection in [28] (best viewed in colour).
The Patriot sensor (depicted in blue) records position and orientation, while the ATI
Mini40 sensor (depicted in green) records force and torque. They are aligned to the
world frame (depicted in purple) for analysis.

would assign motion codes to a series of segmented actions
as seen in demonstration videos; rather than learning to detect
and output a single motion code, an ensemble of classifiers
that can separately identify parts of the hierarchy in Figure 1
can be used to build substrings that could then be appended
together as a single, representative string. As a result of such
a network structure, one could also obtain motion features that
may facilitate motion recognition tasks.

Representing manipulations in an attribute space as motion
codes can be likened to the idea behind zero-shot learning
(ZSL); just as in ZSL, even if certain class instances are not
known, motion code vectors can be used as a guide to assign
codes to unknown manipulations and to possibly learn new
actions, granted that we know how to execute similar actions.

IV. EVALUATION OF THE TAXONOMY

Having understood the taxonomy and identified motion
codes for manipulations in ADL, we demonstrate how suitable
they are for representing motion labels. In particular, we focus
on how motion codes can produce embeddings whose dis-
tances are meaningful based on their attributes. Our evaluation
is done in two parts: first, we show how the motion code
assignment corresponds to actual data. Second, we contrast
motion codes to the unsupervised word embedding method
Word2Vec [4], [5], which learns vectorized representations
of words directly from natural language, to show that it
is not suitable to derive accurate motion embedding. We
used pre-trained models trained on Google News [5], [4],
Wikipedia [6], and Concept-Net [21]; although these are not
solely trained with knowledge sources of manipulations nor
physical properties, these models are commonly used for deep
learning tasks in robotics, Al, and computer vision.

A. Support for Motion Codes

Preferably, motion codes are derived directly from demon-
stration data. Several modalities of data such as trajectory,
force, and vision can be used to determine the attributes that
best describe said manipulations. Using provided position and
orientation data, which is available in data sets such as DIM
[28], we can ascertain the trajectory type for several motions
in which there is an active tool or object being manipulated.

To determine the prismatic trajectory type, we can use
methods such as principal component analysis (PCA) to find

Principal Components vs. Score Values (Projected Points)

0.5

Component 3

-0.5 0

Component 2 -1 -1

-0.5
Component 1

Cosine Similarity: Principal Components versus Velocity

PC 1 versus Velocity (Eigenvalue: 0.61346)

et

0 18 36 54 72 90 108 126 144 162 180

angle

PC 2 versus Velocity (Eigenvalue: 0.37259)
T T T T T

T
0 18 36 54 72 90 108 126 144 162 180

angle
PC 3 versus Velocity (Eigenvalue: 0.013955)
T T T —— T T T

=)

frequency
o

o

o
T

frequency
o o
%‘

o
S

frequency

ol

. .
54 72 20 108 126 144 162 180
angle

=)

=)
=3
©
-3

(b) Cosine similarity: linear velocity vs. PCs

Fig. 3: Example of how PCA can be applied to recorded position data to derive prismatic
bits for the ‘stir’ motion. In Figure 3a, the trajectory’s points lie on a plane, thus
suggesting that this is a 2D prismatic motion. In Figure 3b, which shows a histogram of
the number of velocity vectors and their similarity to each PC, it further supports that
the motion primarily lies in PCs 1 and 2 (capturing ~99% of variance). It can also be
observed from the projection that this trajectory is recurrent since the motion is cyclical.

