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ABSTRACT: As vast numbers of new chemicals are introduced to market annually, we
are faced with the grand challenge of protecting humans and the environment while
minimizing economically and ethically costly animal testing. In silico models promise to be
the solution we seek, but we find ourselves at crossroads of future development efforts that
would ensure standalone applicability and reliability of these tools. A conscientious effort
that prioritizes experimental testing to support the needs of in silico models (versus
regulatory needs) is called for to achieve this goal. Using economic analogy in the title of
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this work, we argue that a prudent investment is to go all-in to support in silico model Targeted methjods o
development, rather than gamble our future by keeping the status quo of a “balanced @co“e
portfolio” of testing approaches. We discuss two paths to future in silico toxicology—one .5900
based on big-data statistics (“broadsword”), and the other based on direct modeling of Mechanistic insight (8%

molecular interactions (“scalpel”)—and offer rationale that the latter approach is more
transparent, is better aligned with our quest for fundamental knowledge, and has a greater potential to succeed if we are willing to
transform our toxicity-testing paradigm.
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animal tests, in vitro assays, and in silico models is currently
broken in many places. This thread is critical in relating whole-

B INTRODUCTION

Our current toxicity-testing paradigm struggles to cope with the
need to protect public health from unintended adverse effects of
industrial chemicals at acceptable socioeconomic cost. It is
estimated that upward of 700 chemicals are registered for
commerce annually in the United States alone, which makes
animal testing, our traditional means of assessing chemical
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animal effects to biochemical events responsible for toxicity and
enabling standalone applications of in vitro, and especially in
silico models. To that end, despite formidable progress in
molecular toxicology over the past two decades, we do not have a
clear, detailed picture of what actually happens in most toxicity
pathways on the molecular level. We propose this is a problem
we are capable of addressing if we rethink our current paradigm
of testing and model development. Here, we outline the future
directions of in silico model development in the context of in vivo
and in vitro models, and provide analysis supporting advance-
ment of direct modeling efforts that rely on detailed description
of molecular mechanisms underlining key events in toxicity
pathways.

B DISCUSSION

Promise and Challenges of In Vitro Methods. A
landmark report by the National Academies in 2007 envisioned
high throughput in vitro assays on human cells or cell lines to
increase efficiency and decrease animal usage using robotics.”
The U.S. EPA subsequently funded an impressive project,
“Toxicity Testing in the 21st Century”, to develop new high
throughput technologies based on in vitro methods. As a result,
over the course of the past decade the U.S. EPA has generated a
substantial quantity of in vitro data with the goal to drive (i)
preliminary hazard identification, (ii) adverse outcome pathway
elucidation, linking molecular initiating events to toxicological
outcomes, and (iii) relative priority and safety assessments from
risk-based ratios of bioactivity and exposure.'’ Consequently,
significant advances have been made toward using in vitro tests
to replace, reduce, and refine (3R) in vivo tests; prioritize
chemical hazards; categorize chemicals accordin$ to their modes
of action; and provide mechanistic information.''? However, in
vitro tests are yet to fully attain regulatory acceptance and
implementation, as they lack convincing results from validation
studies on in vivo data.”'® There are a number of examples in the
literature that outline the challenges in clearly linking in vivo and
in vitro toxicity outcomes.”'*'> Despite the fact that in vitro
assay data interpretation is still not sufficiently developed to
replace in vivo models, in vitro assays have played, and will
continue to play an increasingly important role in chemical
safety risk assessment. In a complementary role, in vitro data has
been successfully used to either corroborate other pieces of
evidence or to support the development of in silico models.

