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ABSTRACT

In this paper, we introduce a novel framework to significantly
reduce the computational cost of human temporal activity
recognition from egocentric videos while maintaining the ac-
curacy at the same level. We propose to apply the actor-critic
model of reinforcement learning to optical flow data to locate
a bounding box around region of interest, which is then used
for clipping a sub-image from a video frame. We also propose
to use one shallow and one deeper 3D convolutional neural
network to process the original image and the clipped image
region, respectively. We compared our proposed method with
another approach using 3D convolutional networks on the
recently released Dataset of Multimodal Semantic Egocentric
Video. Experimental results show that the proposed method
reduces the processing time by 36.4% while providing com-
parable accuracy at the same time.

Index Terms— activity classification, reinforcement
learning, actor critic

1. INTRODUCTION

There have been many methods for human activity classifica-
tion, which rely on third-person video data [1, 2, 3, 4, 5] from
static cameras watching activities of person(s). Compared to
human activity video datasets obtained from static cameras,
there has been much less video data from egocentric cam-
eras. Similarly, compared to works that use static cameras in-
stalled in the environment, there has been relatively less work
using egocentric videos, meaning providing the first-person
view from wearable cameras.

Heilbron et al. [6] presented the ActivityNet, which is a
large-scale video benchmark for human activity understand-
ing, and proposed a method based on 3D Convolutional Neu-
ral Networks (CNNs). In this video dataset, majority of videos
are not egocentric. Karpathy et al. [1] proposed a method
for large-scale video classification, and presented results on
the UCF-101 Action Recognition Dataset [7], which mostly
contains third-person videos. Instead of using 2D CNN and
LSTM, different approaches have been presented using 3D
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CNNs for learning spatiotemporal features [3]. Montes et
al. [4] use a 3D CNN together with LSTM to achieve tem-
poral activity detection in untrimmed videos. Instead of using
LSTM, Buch et al. [5] use 3D CNN together with Gated Re-
current Units on videos from a third-person view.

Many approaches have been developed, which employ
deep neural networks to perform human activity classifica-
tion. In addition to the networks having deeper structures,
higher resolution image data needs to be processed in many
cases. This increases the computational complexity. Thus,
researchers have also focused on speeding up the process-
ing [8, 9, 10, 11]. However, these models are mostly tailored
to particular network structures, and may not generalize well
to new architectures. Minh et al. [12] introduced a recurrent
neural network-based model to represent visual attention, and
applied it to the image classification task and a simple game.

Reinforcement learning (RL) provides a mathematical
framework for learning or deriving policies that map situa-
tions (i.e. states) into actions with the goal of maximizing an
accumulative reward [13]. Unlike supervised learning, in RL
the agent (i.e. learner) learns the policy for decision making
through interactions with the environment. The goal of the
agent is to maximize the cumulative reward by taking the
optimal action at each time step according to the current state
while considering the trade-off between explorations and ex-
ploitations. The combination of conventional Q-learning and
deep neural network, i.e. Deep Q-network (DQN) [14], pro-
vides a breakthrough in deep reinforcement learning (DRL).
However, the neural network in DQN needs to accumulate
enough samples of values, and the data needed for its training
can either come from a model-based simulation or from ac-
tual measurement [15]. Originally developed by DeepMind,
the DRL provides a promising data-driven, adaptive tech-
nique in handling large state space of complicated control
problems [16]. The actor-critic deep reinforcement learn-
ing [17] has overcome difficulties in learning control policies
of systems with continuous state and action space, which
provides a potential solution for efficient real-time processing
of video clips in our case.

In this paper, we propose a novel approach to significantly
reduce the computational cost of human activity classification
from egocentric videos while maintaining the accuracy at the
same level. We leverage the actor-critic model of RL, and ap-
ply it to optical flow data to determine how to move a bound-
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ing box in x and y directions to maximize the reward, and
find an optimal region of interest. The bounding box is used
for clipping a portion of the image. We also propose to use
one shallow and one deeper convolutional neural network to
process the original image and the clipped image region, re-
spectively. This overall proposed architecture will henceforth
be referred to as the Deep-Shallow Network. We compared
our proposed method with another approach, using 3D con-
volutional networks for activity recognition, on the recently
released Dataset of Multimodal Semantic Egocentric Video.
The results will be presented in Sec. 3.