the number of axes (which would be transformed into principal
components, or PCs) that captures the most variance of the
trajectory. PCA has conventionally been used for feature
extraction and dimension reduction, where one can obtain a
subset of features (i.e. DOF) that will sufficiently capture data.
Here, we considered that the number of DOF for a motion
is reflected by the number of PCs that would capture about
90% of variance. Motions such as flipping with a turner are
effectively 1D (and in minor cases 2D) motions because a
single PC captures about 90% of the variance of those trials.
Mixing, beating and stirring (which are all variations of the
same motion) data confirm that the motion is 2D since both the
Ist and 2nd PCs met our requirements; this can be observed
in the projection shown as Figure 3. One can compare the
derived PCs to the velocity (i.e. directional vectors between
trajectory frames) to also clarify whether or not motions exist
within those dimensions using cosine similarity. Should the
velocity vectors align with the PCs, we would expect values
closer to 0° or 180°. In Figure 3b, not only does the 3rd PC
contribute very little to capture the motion, but it is normal
to velocity (since the histogram shows a prevalence of vectors
with cosine similarity peaking around 90°).

To determine the revolute trajectory type, we can convert the
position and orientation data to rotation matrices and measure

0.344 -

=y
— =K

X trajectory

-0.346 |

-0.348

-0.352

> -0.354

-0.356

-0.358

-0.362

L0364 L L L L |
-0.425 -0.42

Cosine Similarity: Tool's Principal Axes versus Axis (K)

X-axis versus Axis (K)
— T T T T

A\L_\,L_J_JJ\\\\\\\\

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180
angle

Y-axis versus Axis (K)

A s

a
3
T

L

frequency

o

o

=)
S

frequency
8
T

B S S S R S T T
60 70 80 90 100 110 120 130 140 150 160 170 180
angle
Z-axis versus Axis (K)
T T

o
o
=)
n L
S
wl
S
NS
S
o
3

=]
3
7

frequency
3
T

S S R ST
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180
angle

o

Degree of Rotation about Tool's Principal Axes (degrees)

X-axis
T T T T T
3 MMWMMMMMMMMMMMMM
°
>
&
°
0
0 50 100 150 200 250
frame (t)
Y-axis
5 T T T T T
o
4
=
(o]
°
0
0 50 100 150 200 250
frame (t)
Z-axis
T T T T

0 50 100 150 200 250
frame (t)

(c) Degree of rotation about all principal axes

Fig. 4: Example of how the axis-angle representation can be used to identify revolute
properties for the ‘loosen screw’ motion (best viewed in colour). In Figure 4a, based on
Figure 2, we show how the axis vector K (in blue), which is obtained from rotation
matrices [29], aligns with the tool’s principal axis y (in red) at each trajectory point. This
is further supported by Figure 4b, which compares each frame’s axis K to the tool’s
principal axes with cosine similarity. In Figure 4c, we graph the change in rotation about
each axis with respect to the last frame’s orientation. Figures 4b and 4c suggest rotation
about the y-axis, hence making it a 1D revolute motion.

the amount of rotation about the principal axis of the active
tool. The axis-angle representation (which represents a frame
as a vector K and an angle of rotation) derived from rotation
matrices can also be used to compute the angle of rotation
based on . A significant rotation about this principal axis
suggests that there is at least one axis of rotation. In Figure
4, we illustrate how we can extract revolute properties for the
motion of loosening a screw. Given the tool’s principal axes
are defined as in Figure 2, we expect that the operation of a

screwdriver would require major rotation about the y-axis. In
Figure 4a, one can see that the axis vector K is predominantly
pointing in the opposite direction of the tool’s axis (which
is also supported by Figure 4b, which shows that the cosine
similarity values peak at 0° or 180°), suggesting that there is
anti-clockwise (or negative) rotation. Rotation about this axis
is further supported by Figures 4b and 4c.

B. Comparing Motion Codes to Word2Vec Embedding

To show how motion codes produce more ideal distances
between motion types, we show how vectors from Word2Vec,
which are derived from natural language, are not sufficient
to represent manipulations for classification. As mentioned
before, Word2Vec is an unsupervised method to derive multi-
dimensional vectors for words in natural language processing
tasks with neural networks. Typically, all words in a vocab-
ulary are initialized as random vectors, whose distances are
incrementally adjusted with respect to other word vectors.
Words are related based on locality; that is to say, if one word
is frequently seen among neighbours of that word in source
text, then its vector along with its neighbouring words’ vectors
will be closer to one another than those vectors representing
other words in the vocabulary.