Promise and Challenges of In Silico Methods.
Considered broadly, in silico models are invaluable because
they can, in theory (pun intended), be used to assess thousands
of chemicals for multiple hazard endpoints quickly and at
relatively low cost. However, in practice, the use of in silico
models by the U.S. EPA and within EU’s REACH is still largely
limited to supporting experimental outcomes,'® much like in
vitro models. While regulatory agencies provide guidelines for
the rigor, reliability, and transparency of in silico models, wider
adoption is stifled by negative perceptions and experiences
practitioners have using existing models. This distrust is fueled
by difficulty interpreting model rigor and applicability by the
(non-expert) user. Although most in silico models report metrics
of accuracy and predictivity (the former being based on the fit to
the training set, while the latter reflecting validation based on
data external to the training set), the interpretation of these
metrics is not always straightforward in the literature. This is
particularly true of metrics reflecting predictive power, as
modelers report various types of validations, and some are much
less relevant to predictive power than others."” In addition, end-

881

users have to consider that the predictive power will also be
affected by how the model was developed: whether experimental
data used was sufficient in quality and quantity; how it was
compiled and curated; how many compounds were used in
validation and how structurally diverse they were; whether the
model was “over-fitted”; whether the descriptors used are linked
to the molecular mechanism of action of the endpoint being
modeled; and whether the compounds of interest fall inside the
“applicability domain” of the model."®'” Such analysis can be
very difficult to conduct provided all model-development data is
disclosed, and it is impossible to carry out for the many
proprietary commercial models, which are effectively “black
boxes” to the end-users. Furthermore, as will be discussed later,
the use of complex statistical methods to build models on big
datasets, such as neural networks and machine learning, make it
even more challenging to interpret predictivity metrics and
judge model development™ because developers posit that these
models should not be evaluated by the criteria used to assess
more traditional statistical models.”" All considered, the only
way a (nonexpert) user can accurately judge the capabilities of a
predictive model is after extensive testing in his or her chemical
space of interest.

When lack of expertise and (experiential) distrust combine
with historically normalized reliance on animal models,” the
impression created is that of a large confidence gap between in
vivo and in silico approaches. We would argue this distinction—
many toxicologists’ mantra—is far from obvious, as animal tests
are often not rigorously validated against human data, and
generally do not indicate great predictivity for complex human
endpoints, ca. 60—70% according to a recent report.”> As we will
outline later, overreliance on animal testing and the distrust
associated with computational models, while in many cases
experientially justified, is unfortunate because the future of in
silico modeling is directly tied to cooperative engagement across
all available methods and our willingness to strategically support
in silico model development with limited economic resources.
Despite the skepticism many of us have about the use of in silico
models in toxicology, our state-of-the-art indicates that
computational modeling can be highly accurate in describing
discrete biochemical phenomena, and the incorporation of in
silico models in the drug-discovery process by nearly every
pharmaceutical company should provide sufficient proof.”* The
issue with the specific use of computational models in toxicology
is the increased complexity of the problem being addressed:
whereas a target-specific activity of a single compound is desired
and optimized in drug discovery, in toxicology we seek to predict
outcomes related to complex toxic endpoints for a wide range of
chemicals and chemical classes. Furthermore, toxic endpoints
for many industrial chemicals are not pathway-specific but rather
have nonspecific modes of action, which is to say that the specific
targets responsible for observed change in biological activity can
be many and are not (yet) well-understood. While one could
argue that precisely the same biochemistry applies in drug
development as it does in hazard assessments, toxicity concerns
are treated differently for drugs versus industrial chemicals.
Since we have grown to accept high costs of developing new
drugs, their unintended biological effects can be effectively
probed using a battery of (expensive!) tests in the development
process, and for some life-saving drugs these effects can be
tolerated considering their therapeutic benefits.”* None of this is
true for industrial chemicals, which have a far-less favorable cost-
benefit ratio, and must remain relatively inexpensive to develop
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and produce, thus severely limiting the budget for toxicity
testing.