2. PROPOSED METHOD

The overall Deep-Shallow Network, shown in Fig. 1, is com-
posed of a shallow network, a deeper network and an image
clipper. Both shallow and deep feature extractors are 3D con-
volutional neural networks (CNNSs). The shallow feature ex-
tractor takes the original images as input, and uses relatively
larger kernels and fewer layers to extract environment features
from the larger original image. On the other hand, the deep
feature extractor takes the clipped image regions as input, and
uses smaller kernels to extract activity features. The details of
the shallow and deep network models can be seen in Fig. 2.
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Fig. 1. Overall structure of the proposed Deep-Shallow Network.

The image clipper is trained based on the actor-critic
model of RL. The input of the actor-critic model is the optical
flow data extracted from the original images. Extracted fea-
tures from the shallow and deep networks are concatenated,
and followed by fully connected layers to obtain classification
results.

As a result of reducing the complexity of the network
structure, and only processing the regions of interest with a
deep network, the proposed Deep-Shallow Network can sig-
nificantly increase the processing speed, while maintaining
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Fig. 2. Deep and shallow network model details.

the same level of accuracy with a state-of-the-art 3D CNN
network.

2.1. Clipper Model Trained with Deep Reinforcement
Learning

The main goal of the proposed approach is to reduce the com-
putational complexity without sacrificing accuracy. A deep
reinforcement learning (DRL)-based approach is adopted in
this work to train the image clipper, which determines the lo-
cation of the region of interest by moving a fixed-size bound-
ing box. The height and width of the bounding box is half
of the original image size. We build a standard reinforce-
ment learning [16] setup up to derive the correlation between
each state-action pair (s, a) of the system under control and
its value function (s, a) in discrete decision epochs. At each
decision epoch tj, of the processing, the agent, i.e. the video
frame at ¢y, is at state s, and performs inference using deep
neural network to select action aj, according to the policy 7.
We define the control actions as (A, Ay) with real values,
which represent offsets of the bounding box in z and y direc-
tions, respectively. Since our problem has continuous output
space, an actor-critic-based DRL [14] is adopted. Under a cer-
tain policy 7, the value of Q(s, a) estimates the accumulated
discounted reward of each state-action pair:

Q(s,a) = E(Ei"zokkrk(sk, ax)|so = s,a0 =a)) (1)

where 7y, is the total reward observed at decision epoch ty.
To accelerate learning, and avoid oscillations or divergence
in the parameters, we employ an experience replay and target
network [17]. The experience replay updates the weights of

the target network 6’ based on learned network weights 6 by:
=10+ (1-1)¢, T 1 (2)

The actor model is a feed-forward neural network com-
posed of three fully-connected hidden layers with rectified

Authorized licensed use limited to: Syracuse University Library. Downloaded on July 08,2020 at 15:56:54 UTC from IEEE Xplore. Restrictions apply.



linear units (ReLU) as the activation function. It is used to
predict the optimal action based on the current state S;. The
number of neurons in fully connected hidden layers are 64,
128 and 128, respectively. The output layer size is 2 provid-
ing the horizontal and vertical offsets for the bounding box.

The critic model is another feed-forward neural network
that evaluates the state and action pair, and the evaluation is
used by the actor model to update its control policy in particu-
lar gradient direction. The critic model has two hidden layers.
The first layer contains two separate fully-connected struc-
tures and the number of hidden neurons in each is 32. The
addition of outputs from the first hidden layer is fed into the
second layer which has 64 hidden neurons. The inputs of the
critic model are S; and A, and the output is a single value
Q(St, A¢). The actor-critic framework is shown in Fig. 3.