To compare motion codes to Word2Vec embeddings, we
applied dimension reduction with PCA and then used t-SNE
[30] to visualize these embeddings and their relative distances
in 2D. The t-SNE algorithm (short for #-distributed Stochastic
Neighbor Embedding) is an approach that is often used to
visualize high-dimensional representations or embedding, such
as word vectors from Word2Vec, in a low-dimensional space.
Although certain motions will be assigned the same code, the
t-SNE algorithm will position their projected vectors in close
yet non-overlapping positions; similar motions would be clus-
tered near each other since t-SNE preserves local neighbours
while keeping dissimilar motions far from one another. By
default, the distances between the naturally occurring clusters
are set further apart than by default, which is reflected by an
early exaggeration value of 36 (as opposed to 12); in addition,
the number of neighbours used to decide on placement, which
is known as perplexity, was set to 12. Since word vectors
from Word2Vec are associated with single words, vectors
of functional variants of labels that we have listed in Table
I cannot be found directly. For instance, the labels ‘mix’
and ‘mix (liquid)’ are different based on the permanence
of deformation. To circumvent this limitation, some motions
were substituted with other words, such as ‘pick-and-place’ to
‘move’, that may capture the meaning of the original label.

In Figures 5a, 5b and 5c, we show 2-dimensional projections
based on motion codes, while in Figures 5d, 5e and 5f, we
see the 2-dimensional projection of motions based on pre-
trained Word2Vec models from Concept-Net, Google News
and Wikipedia. Distances in t-SNE for Word2Vec vectors
were measured using the cosine similarity metric; with motion
codes, we used the regular Hamming metric (Figure 5c) and
a weighted distance metric that we defined ourselves. Using a
weighted approach allows us to emphasize dissimilarity based

TSNE Projection: Motion Codes (Weighted - Contact)

TSNE Projection: Motion Codes (Weighted - Trajectory)