Current and Future Directions of In Silico Modeling in
Toxicology. From an economic standpoint, in silico methods
are the least-expensive solution to testing industrial chemicals,
assuming these models can cope with biochemical complexity
and mechanistic uncertainty. In the face of such challenges, in
silico models have largely relied on statistics. These (Q)SARs, or
(quantitative) structure—activity relationships, and their many
modern variants, were pioneered in the early 1960s,>> and
represent the incumbent workhorse of computational toxicol-
ogy. In their core principle, all (Q)SARs link structure-based
descriptors (be it structural fragments or various physicochem-
ical and electronic properties) with measured biological activity;
however, the quality and mechanistic relevance of computed
descriptors can vary greatly.” While an apt discussion of the
evolution of (Q)SARs can be found elsewhere,’ it is important
to note that the future direction of in silico modeling proposed in
this work rests on the foundation established by mechanistic
(Q)SAR methods. These methods have pioneered the concept
of molecular initiating events in predictive toxicology (long
before it was formalized by Ankley et al. in 2010)® as means of
extracting useful information about the initial interaction
between a xenobiotic and its biological target(s) that can be
causally linked to a toxicological outcome via a pathway.”” ="

While transformative at the time, the reliance of traditional
QSAR methods on structural features and/or physicochemical
properties of the xenobiotic to describe complex biochemistries
has been a double-edged sword: it has allowed for crude
screenings of large datasets across complex toxic endpoints in
order to “weed out” bad actors,*” but it has also neglected the
specificity and complexity of molecular interactions that may be
important in new-chemical design.”> While it is true that the
difference in activity between toxicants originates in their
different structure (regardless of the complexity of the biological
interactions responsible for the toxic response),” any correlation
of descriptors derived solely from the xenobiotic will carry a
magnitude of uncertainty and training-set bias, which erode
confidence in the model’s true predictive power.

Focusing primarily on structural features of the xenobiotic in
model building and ignoring the biological “dancing partner” is a
missed opportunity given the boom of computing resources and
methodological advancements in computational biochemistry.
In our view, there is much to be learned from the trajectory of
the pharmaceutical industry, which has shown that structure-
based design, which considers the biological target(s) explicitly,
often outperforms ligand-based approaches,” with some
models capable of accurately capturing the effects of minute
structural changes on biological activity.”> At present, the
application of similar approaches in toxicology is still limited to a
handful of isolated case studies,>* > which represent but a small
fraction of applicable, pathway-specific modes of action for
known toxicant classes and toxic endpoints.

A Broadsword vs a Scalpel. Looking onward, we can
outline two conceptually distinct directions being pursued
simultaneously in the quest for the holy grail of reliable in silico
methods in toxicology, as contrasted broadly in Figure 1 and
detailed further in Figure 2. The first one, i.e., the broadsword,
rests on the premise that we can collect enough experimental
data to blanket a “sufficient” portion of the chemical space of
interest. When the toxicity outcome of a compound is predicted,
it is then based on close structural proximity to one or several
tested analogs. In the ideal case of a complete or near-complete
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Figure 1. Big-data methods, which rely extensively on statistics, versus
targeted methods, which rely on explicit modeling of molecular
interactions, categorized in terms of mechanistic relevance and
requirements for training-dataset size.

chemical-space coverage by measured outcomes, we thus
effectively circumvent the need for mechanistic understanding
of the xenobiotic’s role in the living organism. In such a case, the
accuracy of predictions, as determined from the model’s
(statistical) training approach, becomes the only relevant metric
of success. On the other hand, if we possess perfect knowledge of
toxicity mechanisms and how these biochemical processes
translate into cellular, organ or organismal changes, then we do
not need to rely heavily on experimental testing and complex
statistics. We can simply utilize the best-available computational
chemistry techniques, i.e., the scalpel, to describe the relevant
individual biochemical processes, limited only by the accuracy of
the applied theory. Since neither ideal has been attained, current
approaches seek a compromise from either end of the spectrum.
The following discussion aims to compare these two directions,
commenting on their relative viability in terms of obtaining
sufficiently large and quality datasets versus sufficient mecha-
nistic detail to support reliable model development.