During training, the actor model is trained using pair data
(S¢, Ay) to predict the optimal action A; based on current
agent state S;. Next agent state S;;; is calculated through
environment based on A; and is used to predict optimal A,
by actor model. The critic model evaluates the resulting
{St4+1,A¢41} pair by predicting a Q-value to fine-tune ac-
tion prediction. Therefore, the weights in actor model are
updated by the gradient between actor and critic model, using
chain rule dQ/dWactor = dQ/dWcritic X dWcritic/dWactor-
Wactor and We,4;. indicate the weights of actor and critic
models, respectively.

Optical Flow

Actor Model

(" Critic Modef\"

Fig. 3. Actor-critic based clipper model.

J

Example images from four different egocentric videos are
shown in Fig. 4 together with the bounding boxes placed via
the actor critic model. The first, second and third rows show
frames (t — 10), ¢ and (¢ 4 10), respectively. As can be seen,
the box placed by the actor-critic model moves inside the im-
age to determine a focus region of interest.

3. EXPERIMENTAL RESULTS

We compared our proposed Deep-Shallow network with a
commonly used 3D CNN [3], which will be referred to
as C3D. We have used a recently released dataset called
Dataset of Multimodal Semantic Egocentric Video (DoM-
SEV) [18]. DoMSEV contains 80 hours of egocentric video
covering a wide range of activities. The videos were recorded
using either a GoPro Hero camera or a built setup com-
posed of a 3D Inertial Movement Unit (IMU) attached to
the Intel Realsense R200 RGB-D camera. The activities per-
formed while recording include walking, running, standing,
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browsing, driving, biking, eating, cooking, eating, observ-

ing, in conversation, playing, and shopping. We selected 11

videos (8 Tourism and 3 Daliy life videos), and five activities

(walking, running, standing, in conversation, browsing)
as labels. We segment the videos into video clips of 60 frames

with 50% overlapping. Then, we randomly separate 80% of
data for training and 20% for testing. 20% of the training data
is used for validation. The curves of training and validation

loss of our Deep-Shallow model are shown in Fig. 5. The loss

and reward curves of the actor-critic-based clipper model are

shown in Fig. 6 and Fig. 7, respectively.
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Fig. 5. Deep-Shallow network training loss.
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Fig. 7. Actor model training reward.

As mentioned above, we compared the performances of
the proposed method and the traditional C3D in terms of
speed and accuracy. For all the video clips (60 frame dura-
tion) in one video, we measured how long it takes to process
them, and took the average. As shown in Table 1, the aver-
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Fig. 4. Examples showing the autonomously placed bounding boxes. 1st, 2nd and 3rd rows show frames (t-10), t and (t+10), respectively.

age processing time per clip is 906 ms for C3D, while the
average processing time per clip is 576 ms for the proposed
Deep-Shallow model. In other words, our proposed model is
36.4% faster than the C3D as seen in Fig. 8.

The precision and recall values for each class are shown
in Fig. 9 and Fig. 10, respectively. The average precision of
the C3D and the proposed Deep-Shallow network are 0.72
and 0.71, respectively. The average recall of the C3D and the
proposed method are 0.75 and 0.74, respectively. As seen in
Table 1, the C3D and the proposed approach achieves 74%
and 72.9% overall accuracy, respectively. In summary, the
proposed approach provides a significant increase in process-
ing speed with only 1.1% decrease in the accuracy.

C3D

Deep-Shallow
Avg. process. time/clip 906 ms 576 ms
Overall accuracy 0.740 0.729

Table 1. Comparison table

Proeceesing Speed
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Fig. 8. Processing speed comparison

4. CONCLUSION

We have presented a novel method to efficiently perform hu-
man activity classification from egocentric videos by incor-
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porating actor-critic model of reinforcement learning. Actor-
critic reinforcement learning allows placing a bounding box
on a region of interest, and clipping that region. Then, only
the clipped region is processed through a deeper network,
while the entire image is processed by a shallow one. This
strategically reduced complexity of the network structure pro-
vides significant increase in the processing speed, while main-
taining the same level of accuracy with a state-of-the-art 3D
CNN network.
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