200 scoop (liquid) SS09P fasten (screw, nut) shake'(revolute)
dippoke tap . 150 loosen (screw, nut)thS‘ turn (key, Kknob)
K press (hunon) Higii-contact close (jar) open Gjar)
150 crack’ 1599) ; pour.
“““ stlr (liquid) 100 ‘pure rotation
. beat (liquigy | _ 160 e
5 100 dlscom‘\.nun.us, ;(.)ft s"rbeat mix (liquid) g\ ras;
put ., " ° eeze (in hand
s roll, . shave cu((ZD) iice (2D £ squeeze (elastzlc)()
S, scrapecomb; saw S c¢ (20) g
> 50 cut peelchg > 50 n Triotion
£ i P continuous, soft
s . slicemash. g o
y - o i hand| scrape CU
2 pick-anid-place . brush (surface) sq:::::z(;"m::ﬁl) é e . the comb
EI _r::o;l: (2?) _rs‘wevep“(surface) e 9‘ 0 pread (surfacelmpe (surface) peplemesh:,to'ﬁas"
o insert (placil 9)5 spread (brush) _jrcor. grasp o émwrap o : ut'&z) insert spread Peel
g ush (rigid): sweep gratemp‘spread flip (spatula, tumar) b - sllce @), a (sﬁ}’ﬁ” uid) =R
2 P! mg\'/e i pierce spread (surface) P {sp: flip (hand) @2 peel (F and) press " s"{z beat (liquid) crack (egg)Press Sb“"°")
=50 | shake (prismatic) ‘wipe lsurfacel p d thJ apart s poke tap
- .) s (door) door) rotate twics%n intious, rigi s%rgpe() s 1
Aattenpin apatt-. © turn (key, knob) " ¢jose (jar) pure prismatic (2D) sprinkle
100 peel (hand) squeeze continuous, rigid N pen (ja) pure pr\sm'mc (1D)
- press
scrape.(hand)- “fasten (screw, nu() 1605en (screw, nut)
continuous, soft shake (revolute) ~100
=150 =100 =50 0 50 100 150 -200 -150 -100 -50 0 50 100 150 200
tsne-1_taxonomy_contact tsne-1_taxonomy_trajectory
(a) Motion Codes (Contact) (b) Motion Codes (Trajectory)
TSNE Projection: Motion Codes (Hamming) TSNE Projection: Word2Vec (Concept-Net Corpus)
200 loosen (screw, nut) -
fasten (screw, nul 100
shake (revolute)
150 .
close (jar) twi
turn (key, knob) (G2n) twist
open (jar) rotate
close (door)
100 open (door) 50
plck-and-place hold
> squeeze (elastic) jnsert (placmg) e (2D) grasp shake (prismatic) §
£ 50 squeeze (in hand) push (ngld) D-‘
] flatten roll wipe (surface) 5 0
S ull apart sweep (surface) spread (surface) @ hop cut
E 0 gsqueeze chopmash brush (surface) P () tap poke ‘C{:: brush ;omp chep
‘\.‘I peal (hand) Sha;lgefapew‘ * spmadpfress (:;::::l)epom %
g scrape (hand) oms"cepeel flip (spatula, turner) ype ?;
2 _ " flip (hand) insert S -50
50 slice (2D i 7] i
cut (ZD)savi) pierce 2 sprinkle
$CoO|
-100 sco0p (iauic) beatmix S Weep 9"2rack (egg)
stir mix (liquid) rush spread (brush)
stir (liquid) beat (liquid) =100
-150 unwrap, o
wrap
-200 -150 -100 -50 0 50 100 150 200 -200 -150 =100 =50 0 50 100 150 200
tsne-1_taxonomy tsne-1 concept pca
(c) Motion Codes (Hamming distance) (d) Concept-Net [21]
TSNE Projection: Word2Vec (Google News Corpus) TSNE Projection: Word2Vec (Wikipedia 2018)
brushcomb »
200
200 grate
100
100
grasp scrape grasp
g touch S, §
ml ’ L ipg spread
g’ \ ¢§< 0 ¢
hold "
8’| 0 prass' o ,§quﬁeze ‘\." scrape
?') { flatten 2
% Spgad roll *, 2
- wrap e R -100
-100 unwrap
squeeze
=200
-200
-200 -150 -100 -50 0 50 100 150 200 =150 =100 =50 0 50 100 150

tsne-1_google_pca
(e) Google News [4]

tsne-1 wiki pca
(f) Wikipedia 2018 [6]

Fig. 5: Graphs showing the 2D projection of vectors as a result of t-SNE from: a) motion codes with more weight on contact features, b) motion codes with higher weight on
trajectory features, ¢) motion codes with regular Hamming distance, and Word2Vec embeddings from d) Concept-Net, e) Google News, and f) Wikipedia 2018 (best viewed in
colour). We highlight certain examples of motions that do not share mechanical equivalences or similarities in d) - f) in red, and we highlight clusters of similar motions produced
by motion codes in a) and b), which use weights to determine distances (in varying colours to distinguish by characteristics).

on key motion taxonomy attributes rather than the regular
Hamming metric, which measures the degree of dissimilarity
among bits with no considerations for their meanings.