The Broadsword. The strive toward the first ideal is perhaps
best represented by the boom of state-of-the-art machine
learning (and other related pattern-recognition strategies such
as deep learning, neurocomputing, artificial intelligence, etc.),
which focus on utilizing available “big data”.** These methods
are revolutionizing industries and our daily lives, and are
inevitably part of our future; however, despite their promise and
potential power, these methods’ reliance on extensive coverage
of the chemical space of interest is problematic in toxicology for
several reasons. The first concern is related to variable data
quality, which arises from the necessity to combine different data
sources and test types, and which cannot be analyzed effectively
for such large datasets.'” Big-data models are inherently plagued
by the challenge of securing minimal threshold of data quality."’
This problem has not gone unnoticed in toxicology, as a number
of efforts have been put forth to categorize and quantitate data
reliability and relevance, e.g,, the ToxRTool, TRAM (Toxico-
logical data Reliability Assessment Method) or fuzzy expert
systems based on the Klimisch scoring approach.*”~** However,
these assessments are time-consuming to effectively and
systematically apply to large datasets, and input data required
by these models is often difficult to acquire or is lacking
entirely.* The data quality challenge is perhaps best illustrated
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Figure 2. Strategies for increasing predictive power of the two types of predictive approaches (a) In the big-data approach, increasing chemical space
coverage of experimental data can increase predictive power as long as chemical of interest falls in a densely populated area of chemical space (true for
red, not true for orange compound). (b) In the mechanistic approach, increasing mechanistic understanding in AOP (adverse outcome pathway)
results in models with increased predictive power, limited only by the accuracy of the applied theory. MIE = molecular initiating event; KIE = key

intermediate event.

by the effort put forth by the European Union to collect
significant volumes of new animal test data required through the
REACH legislation. A recent study found that of the chemical
dossiers submitted, nearly two-thirds lack any experimental data
on reproductive and developmental toxicity, instead relying on
read-across predictions, and the majority of those that report
data source it from studies up to 20 years old, which may not
meet current testing standards.”

Data quality is not just an issue for toxicological thresholds:
inaccuracies in the reporting of chemical structures, ionization
state, purity or solvent used can be just as detrimental to the
predictive power of big-data models. While some errors can be
identified though labor-intensive efforts, many cannot; yet,
studies on this topic indicate that error rates in reporting are too
large to ignore. For example, for data published in the
WOMBAT medicinal chemistry database, Olah et al. found
two structural errors per publication average (error rate as high
as 8%),"" while in another analysis of public and commercial
databases error rates ranged from 0.1 to 3.4%."” Careful curation
of data from non-peer-reviewed sources, like those that are
needed to feed big-data models, is going to be a challenge that is
difficult to address with sophisticated statistics and labor-
intensive curation. There may be a more realistic opportunity to
improving the reliability of peer-reviewed studies, but this will
require strengthening the dialogue between regulators, toxicol-
ogists, and modelers, as well as standardizing reported protocols
in the literature.

Aside of data quality, relying on big data in model
development poses a challenge of how much is in fact “enough”
to avoid training-set bias in models that have dubious
mechanistic underpinning. As chemical space constantly
evolves, questions must be raised about the applicability domain
of any tool that is defined by its training-set versus one that is
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mechanism-driven and the resulting bias, which is at best
minimized but never eliminated by training on large datasets.
Outlined in Figure 2a, even big-data models struggle with
asymmetrical data distributions; there will always be outliers
with large distances to nearest structural neighbors, for which
predictions are dubious. Furthermore, close structural sim-
ilarities between chemicals do not imply correspondingly similar
activities. Thus, machine learning and statistical approaches
struggle with “activity cliffs”, i.e., steep changes in the structure—
activity landscape that are difficult to anticipate and negatively
impact model development.***” Most importantly, being overly
focused on optimizing accuracy of predictions within the
training set limits, these methods may offer limited insight into
the fundamentals of natural processes.

In contrast to statistical tools, computational models in
(bio)chemistry were never very good at telling us something
new; they can, however, excel at telling us why something
happens. In this regard, and somewhat paradoxically, the
Achilles heel of machine-learning and related approaches
coincides with what is viewed as their biggest advantage—
efficient big-data processing. When considering big data, one
cannot apply sophisticated, highly mechanistic descriptors
because these may be too expensive (both in terms of human
and computer resources) on that scale.”’ However, without
mechanistic and highly specific descriptors, most current
statistical and machine learning approaches in toxicology may
suffer from inscrutable (and thus questionable) relationships
with the biochemical processes they aim to describe, which
limits their potential to help us advance the fundamental science
that underlines these phenomena.

The Scalpel. The alternative path to extensive data coverage
and the use of big-data approaches is that of perfect mechanistic
knowledge, which would support explicit modeling of key
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biochemical events in toxicity pathways. This ideal may seem
equally naive: after all, aren’t we just trading one unfeasibility
(impossibly large training sets and data quality issues) for
another (impossible mechanistic complexity)? In our view,
perhaps not entirely: modern computational chemistry has built
a vast toolkit over the past several decades, which can be used to
accurately describe complex biochemical processes. Further-
more, computing resources have expanded considerably,
allowing application of these models in reasonable time frames.
Crucially, this direction of explicit description of molecular
initiating and other key events in toxicity pathways is in line with
our strive for fundamental understanding of natural phenomena.
It could also be argued that mechanistic insights provided by in
vitro and in chemico methods better align with the needs of
explicit mechanistic models than highly sophisticated statistical
approaches, by providing vital clues for the key toxicokinetic and
toxicodynamic events implicated in the toxic response (Figure
Zb).é’SI

Lastly, a strong case can be made that such highly mechanistic
models do not require extensive training sets, alleviating issues
associated with data quality and time-consuming curation
efforts. Since one of the key attributes of any model’s predictive
power is its applicability domain, which sets the boundaries of
predictivity based on training-set data, one might argue that
relying on smaller training sets will lead to narrow applicability
domains. However, applicability-domain constraints are far less
relevant to highly mechanistic models, which describe molecular
interactions explicitly, than to statistical models; rather than
being based on training set compounds, their applicability
domain is defined by the limitations of the underlying theoretical
principles. Consequently, explicit-modeling efforts are far less
likely to suffer from activity cliffs, leading to greater stability and
wider applicability across chemical space. The latter is owed to
the vast collection of benchmarking studies published by
computational chemists, which support selection of the
appropriate theoretical method for the type of system being
described.

While arguments for changes to chemical testing to better
serve the needs of future mechanistic models will be made in the
next section, assessments of the large number of models
developed for the skin sensitization endpoint can already
demonstrate the viability of this direction. For this endpoint,
highly mechanistic approaches, which consider biological-target
chemistry yet are based on relatively small but well-curated
training sets, tend to outperform models that are less
mechanistically relevant even when those models are based on
large training sets.””~>* The difference, ca. 30% improvement in
performance metrics, is considerable, and can readily be
interpreted as the difference between reliable and unreliable
predictive tools. Same outcome of similar magnitude was noted
when comparing prominent models for acute aquatic toxicity.>”
This is particularly true when evaluating these models within
chemical space that is very different from the models’ training
sets. Active pharmaceutical ingredients and their synthetic
intermediates are a great example to illustrate this point because
of their complex functionalization, conformational variability,
and multiple protonation states. The biochemistry of these
chemicals is “unpredictable” from the perspective of models that
rely on structural descriptors and/or physicochemical properties
due to the intricate intra- and intermolecular interplay of many
steric and electronic factors. Regrettably, publication record
cannot support our claim due to the proprietary nature of these
chemicals, which keeps testing outcomes confidential. However,
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having assessed thousands of drug-like compounds using in silico
models over many years, we can assure the reader that models
that ignore biological target(s) chemistry consistently fail to
accurately capture adverse outcomes of pharmaceuticals
regardless of the size of the training set.