Rather than simply setting the penalty of dissimilarity to
1 for different We defined two weighted values, o and S,
which are used to set the priority of contact or trajectory types
when measuring distances. « is a penalty applied when two
motions are of different interaction type (i.e. contact versus
non-contact), as well as contact duration and engagement type,
which is reflected by the 1st to 7th most significant bits (MSB);
[is a penalty applied for trajectory types, reflected by the 8th
to 12th MSB (active trajectory) and 13th to 17th MSB (passive
trajectory) of the motion code; specifically, if one motion code
exhibits movement and another does not, 3 is added to their
distance value, but if they simply differ by the number of
axes (1, 2 or 3 DOF), then only half of S is added. All
other attributes were measured normally with a penalty of 1.
We illustrate the difference between these distance variations
for t-SNE as Figures 5a and 5b respectively. In Figure 5a, a
higher weight is assigned when two motion code vectors are
different in interaction type (contact), while Figure 5b places
more emphasis on motion trajectory type. In these figures, we
also highlight naturally occurring clusters and neighbouring
motion codes that share common attributes.

C. Discussion on Word2Vec Comparison

As seen in the t-SNE plots in Figure 5, using motion codes
(from Table I) for embedding will result in the placement of
functionally similar motions close to one another (while dis-
tancing those that are functionally different as other clusters)
in a different way to Word2Vec embeddings. Using a weighted
approach rather than the Hamming distance between motion
codes preserves neighbours better. The major disadvantage of
Word2Vec vectors is that we are unable to capture multiple
senses or meanings for a single word label. Furthermore, there
is no way of discerning between different forms of a word such
as parts of speech. For instance, in Figures 5e to 5f, ‘pour’ is
placed closest to the word ‘tap’, just as we introduced before.
Since the word ‘tap’ in the English language can either be
a verb or noun, the word was interpreted in the context of
the noun, as water usually flows or pours out of the tap. The
same can be said of the pair ‘move’ and ‘turn’, which perhaps
emphasize the noun meaning more than their verbal meaning.

However, when considering the manipulation in a mechan-
ical sense, it does not match our expectation since their
functional attributes are different, where ‘tap’ is considered as
contact and prismatic and ‘pour® is non-contact and revolute.
Instead, using motion codes, if we prioritize trajectory type
(Figure 5b), the label ‘pour’ is placed to other revolute-
only motions such as ‘turn (key)’, and ‘fasten (screw, nut)’
(although being a cyclical motion); if we prioritize contact
interaction type (Figure 5a), the label ‘pour’ was placed
closest to the label ‘sprinkle’ since it is also non-contact
while being placed further away from contact engagement mo-
tions. Other Word2Vec results that do not match functionality
(which we highlight with red ellipses) include ‘beat’/‘sweep’,

‘stir’/*sprinkle’ (Figures Se and 5f), ‘dip’/‘tap’, and ‘mash’
and ‘mix’. Other than the highlighted motion pairs, Word2Vec
embedding generally captured the connection between certain
labels such as ‘cut’/‘slice’/‘chop’ and ‘sprinkle’/‘pour’ since
these are synonymous to one another. Another shortcoming
of Word2Vec embeddings is that we are unable to compare
functional variants of motion types, which was the reason
behind simplifying labels to single words. However, this
leads to ambiguity in motion labels since we cannot be very
descriptive using one word. For example, the labels ‘open
door’ and ‘open jar’ were simplified as ‘open’, but the sense
of opening can differ depending on the manipulated object.
With the two separations ‘open door’ and ‘open jar’, although
they serve a similar purpose, the way the motion is executed
is different, and these mechanics should be considered when
evaluating differences between motions. Such pairs include
‘shake’ (prismatic and revolute), ‘mix’ (liquid and non-liquid)
and ‘brush’ (surface and non-surface).

V. CONCLUSION AND FUTURE WORK

To conclude, in this paper, based on our work in [8],
we proposed an embedding for manipulations better suited
for motion recognition in robotics and Al using the motion
taxonomy. Embedding with this taxonomy circumvents the
issue of language where words can take on multiple mean-
ings. One can represent motions using attributes defined in
the taxonomy as binary bits, and vectors will describe the
mechanics of motions from the robot’s point of view. In
our experiments, we demonstrated that these motion codes,
when compared to Word2Vec (which uses natural language
for training), produce embeddings that provide better metrics
for classification. Furthermore, these features can be extracted
directly from demonstration data; with a suitable model,
motion codes can be automatically generated. Motion code
features are not limited to those mentioned in this paper,
as other attributes could be included that can be extracted
directly from data and are more representative depending on
the context. In the future, we will demonstrate how a neural
network can automatically generate codes for manipulations in
video sequences, after which it would be established whether
motion codes improve accuracy in motion recognition tasks.