While existing models that strive for better mechanistic
concordance with molecular initiating events and try to model
these events explicitly show compelling promise, their full
potential is far from realized. The main hindrance is not the
quantity but the type of available experimental data and the type
of chemicals being tested. To this end, for modelers to succeed
in developing the next generation of mechanistic models, we
need to ensure better connectivity of knowledge across whole-
animal, in vitro, in chemico, and in silico methods, which implies
closer bridging of different scientific communities. The brief
discussion that follows is a proposal for changing the way we test
chemicals in support of in silico model development and the
financial investment in education, academic research, and
interdisciplinary collaborations that must inevitably come
along with it.

Changing the Paradigm of Model Development and
Testing. If the premise of advancing explicit-modeling efforts
that use no or minimal statistics is indeed the most promising
approach to reduce reliance on in vivo testing, then what we
require to build reliable tools is a transformation of thinking and
process. Focused on computational methods that can describe
complex biochemistry in toxicity pathways, we should
recalibrate our skepticism about in silico methods, and invest
into what these methods can become when properly supported
by experimental studies. It must be stressed that explicit-
modeling methods (versus largely statistical or machine-learning
approaches) are fully transparent, which is both their strength
and weakness, as their limitations are in plain view, devoid of any
mathematical obfuscations. For these methods to become
reliable mainstays in predictive toxicology, we need to invest in
both education and research.’®®” Making computational
chemistry a standard part of the undergraduate curriculum
and including toxicology concepts in undergraduate chemistry
curricula are the key two steps we can take to boost our
confidence in theoretical models; adequately train future
innovators, who can bridge the chemistry and toxicology fields,
and, consequently, pave the way to a more sustainable toxicity-
testing future.”®>” Only with the right mental-paradigm shift will
we gain the necessary courage to subsequently transform the
process, i.e., to rewrite our approach to experimental testing.

In research efforts, the mental preparedness to change the
status quo is perhaps best illustrated by the following statement:
in moving toward minimizing animal testing while protecting
environmental and public health from adverse effects of
chemicals, it is imperative that future experimental testing is
aligned with the needs of in silico model development. Currently,
chemicals and corresponding toxicity thresholds within most
models’ training sets originate from data that was selected and
tested for regulatory purposes. In most instances, such data
represents a chemical space that is far from ideal of what a
computational model requires: a rationally selected series of
structural and functional analogs, informed by modeling
exercises based on current knowledge, to assess relative trends
in the magnitude of toxic response. This endeavor is not
necessarily overly costly; as stated previously, a highly
mechanistic model does not need an extensive training set. It
does, however, need a carefully selected and curated
experimental data, which probes the relative trends within and
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across chemical classes, in turn allowing the in silico model to
extrapolate safely and reliably based on underlying theory. Thus,
investment must be made into testing compounds we may “feel”
we do not need to test to immediately protect human or
environmental health but are critical for robust model
development. To this end, modelers need to work far more
closely with experimentalists during chemical selection and
experimental design than is the case now, mirroring successful
collaborative strategies in drug discovery. The eventual payoff of
interconnecting highly sophisticated computer models with
experimental design is a harmonized iterative loop that provides
a two-way check on the outcomes of each individual approach
and, in the end, a reliable predictive model. While presenting
some logistical challenges, this strategy is perfectly in line with
the call for more integrated testing approaches in toxicology”>*’
and our most basic thirst for greater mechanistic insight into
biological phenomena. It must be reiterated at this point that for
such approach to succeed, transformation of thinking must
come first. To that end, we cannot leave the development of in
silico models unattended; realizing this approach is the most
cost-effective option to effectively ensure human and environ-
mental health safety, we ought to optimize the conditions that
maximize chances of its success.

To offer a metaphor in concluding our narrative, existing in
silico models are the equivalent of a teenage athlete: this
individual represents the next generation that we must inevitably
rely on; however, for her to grow into a competitive adult, the
right nutrition (rather than copious amounts of junk food) and
proper training ought to be provided. Furthermore, one may
argue it is the responsibility of her predecessors to ensure
attention is paid to her development and to ensure successful
transition when the torch is passed on. Only such cooperative
engagement by all stakeholders in the scientific community will
eventually allow in silico models to take up the mantle of
protecting human and environmental health from adverse effects
of chemicals.
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