VI. ACKNOWLEDGEMENTS

This material is based upon work supported by the National
Science Foundation under Grant Nos. 1812933 and 1910040.

REFERENCES

[1] K. Fang, T.-L. Wu, D. Yang, S. Savarese, and J. J. Lim, “Demo2vec:
Reasoning object affordances from online videos,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2018,
pp. 2139-2147.

[2] A. Daruna, W. Liu, Z. Kira, and S. Chernova, “RoboCSE: Robot
Common Sense Embedding,” arXiv preprint arXiv:1903.00412, 2019.

[3] O. Roesler, A. Aly, T. Taniguchi, and Y. Hayashi, “Evaluation of
word representations in grounding natural language instructions through
computational human-robot interaction,” in 2019 14th ACM/IEEE Inter-
national Conference on Human-Robot Interaction (HRI). 1EEE, 2019,
pp. 307-316.

[4]

[5]

[6]

[7]
[8]

[9]

[10]

(1]

(12]

[13]

[14]

[15]

[16]

(171

(18]

[19]

[20]

[21]

[22]

(23]

[24]

T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of
word representations in vector space,” arXiv preprint arXiv:1301.3781,
2013.

T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their composi-
tionality,” in Advances in neural information processing systems, 2013,
pp- 3111-3119.

I. Yamada, A. Asai, H. Shindo, H. Takeda, and Y. Takefuji,
“Wikipedia2Vec: An Optimized Tool for Learning Embeddings of Words
and Entities from Wikipedia,” arXiv preprint 1812.06280, 2018.

D. Paulius and Y. Sun, “A survey of knowledge representation in service
robotics,” Robotics and Autonomous Systems, vol. 118, pp. 13-30, 2019.
D. Paulius, Y. Huang, J. Meloncon, and Y. Sun, “Manipulation Motion
Taxonomy and Coding for Robots,” in 2019 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). 1EEE, 2019, pp.
5596-5601.

M. R. Cutkosky, “On grasp choice, grasp models, and the design of
hands for manufacturing tasks,” IEEE Transactions on robotics and
automation, vol. 5, no. 3, pp. 269-279, 1989.

F. Worgotter, E. E. Aksoy, N. Kriiger, J. Piater, A. Ude, and M. Tamosiu-
naite, “A simple ontology of manipulation actions based on hand-object
relations,” IEEE Transactions on Autonomous Mental Development,
vol. 5, no. 2, pp. 117-134, 2013.

1. M. Bullock, R. R. Ma, and A. M. Dollar, “A hand-centric classification
of human and robot dexterous manipulation,” IEEE transactions on
Haptics, vol. 6, no. 2, pp. 129-144, 2013.

W. Dai, Y. Sun, and X. Qian, “Functional analysis of grasping motion,”
in Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ International
Conference on. 1EEE, 2013, pp. 3507-3513.

T. Feix, J. Romero, H.-B. Schmiedmayer, A. M. Dollar, and D. Kragic,
“The GRASP taxonomy of human grasp types,” IEEE Transactions on
Human-Machine Systems, vol. 46, no. 1, pp. 6677, 2016.

B. Abbasi, E. Noohi, S. Parastegari, and M. Zefran, “Grasp taxonomy
based on force distribution,” in Robot and Human Interactive Communi-
cation (RO-MAN), 2016 25th IEEE International Symposium on. 1EEE,
2016, pp. 1098-1103.

H. Marino, M. Gabiccini, A. Leonardis, and A. Bicchi, “Data-driven
human grasp movement analysis,” in ISR 2016: 47st International
Symposium on Robotics; Proceedings of. VDE, 2016, pp. 1-8.

Y. C. Nakamura, D. M. Troniak, A. Rodriguez, M. T. Mason, and N. S.
Pollard, “The complexities of grasping in the wild,” in 2017 IEEE-RAS
17th International Conference on Humanoid Robotics (Humanoids).
IEEE, 2017, pp. 233-240.

M. Lopes, F. S. Melo, and L. Montesano, “Affordance-based imitation
learning in robots,” in 2007 IEEE/RSJ International Conference on
Intelligent Robots and Systems. 1EEE, 2007, pp. 1015-1021.

E. Ugur, S. Szedmak, and J. Piater, “Bootstrapping paired-object af-
fordance learning with learned single-affordance features,” in 4th Inter-
national Conference on Development and Learning and on Epigenetic
Robotics. IEEE, 2014, pp. 476-481.

B. Moldovan, P. Moreno, D. Nitti, J. Santos-Victor, and L. De Raedt,
“Relational affordances for multiple-object manipulation,” Autonomous
Robots, vol. 42, no. 1, pp. 1944, 2018.

A. Allevato, A. Thomaz, and M. Pryor, “Affordance discovery using
simulated exploration,” in Proceedings of the 17th International Con-
ference on Autonomous Agents and MultiAgent Systems, ser. AAMAS
’18. Richland, SC: International Foundation for Autonomous Agents
and Multiagent Systems, 2018, p. 2174-2176.

R. Speer, J. Chin, and C. Havasi, “ConceptNet 5.5: An Open
Multilingual Graph of General Knowledge,” in AAAI Conference
on Artificial Intelligence, 2017, pp. 4444-4451. [Online]. Available:
http://aaai.org/ocs/index.php/AAAI/AAAIL7/paper/view/14972

M. Rohrbach, S. Amin, M. Andriluka, and B. Schiele, “A database
for fine grained activity detection of cooking activities.” in CVPR.
IEEE Computer Society, 2012, pp. 1194-1201. [Online]. Available:
http://dblp.uni-trier.de/db/conf/cvpr/cvpr2012.html#RohrbachAAS12

D. Damen, H. Doughty, G. M. Farinella, S. Fidler, A. Furnari, E. Kaza-
kos, D. Moltisanti, J. Munro, T. Perrett, W. Price, and M. Wray, “Scaling
Egocentric Vision: The EPIC-KITCHENS Dataset,” in European Con-
ference on Computer Vision (ECCV), 2018.

D. Paulius, Y. Huang, R. Milton, W. D. Buchanan, J. Sam, and Y. Sun,
“Functional Object-Oriented Network for Manipulation Learning,” in
2016 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). 1EEE, 2016, pp. 2655-2662.

[25]

[26]

[27]

[28]

[29]

(30]

D. Paulius, A. B. Jelodar, and Y. Sun, “Functional Object-Oriented Net-
work: Construction & Expansion,” in ICRA 2018 - IEEE International
Conference on Robotics and Automation, Brisbane, Australia, May 2018.
S. Ren and Y. Sun, “Human-object-object-interaction affordance,” in
Workshop on Robot Vision, 2013.

Y. Lin and Y. Sun, “Robot grasp planning based on demonstrated grasp
strategies,” The International Journal of Robotics Research, vol. 34,
no. 1, pp. 26-42, 2015.

Y. Huang and Y. Sun, “A dataset of daily interactive manipulation,” The
International Journal of Robotics Research, vol. 38, no. 8, pp. 879-886,
2019. [Online]. Available: https://doi.org/10.1177/0278364919849091
M. W. Spong, S. Hutchinson, and M. Vidyasagar, Robot modeling and
control. John Wiley & Sons, 2020.

L. v. d. Maaten and G. Hinton, “Visualizing data using t-SNE,” Journal
of machine learning research, vol. 9, no. Nov, pp. 2579-2605, 2008.

